1//===-- JITEmitter.cpp - Write machine code to executable memory ----------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// This file defines a MachineCodeEmitter object that is used by the JIT to 11// write machine code to memory and remember where relocatable values are. 12// 13//===----------------------------------------------------------------------===// 14 15#define DEBUG_TYPE "jit" 16#include "JIT.h" 17#include "llvm/ADT/DenseMap.h" 18#include "llvm/ADT/OwningPtr.h" 19#include "llvm/ADT/SmallPtrSet.h" 20#include "llvm/ADT/SmallVector.h" 21#include "llvm/ADT/Statistic.h" 22#include "llvm/ADT/ValueMap.h" 23#include "llvm/CodeGen/JITCodeEmitter.h" 24#include "llvm/CodeGen/MachineCodeInfo.h" 25#include "llvm/CodeGen/MachineConstantPool.h" 26#include "llvm/CodeGen/MachineFunction.h" 27#include "llvm/CodeGen/MachineJumpTableInfo.h" 28#include "llvm/CodeGen/MachineModuleInfo.h" 29#include "llvm/CodeGen/MachineRelocation.h" 30#include "llvm/DebugInfo.h" 31#include "llvm/ExecutionEngine/GenericValue.h" 32#include "llvm/ExecutionEngine/JITEventListener.h" 33#include "llvm/ExecutionEngine/JITMemoryManager.h" 34#include "llvm/IR/Constants.h" 35#include "llvm/IR/DataLayout.h" 36#include "llvm/IR/DerivedTypes.h" 37#include "llvm/IR/Module.h" 38#include "llvm/Support/Debug.h" 39#include "llvm/Support/Disassembler.h" 40#include "llvm/Support/ErrorHandling.h" 41#include "llvm/Support/ManagedStatic.h" 42#include "llvm/Support/Memory.h" 43#include "llvm/Support/MutexGuard.h" 44#include "llvm/Support/ValueHandle.h" 45#include "llvm/Support/raw_ostream.h" 46#include "llvm/Target/TargetInstrInfo.h" 47#include "llvm/Target/TargetJITInfo.h" 48#include "llvm/Target/TargetMachine.h" 49#include "llvm/Target/TargetOptions.h" 50#include <algorithm> 51#ifndef NDEBUG 52#include <iomanip> 53#endif 54using namespace llvm; 55 56STATISTIC(NumBytes, "Number of bytes of machine code compiled"); 57STATISTIC(NumRelos, "Number of relocations applied"); 58STATISTIC(NumRetries, "Number of retries with more memory"); 59 60 61// A declaration may stop being a declaration once it's fully read from bitcode. 62// This function returns true if F is fully read and is still a declaration. 63static bool isNonGhostDeclaration(const Function *F) { 64 return F->isDeclaration() && !F->isMaterializable(); 65} 66 67//===----------------------------------------------------------------------===// 68// JIT lazy compilation code. 69// 70namespace { 71 class JITEmitter; 72 class JITResolverState; 73 74 template<typename ValueTy> 75 struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> { 76 typedef JITResolverState *ExtraData; 77 static void onRAUW(JITResolverState *, Value *Old, Value *New) { 78 llvm_unreachable("The JIT doesn't know how to handle a" 79 " RAUW on a value it has emitted."); 80 } 81 }; 82 83 struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> { 84 typedef JITResolverState *ExtraData; 85 static void onDelete(JITResolverState *JRS, Function *F); 86 }; 87 88 class JITResolverState { 89 public: 90 typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> > 91 FunctionToLazyStubMapTy; 92 typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy; 93 typedef ValueMap<Function *, SmallPtrSet<void*, 1>, 94 CallSiteValueMapConfig> FunctionToCallSitesMapTy; 95 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy; 96 private: 97 /// FunctionToLazyStubMap - Keep track of the lazy stub created for a 98 /// particular function so that we can reuse them if necessary. 99 FunctionToLazyStubMapTy FunctionToLazyStubMap; 100 101 /// CallSiteToFunctionMap - Keep track of the function that each lazy call 102 /// site corresponds to, and vice versa. 103 CallSiteToFunctionMapTy CallSiteToFunctionMap; 104 FunctionToCallSitesMapTy FunctionToCallSitesMap; 105 106 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a 107 /// particular GlobalVariable so that we can reuse them if necessary. 108 GlobalToIndirectSymMapTy GlobalToIndirectSymMap; 109 110#ifndef NDEBUG 111 /// Instance of the JIT this ResolverState serves. 112 JIT *TheJIT; 113#endif 114 115 public: 116 JITResolverState(JIT *jit) : FunctionToLazyStubMap(this), 117 FunctionToCallSitesMap(this) { 118#ifndef NDEBUG 119 TheJIT = jit; 120#endif 121 } 122 123 FunctionToLazyStubMapTy& getFunctionToLazyStubMap( 124 const MutexGuard& locked) { 125 assert(locked.holds(TheJIT->lock)); 126 return FunctionToLazyStubMap; 127 } 128 129 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& lck) { 130 assert(lck.holds(TheJIT->lock)); 131 return GlobalToIndirectSymMap; 132 } 133 134 std::pair<void *, Function *> LookupFunctionFromCallSite( 135 const MutexGuard &locked, void *CallSite) const { 136 assert(locked.holds(TheJIT->lock)); 137 138 // The address given to us for the stub may not be exactly right, it 139 // might be a little bit after the stub. As such, use upper_bound to 140 // find it. 141 CallSiteToFunctionMapTy::const_iterator I = 142 CallSiteToFunctionMap.upper_bound(CallSite); 143 assert(I != CallSiteToFunctionMap.begin() && 144 "This is not a known call site!"); 145 --I; 146 return *I; 147 } 148 149 void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) { 150 assert(locked.holds(TheJIT->lock)); 151 152 bool Inserted = CallSiteToFunctionMap.insert( 153 std::make_pair(CallSite, F)).second; 154 (void)Inserted; 155 assert(Inserted && "Pair was already in CallSiteToFunctionMap"); 156 FunctionToCallSitesMap[F].insert(CallSite); 157 } 158 159 void EraseAllCallSitesForPrelocked(Function *F); 160 161 // Erases _all_ call sites regardless of their function. This is used to 162 // unregister the stub addresses from the StubToResolverMap in 163 // ~JITResolver(). 