1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "ui/gfx/skbitmap_operations.h"
6
7#include <algorithm>
8#include <string.h>
9
10#include "base/logging.h"
11#include "skia/ext/refptr.h"
12#include "third_party/skia/include/core/SkBitmap.h"
13#include "third_party/skia/include/core/SkCanvas.h"
14#include "third_party/skia/include/core/SkColorFilter.h"
15#include "third_party/skia/include/core/SkColorPriv.h"
16#include "third_party/skia/include/core/SkUnPreMultiply.h"
17#include "third_party/skia/include/effects/SkBlurImageFilter.h"
18#include "ui/gfx/insets.h"
19#include "ui/gfx/point.h"
20#include "ui/gfx/size.h"
21
22// static
23SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
24  DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
25
26  SkAutoLockPixels lock_image(image);
27
28  SkBitmap inverted;
29  inverted.setConfig(SkBitmap::kARGB_8888_Config, image.width(), image.height(),
30                     0);
31  inverted.allocPixels();
32  inverted.eraseARGB(0, 0, 0, 0);
33
34  for (int y = 0; y < image.height(); ++y) {
35    uint32* image_row = image.getAddr32(0, y);
36    uint32* dst_row = inverted.getAddr32(0, y);
37
38    for (int x = 0; x < image.width(); ++x) {
39      uint32 image_pixel = image_row[x];
40      dst_row[x] = (image_pixel & 0xFF000000) |
41                   (0x00FFFFFF - (image_pixel & 0x00FFFFFF));
42    }
43  }
44
45  return inverted;
46}
47
48// static
49SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first,
50                                                      const SkBitmap& second) {
51  DCHECK(first.width() == second.width());
52  DCHECK(first.height() == second.height());
53  DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
54  DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
55
56  SkAutoLockPixels lock_first(first);
57  SkAutoLockPixels lock_second(second);
58
59  SkBitmap superimposed;
60  superimposed.setConfig(SkBitmap::kARGB_8888_Config,
61                         first.width(), first.height());
62  superimposed.allocPixels();
63  superimposed.eraseARGB(0, 0, 0, 0);
64
65  SkCanvas canvas(superimposed);
66
67  SkRect rect;
68  rect.fLeft = 0;
69  rect.fTop = 0;
70  rect.fRight = SkIntToScalar(first.width());
71  rect.fBottom = SkIntToScalar(first.height());
72
73  canvas.drawBitmapRect(first, NULL, rect);
74  canvas.drawBitmapRect(second, NULL, rect);
75
76  return superimposed;
77}
78
79// static
80SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
81                                                 const SkBitmap& second,
82                                                 double alpha) {
83  DCHECK((alpha >= 0) && (alpha <= 1));
84  DCHECK(first.width() == second.width());
85  DCHECK(first.height() == second.height());
86  DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
87  DCHECK(first.config() == SkBitmap::kARGB_8888_Config);
88
89  // Optimize for case where we won't need to blend anything.
90  static const double alpha_min = 1.0 / 255;
91  static const double alpha_max = 254.0 / 255;
92  if (alpha < alpha_min)
93    return first;
94  else if (alpha > alpha_max)
95    return second;
96
97  SkAutoLockPixels lock_first(first);
98  SkAutoLockPixels lock_second(second);
99
100  SkBitmap blended;
101  blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), first.height(),
102                    0);
103  blended.allocPixels();
104  blended.eraseARGB(0, 0, 0, 0);
105
106  double first_alpha = 1 - alpha;
107
108  for (int y = 0; y < first.height(); ++y) {
109    uint32* first_row = first.getAddr32(0, y);
110    uint32* second_row = second.getAddr32(0, y);
111    uint32* dst_row = blended.getAddr32(0, y);
112
113    for (int x = 0; x < first.width(); ++x) {
114      uint32 first_pixel = first_row[x];
115      uint32 second_pixel = second_row[x];
116
117      int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
118                               (SkColorGetA(second_pixel) * alpha));
119      int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
120                               (SkColorGetR(second_pixel) * alpha));
121      int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
122                               (SkColorGetG(second_pixel) * alpha));
123      int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
124                               (SkColorGetB(second_pixel) * alpha));
125
126      dst_row[x] = SkColorSetARGB(a, r, g, b);
127    }
128  }
129
130  return blended;
131}
132
133// static
134SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
135                                                const SkBitmap& alpha) {
136  DCHECK(rgb.width() == alpha.width());
