1
2/*
3 * Copyright 2012 Google Inc.
4 *
5 * Use of this source code is governed by a BSD-style license that can be
6 * found in the LICENSE file.
7 */
8
9#include "GrAAConvexPathRenderer.h"
10
11#include "GrContext.h"
12#include "GrDrawState.h"
13#include "GrDrawTargetCaps.h"
14#include "GrEffect.h"
15#include "GrPathUtils.h"
16#include "GrTBackendEffectFactory.h"
17#include "SkString.h"
18#include "SkStrokeRec.h"
19#include "SkTrace.h"
20
21#include "gl/GrGLEffect.h"
22#include "gl/GrGLSL.h"
23
24GrAAConvexPathRenderer::GrAAConvexPathRenderer() {
25}
26
27namespace {
28
29struct Segment {
30    enum {
31        // These enum values are assumed in member functions below.
32        kLine = 0,
33        kQuad = 1,
34    } fType;
35
36    // line uses one pt, quad uses 2 pts
37    GrPoint fPts[2];
38    // normal to edge ending at each pt
39    GrVec fNorms[2];
40    // is the corner where the previous segment meets this segment
41    // sharp. If so, fMid is a normalized bisector facing outward.
42    GrVec fMid;
43
44    int countPoints() {
45        GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
46        return fType + 1;
47    }
48    const SkPoint& endPt() const {
49        GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
50        return fPts[fType];
51    };
52    const SkPoint& endNorm() const {
53        GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
54        return fNorms[fType];
55    };
56};
57
58typedef SkTArray<Segment, true> SegmentArray;
59
60void center_of_mass(const SegmentArray& segments, SkPoint* c) {
61    SkScalar area = 0;
62    SkPoint center = {0, 0};
63    int count = segments.count();
64    SkPoint p0 = {0, 0};
65    if (count > 2) {
66        // We translate the polygon so that the first point is at the origin.
67        // This avoids some precision issues with small area polygons far away
68        // from the origin.
69        p0 = segments[0].endPt();
70        SkPoint pi;
71        SkPoint pj;
72        // the first and last iteration of the below loop would compute
73        // zeros since the starting / ending point is (0,0). So instead we start
74        // at i=1 and make the last iteration i=count-2.
75        pj = segments[1].endPt() - p0;
76        for (int i = 1; i < count - 1; ++i) {
77            pi = pj;
78            const SkPoint pj = segments[i + 1].endPt() - p0;
79
80            SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY);
81            area += t;
82            center.fX += (pi.fX + pj.fX) * t;
83            center.fY += (pi.fY + pj.fY) * t;
84
85        }
86    }
87    // If the poly has no area then we instead return the average of
88    // its points.
89    if (SkScalarNearlyZero(area)) {
90        SkPoint avg;
91        avg.set(0, 0);
92        for (int i = 0; i < count; ++i) {
93            const SkPoint& pt = segments[i].endPt();
94            avg.fX += pt.fX;
95            avg.fY += pt.fY;
96        }
97        SkScalar denom = SK_Scalar1 / count;
98        avg.scale(denom);
99        *c = avg;
100    } else {
101        area *= 3;
102        area = SkScalarDiv(SK_Scalar1, area);
103        center.fX = SkScalarMul(center.fX, area);
104        center.fY = SkScalarMul(center.fY, area);
105        // undo the translate of p0 to the origin.
106        *c = center + p0;
107    }
108    GrAssert(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY));
109}
110
111void compute_vectors(SegmentArray* segments,
112                     SkPoint* fanPt,
113                     SkPath::Direction dir,
114                     int* vCount,
115                     int* iCount) {
116    center_of_mass(*segments, fanPt);
117    int count = segments->count();
118
119    // Make the normals point towards the outside
120    GrPoint::Side normSide;
121    if (dir == SkPath::kCCW_Direction) {
122        normSide = GrPoint::kRight_Side;
123    } else {
124        normSide = GrPoint::kLeft_Side;
125    }
126
127    *vCount = 0;
128    *iCount = 0;
129    // compute normals at all points
130    for (int a = 0; a < count; ++a) {
131        Segment& sega = (*segments)[a];
132        int b = (a + 1) % count;
133        Segment& segb = (*segments)[b];
134
135        const GrPoint* prevPt = &sega.endPt();
136        int n = segb.countPoints();
137        for (int p = 0; p < n; ++p) {
138            segb.fNorms[p] = segb.fPts[p] - *prevPt;
139            segb.fNorms[p].normalize();
140            segb.fNorms[p].setOrthog(segb.fNorms[p], normSide);
141            prevPt = &segb.fPts[p];
142        }
143        if (Segment::kLine == segb.fType) {
144            *vCount += 5;
145            *iCount += 9;
146        } else {
147            *vCount += 6;
148            *iCount += 12;
149        }
150    }
151
152    // compute mid-vectors where segments meet. TODO: Detect shallow corners
153    // and leave out the wedges and close gaps by stitching segments together.