164 void EraseAllCallSitesPrelocked(); 165 }; 166 167 /// JITResolver - Keep track of, and resolve, call sites for functions that 168 /// have not yet been compiled. 169 class JITResolver { 170 typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy; 171 typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy; 172 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy; 173 174 /// LazyResolverFn - The target lazy resolver function that we actually 175 /// rewrite instructions to use. 176 TargetJITInfo::LazyResolverFn LazyResolverFn; 177 178 JITResolverState state; 179 180 /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap 181 /// for external functions. TODO: Of course, external functions don't need 182 /// a lazy stub. It's actually here to make it more likely that far calls 183 /// succeed, but no single stub can guarantee that. I'll remove this in a 184 /// subsequent checkin when I actually fix far calls. 185 std::map<void*, void*> ExternalFnToStubMap; 186 187 /// revGOTMap - map addresses to indexes in the GOT 188 std::map<void*, unsigned> revGOTMap; 189 unsigned nextGOTIndex; 190 191 JITEmitter &JE; 192 193 /// Instance of JIT corresponding to this Resolver. 194 JIT *TheJIT; 195 196 public: 197 explicit JITResolver(JIT &jit, JITEmitter &je) 198 : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) { 199 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn); 200 } 201 202 ~JITResolver(); 203 204 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's 205 /// lazy-compilation stub if it has already been created. 206 void *getLazyFunctionStubIfAvailable(Function *F); 207 208 /// getLazyFunctionStub - This returns a pointer to a function's 209 /// lazy-compilation stub, creating one on demand as needed. 210 void *getLazyFunctionStub(Function *F); 211 212 /// getExternalFunctionStub - Return a stub for the function at the 213 /// specified address, created lazily on demand. 214 void *getExternalFunctionStub(void *FnAddr); 215 216 /// getGlobalValueIndirectSym - Return an indirect symbol containing the 217 /// specified GV address. 218 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress); 219 220 /// getGOTIndexForAddress - Return a new or existing index in the GOT for 221 /// an address. This function only manages slots, it does not manage the 222 /// contents of the slots or the memory associated with the GOT. 223 unsigned getGOTIndexForAddr(void *addr); 224 225 /// JITCompilerFn - This function is called to resolve a stub to a compiled 226 /// address. If the LLVM Function corresponding to the stub has not yet 227 /// been compiled, this function compiles it first. 228 static void *JITCompilerFn(void *Stub); 229 }; 230 231 class StubToResolverMapTy { 232 /// Map a stub address to a specific instance of a JITResolver so that 233 /// lazily-compiled functions can find the right resolver to use. 234 /// 235 /// Guarded by Lock. 236 std::map<void*, JITResolver*> Map; 237 238 /// Guards Map from concurrent accesses. 239 mutable sys::Mutex Lock; 240 241 public: 242 /// Registers a Stub to be resolved by Resolver. 243 void RegisterStubResolver(void *Stub, JITResolver *Resolver) { 244 MutexGuard guard(Lock); 245 Map.insert(std::make_pair(Stub, Resolver)); 246 } 247 /// Unregisters the Stub when it's invalidated. 248 void UnregisterStubResolver(void *Stub) { 249 MutexGuard guard(Lock); 250 Map.erase(Stub); 251 } 252 /// Returns the JITResolver instance that owns the Stub. 253 JITResolver *getResolverFromStub(void *Stub) const { 254 MutexGuard guard(Lock); 255 // The address given to us for the stub may not be exactly right, it might 256 // be a little bit after the stub. As such, use upper_bound to find it. 257 // This is the same trick as in LookupFunctionFromCallSite from 258 // JITResolverState. 259 std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub); 260 assert(I != Map.begin() && "This is not a known stub!"); 261 --I; 262 return I->second; 263 } 264 /// True if any stubs refer to the given resolver. Only used in an assert(). 265 /// O(N) 266 bool ResolverHasStubs(JITResolver* Resolver) const { 267 MutexGuard guard(Lock); 268 for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(), 269 E = Map.end(); I != E; ++I) { 270 if (I->second == Resolver) 271 return true; 272 } 273 return false; 274 } 275 }; 276 /// This needs to be static so that a lazy call stub can access it with no 277 /// context except the address of the stub. 278 ManagedStatic<StubToResolverMapTy> StubToResolverMap; 279 280 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is 281 /// used to output functions to memory for execution. 282 class JITEmitter : public JITCodeEmitter { 283 JITMemoryManager *MemMgr; 284 285 // When outputting a function stub in the context of some other function, we 286 // save BufferBegin/BufferEnd/CurBufferPtr here. 287 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; 288 289 // When reattempting to JIT a function after running out of space, we store 290 // the estimated size of the function we're trying to JIT here, so we can 291 // ask the memory manager for at least this much space. When we 292 // successfully emit the function, we reset this back to zero. 293 uintptr_t SizeEstimate; 294 295 /// Relocations - These are the relocations that the function needs, as 296 /// emitted. 297 std::vector<MachineRelocation> Relocations; 298 299 /// MBBLocations - This vector is a mapping from MBB ID's to their address. 300 /// It is filled in by the StartMachineBasicBlock callback and queried by 301 /// the getMachineBasicBlockAddress callback. 302 std::vector<uintptr_t> MBBLocations; 303 304 /// ConstantPool - The constant pool for the current function. 305 /// 306 MachineConstantPool *ConstantPool; 307 308 /// ConstantPoolBase - A pointer to the first entry in the constant pool. 309 /// 310 void *ConstantPoolBase; 311 312 /// ConstPoolAddresses - Addresses of individual constant pool entries. 