137  DCHECK(rgb.height() == alpha.height());
138  DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
139  DCHECK(rgb.config() == SkBitmap::kARGB_8888_Config);
140  DCHECK(alpha.config() == SkBitmap::kARGB_8888_Config);
141
142  SkBitmap masked;
143  masked.setConfig(SkBitmap::kARGB_8888_Config, rgb.width(), rgb.height(), 0);
144  masked.allocPixels();
145  masked.eraseARGB(0, 0, 0, 0);
146
147  SkAutoLockPixels lock_rgb(rgb);
148  SkAutoLockPixels lock_alpha(alpha);
149  SkAutoLockPixels lock_masked(masked);
150
151  for (int y = 0; y < masked.height(); ++y) {
152    uint32* rgb_row = rgb.getAddr32(0, y);
153    uint32* alpha_row = alpha.getAddr32(0, y);
154    uint32* dst_row = masked.getAddr32(0, y);
155
156    for (int x = 0; x < masked.width(); ++x) {
157      SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]);
158      SkColor alpha_pixel = SkUnPreMultiply::PMColorToColor(alpha_row[x]);
159      int alpha = SkAlphaMul(SkColorGetA(rgb_pixel),
160                             SkAlpha255To256(SkColorGetA(alpha_pixel)));
161      int alpha_256 = SkAlpha255To256(alpha);
162      dst_row[x] = SkColorSetARGB(alpha,
163                                  SkAlphaMul(SkColorGetR(rgb_pixel), alpha_256),
164                                  SkAlphaMul(SkColorGetG(rgb_pixel), alpha_256),
165                                  SkAlphaMul(SkColorGetB(rgb_pixel),
166                                             alpha_256));
167    }
168  }
169
170  return masked;
171}
172
173// static
174SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
175                                                    const SkBitmap& image,
176                                                    const SkBitmap& mask) {
177  DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
178  DCHECK(mask.config() == SkBitmap::kARGB_8888_Config);
179
180  SkBitmap background;
181  background.setConfig(
182      SkBitmap::kARGB_8888_Config, mask.width(), mask.height(), 0);
183  background.allocPixels();
184
185  double bg_a = SkColorGetA(color);
186  double bg_r = SkColorGetR(color);
187  double bg_g = SkColorGetG(color);
188  double bg_b = SkColorGetB(color);
189
190  SkAutoLockPixels lock_mask(mask);
191  SkAutoLockPixels lock_image(image);
192  SkAutoLockPixels lock_background(background);
193
194  for (int y = 0; y < mask.height(); ++y) {
195    uint32* dst_row = background.getAddr32(0, y);
196    uint32* image_row = image.getAddr32(0, y % image.height());
197    uint32* mask_row = mask.getAddr32(0, y);
198
199    for (int x = 0; x < mask.width(); ++x) {
200      uint32 image_pixel = image_row[x % image.width()];
201
202      double img_a = SkColorGetA(image_pixel);
203      double img_r = SkColorGetR(image_pixel);
204      double img_g = SkColorGetG(image_pixel);
205      double img_b = SkColorGetB(image_pixel);
206
207      double img_alpha = static_cast<double>(img_a) / 255.0;
208      double img_inv = 1 - img_alpha;
209
210      double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;
211
212      dst_row[x] = SkColorSetARGB(
213          static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
214          static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
215          static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
216          static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
217    }
218  }
219
220  return background;
221}
222
223namespace {
224namespace HSLShift {
225
226// TODO(viettrungluu): Some things have yet to be optimized at all.
227
228// Notes on and conventions used in the following code
229//
230// Conventions:
231//  - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below)
232//  - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below)
233//  - variables derived from S, L shift parameters: |sdec| and |sinc| for S
234//    increase and decrease factors, |ldec| and |linc| for L (see also below)
235//
236// To try to optimize HSL shifts, we do several things:
237//  - Avoid unpremultiplying (then processing) then premultiplying. This means
238//    that R, G, B values (and also L, but not H and S) should be treated as
239//    having a range of 0..A (where A is alpha).
240//  - Do things in integer/fixed-point. This avoids costly conversions between
241//    floating-point and integer, though I should study the tradeoff more
242//    carefully (presumably, at some point of processing complexity, converting
243//    and processing using simpler floating-point code will begin to win in
244//    performance). Also to be studied is the speed/type of floating point
245//    conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>.
