1// Copyright 2011 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "../include/v8stdint.h"
29#include "utils.h"
30#include "bignum.h"
31
32namespace v8 {
33namespace internal {
34
35Bignum::Bignum()
36    : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) {
37  for (int i = 0; i < kBigitCapacity; ++i) {
38    bigits_[i] = 0;
39  }
40}
41
42
43template<typename S>
44static int BitSize(S value) {
45  return 8 * sizeof(value);
46}
47
48
49// Guaranteed to lie in one Bigit.
50void Bignum::AssignUInt16(uint16_t value) {
51  ASSERT(kBigitSize >= BitSize(value));
52  Zero();
53  if (value == 0) return;
54
55  EnsureCapacity(1);
56  bigits_[0] = value;
57  used_digits_ = 1;
58}
59
60
61void Bignum::AssignUInt64(uint64_t value) {
62  const int kUInt64Size = 64;
63
64  Zero();
65  if (value == 0) return;
66
67  int needed_bigits = kUInt64Size / kBigitSize + 1;
68  EnsureCapacity(needed_bigits);
69  for (int i = 0; i < needed_bigits; ++i) {
70    bigits_[i] = static_cast<Chunk>(value & kBigitMask);
71    value = value >> kBigitSize;
72  }
73  used_digits_ = needed_bigits;
74  Clamp();
75}
76
77
78void Bignum::AssignBignum(const Bignum& other) {
79  exponent_ = other.exponent_;
80  for (int i = 0; i < other.used_digits_; ++i) {
81    bigits_[i] = other.bigits_[i];
82  }
83  // Clear the excess digits (if there were any).
84  for (int i = other.used_digits_; i < used_digits_; ++i) {
85    bigits_[i] = 0;
86  }
87  used_digits_ = other.used_digits_;
88}
89
90
91static uint64_t ReadUInt64(Vector<const char> buffer,
92                           int from,
93                           int digits_to_read) {
94  uint64_t result = 0;
95  for (int i = from; i < from + digits_to_read; ++i) {
96    int digit = buffer[i] - '0';
97    ASSERT(0 <= digit && digit <= 9);
98    result = result * 10 + digit;
99  }
100  return result;
101}
102
103
104void Bignum::AssignDecimalString(Vector<const char> value) {
105  // 2^64 = 18446744073709551616 > 10^19
106  const int kMaxUint64DecimalDigits = 19;
107  Zero();
108  int length = value.length();
109  int pos = 0;
110  // Let's just say that each digit needs 4 bits.
111  while (length >= kMaxUint64DecimalDigits) {
112    uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
113    pos += kMaxUint64DecimalDigits;
114    length -= kMaxUint64DecimalDigits;
115    MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
116    AddUInt64(digits);
117  }
118  uint64_t digits = ReadUInt64(value, pos, length);
119  MultiplyByPowerOfTen(length);
120  AddUInt64(digits);
121  Clamp();
122}
123
124
125static int HexCharValue(char c) {
126  if ('0' <= c && c <= '9') return c - '0';
127  if ('a' <= c && c <= 'f') return 10 + c - 'a';
128  if ('A' <= c && c <= 'F') return 10 + c - 'A';
129  UNREACHABLE();
130  return 0;  // To make compiler happy.
131}
132
133
134void Bignum::AssignHexString(Vector<const char> value) {
135  Zero();
136  int length = value.length();
137
138  int needed_bigits = length * 4 / kBigitSize + 1;
139  EnsureCapacity(needed_bigits);
140  int string_index = length - 1;
141  for (int i = 0; i < needed_bigits - 1; ++i) {
142    // These bigits are guaranteed to be "full".
