1//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the interfaces that Hexagon uses to lower LLVM code
11// into a selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "HexagonISelLowering.h"
16#include "HexagonMachineFunctionInfo.h"
17#include "HexagonSubtarget.h"
18#include "HexagonTargetMachine.h"
19#include "HexagonTargetObjectFile.h"
20#include "llvm/CodeGen/CallingConvLower.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineJumpTableInfo.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/SelectionDAGISel.h"
27#include "llvm/CodeGen/ValueTypes.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalAlias.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/InlineAsm.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39
40using namespace llvm;
41
42const unsigned Hexagon_MAX_RET_SIZE = 64;
43
44static cl::opt<bool>
45EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden,
46               cl::desc("Control jump table emission on Hexagon target"));
47
48int NumNamedVarArgParams = -1;
49
50// Implement calling convention for Hexagon.
51static bool
52CC_Hexagon(unsigned ValNo, MVT ValVT,
53           MVT LocVT, CCValAssign::LocInfo LocInfo,
54           ISD::ArgFlagsTy ArgFlags, CCState &State);
55
56static bool
57CC_Hexagon32(unsigned ValNo, MVT ValVT,
58             MVT LocVT, CCValAssign::LocInfo LocInfo,
59             ISD::ArgFlagsTy ArgFlags, CCState &State);
60
61static bool
62CC_Hexagon64(unsigned ValNo, MVT ValVT,
63             MVT LocVT, CCValAssign::LocInfo LocInfo,
64             ISD::ArgFlagsTy ArgFlags, CCState &State);
65
66static bool
67RetCC_Hexagon(unsigned ValNo, MVT ValVT,
68              MVT LocVT, CCValAssign::LocInfo LocInfo,
69              ISD::ArgFlagsTy ArgFlags, CCState &State);
70
71static bool
72RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
73                MVT LocVT, CCValAssign::LocInfo LocInfo,
74                ISD::ArgFlagsTy ArgFlags, CCState &State);
75
76static bool
77RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
78                MVT LocVT, CCValAssign::LocInfo LocInfo,
79                ISD::ArgFlagsTy ArgFlags, CCState &State);
80
81static bool
82CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
83            MVT LocVT, CCValAssign::LocInfo LocInfo,
84            ISD::ArgFlagsTy ArgFlags, CCState &State) {
85
86  // NumNamedVarArgParams can not be zero for a VarArg function.
87  assert ( (NumNamedVarArgParams > 0) &&
88           "NumNamedVarArgParams is not bigger than zero.");
89
90  if ( (int)ValNo < NumNamedVarArgParams ) {
91    // Deal with named arguments.
92    return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
93  }
94
95  // Deal with un-named arguments.
96  unsigned ofst;
97  if (ArgFlags.isByVal()) {
98    // If pass-by-value, the size allocated on stack is decided
99    // by ArgFlags.getByValSize(), not by the size of LocVT.
100    assert ((ArgFlags.getByValSize() > 8) &&
101            "ByValSize must be bigger than 8 bytes");
102    ofst = State.AllocateStack(ArgFlags.getByValSize(), 4);
103    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
104    return false;
105  }
106  if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
107    LocVT = MVT::i32;
108    ValVT = MVT::i32;
109    if (ArgFlags.isSExt())
110      LocInfo = CCValAssign::SExt;
111    else if (ArgFlags.isZExt())
112      LocInfo = CCValAssign::ZExt;
113    else
114      LocInfo = CCValAssign::AExt;
115  }
116  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
117    ofst = State.AllocateStack(4, 4);
118    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
119    return false;
120  }
121  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
122    ofst = State.AllocateStack(8, 8);
123    State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
124    return false;
125  }
126  llvm_unreachable(0);
127}
128
129
130static bool
131CC_Hexagon (unsigned ValNo, MVT ValVT,
132            MVT LocVT, CCValAssign::LocInfo LocInfo,
133            ISD::ArgFlagsTy ArgFlags, CCState &State) {
134
135  if (ArgFlags.isByVal()) {
136    // Passed on stack.
137    assert ((ArgFlags.getByValSize() > 8) &&
138            "ByValSize must be bigger than 8 bytes");
139    unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4);
140    State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
141    return false;
142  }
143
144  if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
145    LocVT = MVT::i32;
146    ValVT = MVT::i32;
147    if (ArgFlags.isSExt())
148      LocInfo = CCValAssign::SExt;
149    else if (ArgFlags.isZExt())
150      LocInfo = CCValAssign::ZExt;
151    else
152      LocInfo = CCValAssign::AExt;
153  }
154
155  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
156    if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
157      return false;
158  }
159
160  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
161    if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
162      return false;
163  }
164
165  return true;  // CC didn't match.
166}
167
168
169static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
170                         MVT LocVT, CCValAssign::LocInfo LocInfo,
171                         ISD::ArgFlagsTy ArgFlags, CCState &State) {
172
173  static const uint16_t RegList[] = {
174    Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
175    Hexagon::R5
176  };
177  if (unsigned Reg = State.AllocateReg(RegList, 6)) {
178    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
179    return false;
180  }
181
182  unsigned Offset = State.AllocateStack(4, 4);
183  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
184  return false;
185}
186
187static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
188                         MVT LocVT, CCValAssign::LocInfo LocInfo,
189                         ISD::ArgFlagsTy ArgFlags, CCState &State) {
190
191  if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
192    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
193    return false;
194  }
195
196  static const uint16_t RegList1[] = {
197    Hexagon::D1, Hexagon::D2
198  };
199  static const uint16_t RegList2[] = {
200    Hexagon::R1, Hexagon::R3
201  };
202  if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) {
203    State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
204    return false;
205  }
206
207  unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
208  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
209  return false;
210}
211
212static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
213                          MVT LocVT, CCValAssign::LocInfo LocInfo,
214                          ISD::ArgFlagsTy ArgFlags, CCState &State) {
215
216
217  if (LocVT == MVT::i1 ||
218      LocVT == MVT::i8 ||
219      LocVT == MVT::i16) {
220    LocVT = MVT::i32;
221    ValVT = MVT::i32;
222    if (ArgFlags.isSExt())
223      LocInfo = CCValAssign::SExt;
224    else if (ArgFlags.isZExt())
225      LocInfo = CCValAssign::ZExt;
226    else
227      LocInfo = CCValAssign::AExt;
228  }
229
230  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
231    if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
232    return false;
233  }
234
235  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
236    if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
237    return false;
238  }
239
240  return true;  // CC didn't match.