246//
247// Conventions for fixed-point arithmetic
248//  - Each function has a constant denominator (called |den|, which should be a
249//    power of 2), appropriate for the computations done in that function.
250//  - A value |x| is then typically represented by a numerator, named |x_num|,
251//    so that its actual value is |x_num / den| (casting to floating-point
252//    before division).
253//  - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x *
254//    den| (casting appropriately).
255//  - When necessary, a value |x| may also be represented as a numerator over
256//    the denominator squared (set |den2 = den * den|). In such a case, the
257//    corresponding variable is called |x_num2| (so that its actual value is
258//    |x_num^2 / den2|.
259//  - The representation of the product of |x| and |y| is be called |x_y_num| if
260//    |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In
261//    the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|.
262
263// Routine used to process a line; typically specialized for specific kinds of
264// HSL shifts (to optimize).
265typedef void (*LineProcessor)(const color_utils::HSL&,
266                              const SkPMColor*,
267                              SkPMColor*,
268                              int width);
269
270enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps };
271enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps };
272enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps };
273
274// Epsilon used to judge when shift values are close enough to various critical
275// values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should
276// be small enough, but let's play it safe>
277const double epsilon = 0.0005;
278
279// Line processor: default/universal (i.e., old-school).
280void LineProcDefault(const color_utils::HSL& hsl_shift,
281                     const SkPMColor* in,
282                     SkPMColor* out,
283                     int width) {
284  for (int x = 0; x < width; x++) {
285    out[x] = SkPreMultiplyColor(color_utils::HSLShift(
286        SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift));
287  }
288}
289
290// Line processor: no-op (i.e., copy).
291void LineProcCopy(const color_utils::HSL& hsl_shift,
292                  const SkPMColor* in,
293                  SkPMColor* out,
294                  int width) {
295  DCHECK(hsl_shift.h < 0);
296  DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
297  DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
298  memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0]));
299}
300
301// Line processor: H no-op, S no-op, L decrease.
302void LineProcHnopSnopLdec(const color_utils::HSL& hsl_shift,
303                          const SkPMColor* in,
304                          SkPMColor* out,
305                          int width) {
306  const uint32_t den = 65536;
307
308  DCHECK(hsl_shift.h < 0);
309  DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
310  DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0);
311
312  uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den);
313  for (int x = 0; x < width; x++) {
314    uint32_t a = SkGetPackedA32(in[x]);
315    uint32_t r = SkGetPackedR32(in[x]);
316    uint32_t g = SkGetPackedG32(in[x]);
317    uint32_t b = SkGetPackedB32(in[x]);
318    r = r * ldec_num / den;
319    g = g * ldec_num / den;
320    b = b * ldec_num / den;
321    out[x] = SkPackARGB32(a, r, g, b);
322  }
323}
324
325// Line processor: H no-op, S no-op, L increase.
326void LineProcHnopSnopLinc(const color_utils::HSL& hsl_shift,
327                          const SkPMColor* in,
328                          SkPMColor* out,
329                          int width) {
330  const uint32_t den = 65536;
331
332  DCHECK(hsl_shift.h < 0);
333  DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
334  DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
335
336  uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den);
337  for (int x = 0; x < width; x++) {
338    uint32_t a = SkGetPackedA32(in[x]);
339    uint32_t r = SkGetPackedR32(in[x]);
340    uint32_t g = SkGetPackedG32(in[x]);
341    uint32_t b = SkGetPackedB32(in[x]);
342    r += (a - r) * linc_num / den;
343    g += (a - g) * linc_num / den;
344    b += (a - b) * linc_num / den;
345    out[x] = SkPackARGB32(a, r, g, b);
346  }
347}
348
349// Saturation changes modifications in RGB
350//
351// (Note that as a further complication, the values we deal in are
352// premultiplied, so R/G/B values must be in the range 0..A. For mathematical
353// purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of
354// generality, assume that R/G/B values are in the range 0..1.)
355//
356// Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L =
357// (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant.
358//
359// For H to remain constant, first, the (numerical) order of R/G/B (from
360// smallest to largest) must remain the same. Second, all the ratios
361// (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of
362// course, if Max = Min, then S = 0 and no saturation change is well-defined,
363// since H is not well-defined).