143    Chunk current_bigit = 0;
144    for (int j = 0; j < kBigitSize / 4; j++) {
145      current_bigit += HexCharValue(value[string_index--]) << (j * 4);
146    }
147    bigits_[i] = current_bigit;
148  }
149  used_digits_ = needed_bigits - 1;
150
151  Chunk most_significant_bigit = 0;  // Could be = 0;
152  for (int j = 0; j <= string_index; ++j) {
153    most_significant_bigit <<= 4;
154    most_significant_bigit += HexCharValue(value[j]);
155  }
156  if (most_significant_bigit != 0) {
157    bigits_[used_digits_] = most_significant_bigit;
158    used_digits_++;
159  }
160  Clamp();
161}
162
163
164void Bignum::AddUInt64(uint64_t operand) {
165  if (operand == 0) return;
166  Bignum other;
167  other.AssignUInt64(operand);
168  AddBignum(other);
169}
170
171
172void Bignum::AddBignum(const Bignum& other) {
173  ASSERT(IsClamped());
174  ASSERT(other.IsClamped());
175
176  // If this has a greater exponent than other append zero-bigits to this.
177  // After this call exponent_ <= other.exponent_.
178  Align(other);
179
180  // There are two possibilities:
181  //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
182  //     bbbbb 00000000
183  //   ----------------
184  //   ccccccccccc 0000
185  // or
186  //    aaaaaaaaaa 0000
187  //  bbbbbbbbb 0000000
188  //  -----------------
189  //  cccccccccccc 0000
190  // In both cases we might need a carry bigit.
191
192  EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_);
193  Chunk carry = 0;
194  int bigit_pos = other.exponent_ - exponent_;
195  ASSERT(bigit_pos >= 0);
196  for (int i = 0; i < other.used_digits_; ++i) {
197    Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry;
198    bigits_[bigit_pos] = sum & kBigitMask;
199    carry = sum >> kBigitSize;
200    bigit_pos++;
201  }
202
203  while (carry != 0) {
204    Chunk sum = bigits_[bigit_pos] + carry;
205    bigits_[bigit_pos] = sum & kBigitMask;
206    carry = sum >> kBigitSize;
207    bigit_pos++;
208  }
209  used_digits_ = Max(bigit_pos, used_digits_);
210  ASSERT(IsClamped());
211}
212
213
214void Bignum::SubtractBignum(const Bignum& other) {
215  ASSERT(IsClamped());
216  ASSERT(other.IsClamped());
217  // We require this to be bigger than other.
218  ASSERT(LessEqual(other, *this));
219
220  Align(other);
221
222  int offset = other.exponent_ - exponent_;
223  Chunk borrow = 0;
224  int i;
225  for (i = 0; i < other.used_digits_; ++i) {
226    ASSERT((borrow == 0) || (borrow == 1));
227    Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow;
228    bigits_[i + offset] = difference & kBigitMask;
229    borrow = difference >> (kChunkSize - 1);
230  }
231  while (borrow != 0) {
232    Chunk difference = bigits_[i + offset] - borrow;
233    bigits_[i + offset] = difference & kBigitMask;
234    borrow = difference >> (kChunkSize - 1);
235    ++i;
236  }
237  Clamp();
238}
239
240
241void Bignum::ShiftLeft(int shift_amount) {
242  if (used_digits_ == 0) return;
243  exponent_ += shift_amount / kBigitSize;
244  int local_shift = shift_amount % kBigitSize;
245  EnsureCapacity(used_digits_ + 1);
246  BigitsShiftLeft(local_shift);
247}
248
249
250void Bignum::MultiplyByUInt32(uint32_t factor) {
251  if (factor == 1) return;
252  if (factor == 0) {
253    Zero();
254    return;
255  }
256  if (used_digits_ == 0) return;
257
258  // The product of a bigit with the factor is of size kBigitSize + 32.
259  // Assert that this number + 1 (for the carry) fits into double chunk.