313 /// 314 SmallVector<uintptr_t, 8> ConstPoolAddresses; 315 316 /// JumpTable - The jump tables for the current function. 317 /// 318 MachineJumpTableInfo *JumpTable; 319 320 /// JumpTableBase - A pointer to the first entry in the jump table. 321 /// 322 void *JumpTableBase; 323 324 /// Resolver - This contains info about the currently resolved functions. 325 JITResolver Resolver; 326 327 /// LabelLocations - This vector is a mapping from Label ID's to their 328 /// address. 329 DenseMap<MCSymbol*, uintptr_t> LabelLocations; 330 331 /// MMI - Machine module info for exception informations 332 MachineModuleInfo* MMI; 333 334 // CurFn - The llvm function being emitted. Only valid during 335 // finishFunction(). 336 const Function *CurFn; 337 338 /// Information about emitted code, which is passed to the 339 /// JITEventListeners. This is reset in startFunction and used in 340 /// finishFunction. 341 JITEvent_EmittedFunctionDetails EmissionDetails; 342 343 struct EmittedCode { 344 void *FunctionBody; // Beginning of the function's allocation. 345 void *Code; // The address the function's code actually starts at. 346 void *ExceptionTable; 347 EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {} 348 }; 349 struct EmittedFunctionConfig : public ValueMapConfig<const Function*> { 350 typedef JITEmitter *ExtraData; 351 static void onDelete(JITEmitter *, const Function*); 352 static void onRAUW(JITEmitter *, const Function*, const Function*); 353 }; 354 ValueMap<const Function *, EmittedCode, 355 EmittedFunctionConfig> EmittedFunctions; 356 357 DebugLoc PrevDL; 358 359 /// Instance of the JIT 360 JIT *TheJIT; 361 362 public: 363 JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM) 364 : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0), 365 EmittedFunctions(this), TheJIT(&jit) { 366 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager(); 367 if (jit.getJITInfo().needsGOT()) { 368 MemMgr->AllocateGOT(); 369 DEBUG(dbgs() << "JIT is managing a GOT\n"); 370 } 371 372 } 373 ~JITEmitter() { 374 delete MemMgr; 375 } 376 377 JITResolver &getJITResolver() { return Resolver; } 378 379 virtual void startFunction(MachineFunction &F); 380 virtual bool finishFunction(MachineFunction &F); 381 382 void emitConstantPool(MachineConstantPool *MCP); 383 void initJumpTableInfo(MachineJumpTableInfo *MJTI); 384 void emitJumpTableInfo(MachineJumpTableInfo *MJTI); 385 386 void startGVStub(const GlobalValue* GV, 387 unsigned StubSize, unsigned Alignment = 1); 388 void startGVStub(void *Buffer, unsigned StubSize); 389 void finishGVStub(); 390 virtual void *allocIndirectGV(const GlobalValue *GV, 391 const uint8_t *Buffer, size_t Size, 392 unsigned Alignment); 393 394 /// allocateSpace - Reserves space in the current block if any, or 395 /// allocate a new one of the given size. 396 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment); 397 398 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace, 399 /// this method does not allocate memory in the current output buffer, 400 /// because a global may live longer than the current function. 401 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment); 402 403 virtual void addRelocation(const MachineRelocation &MR) { 404 Relocations.push_back(MR); 405 } 406 407 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { 408 if (MBBLocations.size() <= (unsigned)MBB->getNumber()) 409 MBBLocations.resize((MBB->getNumber()+1)*2); 410 MBBLocations[MBB->getNumber()] = getCurrentPCValue(); 411 if (MBB->hasAddressTaken()) 412 TheJIT->addPointerToBasicBlock(MBB->getBasicBlock(), 413 (void*)getCurrentPCValue()); 414 DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at [" 415 << (void*) getCurrentPCValue() << "]\n"); 416 } 417 418 virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const; 419 virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const; 420 421 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const{ 422 assert(MBBLocations.size() > (unsigned)MBB->getNumber() && 423 MBBLocations[MBB->getNumber()] && "MBB not emitted!"); 424 return MBBLocations[MBB->getNumber()]; 425 } 426 427 /// retryWithMoreMemory - Log a retry and deallocate all memory for the 428 /// given function. Increase the minimum allocation size so that we get 429 /// more memory next time. 430 void retryWithMoreMemory(MachineFunction &F); 431 432 /// deallocateMemForFunction - Deallocate all memory for the specified 433 /// function body. 434 void deallocateMemForFunction(const Function *F); 435 436 virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn); 437 438 virtual void emitLabel(MCSymbol *Label) { 439 LabelLocations[Label] = getCurrentPCValue(); 440 } 441 442 virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() { 443 return &LabelLocations; 444 } 445 446 virtual uintptr_t getLabelAddress(MCSymbol *Label) const { 447 assert(LabelLocations.count(Label) && "Label not emitted!"); 448 return LabelLocations.find(Label)->second; 449 } 450 451 virtual void setModuleInfo(MachineModuleInfo* Info) { 452 MMI = Info; 453 } 454 455 private: 456 void *getPointerToGlobal(GlobalValue *GV, void *Reference, 457 bool MayNeedFarStub); 458 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference); 459 }; 460} 461 462void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) { 463 JRS->EraseAllCallSitesForPrelocked(F); 464} 465 466void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) { 467 FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F); 468 if (F2C == FunctionToCallSitesMap.end()) 469 return; 470 StubToResolverMapTy &S2RMap = *StubToResolverMap; 471 for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(), 472 E = F2C->second.end(); I != E; ++I) { 473 S2RMap.UnregisterStubResolver(*I); 474 bool Erased = CallSiteToFunctionMap.erase(*I); 475 (void)Erased; 476 assert(Erased && "Missing call site->function mapping"); 477 } 478 FunctionToCallSitesMap.erase(F2C); 479} 480 481void JITResolverState::EraseAllCallSitesPrelocked() { 482 StubToResolverMapTy &S2RMap = *StubToResolverMap; 483 for (CallSiteToFunctionMapTy::const_iterator 484 I = CallSiteToFunctionMap.begin(), 485 E = CallSiteToFunctionMap.end(); I != E; ++I) { 486 S2RMap.UnregisterStubResolver(I->first); 487 } 488 CallSiteToFunctionMap.clear(); 489 FunctionToCallSitesMap.clear(); 490} 491 492JITResolver::~JITResolver() { 493 // No need to lock because we're in the destructor, and state isn't shared. 