1// This file is part of Eigen, a lightweight C++ template library 2// for linear algebra. 3// 4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> 5// 6// This Source Code Form is subject to the terms of the Mozilla 7// Public License v. 2.0. If a copy of the MPL was not distributed 8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10#define EIGEN_NO_STATIC_ASSERT 11 12#include "main.h" 13 14template<typename MatrixType> void adjoint(const MatrixType& m) 15{ 16 /* this test covers the following files: 17 Transpose.h Conjugate.h Dot.h 18 */ 19 typedef typename MatrixType::Index Index; 20 typedef typename MatrixType::Scalar Scalar; 21 typedef typename NumTraits<Scalar>::Real RealScalar; 22 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; 23 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType; 24 25 Index rows = m.rows(); 26 Index cols = m.cols(); 27 28 MatrixType m1 = MatrixType::Random(rows, cols), 29 m2 = MatrixType::Random(rows, cols), 30 m3(rows, cols), 31 square = SquareMatrixType::Random(rows, rows); 32 VectorType v1 = VectorType::Random(rows), 33 v2 = VectorType::Random(rows), 34 v3 = VectorType::Random(rows), 35 vzero = VectorType::Zero(rows); 36 37 Scalar s1 = internal::random<Scalar>(), 38 s2 = internal::random<Scalar>(); 39 40 // check basic compatibility of adjoint, transpose, conjugate 41 VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1); 42 VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1); 43 44 // check multiplicative behavior 45 VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1); 46 VERIFY_IS_APPROX((s1 * m1).adjoint(), internal::conj(s1) * m1.adjoint()); 47 48 // check basic properties of dot, norm, norm2 49 typedef typename NumTraits<Scalar>::Real RealScalar; 50 51 RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm()); 52 VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), internal::conj(s1) * v1.dot(v3) + internal::conj(s2) * v2.dot(v3), ref)); 53 VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref)); 54 VERIFY_IS_APPROX(internal::conj(v1.dot(v2)), v2.dot(v1)); 55 VERIFY_IS_APPROX(internal::real(v1.dot(v1)), v1.squaredNorm()); 56 if(!NumTraits<Scalar>::IsInteger) { 57 VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm()); 58 // check normalized() and normalize() 59 VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized()); 60 v3 = v1; 61 v3.normalize(); 62 VERIFY_IS_APPROX(v1, v1.norm() * v3); 63 VERIFY_IS_APPROX(v3, v1.normalized()); 64 VERIFY_IS_APPROX(v3.norm(), RealScalar(1)); 65 } 66 VERIFY_IS_MUCH_SMALLER_THAN(internal::abs(vzero.dot(v1)), static_cast<RealScalar>(1)); 67 68 // check compatibility of dot and adjoint 69 70 ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm())); 71 VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), ref)); 72 73 // like in testBasicStuff, test operator() to check const-qualification 74 Index r = internal::random<Index>(0, rows-1), 75 c = internal::random<Index>(0, cols-1); 76 VERIFY_IS_APPROX(m1.conjugate()(r,c), internal::conj(m1(r,c))); 77 VERIFY_IS_APPROX(m1.adjoint()(c,r), internal::conj(m1(r,c))); 78 79 if(!NumTraits<Scalar>::IsInteger) 80 { 81 // check that Random().normalized() works: tricky as the random xpr must be evaluated by 82 // normalized() in order to produce a consistent result. 83 VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1)); 84 } 85 86 // check inplace transpose 87 m3 = m1; 88 m3.transposeInPlace(); 89 VERIFY_IS_APPROX(m3,m1.transpose()); 90 m3.transposeInPlace(); 91 VERIFY_IS_APPROX(m3,m1); 92 93 // check inplace adjoint 94 m3 = m1; 95 m3.adjointInPlace(); 96 VERIFY_IS_APPROX(m3,m1.adjoint()); 97 m3.transposeInPlace(); 98 VERIFY_IS_APPROX(m3,m1.conjugate()); 99 100 // check mixed dot product 101 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; 102 RealVectorType rv1 = RealVectorType::Random(rows); 103 VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1)); 104 VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1)); 105} 106 107void test_adjoint() 108{ 109 for(int i = 0; i < g_repeat; i++) { 110 CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) ); 111 CALL_SUBTEST_2( adjoint(Matrix3d()) ); 112 CALL_SUBTEST_3( adjoint(Matrix4f()) ); 113 CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); 114 CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); 115 CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); 116 } 117 // test a large static matrix only once 118 CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) ); 119 120#ifdef EIGEN_TEST_PART_4 121 { 122 MatrixXcf a(10,10), b(10,10); 123 VERIFY_RAISES_ASSERT(a = a.transpose()); 124 VERIFY_RAISES_ASSERT(a = a.transpose() + b); 125 VERIFY_RAISES_ASSERT(a = b + a.transpose()); 126 VERIFY_RAISES_ASSERT(a = a.conjugate().transpose()); 127 VERIFY_RAISES_ASSERT(a = a.adjoint()); 128 VERIFY_RAISES_ASSERT(a = a.adjoint() + b); 129 VERIFY_RAISES_ASSERT(a = b + a.adjoint()); 130 131 // no assertion should be triggered for these cases: 132 a.transpose() = a.transpose(); 133 a.transpose() += a.transpose(); 134 a.transpose() += a.transpose() + b; 135 a.transpose() = a.adjoint(); 136 a.transpose() += a.adjoint(); 137 a.transpose() += a.adjoint() + b; 138 } 139#endif 140} 141 142