260  ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
261  DoubleChunk carry = 0;
262  for (int i = 0; i < used_digits_; ++i) {
263    DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry;
264    bigits_[i] = static_cast<Chunk>(product & kBigitMask);
265    carry = (product >> kBigitSize);
266  }
267  while (carry != 0) {
268    EnsureCapacity(used_digits_ + 1);
269    bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
270    used_digits_++;
271    carry >>= kBigitSize;
272  }
273}
274
275
276void Bignum::MultiplyByUInt64(uint64_t factor) {
277  if (factor == 1) return;
278  if (factor == 0) {
279    Zero();
280    return;
281  }
282  ASSERT(kBigitSize < 32);
283  uint64_t carry = 0;
284  uint64_t low = factor & 0xFFFFFFFF;
285  uint64_t high = factor >> 32;
286  for (int i = 0; i < used_digits_; ++i) {
287    uint64_t product_low = low * bigits_[i];
288    uint64_t product_high = high * bigits_[i];
289    uint64_t tmp = (carry & kBigitMask) + product_low;
290    bigits_[i] = static_cast<Chunk>(tmp & kBigitMask);
291    carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
292        (product_high << (32 - kBigitSize));
293  }
294  while (carry != 0) {
295    EnsureCapacity(used_digits_ + 1);
296    bigits_[used_digits_] = static_cast<Chunk>(carry & kBigitMask);
297    used_digits_++;
298    carry >>= kBigitSize;
299  }
300}
301
302
303void Bignum::MultiplyByPowerOfTen(int exponent) {
304  const uint64_t kFive27 = V8_2PART_UINT64_C(0x6765c793, fa10079d);
305  const uint16_t kFive1 = 5;
306  const uint16_t kFive2 = kFive1 * 5;
307  const uint16_t kFive3 = kFive2 * 5;
308  const uint16_t kFive4 = kFive3 * 5;
309  const uint16_t kFive5 = kFive4 * 5;
310  const uint16_t kFive6 = kFive5 * 5;
311  const uint32_t kFive7 = kFive6 * 5;
312  const uint32_t kFive8 = kFive7 * 5;
313  const uint32_t kFive9 = kFive8 * 5;
314  const uint32_t kFive10 = kFive9 * 5;
315  const uint32_t kFive11 = kFive10 * 5;
316  const uint32_t kFive12 = kFive11 * 5;
317  const uint32_t kFive13 = kFive12 * 5;
318  const uint32_t kFive1_to_12[] =
319      { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
320        kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
321
322  ASSERT(exponent >= 0);
323  if (exponent == 0) return;
324  if (used_digits_ == 0) return;
325
326  // We shift by exponent at the end just before returning.
327  int remaining_exponent = exponent;
328  while (remaining_exponent >= 27) {
329    MultiplyByUInt64(kFive27);
330    remaining_exponent -= 27;
331  }
332  while (remaining_exponent >= 13) {
333    MultiplyByUInt32(kFive13);
334    remaining_exponent -= 13;
335  }
336  if (remaining_exponent > 0) {
337    MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
338  }
339  ShiftLeft(exponent);
340}
341
342
343void Bignum::Square() {
344  ASSERT(IsClamped());
345  int product_length = 2 * used_digits_;
346  EnsureCapacity(product_length);
347
348  // Comba multiplication: compute each column separately.
349  // Example: r = a2a1a0 * b2b1b0.
350  //    r =  1    * a0b0 +
351  //        10    * (a1b0 + a0b1) +
352  //        100   * (a2b0 + a1b1 + a0b2) +
353  //        1000  * (a2b1 + a1b2) +
354  //        10000 * a2b2
355  //
356  // In the worst case we have to accumulate nb-digits products of digit*digit.
357  //
358  // Assert that the additional number of bits in a DoubleChunk are enough to
359  // sum up used_digits of Bigit*Bigit.
360  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) {
361    UNIMPLEMENTED();
362  }
363  DoubleChunk accumulator = 0;
364  // First shift the digits so we don't overwrite them.
365  int copy_offset = used_digits_;
366  for (int i = 0; i < used_digits_; ++i) {
367    bigits_[copy_offset + i] = bigits_[i];
368  }
369  // We have two loops to avoid some 'if's in the loop.
370  for (int i = 0; i < used_digits_; ++i) {
371    // Process temporary digit i with power i.
372    // The sum of the two indices must be equal to i.
373    int bigit_index1 = i;
374    int bigit_index2 = 0;
375    // Sum all of the sub-products.
376    while (bigit_index1 >= 0) {
377      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
378      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
379      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
380      bigit_index1--;
381      bigit_index2++;
382    }
383    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
384    accumulator >>= kBigitSize;
385  }
386  for (int i = used_digits_; i < product_length; ++i) {
387    int bigit_index1 = used_digits_ - 1;
388    int bigit_index2 = i - bigit_index1;
389    // Invariant: sum of both indices is again equal to i.
390    // Inner loop runs 0 times on last iteration, emptying accumulator.