154    for (int a = 0; a < count; ++a) {
155        const Segment& sega = (*segments)[a];
156        int b = (a + 1) % count;
157        Segment& segb = (*segments)[b];
158        segb.fMid = segb.fNorms[0] + sega.endNorm();
159        segb.fMid.normalize();
160        // corner wedges
161        *vCount += 4;
162        *iCount += 6;
163    }
164}
165
166struct DegenerateTestData {
167    DegenerateTestData() { fStage = kInitial; }
168    bool isDegenerate() const { return kNonDegenerate != fStage; }
169    enum {
170        kInitial,
171        kPoint,
172        kLine,
173        kNonDegenerate
174    }           fStage;
175    GrPoint     fFirstPoint;
176    GrVec       fLineNormal;
177    SkScalar    fLineC;
178};
179
180void update_degenerate_test(DegenerateTestData* data, const GrPoint& pt) {
181    static const SkScalar TOL = (SK_Scalar1 / 16);
182    static const SkScalar TOL_SQD = SkScalarMul(TOL, TOL);
183
184    switch (data->fStage) {
185        case DegenerateTestData::kInitial:
186            data->fFirstPoint = pt;
187            data->fStage = DegenerateTestData::kPoint;
188            break;
189        case DegenerateTestData::kPoint:
190            if (pt.distanceToSqd(data->fFirstPoint) > TOL_SQD) {
191                data->fLineNormal = pt - data->fFirstPoint;
192                data->fLineNormal.normalize();
193                data->fLineNormal.setOrthog(data->fLineNormal);
194                data->fLineC = -data->fLineNormal.dot(data->fFirstPoint);
195                data->fStage = DegenerateTestData::kLine;
196            }
197            break;
198        case DegenerateTestData::kLine:
199            if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > TOL) {
200                data->fStage = DegenerateTestData::kNonDegenerate;
201            }
202        case DegenerateTestData::kNonDegenerate:
203            break;
204        default:
205            GrCrash("Unexpected degenerate test stage.");
206    }
207}
208
209inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPath::Direction* dir) {
210    if (!path.cheapComputeDirection(dir)) {
211        return false;
212    }
213    // check whether m reverses the orientation
214    GrAssert(!m.hasPerspective());
215    SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) -
216                      SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY));
217    if (det2x2 < 0) {
218        *dir = SkPath::OppositeDirection(*dir);
219    }
220    return true;
221}
222
223bool get_segments(const SkPath& path,
224                  const SkMatrix& m,
225                  SegmentArray* segments,
226                  SkPoint* fanPt,
227                  int* vCount,
228                  int* iCount) {
229    SkPath::Iter iter(path, true);
230    // This renderer over-emphasizes very thin path regions. We use the distance
231    // to the path from the sample to compute coverage. Every pixel intersected
232    // by the path will be hit and the maximum distance is sqrt(2)/2. We don't
233    // notice that the sample may be close to a very thin area of the path and
234    // thus should be very light. This is particularly egregious for degenerate
235    // line paths. We detect paths that are very close to a line (zero area) and
236    // draw nothing.
237    DegenerateTestData degenerateData;
238    SkPath::Direction dir;
239    // get_direction can fail for some degenerate paths.