241}
242
243static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
244                            MVT LocVT, CCValAssign::LocInfo LocInfo,
245                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
246
247  if (LocVT == MVT::i32 || LocVT == MVT::f32) {
248    if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
249      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
250      return false;
251    }
252  }
253
254  unsigned Offset = State.AllocateStack(4, 4);
255  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
256  return false;
257}
258
259static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
260                            MVT LocVT, CCValAssign::LocInfo LocInfo,
261                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
262  if (LocVT == MVT::i64 || LocVT == MVT::f64) {
263    if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
264      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
265      return false;
266    }
267  }
268
269  unsigned Offset = State.AllocateStack(8, 8);
270  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
271  return false;
272}
273
274SDValue
275HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
276const {
277  return SDValue();
278}
279
280/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
281/// by "Src" to address "Dst" of size "Size".  Alignment information is
282/// specified by the specific parameter attribute. The copy will be passed as
283/// a byval function parameter.  Sometimes what we are copying is the end of a
284/// larger object, the part that does not fit in registers.
285static SDValue
286CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
287                          ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
288                          SDLoc dl) {
289
290  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
291  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
292                       /*isVolatile=*/false, /*AlwaysInline=*/false,
293                       MachinePointerInfo(), MachinePointerInfo());
294}
295
296
297// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
298// passed by value, the function prototype is modified to return void and
299// the value is stored in memory pointed by a pointer passed by caller.
300SDValue
301HexagonTargetLowering::LowerReturn(SDValue Chain,
302                                   CallingConv::ID CallConv, bool isVarArg,
303                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
304                                   const SmallVectorImpl<SDValue> &OutVals,
305                                   SDLoc dl, SelectionDAG &DAG) const {
306
307  // CCValAssign - represent the assignment of the return value to locations.
308  SmallVector<CCValAssign, 16> RVLocs;
309
310  // CCState - Info about the registers and stack slot.
311  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
312                 getTargetMachine(), RVLocs, *DAG.getContext());
313
314  // Analyze return values of ISD::RET
315  CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
316
317  SDValue Flag;
318  SmallVector<SDValue, 4> RetOps(1, Chain);
319
320  // Copy the result values into the output registers.
321  for (unsigned i = 0; i != RVLocs.size(); ++i) {
322    CCValAssign &VA = RVLocs[i];
323
324    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
325
326    // Guarantee that all emitted copies are stuck together with flags.
327    Flag = Chain.getValue(1);
328    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
329  }
330
331  RetOps[0] = Chain;  // Update chain.
332
333  // Add the flag if we have it.
334  if (Flag.getNode())
335    RetOps.push_back(Flag);
336
337  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other,
338                     &RetOps[0], RetOps.size());
339}
340
341
342
343
344/// LowerCallResult - Lower the result values of an ISD::CALL into the
345/// appropriate copies out of appropriate physical registers.  This assumes that
346/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
347/// being lowered. Returns a SDNode with the same number of values as the
348/// ISD::CALL.
349SDValue
350HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
351                                       CallingConv::ID CallConv, bool isVarArg,
352                                       const
353                                       SmallVectorImpl<ISD::InputArg> &Ins,
354                                       SDLoc dl, SelectionDAG &DAG,
355                                       SmallVectorImpl<SDValue> &InVals,
356                                       const SmallVectorImpl<SDValue> &OutVals,
357                                       SDValue Callee) const {
358
359  // Assign locations to each value returned by this call.
360  SmallVector<CCValAssign, 16> RVLocs;
361
362  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
363                 getTargetMachine(), RVLocs, *DAG.getContext());
364
365  CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
366
367  // Copy all of the result registers out of their specified physreg.
368  for (unsigned i = 0; i != RVLocs.size(); ++i) {
369    Chain = DAG.getCopyFromReg(Chain, dl,
370                               RVLocs[i].getLocReg(),
371                               RVLocs[i].getValVT(), InFlag).getValue(1);
372    InFlag = Chain.getValue(2);
373    InVals.push_back(Chain.getValue(0));
374  }
375
376  return Chain;
377}
378
379/// LowerCall - Functions arguments are copied from virtual regs to
380/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
381SDValue
382HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
383                                 SmallVectorImpl<SDValue> &InVals) const {
384  SelectionDAG &DAG                     = CLI.DAG;
385  SDLoc &dl                             = CLI.DL;
386  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
387  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
388  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
389  SDValue Chain                         = CLI.Chain;
390  SDValue Callee                        = CLI.Callee;
391  bool &isTailCall                      = CLI.IsTailCall;
392  CallingConv::ID CallConv              = CLI.CallConv;
393  bool isVarArg                         = CLI.IsVarArg;
394
395  bool IsStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
396
397  // Analyze operands of the call, assigning locations to each operand.
398  SmallVector<CCValAssign, 16> ArgLocs;
399  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
400                 getTargetMachine(), ArgLocs, *DAG.getContext());
401
402  // Check for varargs.
403  NumNamedVarArgParams = -1;
404  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee))
405  {
406    const Function* CalleeFn = NULL;
407    Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32);
408    if ((CalleeFn = dyn_cast<Function>(GA->getGlobal())))
409    {
410      // If a function has zero args and is a vararg function, that's
411      // disallowed so it must be an undeclared function.  Do not assume
412      // varargs if the callee is undefined.
413      if (CalleeFn->isVarArg() &&
414          CalleeFn->getFunctionType()->getNumParams() != 0) {
415        NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams();
416      }
417    }
418  }
419
420  if (NumNamedVarArgParams > 0)
421    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
422  else
423    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
424
425
426  if(isTailCall) {
427    bool StructAttrFlag =
428      DAG.getMachineFunction().getFunction()->hasStructRetAttr();
429    isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
430                                                   isVarArg, IsStructRet,
431                                                   StructAttrFlag,
432                                                   Outs, OutVals, Ins, DAG);
433    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){
434      CCValAssign &VA = ArgLocs[i];
435      if (VA.isMemLoc()) {
436        isTailCall = false;
437        break;
438      }
439    }
440    if (isTailCall) {
441      DEBUG(dbgs () << "Eligible for Tail Call\n");
442    } else {
443      DEBUG(dbgs () <<
444            "Argument must be passed on stack. Not eligible for Tail Call\n");
445    }
446  }
447  // Get a count of how many bytes are to be pushed on the stack.
448  unsigned NumBytes = CCInfo.getNextStackOffset();
449  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
450  SmallVector<SDValue, 8> MemOpChains;
451
452  SDValue StackPtr =
453    DAG.getCopyFromReg(Chain, dl, TM.getRegisterInfo()->getStackRegister(),
454                       getPointerTy());
455
456  // Walk the register/memloc assignments, inserting copies/loads.
457  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
458    CCValAssign &VA = ArgLocs[i];
459    SDValue Arg = OutVals[i];
460    ISD::ArgFlagsTy Flags = Outs[i].Flags;
461
462    // Promote the value if needed.
463    switch (VA.getLocInfo()) {
464      default:
465        // Loc info must be one of Full, SExt, ZExt, or AExt.