391    while (bigit_index2 < used_digits_) {
392      Chunk chunk1 = bigits_[copy_offset + bigit_index1];
393      Chunk chunk2 = bigits_[copy_offset + bigit_index2];
394      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
395      bigit_index1--;
396      bigit_index2++;
397    }
398    // The overwritten bigits_[i] will never be read in further loop iterations,
399    // because bigit_index1 and bigit_index2 are always greater
400    // than i - used_digits_.
401    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask;
402    accumulator >>= kBigitSize;
403  }
404  // Since the result was guaranteed to lie inside the number the
405  // accumulator must be 0 now.
406  ASSERT(accumulator == 0);
407
408  // Don't forget to update the used_digits and the exponent.
409  used_digits_ = product_length;
410  exponent_ *= 2;
411  Clamp();
412}
413
414
415void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) {
416  ASSERT(base != 0);
417  ASSERT(power_exponent >= 0);
418  if (power_exponent == 0) {
419    AssignUInt16(1);
420    return;
421  }
422  Zero();
423  int shifts = 0;
424  // We expect base to be in range 2-32, and most often to be 10.
425  // It does not make much sense to implement different algorithms for counting
426  // the bits.
427  while ((base & 1) == 0) {
428    base >>= 1;
429    shifts++;
430  }
431  int bit_size = 0;
432  int tmp_base = base;
433  while (tmp_base != 0) {
434    tmp_base >>= 1;
435    bit_size++;
436  }
437  int final_size = bit_size * power_exponent;
438  // 1 extra bigit for the shifting, and one for rounded final_size.
439  EnsureCapacity(final_size / kBigitSize + 2);
440
441  // Left to Right exponentiation.
442  int mask = 1;
443  while (power_exponent >= mask) mask <<= 1;
444
445  // The mask is now pointing to the bit above the most significant 1-bit of
446  // power_exponent.
447  // Get rid of first 1-bit;
448  mask >>= 2;
449  uint64_t this_value = base;
450
451  bool delayed_multipliciation = false;
452  const uint64_t max_32bits = 0xFFFFFFFF;
453  while (mask != 0 && this_value <= max_32bits) {
454    this_value = this_value * this_value;
455    // Verify that there is enough space in this_value to perform the
456    // multiplication.  The first bit_size bits must be 0.
457    if ((power_exponent & mask) != 0) {
458      uint64_t base_bits_mask =
459          ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
460      bool high_bits_zero = (this_value & base_bits_mask) == 0;
461      if (high_bits_zero) {
462        this_value *= base;
463      } else {
464        delayed_multipliciation = true;
465      }
466    }
467    mask >>= 1;
468  }
469  AssignUInt64(this_value);
470  if (delayed_multipliciation) {
471    MultiplyByUInt32(base);
472  }
473
474  // Now do the same thing as a bignum.
475  while (mask != 0) {
476    Square();
477    if ((power_exponent & mask) != 0) {
478      MultiplyByUInt32(base);
479    }
480    mask >>= 1;
481  }
482
483  // And finally add the saved shifts.
484  ShiftLeft(shifts * power_exponent);
485}
486
487
488// Precondition: this/other < 16bit.
489uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
490  ASSERT(IsClamped());
491  ASSERT(other.IsClamped());
492  ASSERT(other.used_digits_ > 0);
493
494  // Easy case: if we have less digits than the divisor than the result is 0.
495  // Note: this handles the case where this == 0, too.
496  if (BigitLength() < other.BigitLength()) {
497    return 0;
498  }
499
500  Align(other);
501
502  uint16_t result = 0;
503
504  // Start by removing multiples of 'other' until both numbers have the same
505  // number of digits.
506  while (BigitLength() > other.BigitLength()) {
507    // This naive approach is extremely inefficient if the this divided other
508    // might be big. This function is implemented for doubleToString where
509    // the result should be small (less than 10).
510    ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16));
511    // Remove the multiples of the first digit.
512    // Example this = 23 and other equals 9. -> Remove 2 multiples.
513    result += bigits_[used_digits_ - 1];
514    SubtractTimes(other, bigits_[used_digits_ - 1]);
515  }
516
517  ASSERT(BigitLength() == other.BigitLength());
518
519  // Both bignums are at the same length now.