240    if (!get_direction(path, m, &dir)) {
241        return false;
242    }
243
244    for (;;) {
245        GrPoint pts[4];
246        SkPath::Verb verb = iter.next(pts);
247        switch (verb) {
248            case SkPath::kMove_Verb:
249                m.mapPoints(pts, 1);
250                update_degenerate_test(&degenerateData, pts[0]);
251                break;
252            case SkPath::kLine_Verb: {
253                m.mapPoints(pts + 1, 1);
254                update_degenerate_test(&degenerateData, pts[1]);
255                segments->push_back();
256                segments->back().fType = Segment::kLine;
257                segments->back().fPts[0] = pts[1];
258                break;
259            }
260            case SkPath::kQuad_Verb:
261                m.mapPoints(pts + 1, 2);
262                update_degenerate_test(&degenerateData, pts[1]);
263                update_degenerate_test(&degenerateData, pts[2]);
264                segments->push_back();
265                segments->back().fType = Segment::kQuad;
266                segments->back().fPts[0] = pts[1];
267                segments->back().fPts[1] = pts[2];
268                break;
269            case SkPath::kCubic_Verb: {
270                m.mapPoints(pts, 4);
271                update_degenerate_test(&degenerateData, pts[1]);
272                update_degenerate_test(&degenerateData, pts[2]);
273                update_degenerate_test(&degenerateData, pts[3]);
274                // unlike quads and lines, the pts[0] will also be read (in
275                // convertCubicToQuads).
276                SkSTArray<15, SkPoint, true> quads;
277                GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads);
278                int count = quads.count();
279                for (int q = 0; q < count; q += 3) {
280                    segments->push_back();
281                    segments->back().fType = Segment::kQuad;
282                    segments->back().fPts[0] = quads[q + 1];
283                    segments->back().fPts[1] = quads[q + 2];
284                }
285                break;
286            };
287            case SkPath::kDone_Verb:
288                if (degenerateData.isDegenerate()) {
289                    return false;
290                } else {
291                    compute_vectors(segments, fanPt, dir, vCount, iCount);
292                    return true;
293                }
294            default:
295                break;
296        }
297    }
298}
299
300struct QuadVertex {
301    GrPoint  fPos;
302    GrPoint  fUV;
303    SkScalar fD0;
304    SkScalar fD1;
305};
306
307struct Draw {
308    Draw() : fVertexCnt(0), fIndexCnt(0) {}
309    int fVertexCnt;
310    int fIndexCnt;
311};
312
313typedef SkTArray<Draw, true> DrawArray;
314
315void create_vertices(const SegmentArray&  segments,
316                     const SkPoint& fanPt,
317                     DrawArray*     draws,
318                     QuadVertex*    verts,
319                     uint16_t*      idxs) {
320    Draw* draw = &draws->push_back();
321    // alias just to make vert/index assignments easier to read.
322    int* v = &draw->fVertexCnt;
323    int* i = &draw->fIndexCnt;
324
325    int count = segments.count();
326    for (int a = 0; a < count; ++a) {
327        const Segment& sega = segments[a];
328        int b = (a + 1) % count;
329        const Segment& segb = segments[b];
330
331        // Check whether adding the verts for this segment to the current draw would cause index
332        // values to overflow.