466        llvm_unreachable("Unknown loc info!");
467      case CCValAssign::Full:
468        break;
469      case CCValAssign::SExt:
470        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
471        break;
472      case CCValAssign::ZExt:
473        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
474        break;
475      case CCValAssign::AExt:
476        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
477        break;
478    }
479
480    if (VA.isMemLoc()) {
481      unsigned LocMemOffset = VA.getLocMemOffset();
482      SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType());
483      PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
484
485      if (Flags.isByVal()) {
486        // The argument is a struct passed by value. According to LLVM, "Arg"
487        // is is pointer.
488        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain,
489                                                        Flags, DAG, dl));
490      } else {
491        // The argument is not passed by value. "Arg" is a buildin type. It is
492        // not a pointer.
493        MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
494                                           MachinePointerInfo(),false, false,
495                                           0));
496      }
497      continue;
498    }
499
500    // Arguments that can be passed on register must be kept at RegsToPass
501    // vector.
502    if (VA.isRegLoc()) {
503      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
504    }
505  }
506
507  // Transform all store nodes into one single node because all store
508  // nodes are independent of each other.
509  if (!MemOpChains.empty()) {
510    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0],
511                        MemOpChains.size());
512  }
513
514  if (!isTailCall)
515    Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes,
516                                                        getPointerTy(), true),
517                                 dl);
518
519  // Build a sequence of copy-to-reg nodes chained together with token
520  // chain and flag operands which copy the outgoing args into registers.
521  // The InFlag in necessary since all emitted instructions must be
522  // stuck together.
523  SDValue InFlag;
524  if (!isTailCall) {
525    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
526      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
527                               RegsToPass[i].second, InFlag);
528      InFlag = Chain.getValue(1);
529    }
530  }
531
532  // For tail calls lower the arguments to the 'real' stack slot.
533  if (isTailCall) {
534    // Force all the incoming stack arguments to be loaded from the stack
535    // before any new outgoing arguments are stored to the stack, because the
536    // outgoing stack slots may alias the incoming argument stack slots, and
537    // the alias isn't otherwise explicit. This is slightly more conservative
538    // than necessary, because it means that each store effectively depends
539    // on every argument instead of just those arguments it would clobber.
540    //
541    // Do not flag preceding copytoreg stuff together with the following stuff.
542    InFlag = SDValue();
543    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
544      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
545                               RegsToPass[i].second, InFlag);
546      InFlag = Chain.getValue(1);
547    }
548    InFlag =SDValue();
549  }
550
551  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
552  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
553  // node so that legalize doesn't hack it.
554  if (flag_aligned_memcpy) {
555    const char *MemcpyName =
556      "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
557    Callee =
558      DAG.getTargetExternalSymbol(MemcpyName, getPointerTy());
559    flag_aligned_memcpy = false;
560  } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
561    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
562  } else if (ExternalSymbolSDNode *S =
563             dyn_cast<ExternalSymbolSDNode>(Callee)) {
564    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
565  }
566
567  // Returns a chain & a flag for retval copy to use.
568  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
569  SmallVector<SDValue, 8> Ops;
570  Ops.push_back(Chain);
571  Ops.push_back(Callee);
572
573  // Add argument registers to the end of the list so that they are
574  // known live into the call.
575  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
576    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
577                                  RegsToPass[i].second.getValueType()));
578  }
579
580  if (InFlag.getNode()) {
581    Ops.push_back(InFlag);
582  }
583
584  if (isTailCall)
585    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
586
587  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
588  InFlag = Chain.getValue(1);
589
590  // Create the CALLSEQ_END node.
591  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
592                             DAG.getIntPtrConstant(0, true), InFlag, dl);
593  InFlag = Chain.getValue(1);
594
595  // Handle result values, copying them out of physregs into vregs that we
596  // return.
597  return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
598                         InVals, OutVals, Callee);
599}
600
601static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
602                                   bool isSEXTLoad, SDValue &Base,
603                                   SDValue &Offset, bool &isInc,
604                                   SelectionDAG &DAG) {
605  if (Ptr->getOpcode() != ISD::ADD)
606  return false;
607
608  if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
609    isInc = (Ptr->getOpcode() == ISD::ADD);
610    Base = Ptr->getOperand(0);
611    Offset = Ptr->getOperand(1);
612    // Ensure that Offset is a constant.
613    return (isa<ConstantSDNode>(Offset));
614  }
615
616  return false;
617}
618
619// TODO: Put this function along with the other isS* functions in
620// HexagonISelDAGToDAG.cpp into a common file. Or better still, use the
621// functions defined in HexagonOperands.td.
622static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) {
623  ConstantSDNode *N = cast<ConstantSDNode>(S);
624
625  // immS4 predicate - True if the immediate fits in a 4-bit sign extended.
626  // field.
627  int64_t v = (int64_t)N->getSExtValue();
628  int64_t m = 0;
629  if (ShiftAmount > 0) {
630    m = v % ShiftAmount;
631    v = v >> ShiftAmount;
632  }
633  return (v <= 7) && (v >= -8) && (m == 0);
634}
635
636/// getPostIndexedAddressParts - returns true by value, base pointer and
637/// offset pointer and addressing mode by reference if this node can be
638/// combined with a load / store to form a post-indexed load / store.
639bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
640                                                       SDValue &Base,
641                                                       SDValue &Offset,
642                                                       ISD::MemIndexedMode &AM,
643                                                       SelectionDAG &DAG) const
644{
645  EVT VT;
646  SDValue Ptr;
647  bool isSEXTLoad = false;
648
649  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
650    VT  = LD->getMemoryVT();
651    isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
652  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
653    VT  = ST->getMemoryVT();
654    if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
655      return false;
656    }
657  } else {
658    return false;
659  }
660
661  bool isInc = false;
662  bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
663                                        isInc, DAG);
664  // ShiftAmount = number of left-shifted bits in the Hexagon instruction.
665  int ShiftAmount = VT.getSizeInBits() / 16;
666  if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) {
667    AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
668    return true;
669  }
670
671  return false;
672}
673
674SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
675                                              SelectionDAG &DAG) const {
676  SDNode *Node = Op.getNode();
677  MachineFunction &MF = DAG.getMachineFunction();
678  HexagonMachineFunctionInfo *FuncInfo =
679    MF.getInfo<HexagonMachineFunctionInfo>();
680  switch (Node->getOpcode()) {
681    case ISD::INLINEASM: {
682      unsigned NumOps = Node->getNumOperands();
683      if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
684        --NumOps;  // Ignore the flag operand.
685
686      for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
687        if (FuncInfo->hasClobberLR())
688          break;
689        unsigned Flags =
690          cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
691        unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
692        ++i;  // Skip the ID value.