520  // Since other has more than 0 digits we know that the access to
521  // bigits_[used_digits_ - 1] is safe.
522  Chunk this_bigit = bigits_[used_digits_ - 1];
523  Chunk other_bigit = other.bigits_[other.used_digits_ - 1];
524
525  if (other.used_digits_ == 1) {
526    // Shortcut for easy (and common) case.
527    int quotient = this_bigit / other_bigit;
528    bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient;
529    result += quotient;
530    Clamp();
531    return result;
532  }
533
534  int division_estimate = this_bigit / (other_bigit + 1);
535  result += division_estimate;
536  SubtractTimes(other, division_estimate);
537
538  if (other_bigit * (division_estimate + 1) > this_bigit) {
539    // No need to even try to subtract. Even if other's remaining digits were 0
540    // another subtraction would be too much.
541    return result;
542  }
543
544  while (LessEqual(other, *this)) {
545    SubtractBignum(other);
546    result++;
547  }
548  return result;
549}
550
551
552template<typename S>
553static int SizeInHexChars(S number) {
554  ASSERT(number > 0);
555  int result = 0;
556  while (number != 0) {
557    number >>= 4;
558    result++;
559  }
560  return result;
561}
562
563
564static char HexCharOfValue(int value) {
565  ASSERT(0 <= value && value <= 16);
566  if (value < 10) return value + '0';
567  return value - 10 + 'A';
568}
569
570
571bool Bignum::ToHexString(char* buffer, int buffer_size) const {
572  ASSERT(IsClamped());
573  // Each bigit must be printable as separate hex-character.
574  ASSERT(kBigitSize % 4 == 0);
575  const int kHexCharsPerBigit = kBigitSize / 4;
576
577  if (used_digits_ == 0) {
578    if (buffer_size < 2) return false;
579    buffer[0] = '0';
580    buffer[1] = '\0';
581    return true;
582  }
583  // We add 1 for the terminating '\0' character.
584  int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
585      SizeInHexChars(bigits_[used_digits_ - 1]) + 1;
586  if (needed_chars > buffer_size) return false;
587  int string_index = needed_chars - 1;
588  buffer[string_index--] = '\0';
589  for (int i = 0; i < exponent_; ++i) {
590    for (int j = 0; j < kHexCharsPerBigit; ++j) {
591      buffer[string_index--] = '0';
592    }
593  }
594  for (int i = 0; i < used_digits_ - 1; ++i) {
595    Chunk current_bigit = bigits_[i];
596    for (int j = 0; j < kHexCharsPerBigit; ++j) {
597      buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
598      current_bigit >>= 4;
599    }
600  }
601  // And finally the last bigit.
602  Chunk most_significant_bigit = bigits_[used_digits_ - 1];
603  while (most_significant_bigit != 0) {
604    buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
605    most_significant_bigit >>= 4;
606  }
607  return true;
608}
609
610
611Bignum::Chunk Bignum::BigitAt(int index) const {
612  if (index >= BigitLength()) return 0;
613  if (index < exponent_) return 0;
614  return bigits_[index - exponent_];
615}
616
617
618int Bignum::Compare(const Bignum& a, const Bignum& b) {
619  ASSERT(a.IsClamped());
620  ASSERT(b.IsClamped());
621  int bigit_length_a = a.BigitLength();
622  int bigit_length_b = b.BigitLength();
623  if (bigit_length_a < bigit_length_b) return -1;
624  if (bigit_length_a > bigit_length_b) return +1;
625  for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) {
626    Chunk bigit_a = a.BigitAt(i);
627    Chunk bigit_b = b.BigitAt(i);
628    if (bigit_a < bigit_b) return -1;
629    if (bigit_a > bigit_b) return +1;
630    // Otherwise they are equal up to this digit. Try the next digit.
631  }
632  return 0;
633}
634
635
636int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
637  ASSERT(a.IsClamped());
638  ASSERT(b.IsClamped());
639  ASSERT(c.IsClamped());
640  if (a.BigitLength() < b.BigitLength()) {
641    return PlusCompare(b, a, c);
642  }
643  if (a.BigitLength() + 1 < c.BigitLength()) return -1;
644  if (a.BigitLength() > c.BigitLength()) return +1;
645  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
646  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
647  // of 'a'.