333        int vCount = 4;
334        if (Segment::kLine == segb.fType) {
335            vCount += 5;
336        } else {
337            vCount += 6;
338        }
339        if (draw->fVertexCnt + vCount > (1 << 16)) {
340            verts += *v;
341            idxs += *i;
342            draw = &draws->push_back();
343            v = &draw->fVertexCnt;
344            i = &draw->fIndexCnt;
345        }
346
347        // FIXME: These tris are inset in the 1 unit arc around the corner
348        verts[*v + 0].fPos = sega.endPt();
349        verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm();
350        verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid;
351        verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0];
352        verts[*v + 0].fUV.set(0,0);
353        verts[*v + 1].fUV.set(0,-SK_Scalar1);
354        verts[*v + 2].fUV.set(0,-SK_Scalar1);
355        verts[*v + 3].fUV.set(0,-SK_Scalar1);
356        verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
357        verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
358        verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
359        verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;
360
361        idxs[*i + 0] = *v + 0;
362        idxs[*i + 1] = *v + 2;
363        idxs[*i + 2] = *v + 1;
364        idxs[*i + 3] = *v + 0;
365        idxs[*i + 4] = *v + 3;
366        idxs[*i + 5] = *v + 2;
367
368        *v += 4;
369        *i += 6;
370
371        if (Segment::kLine == segb.fType) {
372            verts[*v + 0].fPos = fanPt;
373            verts[*v + 1].fPos = sega.endPt();
374            verts[*v + 2].fPos = segb.fPts[0];
375
376            verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0];
377            verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0];
378
379            // we draw the line edge as a degenerate quad (u is 0, v is the
380            // signed distance to the edge)
381            SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos,
382                                                        verts[*v + 2].fPos);
383            verts[*v + 0].fUV.set(0, dist);
384            verts[*v + 1].fUV.set(0, 0);
385            verts[*v + 2].fUV.set(0, 0);
386            verts[*v + 3].fUV.set(0, -SK_Scalar1);
387            verts[*v + 4].fUV.set(0, -SK_Scalar1);
388
389            verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1;
390            verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1;
391            verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1;
392            verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1;
393            verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1;
394
395            idxs[*i + 0] = *v + 0;
396            idxs[*i + 1] = *v + 2;
397            idxs[*i + 2] = *v + 1;
398
399            idxs[*i + 3] = *v + 3;
400            idxs[*i + 4] = *v + 1;
401            idxs[*i + 5] = *v + 2;
402
403            idxs[*i + 6] = *v + 4;
404            idxs[*i + 7] = *v + 3;
405            idxs[*i + 8] = *v + 2;
406
407            *v += 5;
408            *i += 9;
409        } else {
410            GrPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]};
411
412            GrVec midVec = segb.fNorms[0] + segb.fNorms[1];
413            midVec.normalize();
414
415            verts[*v + 0].fPos = fanPt;
416            verts[*v + 1].fPos = qpts[0];
417            verts[*v + 2].fPos = qpts[2];
418            verts[*v + 3].fPos = qpts[0] + segb.fNorms[0];
419            verts[*v + 4].fPos = qpts[2] + segb.fNorms[1];
420            verts[*v + 5].fPos = qpts[1] + midVec;
421
422            SkScalar c = segb.fNorms[0].dot(qpts[0]);
423            verts[*v + 0].fD0 =  -segb.fNorms[0].dot(fanPt) + c;
424            verts[*v + 1].fD0 =  0.f;
425            verts[*v + 2].fD0 =  -segb.fNorms[0].dot(qpts[2]) + c;
426            verts[*v + 3].fD0 = -SK_ScalarMax/100;
427            verts[*v + 4].fD0 = -SK_ScalarMax/100;
428            verts[*v + 5].fD0 = -SK_ScalarMax/100;
429
430            c = segb.fNorms[1].dot(qpts[2]);
431            verts[*v + 0].fD1 =  -segb.fNorms[1].dot(fanPt) + c;
432            verts[*v + 1].fD1 =  -segb.fNorms[1].dot(qpts[0]) + c;
433            verts[*v + 2].fD1 =  0.f;
434            verts[*v + 3].fD1 = -SK_ScalarMax/100;
435            verts[*v + 4].fD1 = -SK_ScalarMax/100;
436            verts[*v + 5].fD1 = -SK_ScalarMax/100;
437
438            GrPathUtils::QuadUVMatrix toUV(qpts);
439            toUV.apply<6, sizeof(QuadVertex), sizeof(GrPoint)>(verts + *v);
440
441            idxs[*i + 0] = *v + 3;
442            idxs[*i + 1] = *v + 1;
443            idxs[*i + 2] = *v + 2;
444            idxs[*i + 3] = *v + 4;
445            idxs[*i + 4] = *v + 3;
446            idxs[*i + 5] = *v + 2;
447
448            idxs[*i + 6] = *v + 5;
449            idxs[*i + 7] = *v + 3;
450            idxs[*i + 8] = *v + 4;
451
452            idxs[*i +  9] = *v + 0;
453            idxs[*i + 10] = *v + 2;
454            idxs[*i + 11] = *v + 1;
455
456            *v += 6;
457            *i += 12;
458        }
459    }
460}
461
462}
463
464///////////////////////////////////////////////////////////////////////////////
465
466/*
467 * Quadratic specified by 0=u^2-v canonical coords. u and v are the first
468 * two components of the vertex attribute. Coverage is based on signed
469 * distance with negative being inside, positive outside. The edge is specified in
470 * window space (y-down). If either the third or fourth component of the interpolated
471 * vertex coord is > 0 then the pixel is considered outside the edge. This is used to
472 * attempt to trim to a portion of the infinite quad.
