1//===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements a top-down list scheduler, using standard algorithms.
11// The basic approach uses a priority queue of available nodes to schedule.
12// One at a time, nodes are taken from the priority queue (thus in priority
13// order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
18//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "post-RA-sched"
22#include "llvm/CodeGen/Passes.h"
23#include "AggressiveAntiDepBreaker.h"
24#include "AntiDepBreaker.h"
25#include "CriticalAntiDepBreaker.h"
26#include "llvm/ADT/BitVector.h"
27#include "llvm/ADT/Statistic.h"
28#include "llvm/Analysis/AliasAnalysis.h"
29#include "llvm/CodeGen/LatencyPriorityQueue.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineLoopInfo.h"
35#include "llvm/CodeGen/MachineRegisterInfo.h"
36#include "llvm/CodeGen/RegisterClassInfo.h"
37#include "llvm/CodeGen/ScheduleDAGInstrs.h"
38#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
39#include "llvm/CodeGen/SchedulerRegistry.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/Target/TargetInstrInfo.h"
45#include "llvm/Target/TargetLowering.h"
46#include "llvm/Target/TargetMachine.h"
47#include "llvm/Target/TargetRegisterInfo.h"
48#include "llvm/Target/TargetSubtargetInfo.h"
49using namespace llvm;
50
51STATISTIC(NumNoops, "Number of noops inserted");
52STATISTIC(NumStalls, "Number of pipeline stalls");
53STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
54
55// Post-RA scheduling is enabled with
56// TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
57// override the target.
58static cl::opt<bool>
59EnablePostRAScheduler("post-RA-scheduler",
60                       cl::desc("Enable scheduling after register allocation"),
61                       cl::init(false), cl::Hidden);
62static cl::opt<std::string>
63EnableAntiDepBreaking("break-anti-dependencies",
64                      cl::desc("Break post-RA scheduling anti-dependencies: "
65                               "\"critical\", \"all\", or \"none\""),
66                      cl::init("none"), cl::Hidden);
67
68// If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
69static cl::opt<int>
70DebugDiv("postra-sched-debugdiv",
71                      cl::desc("Debug control MBBs that are scheduled"),
72                      cl::init(0), cl::Hidden);
73static cl::opt<int>
74DebugMod("postra-sched-debugmod",
75                      cl::desc("Debug control MBBs that are scheduled"),
76                      cl::init(0), cl::Hidden);
77
78AntiDepBreaker::~AntiDepBreaker() { }
79
80namespace {
81  class PostRAScheduler : public MachineFunctionPass {
82    const TargetInstrInfo *TII;
83    RegisterClassInfo RegClassInfo;
84
85  public:
86    static char ID;
87    PostRAScheduler() : MachineFunctionPass(ID) {}
88
89    void getAnalysisUsage(AnalysisUsage &AU) const {
90      AU.setPreservesCFG();
91      AU.addRequired<AliasAnalysis>();
92      AU.addRequired<TargetPassConfig>();
93      AU.addRequired<MachineDominatorTree>();
94      AU.addPreserved<MachineDominatorTree>();
95      AU.addRequired<MachineLoopInfo>();
96      AU.addPreserved<MachineLoopInfo>();
97      MachineFunctionPass::getAnalysisUsage(AU);
98    }
99
100    bool runOnMachineFunction(MachineFunction &Fn);
101  };
102  char PostRAScheduler::ID = 0;
103
104  class SchedulePostRATDList : public ScheduleDAGInstrs {
105    /// AvailableQueue - The priority queue to use for the available SUnits.
106    ///
107    LatencyPriorityQueue AvailableQueue;
108
109    /// PendingQueue - This contains all of the instructions whose operands have
110    /// been issued, but their results are not ready yet (due to the latency of
111    /// the operation).  Once the operands becomes available, the instruction is
112    /// added to the AvailableQueue.
113    std::vector<SUnit*> PendingQueue;
114
115    /// HazardRec - The hazard recognizer to use.
116    ScheduleHazardRecognizer *HazardRec;
117
118    /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
119    AntiDepBreaker *AntiDepBreak;
120
121    /// AA - AliasAnalysis for making memory reference queries.