364//
365// Let C_max be a colour with value Max, C_min be one with value Min, and C_med
366// the remaining colour. Increasing saturation (to the maximum) is accomplished
367// by increasing the value of C_max while simultaneously decreasing C_min and
368// changing C_med so that the ratios are maintained; for the latter, it suffices
369// to keep (C_med-C_min)/(C_max-C_min) constant (and equal to
370// (Med-Min)/(Max-Min)).
371
372// Line processor: H no-op, S decrease, L no-op.
373void LineProcHnopSdecLnop(const color_utils::HSL& hsl_shift,
374                          const SkPMColor* in,
375                          SkPMColor* out,
376                          int width) {
377  DCHECK(hsl_shift.h < 0);
378  DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
379  DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
380
381  const int32_t denom = 65536;
382  int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
383  for (int x = 0; x < width; x++) {
384    int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
385    int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
386    int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
387    int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
388
389    int32_t vmax, vmin;
390    if (r > g) {  // This uses 3 compares rather than 4.
391      vmax = std::max(r, b);
392      vmin = std::min(g, b);
393    } else {
394      vmax = std::max(g, b);
395      vmin = std::min(r, b);
396    }
397
398    // Use denom * L to avoid rounding.
399    int32_t denom_l = (vmax + vmin) * (denom / 2);
400    int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
401
402    r = (denom_l + r * s_numer - s_numer_l) / denom;
403    g = (denom_l + g * s_numer - s_numer_l) / denom;
404    b = (denom_l + b * s_numer - s_numer_l) / denom;
405    out[x] = SkPackARGB32(a, r, g, b);
406  }
407}
408
409// Line processor: H no-op, S decrease, L decrease.
410void LineProcHnopSdecLdec(const color_utils::HSL& hsl_shift,
411                          const SkPMColor* in,
412                          SkPMColor* out,
413                          int width) {
414  DCHECK(hsl_shift.h < 0);
415  DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
416  DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon);
417
418  // Can't be too big since we need room for denom*denom and a bit for sign.
419  const int32_t denom = 1024;
420  int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom);
421  int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
422  for (int x = 0; x < width; x++) {
423    int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
424    int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
425    int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
426    int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
427
428    int32_t vmax, vmin;
429    if (r > g) {  // This uses 3 compares rather than 4.
430      vmax = std::max(r, b);
431      vmin = std::min(g, b);
432    } else {
433      vmax = std::max(g, b);
434      vmin = std::min(r, b);
435    }
436
437    // Use denom * L to avoid rounding.
438    int32_t denom_l = (vmax + vmin) * (denom / 2);
439    int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
440
441    r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom);
442    g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom);
443    b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom);
444    out[x] = SkPackARGB32(a, r, g, b);
445  }
446}
447
448// Line processor: H no-op, S decrease, L increase.
449void LineProcHnopSdecLinc(const color_utils::HSL& hsl_shift,
450                          const SkPMColor* in,
451                          SkPMColor* out,
452                          int width) {
453  DCHECK(hsl_shift.h < 0);
454  DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
455  DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
456
457  // Can't be too big since we need room for denom*denom and a bit for sign.
458  const int32_t denom = 1024;
459  int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom);
460  int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
461  for (int x = 0; x < width; x++) {
462    int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
463    int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
464    int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
465    int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
466
467    int32_t vmax, vmin;
468    if (r > g) {  // This uses 3 compares rather than 4.
469      vmax = std::max(r, b);
470      vmin = std::min(g, b);
471    } else {
472      vmax = std::max(g, b);
473      vmin = std::min(r, b);
474    }
475
476    // Use denom * L to avoid rounding.