473 * Requires shader derivative instruction support.
474 */
475
476class QuadEdgeEffect : public GrEffect {
477public:
478
479    static GrEffectRef* Create() {
480        GR_CREATE_STATIC_EFFECT(gQuadEdgeEffect, QuadEdgeEffect, ());
481        gQuadEdgeEffect->ref();
482        return gQuadEdgeEffect;
483    }
484
485    virtual ~QuadEdgeEffect() {}
486
487    static const char* Name() { return "QuadEdge"; }
488
489    virtual void getConstantColorComponents(GrColor* color,
490                                            uint32_t* validFlags) const SK_OVERRIDE {
491        *validFlags = 0;
492    }
493
494    virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE {
495        return GrTBackendEffectFactory<QuadEdgeEffect>::getInstance();
496    }
497
498    class GLEffect : public GrGLEffect {
499    public:
500        GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&)
501            : INHERITED (factory) {}
502
503        virtual void emitCode(GrGLShaderBuilder* builder,
504                              const GrDrawEffect& drawEffect,
505                              EffectKey key,
506                              const char* outputColor,
507                              const char* inputColor,
508                              const TextureSamplerArray& samplers) SK_OVERRIDE {
509            const char *vsName, *fsName;
510            const SkString* attrName =
511                builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]);
512            builder->fsCodeAppendf("\t\tfloat edgeAlpha;\n");
513
514            SkAssertResult(builder->enableFeature(
515                                              GrGLShaderBuilder::kStandardDerivatives_GLSLFeature));
516            builder->addVarying(kVec4f_GrSLType, "QuadEdge", &vsName, &fsName);
517
518            // keep the derivative instructions outside the conditional
519            builder->fsCodeAppendf("\t\tvec2 duvdx = dFdx(%s.xy);\n", fsName);
520            builder->fsCodeAppendf("\t\tvec2 duvdy = dFdy(%s.xy);\n", fsName);
521            builder->fsCodeAppendf("\t\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName);
522            // today we know z and w are in device space. We could use derivatives
523            builder->fsCodeAppendf("\t\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName,
524                                    fsName);
525            builder->fsCodeAppendf ("\t\t} else {\n");
526            builder->fsCodeAppendf("\t\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n"
527                                   "\t\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n",
528                                   fsName, fsName);
529            builder->fsCodeAppendf("\t\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName,
530                                    fsName);
531            builder->fsCodeAppendf("\t\t\tedgeAlpha = "
532                                   "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n\t\t}\n");
533
534            SkString modulate;
535            GrGLSLModulatef<4>(&modulate, inputColor, "edgeAlpha");
536            builder->fsCodeAppendf("\t%s = %s;\n", outputColor, modulate.c_str());
537
538            builder->vsCodeAppendf("\t%s = %s;\n", vsName, attrName->c_str());
539        }
540
541        static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) {
542            return 0x0;
543        }
544
545        virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE {}
546
547    private:
548        typedef GrGLEffect INHERITED;
549    };
550
551private:
552    QuadEdgeEffect() {
553        this->addVertexAttrib(kVec4f_GrSLType);
554    }
555
556    virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE {
557        return true;
558    }
559
560    GR_DECLARE_EFFECT_TEST;
561
562    typedef GrEffect INHERITED;
563};
564
565GR_DEFINE_EFFECT_TEST(QuadEdgeEffect);
566
567GrEffectRef* QuadEdgeEffect::TestCreate(SkMWCRandom* random,
568                                        GrContext*,
569                                        const GrDrawTargetCaps& caps,
570                                        GrTexture*[]) {
571    // Doesn't work without derivative instructions.