122    AliasAnalysis *AA;
123
124    /// LiveRegs - true if the register is live.
125    BitVector LiveRegs;
126
127    /// The schedule. Null SUnit*'s represent noop instructions.
128    std::vector<SUnit*> Sequence;
129
130  public:
131    SchedulePostRATDList(
132      MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
133      AliasAnalysis *AA, const RegisterClassInfo&,
134      TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
135      SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs);
136
137    ~SchedulePostRATDList();
138
139    /// startBlock - Initialize register live-range state for scheduling in
140    /// this block.
141    ///
142    void startBlock(MachineBasicBlock *BB);
143
144    /// Initialize the scheduler state for the next scheduling region.
145    virtual void enterRegion(MachineBasicBlock *bb,
146                             MachineBasicBlock::iterator begin,
147                             MachineBasicBlock::iterator end,
148                             unsigned endcount);
149
150    /// Notify that the scheduler has finished scheduling the current region.
151    virtual void exitRegion();
152
153    /// Schedule - Schedule the instruction range using list scheduling.
154    ///
155    void schedule();
156
157    void EmitSchedule();
158
159    /// Observe - Update liveness information to account for the current
160    /// instruction, which will not be scheduled.
161    ///
162    void Observe(MachineInstr *MI, unsigned Count);
163
164    /// finishBlock - Clean up register live-range state.
165    ///
166    void finishBlock();
167
168    /// FixupKills - Fix register kill flags that have been made
169    /// invalid due to scheduling
170    ///
171    void FixupKills(MachineBasicBlock *MBB);
172
173  private:
174    void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
175    void ReleaseSuccessors(SUnit *SU);
176    void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
177    void ListScheduleTopDown();
178    void StartBlockForKills(MachineBasicBlock *BB);
179
180    // ToggleKillFlag - Toggle a register operand kill flag. Other
181    // adjustments may be made to the instruction if necessary. Return
182    // true if the operand has been deleted, false if not.
183    bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO);
184
185    void dumpSchedule() const;
186  };
187}
188
189char &llvm::PostRASchedulerID = PostRAScheduler::ID;
190
191INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
192                "Post RA top-down list latency scheduler", false, false)
193
194SchedulePostRATDList::SchedulePostRATDList(
195  MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT,
196  AliasAnalysis *AA, const RegisterClassInfo &RCI,
197  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
198  SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs)
199  : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA),
200    LiveRegs(TRI->getNumRegs())
201{
202  const TargetMachine &TM = MF.getTarget();
203  const InstrItineraryData *InstrItins = TM.getInstrItineraryData();
204  HazardRec =
205    TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this);
206
207  assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
208          MRI.tracksLiveness()) &&
209         "Live-ins must be accurate for anti-dependency breaking");
210  AntiDepBreak =
211    ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
212     (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
213     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
214      (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL));
215}
216
217SchedulePostRATDList::~SchedulePostRATDList() {
218  delete HazardRec;
219  delete AntiDepBreak;
220}
221
222/// Initialize state associated with the next scheduling region.
223void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
224                 MachineBasicBlock::iterator begin,
225                 MachineBasicBlock::iterator end,
226                 unsigned endcount) {
227  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
228  Sequence.clear();
229}
230
231/// Print the schedule before exiting the region.
232void SchedulePostRATDList::exitRegion() {
233  DEBUG({
234      dbgs() << "*** Final schedule ***\n";
235      dumpSchedule();
236      dbgs() << '\n';
237    });
238  ScheduleDAGInstrs::exitRegion();
239}
240
241#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
242/// dumpSchedule - dump the scheduled Sequence.
243void SchedulePostRATDList::dumpSchedule() const {
244  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
245    if (SUnit *SU = Sequence[i])
246      SU->dump(this);
247    else
248      dbgs() << "**** NOOP ****\n";
249  }
250}
251#endif
252
253bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
254  TII = Fn.getTarget().getInstrInfo();
255  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
256  MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
257  AliasAnalysis *AA = &getAnalysis<AliasAnalysis>();
258  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
259
260  RegClassInfo.runOnMachineFunction(Fn);
261
262  // Check for explicit enable/disable of post-ra scheduling.