494 state.EraseAllCallSitesPrelocked(); 495 assert(!StubToResolverMap->ResolverHasStubs(this) && 496 "Resolver destroyed with stubs still alive."); 497} 498 499/// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub 500/// if it has already been created. 501void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) { 502 MutexGuard locked(TheJIT->lock); 503 504 // If we already have a stub for this function, recycle it. 505 return state.getFunctionToLazyStubMap(locked).lookup(F); 506} 507 508/// getFunctionStub - This returns a pointer to a function stub, creating 509/// one on demand as needed. 510void *JITResolver::getLazyFunctionStub(Function *F) { 511 MutexGuard locked(TheJIT->lock); 512 513 // If we already have a lazy stub for this function, recycle it. 514 void *&Stub = state.getFunctionToLazyStubMap(locked)[F]; 515 if (Stub) return Stub; 516 517 // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we 518 // must resolve the symbol now. 519 void *Actual = TheJIT->isCompilingLazily() 520 ? (void *)(intptr_t)LazyResolverFn : (void *)0; 521 522 // If this is an external declaration, attempt to resolve the address now 523 // to place in the stub. 524 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) { 525 Actual = TheJIT->getPointerToFunction(F); 526 527 // If we resolved the symbol to a null address (eg. a weak external) 528 // don't emit a stub. Return a null pointer to the application. 529 if (!Actual) return 0; 530 } 531 532 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 533 JE.startGVStub(F, SL.Size, SL.Alignment); 534 // Codegen a new stub, calling the lazy resolver or the actual address of the 535 // external function, if it was resolved. 536 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE); 537 JE.finishGVStub(); 538 539 if (Actual != (void*)(intptr_t)LazyResolverFn) { 540 // If we are getting the stub for an external function, we really want the 541 // address of the stub in the GlobalAddressMap for the JIT, not the address 542 // of the external function. 543 TheJIT->updateGlobalMapping(F, Stub); 544 } 545 546 DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '" 547 << F->getName() << "'\n"); 548 549 if (TheJIT->isCompilingLazily()) { 550 // Register this JITResolver as the one corresponding to this call site so 551 // JITCompilerFn will be able to find it. 552 StubToResolverMap->RegisterStubResolver(Stub, this); 553 554 // Finally, keep track of the stub-to-Function mapping so that the 555 // JITCompilerFn knows which function to compile! 556 state.AddCallSite(locked, Stub, F); 557 } else if (!Actual) { 558 // If we are JIT'ing non-lazily but need to call a function that does not 559 // exist yet, add it to the JIT's work list so that we can fill in the 560 // stub address later. 561 assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() && 562 "'Actual' should have been set above."); 563 TheJIT->addPendingFunction(F); 564 } 565 566 return Stub; 567} 568 569/// getGlobalValueIndirectSym - Return a lazy pointer containing the specified 570/// GV address. 571void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) { 572 MutexGuard locked(TheJIT->lock); 573 574 // If we already have a stub for this global variable, recycle it. 575 void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV]; 576 if (IndirectSym) return IndirectSym; 577 578 // Otherwise, codegen a new indirect symbol. 579 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress, 580 JE); 581 582 DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym 583 << "] for GV '" << GV->getName() << "'\n"); 584 585 return IndirectSym; 586} 587 588/// getExternalFunctionStub - Return a stub for the function at the 589/// specified address, created lazily on demand. 590void *JITResolver::getExternalFunctionStub(void *FnAddr) { 591 // If we already have a stub for this function, recycle it. 592 void *&Stub = ExternalFnToStubMap[FnAddr]; 593 if (Stub) return Stub; 594 595 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout(); 596 JE.startGVStub(0, SL.Size, SL.Alignment); 597 Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE); 598 JE.finishGVStub(); 599 600 DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub 601 << "] for external function at '" << FnAddr << "'\n"); 602 return Stub; 603} 604 605unsigned JITResolver::getGOTIndexForAddr(void* addr) { 606 unsigned idx = revGOTMap[addr]; 607 if (!idx) { 608 idx = ++nextGOTIndex; 609 revGOTMap[addr] = idx; 610 DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr [" 611 << addr << "]\n"); 612 } 613 return idx; 614} 615 616/// JITCompilerFn - This function is called when a lazy compilation stub has 617/// been entered. It looks up which function this stub corresponds to, compiles 618/// it if necessary, then returns the resultant function pointer. 