693
694        switch (InlineAsm::getKind(Flags)) {
695        default: llvm_unreachable("Bad flags!");
696          case InlineAsm::Kind_RegDef:
697          case InlineAsm::Kind_RegUse:
698          case InlineAsm::Kind_Imm:
699          case InlineAsm::Kind_Clobber:
700          case InlineAsm::Kind_Mem: {
701            for (; NumVals; --NumVals, ++i) {}
702            break;
703          }
704          case InlineAsm::Kind_RegDefEarlyClobber: {
705            for (; NumVals; --NumVals, ++i) {
706              unsigned Reg =
707                cast<RegisterSDNode>(Node->getOperand(i))->getReg();
708
709              // Check it to be lr
710              if (Reg == TM.getRegisterInfo()->getRARegister()) {
711                FuncInfo->setHasClobberLR(true);
712                break;
713              }
714            }
715            break;
716          }
717        }
718      }
719    }
720  } // Node->getOpcode
721  return Op;
722}
723
724
725//
726// Taken from the XCore backend.
727//
728SDValue HexagonTargetLowering::
729LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
730{
731  SDValue Chain = Op.getOperand(0);
732  SDValue Table = Op.getOperand(1);
733  SDValue Index = Op.getOperand(2);
734  SDLoc dl(Op);
735  JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
736  unsigned JTI = JT->getIndex();
737  MachineFunction &MF = DAG.getMachineFunction();
738  const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
739  SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
740
741  // Mark all jump table targets as address taken.
742  const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables();
743  const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs;
744  for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
745    MachineBasicBlock *MBB = JTBBs[i];
746    MBB->setHasAddressTaken();
747    // This line is needed to set the hasAddressTaken flag on the BasicBlock
748    // object.
749    BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock()));
750  }
751
752  SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl,
753                                      getPointerTy(), TargetJT);
754  SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
755                                   DAG.getConstant(2, MVT::i32));
756  SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase,
757                                  ShiftIndex);
758  SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress,
759                                   MachinePointerInfo(), false, false, false,
760                                   0);
761  return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget);
762}
763
764
765SDValue
766HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
767                                               SelectionDAG &DAG) const {
768  SDValue Chain = Op.getOperand(0);
769  SDValue Size = Op.getOperand(1);
770  SDLoc dl(Op);
771
772  unsigned SPReg = getStackPointerRegisterToSaveRestore();
773
774  // Get a reference to the stack pointer.
775  SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);
776
777  // Subtract the dynamic size from the actual stack size to
778  // obtain the new stack size.
779  SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
780
781  //
782  // For Hexagon, the outgoing memory arguments area should be on top of the
783  // alloca area on the stack i.e., the outgoing memory arguments should be
784  // at a lower address than the alloca area. Move the alloca area down the
785  // stack by adding back the space reserved for outgoing arguments to SP
786  // here.
787  //
788  // We do not know what the size of the outgoing args is at this point.
789  // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
790  // stack pointer. We patch this instruction with the correct, known
791  // offset in emitPrologue().
792  //
793  // Use a placeholder immediate (zero) for now. This will be patched up
794  // by emitPrologue().
795  SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl,
796                                  MVT::i32,
797                                  Sub,
798                                  DAG.getConstant(0, MVT::i32));
799
800  // The Sub result contains the new stack start address, so it
801  // must be placed in the stack pointer register.
802  SDValue CopyChain = DAG.getCopyToReg(Chain, dl,
803                                       TM.getRegisterInfo()->getStackRegister(),
804                                       Sub);
805
806  SDValue Ops[2] = { ArgAdjust, CopyChain };
807  return DAG.getMergeValues(Ops, 2, dl);
808}
809
810SDValue
811HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
812                                            CallingConv::ID CallConv,
813                                            bool isVarArg,
814                                            const
815                                            SmallVectorImpl<ISD::InputArg> &Ins,
816                                            SDLoc dl, SelectionDAG &DAG,
817                                            SmallVectorImpl<SDValue> &InVals)
818const {
819
820  MachineFunction &MF = DAG.getMachineFunction();
821  MachineFrameInfo *MFI = MF.getFrameInfo();
822  MachineRegisterInfo &RegInfo = MF.getRegInfo();
823  HexagonMachineFunctionInfo *FuncInfo =
824    MF.getInfo<HexagonMachineFunctionInfo>();
825
826
827  // Assign locations to all of the incoming arguments.
828  SmallVector<CCValAssign, 16> ArgLocs;
829  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
830                 getTargetMachine(), ArgLocs, *DAG.getContext());
831
832  CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
833
834  // For LLVM, in the case when returning a struct by value (>8byte),
835  // the first argument is a pointer that points to the location on caller's
836  // stack where the return value will be stored. For Hexagon, the location on
837  // caller's stack is passed only when the struct size is smaller than (and
838  // equal to) 8 bytes. If not, no address will be passed into callee and
839  // callee return the result direclty through R0/R1.
840
841  SmallVector<SDValue, 4> MemOps;
842
843  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
844    CCValAssign &VA = ArgLocs[i];
845    ISD::ArgFlagsTy Flags = Ins[i].Flags;
846    unsigned ObjSize;
847    unsigned StackLocation;
848    int FI;
849
850    if (   (VA.isRegLoc() && !Flags.isByVal())
851        || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
852      // Arguments passed in registers
853      // 1. int, long long, ptr args that get allocated in register.
854      // 2. Large struct that gets an register to put its address in.
855      EVT RegVT = VA.getLocVT();
856      if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
857          RegVT == MVT::i32 || RegVT == MVT::f32) {
858        unsigned VReg =
859          RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
860        RegInfo.addLiveIn(VA.getLocReg(), VReg);
861        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
862      } else if (RegVT == MVT::i64) {
863        unsigned VReg =
864          RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
865        RegInfo.addLiveIn(VA.getLocReg(), VReg);
866        InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
867      } else {
868        assert (0);
869      }
870    } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
871      assert (0 && "ByValSize must be bigger than 8 bytes");
872    } else {
873      // Sanity check.
874      assert(VA.isMemLoc());
875
876      if (Flags.isByVal()) {
877        // If it's a byval parameter, then we need to compute the
878        // "real" size, not the size of the pointer.
879        ObjSize = Flags.getByValSize();
880      } else {
881        ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
882      }
883
884      StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
885      // Create the frame index object for this incoming parameter...
886      FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
887
888      // Create the SelectionDAG nodes cordl, responding to a load
889      // from this parameter.
890      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
891
892      if (Flags.isByVal()) {
893        // If it's a pass-by-value aggregate, then do not dereference the stack
894        // location. Instead, we should generate a reference to the stack
895        // location.
896        InVals.push_back(FIN);
897      } else {
898        InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
899                                     MachinePointerInfo(), false, false,
900                                     false, 0));
901      }
902    }
903  }
904
905  if (!MemOps.empty())
906    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0],
907                        MemOps.size());
908
909  if (isVarArg) {
910    // This will point to the next argument passed via stack.
911    int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
912                                            HEXAGON_LRFP_SIZE +
913                                            CCInfo.getNextStackOffset(),
914                                            true);
915    FuncInfo->setVarArgsFrameIndex(FrameIndex);
916  }
917
918  return Chain;
919}
920
921SDValue
922HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
923  // VASTART stores the address of the VarArgsFrameIndex slot into the
924  // memory location argument.