263  TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
264    TargetSubtargetInfo::ANTIDEP_NONE;
265  SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
266  if (EnablePostRAScheduler.getPosition() > 0) {
267    if (!EnablePostRAScheduler)
268      return false;
269  } else {
270    // Check that post-RA scheduling is enabled for this target.
271    // This may upgrade the AntiDepMode.
272    const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>();
273    if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode,
274                                  CriticalPathRCs))
275      return false;
276  }
277
278  // Check for antidep breaking override...
279  if (EnableAntiDepBreaking.getPosition() > 0) {
280    AntiDepMode = (EnableAntiDepBreaking == "all")
281      ? TargetSubtargetInfo::ANTIDEP_ALL
282      : ((EnableAntiDepBreaking == "critical")
283         ? TargetSubtargetInfo::ANTIDEP_CRITICAL
284         : TargetSubtargetInfo::ANTIDEP_NONE);
285  }
286
287  DEBUG(dbgs() << "PostRAScheduler\n");
288
289  SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode,
290                                 CriticalPathRCs);
291
292  // Loop over all of the basic blocks
293  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
294       MBB != MBBe; ++MBB) {
295#ifndef NDEBUG
296    // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
297    if (DebugDiv > 0) {
298      static int bbcnt = 0;
299      if (bbcnt++ % DebugDiv != DebugMod)
300        continue;
301      dbgs() << "*** DEBUG scheduling " << Fn.getName()
302             << ":BB#" << MBB->getNumber() << " ***\n";
303    }
304#endif
305
306    // Initialize register live-range state for scheduling in this block.
307    Scheduler.startBlock(MBB);
308
309    // Schedule each sequence of instructions not interrupted by a label
310    // or anything else that effectively needs to shut down scheduling.
311    MachineBasicBlock::iterator Current = MBB->end();
312    unsigned Count = MBB->size(), CurrentCount = Count;
313    for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) {
314      MachineInstr *MI = llvm::prior(I);
315      // Calls are not scheduling boundaries before register allocation, but
316      // post-ra we don't gain anything by scheduling across calls since we
317      // don't need to worry about register pressure.
318      if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) {
319        Scheduler.enterRegion(MBB, I, Current, CurrentCount);
320        Scheduler.schedule();
321        Scheduler.exitRegion();
322        Scheduler.EmitSchedule();
323        Current = MI;
324        CurrentCount = Count - 1;
325        Scheduler.Observe(MI, CurrentCount);
326      }
327      I = MI;
328      --Count;
329      if (MI->isBundle())
330        Count -= MI->getBundleSize();
331    }
332    assert(Count == 0 && "Instruction count mismatch!");
333    assert((MBB->begin() == Current || CurrentCount != 0) &&
334           "Instruction count mismatch!");
335    Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount);
336    Scheduler.schedule();
337    Scheduler.exitRegion();
338    Scheduler.EmitSchedule();
339
340    // Clean up register live-range state.
341    Scheduler.finishBlock();
342
343    // Update register kills
344    Scheduler.FixupKills(MBB);
345  }
346
347  return true;
348}
349
350/// StartBlock - Initialize register live-range state for scheduling in
351/// this block.
352///
353void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
354  // Call the superclass.
355  ScheduleDAGInstrs::startBlock(BB);
356
357  // Reset the hazard recognizer and anti-dep breaker.
358  HazardRec->Reset();
359  if (AntiDepBreak != NULL)
360    AntiDepBreak->StartBlock(BB);
361}
362
363/// Schedule - Schedule the instruction range using list scheduling.
364///
365void SchedulePostRATDList::schedule() {
366  // Build the scheduling graph.
367  buildSchedGraph(AA);
368
369  if (AntiDepBreak != NULL) {
370    unsigned Broken =
371      AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
372                                          EndIndex, DbgValues);
373
374    if (Broken != 0) {
375      // We made changes. Update the dependency graph.
376      // Theoretically we could update the graph in place:
377      // When a live range is changed to use a different register, remove
378      // the def's anti-dependence *and* output-dependence edges due to
379      // that register, and add new anti-dependence and output-dependence
380      // edges based on the next live range of the register.