477    int32_t denom_l = (vmax + vmin) * (denom / 2);
478    int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
479
480    r = denom_l + r * s_numer - s_numer_l;
481    g = denom_l + g * s_numer - s_numer_l;
482    b = denom_l + b * s_numer - s_numer_l;
483
484    r = (r * denom + (a * denom - r) * l_numer) / (denom * denom);
485    g = (g * denom + (a * denom - g) * l_numer) / (denom * denom);
486    b = (b * denom + (a * denom - b) * l_numer) / (denom * denom);
487    out[x] = SkPackARGB32(a, r, g, b);
488  }
489}
490
491const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = {
492  { // H: kOpHNone
493    { // S: kOpSNone
494      LineProcCopy,         // L: kOpLNone
495      LineProcHnopSnopLdec, // L: kOpLDec
496      LineProcHnopSnopLinc  // L: kOpLInc
497    },
498    { // S: kOpSDec
499      LineProcHnopSdecLnop, // L: kOpLNone
500      LineProcHnopSdecLdec, // L: kOpLDec
501      LineProcHnopSdecLinc  // L: kOpLInc
502    },
503    { // S: kOpSInc
504      LineProcDefault, // L: kOpLNone
505      LineProcDefault, // L: kOpLDec
506      LineProcDefault  // L: kOpLInc
507    }
508  },
509  { // H: kOpHShift
510    { // S: kOpSNone
511      LineProcDefault, // L: kOpLNone
512      LineProcDefault, // L: kOpLDec
513      LineProcDefault  // L: kOpLInc
514    },
515    { // S: kOpSDec
516      LineProcDefault, // L: kOpLNone
517      LineProcDefault, // L: kOpLDec
518      LineProcDefault  // L: kOpLInc
519    },
520    { // S: kOpSInc
521      LineProcDefault, // L: kOpLNone
522      LineProcDefault, // L: kOpLDec
523      LineProcDefault  // L: kOpLInc
524    }
525  }
526};
527
528}  // namespace HSLShift
529}  // namespace
530
531// static
532SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
533    const SkBitmap& bitmap,
534    const color_utils::HSL& hsl_shift) {
535  // Default to NOPs.
536  HSLShift::OperationOnH H_op = HSLShift::kOpHNone;
537  HSLShift::OperationOnS S_op = HSLShift::kOpSNone;
538  HSLShift::OperationOnL L_op = HSLShift::kOpLNone;
539
540  if (hsl_shift.h >= 0 && hsl_shift.h <= 1)
541    H_op = HSLShift::kOpHShift;
542
543  // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate.
544  if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon))
545    S_op = HSLShift::kOpSDec;
546  else if (hsl_shift.s >= (0.5 + HSLShift::epsilon))
547    S_op = HSLShift::kOpSInc;
548
549  // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white.
550  if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon))
551    L_op = HSLShift::kOpLDec;
552  else if (hsl_shift.l >= (0.5 + HSLShift::epsilon))
553    L_op = HSLShift::kOpLInc;
554
555  HSLShift::LineProcessor line_proc =
556      HSLShift::kLineProcessors[H_op][S_op][L_op];
557
558  DCHECK(bitmap.empty() == false);
559  DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
560
561  SkBitmap shifted;
562  shifted.setConfig(SkBitmap::kARGB_8888_Config, bitmap.width(),
563                    bitmap.height(), 0);
564  shifted.allocPixels();
565  shifted.eraseARGB(0, 0, 0, 0);
566  shifted.setIsOpaque(false);
567
568  SkAutoLockPixels lock_bitmap(bitmap);
569  SkAutoLockPixels lock_shifted(shifted);
570
571  // Loop through the pixels of the original bitmap.
572  for (int y = 0; y < bitmap.height(); ++y) {
573    SkPMColor* pixels = bitmap.getAddr32(0, y);
574    SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
575
576    (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width());
577  }
578
579  return shifted;
580}
581
582// static
583SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
584                                               int src_x, int src_y,
585                                               int dst_w, int dst_h) {
586  DCHECK(source.config() == SkBitmap::kARGB_8888_Config);
587
588  SkBitmap cropped;
589  cropped.setConfig(SkBitmap::kARGB_8888_Config, dst_w, dst_h, 0);
590  cropped.allocPixels();
591  cropped.eraseARGB(0, 0, 0, 0);
592
593  SkAutoLockPixels lock_source(source);
594  SkAutoLockPixels lock_cropped(cropped);
595
596  // Loop through the pixels of the original bitmap.
597  for (int y = 0; y < dst_h; ++y) {
598    int y_pix = (src_y + y) % source.height();
599    while (y_pix < 0)
600      y_pix += source.height();
601
602    uint32* source_row = source.getAddr32(0, y_pix);
603    uint32* dst_row = cropped.getAddr32(0, y);
604
605    for (int x = 0; x < dst_w; ++x) {
606      int x_pix = (src_x + x) % source.width();
607      while (x_pix < 0)
608        x_pix += source.width();
609
610      dst_row[x] = source_row[x_pix];
611    }
612  }
613
614  return cropped;
615}
616
617// static
618SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
619                                                      int min_w, int min_h) {
620  if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
621      (min_w < 0) || (min_h < 0))
622    return bitmap;
623
624  // Since bitmaps are refcounted, this copy will be fast.