925  MachineFunction &MF = DAG.getMachineFunction();
926  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
927  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
928  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
929  return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
930                      Op.getOperand(1), MachinePointerInfo(SV), false,
931                      false, 0);
932}
933
934SDValue
935HexagonTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
936  SDValue LHS = Op.getOperand(0);
937  SDValue RHS = Op.getOperand(1);
938  SDValue CC = Op.getOperand(4);
939  SDValue TrueVal = Op.getOperand(2);
940  SDValue FalseVal = Op.getOperand(3);
941  SDLoc dl(Op);
942  SDNode* OpNode = Op.getNode();
943  EVT SVT = OpNode->getValueType(0);
944
945  SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i1, LHS, RHS, CC);
946  return DAG.getNode(ISD::SELECT, dl, SVT, Cond, TrueVal, FalseVal);
947}
948
949SDValue
950HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
951  EVT ValTy = Op.getValueType();
952  SDLoc dl(Op);
953  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
954  SDValue Res;
955  if (CP->isMachineConstantPoolEntry())
956    Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy,
957                                    CP->getAlignment());
958  else
959    Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy,
960                                    CP->getAlignment());
961  return DAG.getNode(HexagonISD::CONST32, dl, ValTy, Res);
962}
963
964SDValue
965HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
966  const TargetRegisterInfo *TRI = TM.getRegisterInfo();
967  MachineFunction &MF = DAG.getMachineFunction();
968  MachineFrameInfo *MFI = MF.getFrameInfo();
969  MFI->setReturnAddressIsTaken(true);
970
971  EVT VT = Op.getValueType();
972  SDLoc dl(Op);
973  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
974  if (Depth) {
975    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
976    SDValue Offset = DAG.getConstant(4, MVT::i32);
977    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
978                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
979                       MachinePointerInfo(), false, false, false, 0);
980  }
981
982  // Return LR, which contains the return address. Mark it an implicit live-in.
983  unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
984  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
985}
986
987SDValue
988HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
989  const HexagonRegisterInfo  *TRI = TM.getRegisterInfo();
990  MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
991  MFI->setFrameAddressIsTaken(true);
992
993  EVT VT = Op.getValueType();
994  SDLoc dl(Op);
995  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
996  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
997                                         TRI->getFrameRegister(), VT);
998  while (Depth--)
999    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1000                            MachinePointerInfo(),
1001                            false, false, false, 0);
1002  return FrameAddr;
1003}
1004
1005SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op,
1006                                                 SelectionDAG& DAG) const {
1007  SDLoc dl(Op);
1008  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1009}
1010
1011
1012SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op,
1013                                                  SelectionDAG &DAG) const {
1014  SDValue Result;
1015  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1016  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1017  SDLoc dl(Op);
1018  Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
1019
1020  const HexagonTargetObjectFile &TLOF =
1021      static_cast<const HexagonTargetObjectFile &>(getObjFileLowering());
1022  if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
1023    return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result);
1024  }
1025
1026  return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result);
1027}
1028
1029SDValue
1030HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1031  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1032  SDValue BA_SD =  DAG.getTargetBlockAddress(BA, MVT::i32);
1033  SDLoc dl(Op);
1034  return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), BA_SD);
1035}
1036
1037//===----------------------------------------------------------------------===//
1038// TargetLowering Implementation
1039//===----------------------------------------------------------------------===//
1040
1041HexagonTargetLowering::HexagonTargetLowering(HexagonTargetMachine
1042                                             &targetmachine)
1043  : TargetLowering(targetmachine, new HexagonTargetObjectFile()),
1044    TM(targetmachine) {
1045
1046    const HexagonRegisterInfo* QRI = TM.getRegisterInfo();
1047
1048    // Set up the register classes.
1049    addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1050    addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1051
1052    if (QRI->Subtarget.hasV5TOps()) {
1053      addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1054      addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1055    }
1056
1057    addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1058
1059    computeRegisterProperties();
1060
1061    // Align loop entry
1062    setPrefLoopAlignment(4);
1063
1064    // Limits for inline expansion of memcpy/memmove
1065    MaxStoresPerMemcpy = 6;
1066    MaxStoresPerMemmove = 6;
1067
1068    //
1069    // Library calls for unsupported operations
1070    //
1071
1072    setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1073    setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1074
1075    setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1076    setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1077
1078    setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1079    setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1080
1081    setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1082    setOperationAction(ISD::SDIV,  MVT::i32, Expand);
1083    setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3");
1084    setOperationAction(ISD::SREM,  MVT::i32, Expand);
1085
1086    setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1087    setOperationAction(ISD::SDIV,  MVT::i64, Expand);
1088    setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1089    setOperationAction(ISD::SREM,  MVT::i64, Expand);
1090
1091    setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1092    setOperationAction(ISD::UDIV,  MVT::i32, Expand);
1093
1094    setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1095    setOperationAction(ISD::UDIV,  MVT::i64, Expand);
1096
1097    setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1098    setOperationAction(ISD::UREM,  MVT::i32, Expand);
1099
1100    setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1101    setOperationAction(ISD::UREM,  MVT::i64, Expand);
1102
1103    setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1104    setOperationAction(ISD::FDIV,  MVT::f32, Expand);
1105
1106    setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1107    setOperationAction(ISD::FDIV,  MVT::f64, Expand);
1108
1109    setOperationAction(ISD::FSQRT,  MVT::f32, Expand);
1110    setOperationAction(ISD::FSQRT,  MVT::f64, Expand);
1111    setOperationAction(ISD::FSIN,  MVT::f32, Expand);
1112    setOperationAction(ISD::FSIN,  MVT::f64, Expand);
1113
1114    if (QRI->Subtarget.hasV5TOps()) {
1115      // Hexagon V5 Support.