619void *JITResolver::JITCompilerFn(void *Stub) { 620 JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub); 621 assert(JR && "Unable to find the corresponding JITResolver to the call site"); 622 623 Function* F = 0; 624 void* ActualPtr = 0; 625 626 { 627 // Only lock for getting the Function. The call getPointerToFunction made 628 // in this function might trigger function materializing, which requires 629 // JIT lock to be unlocked. 630 MutexGuard locked(JR->TheJIT->lock); 631 632 // The address given to us for the stub may not be exactly right, it might 633 // be a little bit after the stub. As such, use upper_bound to find it. 634 std::pair<void*, Function*> I = 635 JR->state.LookupFunctionFromCallSite(locked, Stub); 636 F = I.second; 637 ActualPtr = I.first; 638 } 639 640 // If we have already code generated the function, just return the address. 641 void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F); 642 643 if (!Result) { 644 // Otherwise we don't have it, do lazy compilation now. 645 646 // If lazy compilation is disabled, emit a useful error message and abort. 647 if (!JR->TheJIT->isCompilingLazily()) { 648 report_fatal_error("LLVM JIT requested to do lazy compilation of" 649 " function '" 650 + F->getName() + "' when lazy compiles are disabled!"); 651 } 652 653 DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName() 654 << "' In stub ptr = " << Stub << " actual ptr = " 655 << ActualPtr << "\n"); 656 (void)ActualPtr; 657 658 Result = JR->TheJIT->getPointerToFunction(F); 659 } 660 661 // Reacquire the lock to update the GOT map. 662 MutexGuard locked(JR->TheJIT->lock); 663 664 // We might like to remove the call site from the CallSiteToFunction map, but 665 // we can't do that! Multiple threads could be stuck, waiting to acquire the 666 // lock above. As soon as the 1st function finishes compiling the function, 667 // the next one will be released, and needs to be able to find the function it 668 // needs to call. 669 670 // FIXME: We could rewrite all references to this stub if we knew them. 671 672 // What we will do is set the compiled function address to map to the 673 // same GOT entry as the stub so that later clients may update the GOT 674 // if they see it still using the stub address. 675 // Note: this is done so the Resolver doesn't have to manage GOT memory 676 // Do this without allocating map space if the target isn't using a GOT 677 if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end()) 678 JR->revGOTMap[Result] = JR->revGOTMap[Stub]; 679 680 return Result; 681} 682 683//===----------------------------------------------------------------------===// 684// JITEmitter code. 685// 686void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, 687 bool MayNeedFarStub) { 688 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 689 return TheJIT->getOrEmitGlobalVariable(GV); 690 691 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 692 return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false)); 693 694 // If we have already compiled the function, return a pointer to its body. 695 Function *F = cast<Function>(V); 696 697 void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F); 698 if (FnStub) { 699 // Return the function stub if it's already created. We do this first so 700 // that we're returning the same address for the function as any previous 701 // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be 702 // close enough to call. 703 return FnStub; 704 } 705 706 // If we know the target can handle arbitrary-distance calls, try to 707 // return a direct pointer. 708 if (!MayNeedFarStub) { 709 // If we have code, go ahead and return that. 710 void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); 711 if (ResultPtr) return ResultPtr; 712 713 // If this is an external function pointer, we can force the JIT to 714 // 'compile' it, which really just adds it to the map. 715 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) 716 return TheJIT->getPointerToFunction(F); 717 } 718 719 // Otherwise, we may need a to emit a stub, and, conservatively, we always do 720 // so. Note that it's possible to return null from getLazyFunctionStub in the 721 // case of a weak extern that fails to resolve. 722 return Resolver.getLazyFunctionStub(F); 723} 724 725void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) { 726 // Make sure GV is emitted first, and create a stub containing the fully 727 // resolved address. 728 void *GVAddress = getPointerToGlobal(V, Reference, false); 729 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress); 730 return StubAddr; 731} 732 733void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) { 734 if (DL.isUnknown()) return; 735 if (!BeforePrintingInsn) return; 736 737 const LLVMContext &Context = EmissionDetails.MF->getFunction()->getContext(); 738 739 if (DL.getScope(Context) != 0 && PrevDL != DL) { 740 JITEvent_EmittedFunctionDetails::LineStart NextLine; 741 NextLine.Address = getCurrentPCValue(); 742 NextLine.Loc = DL; 743 EmissionDetails.LineStarts.push_back(NextLine); 744 } 745 746 PrevDL = DL; 747} 748 749static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP, 750 const DataLayout *TD) { 751 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 752 if (Constants.empty()) return 0; 753 754 unsigned Size = 0; 755 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 756 MachineConstantPoolEntry CPE = Constants[i]; 757 unsigned AlignMask = CPE.getAlignment() - 1; 758 Size = (Size + AlignMask) & ~AlignMask; 759 Type *Ty = CPE.getType(); 760 Size += TD->getTypeAllocSize(Ty); 761 } 762 return Size; 763} 764 765void JITEmitter::startFunction(MachineFunction &F) { 766 DEBUG(dbgs() << "JIT: Starting CodeGen of Function " 767 << F.getName() << "\n"); 768 769 uintptr_t ActualSize = 0; 770 // Set the memory writable, if it's not already 771 MemMgr->setMemoryWritable(); 772 773 if (SizeEstimate > 0) { 774 // SizeEstimate will be non-zero on reallocation attempts. 