625  SkBitmap current = bitmap;
626  while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
627         (current.width() > 1) && (current.height() > 1))
628    current = DownsampleByTwo(current);
629  return current;
630}
631
632// static
633SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
634  // Handle the nop case.
635  if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
636    return bitmap;
637
638  SkBitmap result;
639  result.setConfig(SkBitmap::kARGB_8888_Config,
640                   (bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
641  result.allocPixels();
642
643  SkAutoLockPixels lock(bitmap);
644
645  const int resultLastX = result.width() - 1;
646  const int srcLastX = bitmap.width() - 1;
647
648  for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
649    const int src_y = dest_y << 1;
650    const SkPMColor* SK_RESTRICT cur_src0 = bitmap.getAddr32(0, src_y);
651    const SkPMColor* SK_RESTRICT cur_src1 = cur_src0;
652    if (src_y + 1 < bitmap.height())
653      cur_src1 = bitmap.getAddr32(0, src_y + 1);
654
655    SkPMColor* SK_RESTRICT cur_dst = result.getAddr32(0, dest_y);
656
657    for (int dest_x = 0; dest_x <= resultLastX; ++dest_x) {
658      // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
659      // clever in that it does two channels at once: alpha and green ("ag")
660      // and red and blue ("rb"). Each channel gets averaged across 4 pixels
661      // to get the result.
662      int bump_x = (dest_x << 1) < srcLastX;
663      SkPMColor tmp, ag, rb;
664
665      // Top left pixel of the 2x2 block.
666      tmp = cur_src0[0];
667      ag = (tmp >> 8) & 0xFF00FF;
668      rb = tmp & 0xFF00FF;
669
670      // Top right pixel of the 2x2 block.
671      tmp = cur_src0[bump_x];
672      ag += (tmp >> 8) & 0xFF00FF;
673      rb += tmp & 0xFF00FF;
674
675      // Bottom left pixel of the 2x2 block.
676      tmp = cur_src1[0];
677      ag += (tmp >> 8) & 0xFF00FF;
678      rb += tmp & 0xFF00FF;
679
680      // Bottom right pixel of the 2x2 block.
681      tmp = cur_src1[bump_x];
682      ag += (tmp >> 8) & 0xFF00FF;
683      rb += tmp & 0xFF00FF;
684
685      // Put the channels back together, dividing each by 4 to get the average.
686      // |ag| has the alpha and green channels shifted right by 8 bits from
687      // there they should end up, so shifting left by 6 gives them in the
688      // correct position divided by 4.
689      *cur_dst++ = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
690
691      cur_src0 += 2;
692      cur_src1 += 2;
693    }
694  }
695
696  return result;
697}
698
699// static
700SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) {
701  if (bitmap.isNull())
702    return bitmap;
703  if (bitmap.isOpaque())
704    return bitmap;
705
706  SkBitmap opaque_bitmap;
707  opaque_bitmap.setConfig(bitmap.config(), bitmap.width(), bitmap.height());
708  opaque_bitmap.allocPixels();
709
710  {
711    SkAutoLockPixels bitmap_lock(bitmap);
712    SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap);
713    for (int y = 0; y < opaque_bitmap.height(); y++) {
714      for (int x = 0; x < opaque_bitmap.width(); x++) {
715        uint32 src_pixel = *bitmap.getAddr32(x, y);
716        uint32* dst_pixel = opaque_bitmap.getAddr32(x, y);
717        SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel);
718        *dst_pixel = unmultiplied;
719      }
720    }
721  }
722
723  opaque_bitmap.setIsOpaque(true);
724  return opaque_bitmap;
725}
726
727// static
728SkBitmap SkBitmapOperations::CreateTransposedBitmap(const SkBitmap& image) {
729  DCHECK(image.config() == SkBitmap::kARGB_8888_Config);
730
731  SkBitmap transposed;
732  transposed.setConfig(
733      SkBitmap::kARGB_8888_Config, image.height(), image.width(), 0);
734  transposed.allocPixels();
735
736  SkAutoLockPixels lock_image(image);
737  SkAutoLockPixels lock_transposed(transposed);
738
739  for (int y = 0; y < image.height(); ++y) {
740    uint32* image_row = image.getAddr32(0, y);
741    for (int x = 0; x < image.width(); ++x) {
742      uint32* dst = transposed.getAddr32(y, x);
743      *dst = image_row[x];
744    }
745  }
746
747  return transposed;
748}
749
750// static
751SkBitmap SkBitmapOperations::CreateColorMask(const SkBitmap& bitmap,
752                                             SkColor c) {
753  DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
754
755  SkBitmap color_mask;
756  color_mask.setConfig(SkBitmap::kARGB_8888_Config,
757                       bitmap.width(), bitmap.height());
758  color_mask.allocPixels();
759  color_mask.eraseARGB(0, 0, 0, 0);
760
761  SkCanvas canvas(color_mask);
762
763  skia::RefPtr<SkColorFilter> color_filter = skia::AdoptRef(
764      SkColorFilter::CreateModeFilter(c, SkXfermode::kSrcIn_Mode));
765  SkPaint paint;
766  paint.setColorFilter(color_filter.get());
767  canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0), &paint);
768  return color_mask;
769}
770
771// static
772SkBitmap SkBitmapOperations::CreateDropShadow(
773    const SkBitmap& bitmap,
774    const gfx::ShadowValues& shadows) {
775  DCHECK(bitmap.config() == SkBitmap::kARGB_8888_Config);
776
777  // Shadow margin insets are negative values because they grow outside.