1116      setOperationAction(ISD::FADD,       MVT::f32, Legal);
1117      setOperationAction(ISD::FADD,       MVT::f64, Legal);
1118      setOperationAction(ISD::FP_EXTEND,  MVT::f32, Legal);
1119      setCondCodeAction(ISD::SETOEQ,      MVT::f32, Legal);
1120      setCondCodeAction(ISD::SETOEQ,      MVT::f64, Legal);
1121      setCondCodeAction(ISD::SETUEQ,      MVT::f32, Legal);
1122      setCondCodeAction(ISD::SETUEQ,      MVT::f64, Legal);
1123
1124      setCondCodeAction(ISD::SETOGE,      MVT::f32, Legal);
1125      setCondCodeAction(ISD::SETOGE,      MVT::f64, Legal);
1126      setCondCodeAction(ISD::SETUGE,      MVT::f32, Legal);
1127      setCondCodeAction(ISD::SETUGE,      MVT::f64, Legal);
1128
1129      setCondCodeAction(ISD::SETOGT,      MVT::f32, Legal);
1130      setCondCodeAction(ISD::SETOGT,      MVT::f64, Legal);
1131      setCondCodeAction(ISD::SETUGT,      MVT::f32, Legal);
1132      setCondCodeAction(ISD::SETUGT,      MVT::f64, Legal);
1133
1134      setCondCodeAction(ISD::SETOLE,      MVT::f32, Legal);
1135      setCondCodeAction(ISD::SETOLE,      MVT::f64, Legal);
1136      setCondCodeAction(ISD::SETOLT,      MVT::f32, Legal);
1137      setCondCodeAction(ISD::SETOLT,      MVT::f64, Legal);
1138
1139      setOperationAction(ISD::ConstantFP,  MVT::f32, Legal);
1140      setOperationAction(ISD::ConstantFP,  MVT::f64, Legal);
1141
1142      setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1143      setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1144      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1145      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1146
1147      setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1148      setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1149      setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1150      setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1151
1152      setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1153      setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1154      setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1155      setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1156
1157      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
1158      setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
1159      setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
1160      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
1161
1162      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
1163      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
1164      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
1165      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
1166
1167      setOperationAction(ISD::FABS,  MVT::f32, Legal);
1168      setOperationAction(ISD::FABS,  MVT::f64, Expand);
1169
1170      setOperationAction(ISD::FNEG,  MVT::f32, Legal);
1171      setOperationAction(ISD::FNEG,  MVT::f64, Expand);
1172    } else {
1173
1174      // Expand fp<->uint.
1175      setOperationAction(ISD::FP_TO_SINT,  MVT::i32, Expand);
1176      setOperationAction(ISD::FP_TO_UINT,  MVT::i32, Expand);
1177
1178      setOperationAction(ISD::SINT_TO_FP,  MVT::i32, Expand);
1179      setOperationAction(ISD::UINT_TO_FP,  MVT::i32, Expand);
1180
1181      setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
1182      setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
1183
1184      setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
1185      setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
1186
1187      setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
1188      setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
1189
1190      setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
1191      setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
1192
1193      setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
1194      setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
1195
1196      setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
1197      setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
1198
1199      setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
1200      setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
1201
1202      setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1203      setOperationAction(ISD::FADD,  MVT::f64, Expand);
1204
1205      setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
1206      setOperationAction(ISD::FADD,  MVT::f32, Expand);
1207
1208      setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
1209      setOperationAction(ISD::FP_EXTEND,  MVT::f32, Expand);
1210
1211      setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
1212      setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
1213
1214      setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
1215      setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
1216
1217      setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
1218      setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
1219
1220      setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
1221      setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
1222
1223      setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
1224      setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
1225
1226      setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
1227      setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
1228
1229      setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
1230      setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
1231
1232      setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
1233      setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
1234
1235      setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
1236      setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
1237
1238      setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
1239      setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
1240
1241      setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
1242      setCondCodeAction(ISD::SETOLT, MVT::f64, Expand);
1243
1244      setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
1245      setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
1246
1247      setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1248      setOperationAction(ISD::FMUL, MVT::f64, Expand);
1249
1250      setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
1251      setOperationAction(ISD::MUL, MVT::f32, Expand);
1252
1253      setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
1254      setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
1255
1256      setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
1257
1258      setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1259      setOperationAction(ISD::SUB, MVT::f64, Expand);
1260
1261      setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
1262      setOperationAction(ISD::SUB, MVT::f32, Expand);
1263
1264      setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
1265      setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
1266
1267      setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
1268      setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
1269
1270      setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
1271      setCondCodeAction(ISD::SETO, MVT::f64, Expand);
1272
1273      setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
1274      setCondCodeAction(ISD::SETO, MVT::f32, Expand);
1275
1276      setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
1277      setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
1278
1279      setOperationAction(ISD::FABS,  MVT::f32, Expand);
1280      setOperationAction(ISD::FABS,  MVT::f64, Expand);
1281      setOperationAction(ISD::FNEG,  MVT::f32, Expand);
1282      setOperationAction(ISD::FNEG,  MVT::f64, Expand);
1283    }
1284
1285    setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1286    setOperationAction(ISD::SREM, MVT::i32, Expand);
1287
1288    setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
1289    setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
1290    setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
1291    setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal);
1292
1293    setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
1294    setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
1295    setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
1296    setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal);
1297
1298    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1299
1300    // Turn FP extload into load/fextend.
1301    setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
1302    // Hexagon has a i1 sign extending load.
1303    setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand);
1304    // Turn FP truncstore into trunc + store.
1305    setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1306
1307    // Custom legalize GlobalAddress nodes into CONST32.
1308    setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1309    setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1310    setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1311    // Truncate action?
1312    setOperationAction(ISD::TRUNCATE, MVT::i64, Expand);
1313
1314    // Hexagon doesn't have sext_inreg, replace them with shl/sra.
1315    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
1316
1317    // Hexagon has no REM or DIVREM operations.
1318    setOperationAction(ISD::UREM, MVT::i32, Expand);
1319    setOperationAction(ISD::SREM, MVT::i32, Expand);
1320    setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1321    setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1322    setOperationAction(ISD::SREM, MVT::i64, Expand);
1323    setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1324    setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1325
1326    setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1327
1328    // Lower SELECT_CC to SETCC and SELECT.
1329    setOperationAction(ISD::SELECT_CC, MVT::i32,   Custom);
1330    setOperationAction(ISD::SELECT_CC, MVT::i64,   Custom);
1331
1332    if (QRI->Subtarget.hasV5TOps()) {
1333
1334      // We need to make the operation type of SELECT node to be Custom,
1335      // such that we don't go into the infinite loop of
1336      // select ->  setcc -> select_cc -> select loop.
1337      setOperationAction(ISD::SELECT, MVT::f32, Custom);
1338      setOperationAction(ISD::SELECT, MVT::f64, Custom);
1339
1340      setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
1341      setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
1342      setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
1343
1344    } else {
1345
1346      // Hexagon has no select or setcc: expand to SELECT_CC.
1347      setOperationAction(ISD::SELECT, MVT::f32, Expand);
1348      setOperationAction(ISD::SELECT, MVT::f64, Expand);
1349
1350      // This is a workaround documented in DAGCombiner.cpp:2892 We don't
1351      // support SELECT_CC on every type.
1352      setOperationAction(ISD::SELECT_CC, MVT::Other,   Expand);
1353
1354    }
1355
1356    if (EmitJumpTables) {
1357      setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1358    } else {
1359      setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1360    }
1361    // Increase jump tables cutover to 5, was 4.