381      ScheduleDAG::clearDAG();
382      buildSchedGraph(AA);
383
384      NumFixedAnti += Broken;
385    }
386  }
387
388  DEBUG(dbgs() << "********** List Scheduling **********\n");
389  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
390          SUnits[su].dumpAll(this));
391
392  AvailableQueue.initNodes(SUnits);
393  ListScheduleTopDown();
394  AvailableQueue.releaseState();
395}
396
397/// Observe - Update liveness information to account for the current
398/// instruction, which will not be scheduled.
399///
400void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
401  if (AntiDepBreak != NULL)
402    AntiDepBreak->Observe(MI, Count, EndIndex);
403}
404
405/// FinishBlock - Clean up register live-range state.
406///
407void SchedulePostRATDList::finishBlock() {
408  if (AntiDepBreak != NULL)
409    AntiDepBreak->FinishBlock();
410
411  // Call the superclass.
412  ScheduleDAGInstrs::finishBlock();
413}
414
415/// StartBlockForKills - Initialize register live-range state for updating kills
416///
417void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) {
418  // Start with no live registers.
419  LiveRegs.reset();
420
421  // Examine the live-in regs of all successors.
422  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
423       SE = BB->succ_end(); SI != SE; ++SI) {
424    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
425         E = (*SI)->livein_end(); I != E; ++I) {
426      unsigned Reg = *I;
427      // Repeat, for reg and all subregs.
428      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
429           SubRegs.isValid(); ++SubRegs)
430        LiveRegs.set(*SubRegs);
431    }
432  }
433}
434
435bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI,
436                                          MachineOperand &MO) {
437  // Setting kill flag...
438  if (!MO.isKill()) {
439    MO.setIsKill(true);
440    return false;
441  }
442
443  // If MO itself is live, clear the kill flag...
444  if (LiveRegs.test(MO.getReg())) {
445    MO.setIsKill(false);
446    return false;
447  }
448
449  // If any subreg of MO is live, then create an imp-def for that
450  // subreg and keep MO marked as killed.
451  MO.setIsKill(false);
452  bool AllDead = true;
453  const unsigned SuperReg = MO.getReg();
454  MachineInstrBuilder MIB(MF, MI);
455  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
456    if (LiveRegs.test(*SubRegs)) {
457      MIB.addReg(*SubRegs, RegState::ImplicitDefine);
458      AllDead = false;
459    }
460  }
461
462  if(AllDead)
463    MO.setIsKill(true);
464  return false;
465}
466
467/// FixupKills - Fix the register kill flags, they may have been made
468/// incorrect by instruction reordering.
469///
470void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) {
471  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
472
473  BitVector killedRegs(TRI->getNumRegs());
474
475  StartBlockForKills(MBB);
476
477  // Examine block from end to start...
478  unsigned Count = MBB->size();
479  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
480       I != E; --Count) {
481    MachineInstr *MI = --I;
482    if (MI->isDebugValue())
483      continue;
484
485    // Update liveness.  Registers that are defed but not used in this
486    // instruction are now dead. Mark register and all subregs as they
487    // are completely defined.
488    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
489      MachineOperand &MO = MI->getOperand(i);
490      if (MO.isRegMask())
491        LiveRegs.clearBitsNotInMask(MO.getRegMask());
492      if (!MO.isReg()) continue;
493      unsigned Reg = MO.getReg();
494      if (Reg == 0) continue;
495      if (!MO.isDef()) continue;
496      // Ignore two-addr defs.
497      if (MI->isRegTiedToUseOperand(i)) continue;
498
499      // Repeat for reg and all subregs.
500      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
501           SubRegs.isValid(); ++SubRegs)
502        LiveRegs.reset(*SubRegs);
503    }
504
505    // Examine all used registers and set/clear kill flag. When a
506    // register is used multiple times we only set the kill flag on
507    // the first use.
508    killedRegs.reset();
509    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
510      MachineOperand &MO = MI->getOperand(i);
511      if (!MO.isReg() || !MO.isUse()) continue;
512      unsigned Reg = MO.getReg();
513      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
514
515      bool kill = false;
516      if (!killedRegs.test(Reg)) {
517        kill = true;
518        // A register is not killed if any subregs are live...