778  // Negate them here as grow direction is not important and only pixel value
779  // is of interest here.
780  gfx::Insets shadow_margin = -gfx::ShadowValue::GetMargin(shadows);
781
782  SkBitmap image_with_shadow;
783  image_with_shadow.setConfig(SkBitmap::kARGB_8888_Config,
784                              bitmap.width() + shadow_margin.width(),
785                              bitmap.height() + shadow_margin.height());
786  image_with_shadow.allocPixels();
787  image_with_shadow.eraseARGB(0, 0, 0, 0);
788
789  SkCanvas canvas(image_with_shadow);
790  canvas.translate(SkIntToScalar(shadow_margin.left()),
791                   SkIntToScalar(shadow_margin.top()));
792
793  SkPaint paint;
794  for (size_t i = 0; i < shadows.size(); ++i) {
795    const gfx::ShadowValue& shadow = shadows[i];
796    SkBitmap shadow_image = SkBitmapOperations::CreateColorMask(bitmap,
797                                                                shadow.color());
798
799    skia::RefPtr<SkBlurImageFilter> filter =
800        skia::AdoptRef(new SkBlurImageFilter(SkDoubleToScalar(shadow.blur()),
801                                             SkDoubleToScalar(shadow.blur())));
802    paint.setImageFilter(filter.get());
803
804    canvas.saveLayer(0, &paint);
805    canvas.drawBitmap(shadow_image,
806                      SkIntToScalar(shadow.x()),
807                      SkIntToScalar(shadow.y()));
808    canvas.restore();
809  }
810
811  canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0));
812  return image_with_shadow;
813}
814
815// static
816SkBitmap SkBitmapOperations::Rotate(const SkBitmap& source,
817                                    RotationAmount rotation) {
818  SkBitmap result;
819  SkScalar angle = SkFloatToScalar(0.0f);
820
821  switch (rotation) {
822   case ROTATION_90_CW:
823     angle = SkFloatToScalar(90.0f);
824     result.setConfig(
825         SkBitmap::kARGB_8888_Config, source.height(), source.width());
826     break;
827   case ROTATION_180_CW:
828     angle = SkFloatToScalar(180.0f);
829     result.setConfig(
830         SkBitmap::kARGB_8888_Config, source.width(), source.height());
831     break;
832   case ROTATION_270_CW:
833     angle = SkFloatToScalar(270.0f);
834     result.setConfig(
835         SkBitmap::kARGB_8888_Config, source.height(), source.width());
836     break;
837  }
838  result.allocPixels();
839  SkCanvas canvas(result);
840  canvas.clear(SkColorSetARGB(0, 0, 0, 0));
841
842  canvas.translate(SkFloatToScalar(result.width() * 0.5f),
843                   SkFloatToScalar(result.height() * 0.5f));
844  canvas.rotate(angle);
845  canvas.translate(-SkFloatToScalar(source.width() * 0.5f),
846                   -SkFloatToScalar(source.height() * 0.5f));
847  canvas.drawBitmap(source, 0, 0);
848  canvas.flush();
849
850  return result;
851}
852