572    return caps.shaderDerivativeSupport() ? QuadEdgeEffect::Create() : NULL;
573}
574
575///////////////////////////////////////////////////////////////////////////////
576
577bool GrAAConvexPathRenderer::canDrawPath(const SkPath& path,
578                                         const SkStrokeRec& stroke,
579                                         const GrDrawTarget* target,
580                                         bool antiAlias) const {
581    return (target->caps()->shaderDerivativeSupport() && antiAlias &&
582            stroke.isFillStyle() && !path.isInverseFillType() && path.isConvex());
583}
584
585namespace {
586
587// position + edge
588extern const GrVertexAttrib gPathAttribs[] = {
589    {kVec2f_GrVertexAttribType, 0,               kPosition_GrVertexAttribBinding},
590    {kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding}
591};
592
593};
594
595bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath,
596                                        const SkStrokeRec&,
597                                        GrDrawTarget* target,
598                                        bool antiAlias) {
599
600    const SkPath* path = &origPath;
601    if (path->isEmpty()) {
602        return true;
603    }
604
605    SkMatrix viewMatrix = target->getDrawState().getViewMatrix();
606    GrDrawTarget::AutoStateRestore asr;
607    if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
608        return false;
609    }
610    GrDrawState* drawState = target->drawState();
611
612    // We use the fact that SkPath::transform path does subdivision based on
613    // perspective. Otherwise, we apply the view matrix when copying to the
614    // segment representation.
615    SkPath tmpPath;
616    if (viewMatrix.hasPerspective()) {
617        origPath.transform(viewMatrix, &tmpPath);
618        path = &tmpPath;
619        viewMatrix = SkMatrix::I();
620    }
621
622    QuadVertex *verts;
623    uint16_t* idxs;
624
625    int vCount;
626    int iCount;
627    enum {
628        kPreallocSegmentCnt = 512 / sizeof(Segment),
629        kPreallocDrawCnt = 4,
630    };
631    SkSTArray<kPreallocSegmentCnt, Segment, true> segments;
632    SkPoint fanPt;
633
634    if (!get_segments(*path, viewMatrix, &segments, &fanPt, &vCount, &iCount)) {
635        return false;
636    }
637
638    drawState->setVertexAttribs<gPathAttribs>(SK_ARRAY_COUNT(gPathAttribs));
639
640    static const int kEdgeAttrIndex = 1;
641    GrEffectRef* quadEffect = QuadEdgeEffect::Create();
642    drawState->addCoverageEffect(quadEffect, kEdgeAttrIndex)->unref();
643
644    GrDrawTarget::AutoReleaseGeometry arg(target, vCount, iCount);
645    if (!arg.succeeded()) {
646        return false;
647    }
648    GrAssert(sizeof(QuadVertex) == drawState->getVertexSize());
649    verts = reinterpret_cast<QuadVertex*>(arg.vertices());
650    idxs = reinterpret_cast<uint16_t*>(arg.indices());
651
652    SkSTArray<kPreallocDrawCnt, Draw, true> draws;
653    create_vertices(segments, fanPt, &draws, verts, idxs);
654
655    // This is valid because all the computed verts are within 1 pixel of the path control points.
656    SkRect devBounds;
657    devBounds = path->getBounds();
658    viewMatrix.mapRect(&devBounds);
659    devBounds.outset(SK_Scalar1, SK_Scalar1);
660
661    // Check devBounds
662#if GR_DEBUG
663    SkRect tolDevBounds = devBounds;
664    tolDevBounds.outset(SK_Scalar1 / 10000, SK_Scalar1 / 10000);
665    SkRect actualBounds;
666    actualBounds.set(verts[0].fPos, verts[1].fPos);
667    for (int i = 2; i < vCount; ++i) {
668        actualBounds.growToInclude(verts[i].fPos.fX, verts[i].fPos.fY);
669    }
670    GrAssert(tolDevBounds.contains(actualBounds));
671#endif
672
673    int vOffset = 0;
674    for (int i = 0; i < draws.count(); ++i) {
675        const Draw& draw = draws[i];
676        target->drawIndexed(kTriangles_GrPrimitiveType,
677                            vOffset,  // start vertex
678                            0,        // start index
679                            draw.fVertexCnt,
680                            draw.fIndexCnt,
681                            &devBounds);
682        vOffset += draw.fVertexCnt;
683    }
684
685    return true;
686}
687