519        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
520          if (LiveRegs.test(*SubRegs)) {
521            kill = false;
522            break;
523          }
524        }
525
526        // If subreg is not live, then register is killed if it became
527        // live in this instruction
528        if (kill)
529          kill = !LiveRegs.test(Reg);
530      }
531
532      if (MO.isKill() != kill) {
533        DEBUG(dbgs() << "Fixing " << MO << " in ");
534        // Warning: ToggleKillFlag may invalidate MO.
535        ToggleKillFlag(MI, MO);
536        DEBUG(MI->dump());
537      }
538
539      killedRegs.set(Reg);
540    }
541
542    // Mark any used register (that is not using undef) and subregs as
543    // now live...
544    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
545      MachineOperand &MO = MI->getOperand(i);
546      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
547      unsigned Reg = MO.getReg();
548      if ((Reg == 0) || MRI.isReserved(Reg)) continue;
549
550      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
551           SubRegs.isValid(); ++SubRegs)
552        LiveRegs.set(*SubRegs);
553    }
554  }
555}
556
557//===----------------------------------------------------------------------===//
558//  Top-Down Scheduling
559//===----------------------------------------------------------------------===//
560
561/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
562/// the PendingQueue if the count reaches zero.
563void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
564  SUnit *SuccSU = SuccEdge->getSUnit();
565
566  if (SuccEdge->isWeak()) {
567    --SuccSU->WeakPredsLeft;
568    return;
569  }
570#ifndef NDEBUG
571  if (SuccSU->NumPredsLeft == 0) {
572    dbgs() << "*** Scheduling failed! ***\n";
573    SuccSU->dump(this);
574    dbgs() << " has been released too many times!\n";
575    llvm_unreachable(0);
576  }
577#endif
578  --SuccSU->NumPredsLeft;
579
580  // Standard scheduler algorithms will recompute the depth of the successor
581  // here as such:
582  //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
583  //
584  // However, we lazily compute node depth instead. Note that
585  // ScheduleNodeTopDown has already updated the depth of this node which causes
586  // all descendents to be marked dirty. Setting the successor depth explicitly
587  // here would cause depth to be recomputed for all its ancestors. If the
588  // successor is not yet ready (because of a transitively redundant edge) then
589  // this causes depth computation to be quadratic in the size of the DAG.
590
591  // If all the node's predecessors are scheduled, this node is ready
592  // to be scheduled. Ignore the special ExitSU node.
593  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
594    PendingQueue.push_back(SuccSU);
595}
596
597/// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
598void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
599  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
600       I != E; ++I) {
601    ReleaseSucc(SU, &*I);
602  }
603}
604
605/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
606/// count of its successors. If a successor pending count is zero, add it to
607/// the Available queue.
608void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
609  DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
610  DEBUG(SU->dump(this));
611
612  Sequence.push_back(SU);
613  assert(CurCycle >= SU->getDepth() &&
614         "Node scheduled above its depth!");
615  SU->setDepthToAtLeast(CurCycle);
616
617  ReleaseSuccessors(SU);
618  SU->isScheduled = true;
619  AvailableQueue.scheduledNode(SU);
620}
621
622/// ListScheduleTopDown - The main loop of list scheduling for top-down
623/// schedulers.
624void SchedulePostRATDList::ListScheduleTopDown() {
625  unsigned CurCycle = 0;
626
627  // We're scheduling top-down but we're visiting the regions in
628  // bottom-up order, so we don't know the hazards at the start of a
629  // region. So assume no hazards (this should usually be ok as most
630  // blocks are a single region).
631  HazardRec->Reset();
632
633  // Release any successors of the special Entry node.
634  ReleaseSuccessors(&EntrySU);
635
636  // Add all leaves to Available queue.
637  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
638    // It is available if it has no predecessors.
639    if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
640      AvailableQueue.push(&SUnits[i]);
641      SUnits[i].isAvailable = true;
642    }
643  }
644
645  // In any cycle where we can't schedule any instructions, we must
646  // stall or emit a noop, depending on the target.
647  bool CycleHasInsts = false;
648
649  // While Available queue is not empty, grab the node with the highest
650  // priority. If it is not ready put it back.  Schedule the node.