1362    setMinimumJumpTableEntries(5);
1363
1364    setOperationAction(ISD::BR_CC, MVT::f32, Expand);
1365    setOperationAction(ISD::BR_CC, MVT::f64, Expand);
1366    setOperationAction(ISD::BR_CC, MVT::i1,  Expand);
1367    setOperationAction(ISD::BR_CC, MVT::i32, Expand);
1368    setOperationAction(ISD::BR_CC, MVT::i64, Expand);
1369
1370    setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1371
1372    setOperationAction(ISD::FSIN , MVT::f64, Expand);
1373    setOperationAction(ISD::FCOS , MVT::f64, Expand);
1374    setOperationAction(ISD::FREM , MVT::f64, Expand);
1375    setOperationAction(ISD::FSIN , MVT::f32, Expand);
1376    setOperationAction(ISD::FCOS , MVT::f32, Expand);
1377    setOperationAction(ISD::FREM , MVT::f32, Expand);
1378    setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1379    setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1380
1381    // In V4, we have double word add/sub with carry. The problem with
1382    // modelling this instruction is that it produces 2 results - Rdd and Px.
1383    // To model update of Px, we will have to use Defs[p0..p3] which will
1384    // cause any predicate live range to spill. So, we pretend we dont't
1385    // have these instructions.
1386    setOperationAction(ISD::ADDE, MVT::i8, Expand);
1387    setOperationAction(ISD::ADDE, MVT::i16, Expand);
1388    setOperationAction(ISD::ADDE, MVT::i32, Expand);
1389    setOperationAction(ISD::ADDE, MVT::i64, Expand);
1390    setOperationAction(ISD::SUBE, MVT::i8, Expand);
1391    setOperationAction(ISD::SUBE, MVT::i16, Expand);
1392    setOperationAction(ISD::SUBE, MVT::i32, Expand);
1393    setOperationAction(ISD::SUBE, MVT::i64, Expand);
1394    setOperationAction(ISD::ADDC, MVT::i8, Expand);
1395    setOperationAction(ISD::ADDC, MVT::i16, Expand);
1396    setOperationAction(ISD::ADDC, MVT::i32, Expand);
1397    setOperationAction(ISD::ADDC, MVT::i64, Expand);
1398    setOperationAction(ISD::SUBC, MVT::i8, Expand);
1399    setOperationAction(ISD::SUBC, MVT::i16, Expand);
1400    setOperationAction(ISD::SUBC, MVT::i32, Expand);
1401    setOperationAction(ISD::SUBC, MVT::i64, Expand);
1402
1403    setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1404    setOperationAction(ISD::CTPOP, MVT::i64, Expand);
1405    setOperationAction(ISD::CTTZ , MVT::i32, Expand);
1406    setOperationAction(ISD::CTTZ , MVT::i64, Expand);
1407    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
1408    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
1409    setOperationAction(ISD::CTLZ , MVT::i32, Expand);
1410    setOperationAction(ISD::CTLZ , MVT::i64, Expand);
1411    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
1412    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
1413    setOperationAction(ISD::ROTL , MVT::i32, Expand);
1414    setOperationAction(ISD::ROTR , MVT::i32, Expand);
1415    setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1416    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1417    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1418    setOperationAction(ISD::FPOW , MVT::f64, Expand);
1419    setOperationAction(ISD::FPOW , MVT::f32, Expand);
1420
1421    setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1422    setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1423    setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1424
1425    setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1426    setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1427
1428    setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1429    setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1430
1431    setOperationAction(ISD::EH_RETURN,     MVT::Other, Custom);
1432
1433    if (TM.getSubtargetImpl()->isSubtargetV2()) {
1434      setExceptionPointerRegister(Hexagon::R20);
1435      setExceptionSelectorRegister(Hexagon::R21);
1436    } else {
1437      setExceptionPointerRegister(Hexagon::R0);
1438      setExceptionSelectorRegister(Hexagon::R1);
1439    }
1440
1441    // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1442    setOperationAction(ISD::VASTART           , MVT::Other, Custom);
1443
1444    // Use the default implementation.
1445    setOperationAction(ISD::VAARG             , MVT::Other, Expand);
1446    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
1447    setOperationAction(ISD::VAEND             , MVT::Other, Expand);
1448    setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
1449    setOperationAction(ISD::STACKRESTORE      , MVT::Other, Expand);
1450
1451
1452    setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
1453    setOperationAction(ISD::INLINEASM         , MVT::Other, Custom);
1454
1455    setMinFunctionAlignment(2);
1456
1457    // Needed for DYNAMIC_STACKALLOC expansion.
1458    unsigned StackRegister = TM.getRegisterInfo()->getStackRegister();
1459    setStackPointerRegisterToSaveRestore(StackRegister);
1460    setSchedulingPreference(Sched::VLIW);
1461}
1462
1463
1464const char*
1465HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1466  switch (Opcode) {
1467    default: return 0;
1468    case HexagonISD::CONST32:     return "HexagonISD::CONST32";
1469    case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1470    case HexagonISD::CONST32_Int_Real: return "HexagonISD::CONST32_Int_Real";
1471    case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC";
1472    case HexagonISD::CMPICC:      return "HexagonISD::CMPICC";
1473    case HexagonISD::CMPFCC:      return "HexagonISD::CMPFCC";
1474    case HexagonISD::BRICC:       return "HexagonISD::BRICC";
1475    case HexagonISD::BRFCC:       return "HexagonISD::BRFCC";
1476    case HexagonISD::SELECT_ICC:  return "HexagonISD::SELECT_ICC";
1477    case HexagonISD::SELECT_FCC:  return "HexagonISD::SELECT_FCC";
1478    case HexagonISD::Hi:          return "HexagonISD::Hi";
1479    case HexagonISD::Lo:          return "HexagonISD::Lo";
1480    case HexagonISD::FTOI:        return "HexagonISD::FTOI";
1481    case HexagonISD::ITOF:        return "HexagonISD::ITOF";
1482    case HexagonISD::CALL:        return "HexagonISD::CALL";
1483    case HexagonISD::RET_FLAG:    return "HexagonISD::RET_FLAG";
1484    case HexagonISD::BR_JT:       return "HexagonISD::BR_JT";
1485    case HexagonISD::TC_RETURN:   return "HexagonISD::TC_RETURN";
1486  case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1487  }
1488}
1489
1490bool
1491HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1492  EVT MTy1 = EVT::getEVT(Ty1);
1493  EVT MTy2 = EVT::getEVT(Ty2);
1494  if (!MTy1.isSimple() || !MTy2.isSimple()) {
1495    return false;
1496  }
1497  return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32));
1498}
1499
1500bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1501  if (!VT1.isSimple() || !VT2.isSimple()) {
1502    return false;
1503  }
1504  return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32));
1505}
1506
1507bool
1508HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
1509  // Assuming the caller does not have either a signext or zeroext modifier, and
1510  // only one value is accepted, any reasonable truncation is allowed.