775 ActualSize = SizeEstimate; 776 } 777 778 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(), 779 ActualSize); 780 BufferEnd = BufferBegin+ActualSize; 781 EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin; 782 783 // Ensure the constant pool/jump table info is at least 4-byte aligned. 784 emitAlignment(16); 785 786 emitConstantPool(F.getConstantPool()); 787 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 788 initJumpTableInfo(MJTI); 789 790 // About to start emitting the machine code for the function. 791 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); 792 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); 793 EmittedFunctions[F.getFunction()].Code = CurBufferPtr; 794 795 MBBLocations.clear(); 796 797 EmissionDetails.MF = &F; 798 EmissionDetails.LineStarts.clear(); 799} 800 801bool JITEmitter::finishFunction(MachineFunction &F) { 802 if (CurBufferPtr == BufferEnd) { 803 // We must call endFunctionBody before retrying, because 804 // deallocateMemForFunction requires it. 805 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 806 retryWithMoreMemory(F); 807 return true; 808 } 809 810 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) 811 emitJumpTableInfo(MJTI); 812 813 // FnStart is the start of the text, not the start of the constant pool and 814 // other per-function data. 815 uint8_t *FnStart = 816 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); 817 818 // FnEnd is the end of the function's machine code. 819 uint8_t *FnEnd = CurBufferPtr; 820 821 if (!Relocations.empty()) { 822 CurFn = F.getFunction(); 823 NumRelos += Relocations.size(); 824 825 // Resolve the relocations to concrete pointers. 826 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { 827 MachineRelocation &MR = Relocations[i]; 828 void *ResultPtr = 0; 829 if (!MR.letTargetResolve()) { 830 if (MR.isExternalSymbol()) { 831 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(), 832 false); 833 DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to [" 834 << ResultPtr << "]\n"); 835 836 // If the target REALLY wants a stub for this function, emit it now. 837 if (MR.mayNeedFarStub()) { 838 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr); 839 } 840 } else if (MR.isGlobalValue()) { 841 ResultPtr = getPointerToGlobal(MR.getGlobalValue(), 842 BufferBegin+MR.getMachineCodeOffset(), 843 MR.mayNeedFarStub()); 844 } else if (MR.isIndirectSymbol()) { 845 ResultPtr = getPointerToGVIndirectSym( 846 MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset()); 847 } else if (MR.isBasicBlock()) { 848 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); 849 } else if (MR.isConstantPoolIndex()) { 850 ResultPtr = 851 (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); 852 } else { 853 assert(MR.isJumpTableIndex()); 854 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); 855 } 856 857 MR.setResultPointer(ResultPtr); 858 } 859 860 // if we are managing the GOT and the relocation wants an index, 861 // give it one 862 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) { 863 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr); 864 MR.setGOTIndex(idx); 865 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) { 866 DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr 867 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 868 << "\n"); 869 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr; 870 } 871 } 872 } 873 874 CurFn = 0; 875 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], 876 Relocations.size(), MemMgr->getGOTBase()); 877 } 878 879 // Update the GOT entry for F to point to the new code. 880 if (MemMgr->isManagingGOT()) { 881 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin); 882 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) { 883 DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin 884 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx] 885 << "\n"); 886 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin; 887 } 888 } 889 890 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for 891 // global variables that were referenced in the relocations. 892 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr); 893 894 if (CurBufferPtr == BufferEnd) { 895 retryWithMoreMemory(F); 896 return true; 897 } else { 898 // Now that we've succeeded in emitting the function, reset the 899 // SizeEstimate back down to zero. 900 SizeEstimate = 0; 901 } 902 903 BufferBegin = CurBufferPtr = 0; 904 NumBytes += FnEnd-FnStart; 905 906 // Invalidate the icache if necessary. 907 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart); 908 909 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart, 910 EmissionDetails); 911 912 // Reset the previous debug location. 913 PrevDL = DebugLoc(); 914 915 DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart 916 << "] Function: " << F.getName() 917 << ": " << (FnEnd-FnStart) << " bytes of text, " 918 << Relocations.size() << " relocations\n"); 919 920 Relocations.clear(); 921 ConstPoolAddresses.clear(); 922 923 // Mark code region readable and executable if it's not so already. 924 MemMgr->setMemoryExecutable(); 925 926 DEBUG({ 927 if (sys::hasDisassembler()) { 928 dbgs() << "JIT: Disassembled code:\n"; 929 dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart, 930 (uintptr_t)FnStart); 931 } else { 932 dbgs() << "JIT: Binary code:\n"; 933 uint8_t* q = FnStart; 934 for (int i = 0; q < FnEnd; q += 4, ++i) { 935 if (i == 4) 936 i = 0; 937 if (i == 0) 938 dbgs() << "JIT: " << (long)(q - FnStart) << ": "; 939 bool Done = false; 940 for (int j = 3; j >= 0; --j) { 941 if (q + j >= FnEnd) 942 Done = true; 943 else 944 dbgs() << (unsigned short)q[j]; 945 } 946 if (Done) 947 break; 948 dbgs() << ' '; 949 if (i == 3) 950 dbgs() << '\n'; 951 } 952 dbgs()<< '\n'; 953 } 954 }); 955 956 if (MMI) 957 MMI->EndFunction(); 958 959 return false; 960} 961 962void JITEmitter::retryWithMoreMemory(MachineFunction &F) { 963 DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n"); 964 Relocations.clear(); // Clear the old relocations or we'll reapply them. 965 ConstPoolAddresses.clear(); 966 ++NumRetries; 967 deallocateMemForFunction(F.getFunction()); 968 // Try again with at least twice as much free space. 