648  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
649    return -1;
650  }
651
652  Chunk borrow = 0;
653  // Starting at min_exponent all digits are == 0. So no need to compare them.
654  int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_);
655  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
656    Chunk chunk_a = a.BigitAt(i);
657    Chunk chunk_b = b.BigitAt(i);
658    Chunk chunk_c = c.BigitAt(i);
659    Chunk sum = chunk_a + chunk_b;
660    if (sum > chunk_c + borrow) {
661      return +1;
662    } else {
663      borrow = chunk_c + borrow - sum;
664      if (borrow > 1) return -1;
665      borrow <<= kBigitSize;
666    }
667  }
668  if (borrow == 0) return 0;
669  return -1;
670}
671
672
673void Bignum::Clamp() {
674  while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) {
675    used_digits_--;
676  }
677  if (used_digits_ == 0) {
678    // Zero.
679    exponent_ = 0;
680  }
681}
682
683
684bool Bignum::IsClamped() const {
685  return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0;
686}
687
688
689void Bignum::Zero() {
690  for (int i = 0; i < used_digits_; ++i) {
691    bigits_[i] = 0;
692  }
693  used_digits_ = 0;
694  exponent_ = 0;
695}
696
697
698void Bignum::Align(const Bignum& other) {
699  if (exponent_ > other.exponent_) {
700    // If "X" represents a "hidden" digit (by the exponent) then we are in the
701    // following case (a == this, b == other):
702    // a:  aaaaaaXXXX   or a:   aaaaaXXX
703    // b:     bbbbbbX      b: bbbbbbbbXX
704    // We replace some of the hidden digits (X) of a with 0 digits.
705    // a:  aaaaaa000X   or a:   aaaaa0XX
706    int zero_digits = exponent_ - other.exponent_;
707    EnsureCapacity(used_digits_ + zero_digits);
708    for (int i = used_digits_ - 1; i >= 0; --i) {
709      bigits_[i + zero_digits] = bigits_[i];
710    }
711    for (int i = 0; i < zero_digits; ++i) {
712      bigits_[i] = 0;
713    }
714    used_digits_ += zero_digits;
715    exponent_ -= zero_digits;
716    ASSERT(used_digits_ >= 0);
717    ASSERT(exponent_ >= 0);
718  }
719}
720
721
722void Bignum::BigitsShiftLeft(int shift_amount) {
723  ASSERT(shift_amount < kBigitSize);
724  ASSERT(shift_amount >= 0);
725  Chunk carry = 0;
726  for (int i = 0; i < used_digits_; ++i) {
727    Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount);
728    bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask;
729    carry = new_carry;
730  }
731  if (carry != 0) {
732    bigits_[used_digits_] = carry;
733    used_digits_++;
734  }
735}
736
737
738void Bignum::SubtractTimes(const Bignum& other, int factor) {
739#ifdef DEBUG
740  Bignum a, b;
741  a.AssignBignum(*this);
742  b.AssignBignum(other);
743  b.MultiplyByUInt32(factor);
744  a.SubtractBignum(b);
745#endif
746  ASSERT(exponent_ <= other.exponent_);
747  if (factor < 3) {
748    for (int i = 0; i < factor; ++i) {
749      SubtractBignum(other);
750    }
751    return;
752  }
753  Chunk borrow = 0;
754  int exponent_diff = other.exponent_ - exponent_;
755  for (int i = 0; i < other.used_digits_; ++i) {
756    DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i];
757    DoubleChunk remove = borrow + product;
758    Chunk difference =
759        bigits_[i + exponent_diff] - static_cast<Chunk>(remove & kBigitMask);
760    bigits_[i + exponent_diff] = difference & kBigitMask;
761    borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
762                                (remove >> kBigitSize));
763  }
764  for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) {
765    if (borrow == 0) return;
766    Chunk difference = bigits_[i] - borrow;
767    bigits_[i] = difference & kBigitMask;
768    borrow = difference >> (kChunkSize - 1);
769  }
770  Clamp();
771  ASSERT(Bignum::Equal(a, *this));
772}
773
774
775} }  // namespace v8::internal
776