1511  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1512    return false;
1513
1514  // FIXME: in principle up to 64-bit could be made safe, but it would be very
1515  // fragile at the moment: any support for multiple value returns would be
1516  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
1517  return Ty1->getPrimitiveSizeInBits() <= 32;
1518}
1519
1520SDValue
1521HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
1522  SDValue Chain     = Op.getOperand(0);
1523  SDValue Offset    = Op.getOperand(1);
1524  SDValue Handler   = Op.getOperand(2);
1525  SDLoc dl(Op);
1526
1527  // Mark function as containing a call to EH_RETURN.
1528  HexagonMachineFunctionInfo *FuncInfo =
1529    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
1530  FuncInfo->setHasEHReturn();
1531
1532  unsigned OffsetReg = Hexagon::R28;
1533
1534  SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
1535                                  DAG.getRegister(Hexagon::R30, getPointerTy()),
1536                                  DAG.getIntPtrConstant(4));
1537  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
1538                       false, false, 0);
1539  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
1540
1541  // Not needed we already use it as explict input to EH_RETURN.
1542  // MF.getRegInfo().addLiveOut(OffsetReg);
1543
1544  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
1545}
1546
1547SDValue
1548HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1549  switch (Op.getOpcode()) {
1550    default: llvm_unreachable("Should not custom lower this!");
1551    case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
1552    case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
1553      // Frame & Return address.  Currently unimplemented.
1554    case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
1555    case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
1556    case ISD::GlobalTLSAddress:
1557                          llvm_unreachable("TLS not implemented for Hexagon.");
1558    case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op, DAG);
1559    case ISD::GlobalAddress:      return LowerGLOBALADDRESS(Op, DAG);
1560    case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
1561    case ISD::VASTART:            return LowerVASTART(Op, DAG);
1562    case ISD::BR_JT:              return LowerBR_JT(Op, DAG);
1563
1564    case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1565    case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
1566    case ISD::SELECT:             return Op;
1567    case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1568    case ISD::INLINEASM:          return LowerINLINEASM(Op, DAG);
1569
1570  }
1571}
1572
1573
1574
1575//===----------------------------------------------------------------------===//
1576//                           Hexagon Scheduler Hooks
1577//===----------------------------------------------------------------------===//
1578MachineBasicBlock *
1579HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1580                                                   MachineBasicBlock *BB)
1581const {
1582  switch (MI->getOpcode()) {
1583    case Hexagon::ADJDYNALLOC: {
1584      MachineFunction *MF = BB->getParent();
1585      HexagonMachineFunctionInfo *FuncInfo =
1586        MF->getInfo<HexagonMachineFunctionInfo>();
1587      FuncInfo->addAllocaAdjustInst(MI);
1588      return BB;
1589    }
1590    default: llvm_unreachable("Unexpected instr type to insert");
1591  } // switch
1592}
1593
1594//===----------------------------------------------------------------------===//
1595// Inline Assembly Support
1596//===----------------------------------------------------------------------===//
1597
1598std::pair<unsigned, const TargetRegisterClass*>
1599HexagonTargetLowering::getRegForInlineAsmConstraint(const
1600                                                    std::string &Constraint,
1601                                                    MVT VT) const {
1602  if (Constraint.size() == 1) {
1603    switch (Constraint[0]) {
1604    case 'r':   // R0-R31
1605       switch (VT.SimpleTy) {
1606       default:
1607         llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
1608       case MVT::i32:
1609       case MVT::i16:
1610       case MVT::i8:
1611       case MVT::f32:
1612         return std::make_pair(0U, &Hexagon::IntRegsRegClass);
1613       case MVT::i64:
1614       case MVT::f64:
1615         return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
1616      }
1617    default:
1618      llvm_unreachable("Unknown asm register class");
1619    }
1620  }
1621
1622  return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1623}
1624
1625/// isFPImmLegal - Returns true if the target can instruction select the
1626/// specified FP immediate natively. If false, the legalizer will
1627/// materialize the FP immediate as a load from a constant pool.
1628bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
1629  const HexagonRegisterInfo* QRI = TM.getRegisterInfo();
1630  return QRI->Subtarget.hasV5TOps();
1631}
1632
1633/// isLegalAddressingMode - Return true if the addressing mode represented by
1634/// AM is legal for this target, for a load/store of the specified type.
1635bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1636                                                  Type *Ty) const {
1637  // Allows a signed-extended 11-bit immediate field.
1638  if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) {
1639    return false;
1640  }
1641
1642  // No global is ever allowed as a base.
1643  if (AM.BaseGV) {
1644    return false;
1645  }
1646
1647  int Scale = AM.Scale;
1648  if (Scale < 0) Scale = -Scale;
1649  switch (Scale) {
1650  case 0:  // No scale reg, "r+i", "r", or just "i".
1651    break;
1652  default: // No scaled addressing mode.
1653    return false;
1654  }
1655  return true;
1656}
1657
1658/// isLegalICmpImmediate - Return true if the specified immediate is legal
1659/// icmp immediate, that is the target has icmp instructions which can compare
1660/// a register against the immediate without having to materialize the
1661/// immediate into a register.
1662bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1663  return Imm >= -512 && Imm <= 511;
1664}
1665
1666/// IsEligibleForTailCallOptimization - Check whether the call is eligible
1667/// for tail call optimization. Targets which want to do tail call
1668/// optimization should implement this function.
1669bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
1670                                 SDValue Callee,
1671                                 CallingConv::ID CalleeCC,
1672                                 bool isVarArg,
1673                                 bool isCalleeStructRet,
1674                                 bool isCallerStructRet,
1675                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
1676                                 const SmallVectorImpl<SDValue> &OutVals,
1677                                 const SmallVectorImpl<ISD::InputArg> &Ins,
1678                                 SelectionDAG& DAG) const {
1679  const Function *CallerF = DAG.getMachineFunction().getFunction();
1680  CallingConv::ID CallerCC = CallerF->getCallingConv();
1681  bool CCMatch = CallerCC == CalleeCC;
1682
1683  // ***************************************************************************
1684  //  Look for obvious safe cases to perform tail call optimization that do not
1685  //  require ABI changes.
1686  // ***************************************************************************
1687
1688  // If this is a tail call via a function pointer, then don't do it!
1689  if (!(dyn_cast<GlobalAddressSDNode>(Callee))
1690      && !(dyn_cast<ExternalSymbolSDNode>(Callee))) {
1691    return false;
1692  }
1693
1694  // Do not optimize if the calling conventions do not match.
1695  if (!CCMatch)
1696    return false;
1697
1698  // Do not tail call optimize vararg calls.
1699  if (isVarArg)
1700    return false;
1701
1702  // Also avoid tail call optimization if either caller or callee uses struct
1703  // return semantics.
1704  if (isCalleeStructRet || isCallerStructRet)
1705    return false;
1706
1707  // In addition to the cases above, we also disable Tail Call Optimization if
1708  // the calling convention code that at least one outgoing argument needs to
1709  // go on the stack. We cannot check that here because at this point that
1710  // information is not available.
1711  return true;
1712}
1713