969 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin)); 970 971 for (MachineFunction::iterator MBB = F.begin(), E = F.end(); MBB != E; ++MBB){ 972 if (MBB->hasAddressTaken()) 973 TheJIT->clearPointerToBasicBlock(MBB->getBasicBlock()); 974 } 975} 976 977/// deallocateMemForFunction - Deallocate all memory for the specified 978/// function body. Also drop any references the function has to stubs. 979/// May be called while the Function is being destroyed inside ~Value(). 980void JITEmitter::deallocateMemForFunction(const Function *F) { 981 ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator 982 Emitted = EmittedFunctions.find(F); 983 if (Emitted != EmittedFunctions.end()) { 984 MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody); 985 TheJIT->NotifyFreeingMachineCode(Emitted->second.Code); 986 987 EmittedFunctions.erase(Emitted); 988 } 989} 990 991 992void *JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) { 993 if (BufferBegin) 994 return JITCodeEmitter::allocateSpace(Size, Alignment); 995 996 // create a new memory block if there is no active one. 997 // care must be taken so that BufferBegin is invalidated when a 998 // block is trimmed 999 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment); 1000 BufferEnd = BufferBegin+Size; 1001 return CurBufferPtr; 1002} 1003 1004void *JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) { 1005 // Delegate this call through the memory manager. 1006 return MemMgr->allocateGlobal(Size, Alignment); 1007} 1008 1009void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { 1010 if (TheJIT->getJITInfo().hasCustomConstantPool()) 1011 return; 1012 1013 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); 1014 if (Constants.empty()) return; 1015 1016 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getDataLayout()); 1017 unsigned Align = MCP->getConstantPoolAlignment(); 1018 ConstantPoolBase = allocateSpace(Size, Align); 1019 ConstantPool = MCP; 1020 1021 if (ConstantPoolBase == 0) return; // Buffer overflow. 1022 1023 DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase 1024 << "] (size: " << Size << ", alignment: " << Align << ")\n"); 1025 1026 // Initialize the memory for all of the constant pool entries. 1027 unsigned Offset = 0; 1028 for (unsigned i = 0, e = Constants.size(); i != e; ++i) { 1029 MachineConstantPoolEntry CPE = Constants[i]; 1030 unsigned AlignMask = CPE.getAlignment() - 1; 1031 Offset = (Offset + AlignMask) & ~AlignMask; 1032 1033 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset; 1034 ConstPoolAddresses.push_back(CAddr); 1035 if (CPE.isMachineConstantPoolEntry()) { 1036 // FIXME: add support to lower machine constant pool values into bytes! 1037 report_fatal_error("Initialize memory with machine specific constant pool" 1038 "entry has not been implemented!"); 1039 } 1040 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr); 1041 DEBUG(dbgs() << "JIT: CP" << i << " at [0x"; 1042 dbgs().write_hex(CAddr) << "]\n"); 1043 1044 Type *Ty = CPE.Val.ConstVal->getType(); 1045 Offset += TheJIT->getDataLayout()->getTypeAllocSize(Ty); 1046 } 1047} 1048 1049void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { 1050 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1051 return; 1052 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) 1053 return; 1054 1055 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1056 if (JT.empty()) return; 1057 1058 unsigned NumEntries = 0; 1059 for (unsigned i = 0, e = JT.size(); i != e; ++i) 1060 NumEntries += JT[i].MBBs.size(); 1061 1062 unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getDataLayout()); 1063 1064 // Just allocate space for all the jump tables now. We will fix up the actual 1065 // MBB entries in the tables after we emit the code for each block, since then 1066 // we will know the final locations of the MBBs in memory. 1067 JumpTable = MJTI; 1068 JumpTableBase = allocateSpace(NumEntries * EntrySize, 1069 MJTI->getEntryAlignment(*TheJIT->getDataLayout())); 1070} 1071 1072void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { 1073 if (TheJIT->getJITInfo().hasCustomJumpTables()) 1074 return; 1075 1076 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1077 if (JT.empty() || JumpTableBase == 0) return; 1078 1079 1080 switch (MJTI->getEntryKind()) { 1081 case MachineJumpTableInfo::EK_Inline: 1082 return; 1083 case MachineJumpTableInfo::EK_BlockAddress: { 1084 // EK_BlockAddress - Each entry is a plain address of block, e.g.: 1085 // .word LBB123 1086 assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == sizeof(void*) && 1087 "Cross JIT'ing?"); 1088 1089 // For each jump table, map each target in the jump table to the address of 1090 // an emitted MachineBasicBlock. 1091 intptr_t *SlotPtr = (intptr_t*)JumpTableBase; 1092 1093 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1094 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1095 // Store the address of the basic block for this jump table slot in the 1096 // memory we allocated for the jump table in 'initJumpTableInfo' 1097 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) 1098 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); 1099 } 1100 break; 1101 } 1102 1103 case MachineJumpTableInfo::EK_Custom32: 1104 case MachineJumpTableInfo::EK_GPRel32BlockAddress: 1105 case MachineJumpTableInfo::EK_LabelDifference32: { 1106 assert(MJTI->getEntrySize(*TheJIT->getDataLayout()) == 4&&"Cross JIT'ing?"); 1107 // For each jump table, place the offset from the beginning of the table 1108 // to the target address. 