651  std::vector<SUnit*> NotReady;
652  Sequence.reserve(SUnits.size());
653  while (!AvailableQueue.empty() || !PendingQueue.empty()) {
654    // Check to see if any of the pending instructions are ready to issue.  If
655    // so, add them to the available queue.
656    unsigned MinDepth = ~0u;
657    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
658      if (PendingQueue[i]->getDepth() <= CurCycle) {
659        AvailableQueue.push(PendingQueue[i]);
660        PendingQueue[i]->isAvailable = true;
661        PendingQueue[i] = PendingQueue.back();
662        PendingQueue.pop_back();
663        --i; --e;
664      } else if (PendingQueue[i]->getDepth() < MinDepth)
665        MinDepth = PendingQueue[i]->getDepth();
666    }
667
668    DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
669
670    SUnit *FoundSUnit = 0;
671    bool HasNoopHazards = false;
672    while (!AvailableQueue.empty()) {
673      SUnit *CurSUnit = AvailableQueue.pop();
674
675      ScheduleHazardRecognizer::HazardType HT =
676        HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
677      if (HT == ScheduleHazardRecognizer::NoHazard) {
678        FoundSUnit = CurSUnit;
679        break;
680      }
681
682      // Remember if this is a noop hazard.
683      HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
684
685      NotReady.push_back(CurSUnit);
686    }
687
688    // Add the nodes that aren't ready back onto the available list.
689    if (!NotReady.empty()) {
690      AvailableQueue.push_all(NotReady);
691      NotReady.clear();
692    }
693
694    // If we found a node to schedule...
695    if (FoundSUnit) {
696      // ... schedule the node...
697      ScheduleNodeTopDown(FoundSUnit, CurCycle);
698      HazardRec->EmitInstruction(FoundSUnit);
699      CycleHasInsts = true;
700      if (HazardRec->atIssueLimit()) {
701        DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
702        HazardRec->AdvanceCycle();
703        ++CurCycle;
704        CycleHasInsts = false;
705      }
706    } else {
707      if (CycleHasInsts) {
708        DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
709        HazardRec->AdvanceCycle();
710      } else if (!HasNoopHazards) {
711        // Otherwise, we have a pipeline stall, but no other problem,
712        // just advance the current cycle and try again.
713        DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
714        HazardRec->AdvanceCycle();
715        ++NumStalls;
716      } else {
717        // Otherwise, we have no instructions to issue and we have instructions
718        // that will fault if we don't do this right.  This is the case for
719        // processors without pipeline interlocks and other cases.
720        DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
721        HazardRec->EmitNoop();
722        Sequence.push_back(0);   // NULL here means noop
723        ++NumNoops;
724      }
725
726      ++CurCycle;
727      CycleHasInsts = false;
728    }
729  }
730
731#ifndef NDEBUG
732  unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
733  unsigned Noops = 0;
734  for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
735    if (!Sequence[i])
736      ++Noops;
737  assert(Sequence.size() - Noops == ScheduledNodes &&
738         "The number of nodes scheduled doesn't match the expected number!");
739#endif // NDEBUG
740}
741
742// EmitSchedule - Emit the machine code in scheduled order.
743void SchedulePostRATDList::EmitSchedule() {
744  RegionBegin = RegionEnd;
745
746  // If first instruction was a DBG_VALUE then put it back.
747  if (FirstDbgValue)
748    BB->splice(RegionEnd, BB, FirstDbgValue);
749
750  // Then re-insert them according to the given schedule.
751  for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
752    if (SUnit *SU = Sequence[i])
753      BB->splice(RegionEnd, BB, SU->getInstr());
754    else
755      // Null SUnit* is a noop.
756      TII->insertNoop(*BB, RegionEnd);
757
758    // Update the Begin iterator, as the first instruction in the block
759    // may have been scheduled later.
760    if (i == 0)
761      RegionBegin = prior(RegionEnd);
762  }
763
764  // Reinsert any remaining debug_values.
765  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
766         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
767    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
768    MachineInstr *DbgValue = P.first;
769    MachineBasicBlock::iterator OrigPrivMI = P.second;
770    BB->splice(++OrigPrivMI, BB, DbgValue);
771  }
772  DbgValues.clear();
773  FirstDbgValue = NULL;
774}
775