1109 int *SlotPtr = (int*)JumpTableBase; 1110 1111 for (unsigned i = 0, e = JT.size(); i != e; ++i) { 1112 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; 1113 // Store the offset of the basic block for this jump table slot in the 1114 // memory we allocated for the jump table in 'initJumpTableInfo' 1115 uintptr_t Base = (uintptr_t)SlotPtr; 1116 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) { 1117 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]); 1118 /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook. 1119 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base); 1120 } 1121 } 1122 break; 1123 } 1124 case MachineJumpTableInfo::EK_GPRel64BlockAddress: 1125 llvm_unreachable( 1126 "JT Info emission not implemented for GPRel64BlockAddress yet."); 1127 } 1128} 1129 1130void JITEmitter::startGVStub(const GlobalValue* GV, 1131 unsigned StubSize, unsigned Alignment) { 1132 SavedBufferBegin = BufferBegin; 1133 SavedBufferEnd = BufferEnd; 1134 SavedCurBufferPtr = CurBufferPtr; 1135 1136 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment); 1137 BufferEnd = BufferBegin+StubSize+1; 1138} 1139 1140void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) { 1141 SavedBufferBegin = BufferBegin; 1142 SavedBufferEnd = BufferEnd; 1143 SavedCurBufferPtr = CurBufferPtr; 1144 1145 BufferBegin = CurBufferPtr = (uint8_t *)Buffer; 1146 BufferEnd = BufferBegin+StubSize+1; 1147} 1148 1149void JITEmitter::finishGVStub() { 1150 assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space."); 1151 NumBytes += getCurrentPCOffset(); 1152 BufferBegin = SavedBufferBegin; 1153 BufferEnd = SavedBufferEnd; 1154 CurBufferPtr = SavedCurBufferPtr; 1155} 1156 1157void *JITEmitter::allocIndirectGV(const GlobalValue *GV, 1158 const uint8_t *Buffer, size_t Size, 1159 unsigned Alignment) { 1160 uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment); 1161 memcpy(IndGV, Buffer, Size); 1162 return IndGV; 1163} 1164 1165// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry 1166// in the constant pool that was last emitted with the 'emitConstantPool' 1167// method. 1168// 1169uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { 1170 assert(ConstantNum < ConstantPool->getConstants().size() && 1171 "Invalid ConstantPoolIndex!"); 1172 return ConstPoolAddresses[ConstantNum]; 1173} 1174 1175// getJumpTableEntryAddress - Return the address of the JumpTable with index 1176// 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' 1177// 1178uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { 1179 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); 1180 assert(Index < JT.size() && "Invalid jump table index!"); 1181 1182 unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getDataLayout()); 1183 1184 unsigned Offset = 0; 1185 for (unsigned i = 0; i < Index; ++i) 1186 Offset += JT[i].MBBs.size(); 1187 1188 Offset *= EntrySize; 1189 1190 return (uintptr_t)((char *)JumpTableBase + Offset); 1191} 1192 1193void JITEmitter::EmittedFunctionConfig::onDelete( 1194 JITEmitter *Emitter, const Function *F) { 1195 Emitter->deallocateMemForFunction(F); 1196} 1197void JITEmitter::EmittedFunctionConfig::onRAUW( 1198 JITEmitter *, const Function*, const Function*) { 1199 llvm_unreachable("The JIT doesn't know how to handle a" 1200 " RAUW on a value it has emitted."); 1201} 1202 1203 1204//===----------------------------------------------------------------------===// 1205// Public interface to this file 1206//===----------------------------------------------------------------------===// 1207 1208JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM, 1209 TargetMachine &tm) { 1210 return new JITEmitter(jit, JMM, tm); 1211} 1212 1213// getPointerToFunctionOrStub - If the specified function has been 1214// code-gen'd, return a pointer to the function. If not, compile it, or use 1215// a stub to implement lazy compilation if available. 1216// 1217void *JIT::getPointerToFunctionOrStub(Function *F) { 1218 // If we have already code generated the function, just return the address. 1219 if (void *Addr = getPointerToGlobalIfAvailable(F)) 1220 return Addr; 1221 1222 // Get a stub if the target supports it. 1223 JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); 1224 return JE->getJITResolver().getLazyFunctionStub(F); 1225} 1226 1227void JIT::updateFunctionStub(Function *F) { 1228 // Get the empty stub we generated earlier. 1229 JITEmitter *JE = static_cast<JITEmitter*>(getCodeEmitter()); 1230 void *Stub = JE->getJITResolver().getLazyFunctionStub(F); 1231 void *Addr = getPointerToGlobalIfAvailable(F); 1232 assert(Addr != Stub && "Function must have non-stub address to be updated."); 1233 1234 // Tell the target jit info to rewrite the stub at the specified address, 1235 // rather than creating a new one. 1236 TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout(); 1237 JE->startGVStub(Stub, layout.Size); 1238 getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter()); 1239 JE->finishGVStub(); 1240} 1241 1242/// freeMachineCodeForFunction - release machine code memory for given Function. 1243/// 1244void JIT::freeMachineCodeForFunction(Function *F) { 1245 // Delete translation for this from the ExecutionEngine, so it will get 1246 // retranslated next time it is used. 1247 updateGlobalMapping(F, 0); 1248 1249 // Free the actual memory for the function body and related stuff. 1250 static_cast<JITEmitter*>(JCE)->deallocateMemForFunction(F); 1251} 1252