1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines a DAG pattern matching instruction selector for X86,
11// converting from a legalized dag to a X86 dag.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "x86-isel"
16#include "X86.h"
17#include "X86InstrBuilder.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86RegisterInfo.h"
20#include "X86Subtarget.h"
21#include "X86TargetMachine.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineRegisterInfo.h"
27#include "llvm/CodeGen/SelectionDAGISel.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37using namespace llvm;
38
39STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
40
41//===----------------------------------------------------------------------===//
42//                      Pattern Matcher Implementation
43//===----------------------------------------------------------------------===//
44
45namespace {
46  /// X86ISelAddressMode - This corresponds to X86AddressMode, but uses
47  /// SDValue's instead of register numbers for the leaves of the matched
48  /// tree.
49  struct X86ISelAddressMode {
50    enum {
51      RegBase,
52      FrameIndexBase
53    } BaseType;
54
55    // This is really a union, discriminated by BaseType!
56    SDValue Base_Reg;
57    int Base_FrameIndex;
58
59    unsigned Scale;
60    SDValue IndexReg;
61    int32_t Disp;
62    SDValue Segment;
63    const GlobalValue *GV;
64    const Constant *CP;
65    const BlockAddress *BlockAddr;
66    const char *ES;
67    int JT;
68    unsigned Align;    // CP alignment.
69    unsigned char SymbolFlags;  // X86II::MO_*
70
71    X86ISelAddressMode()
72      : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0),
73        Segment(), GV(0), CP(0), BlockAddr(0), ES(0), JT(-1), Align(0),
74        SymbolFlags(X86II::MO_NO_FLAG) {
75    }
76
77    bool hasSymbolicDisplacement() const {
78      return GV != 0 || CP != 0 || ES != 0 || JT != -1 || BlockAddr != 0;
79    }
80
81    bool hasBaseOrIndexReg() const {
82      return IndexReg.getNode() != 0 || Base_Reg.getNode() != 0;
83    }
84
85    /// isRIPRelative - Return true if this addressing mode is already RIP
86    /// relative.
87    bool isRIPRelative() const {
88      if (BaseType != RegBase) return false;
89      if (RegisterSDNode *RegNode =
90            dyn_cast_or_null<RegisterSDNode>(Base_Reg.getNode()))
91        return RegNode->getReg() == X86::RIP;
92      return false;
93    }
94
95    void setBaseReg(SDValue Reg) {
96      BaseType = RegBase;
97      Base_Reg = Reg;
98    }
99
100#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
101    void dump() {
102      dbgs() << "X86ISelAddressMode " << this << '\n';
103      dbgs() << "Base_Reg ";
104      if (Base_Reg.getNode() != 0)
105        Base_Reg.getNode()->dump();
106      else
107        dbgs() << "nul";
108      dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n'
109             << " Scale" << Scale << '\n'
110             << "IndexReg ";
111      if (IndexReg.getNode() != 0)
112        IndexReg.getNode()->dump();
113      else
114        dbgs() << "nul";
115      dbgs() << " Disp " << Disp << '\n'
116             << "GV ";
117      if (GV)
118        GV->dump();
119      else
120        dbgs() << "nul";
121      dbgs() << " CP ";
122      if (CP)
123        CP->dump();
124      else
125        dbgs() << "nul";
126      dbgs() << '\n'
127             << "ES ";
128      if (ES)
129        dbgs() << ES;
130      else
131        dbgs() << "nul";
132      dbgs() << " JT" << JT << " Align" << Align << '\n';
133    }
134#endif
135  };
136}
137
138namespace {
139  //===--------------------------------------------------------------------===//
140  /// ISel - X86 specific code to select X86 machine instructions for
141  /// SelectionDAG operations.
142  ///
143  class X86DAGToDAGISel : public SelectionDAGISel {
144    /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
145    /// make the right decision when generating code for different targets.
146    const X86Subtarget *Subtarget;
147
148    /// OptForSize - If true, selector should try to optimize for code size
149    /// instead of performance.
150    bool OptForSize;
151
152  public:
153    explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel)
154      : SelectionDAGISel(tm, OptLevel),
155        Subtarget(&tm.getSubtarget<X86Subtarget>()),
156        OptForSize(false) {}
157
158    virtual const char *getPassName() const {
159      return "X86 DAG->DAG Instruction Selection";
160    }
161
162    virtual void EmitFunctionEntryCode();
163
164    virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const;
165
166    virtual void PreprocessISelDAG();
167
168    inline bool immSext8(SDNode *N) const {
169      return isInt<8>(cast<ConstantSDNode>(N)->getSExtValue());
170    }
171
172    // i64immSExt32 predicate - True if the 64-bit immediate fits in a 32-bit
173    // sign extended field.
174    inline bool i64immSExt32(SDNode *N) const {
175      uint64_t v = cast<ConstantSDNode>(N)->getZExtValue();
176      return (int64_t)v == (int32_t)v;
177    }
178
179// Include the pieces autogenerated from the target description.
180#include "X86GenDAGISel.inc"
181
182  private:
183    SDNode *Select(SDNode *N);
184    SDNode *SelectGather(SDNode *N, unsigned Opc);
185    SDNode *SelectAtomic64(SDNode *Node, unsigned Opc);
186    SDNode *SelectAtomicLoadArith(SDNode *Node, EVT NVT);
187
188    bool FoldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
189    bool MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM);
190    bool MatchWrapper(SDValue N, X86ISelAddressMode &AM);
191    bool MatchAddress(SDValue N, X86ISelAddressMode &AM);
192    bool MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
193                                 unsigned Depth);
194    bool MatchAddressBase(SDValue N, X86ISelAddressMode &AM);
195    bool SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
196                    SDValue &Scale, SDValue &Index, SDValue &Disp,
197                    SDValue &Segment);
198    bool SelectMOV64Imm32(SDValue N, SDValue &Imm);
199    bool SelectLEAAddr(SDValue N, SDValue &Base,
200                       SDValue &Scale, SDValue &Index, SDValue &Disp,
201                       SDValue &Segment);
202    bool SelectLEA64_32Addr(SDValue N, SDValue &Base,
203                            SDValue &Scale, SDValue &Index, SDValue &Disp,
204                            SDValue &Segment);
205    bool SelectTLSADDRAddr(SDValue N, SDValue &Base,
206                           SDValue &Scale, SDValue &Index, SDValue &Disp,
207                           SDValue &Segment);
208    bool SelectScalarSSELoad(SDNode *Root, SDValue N,
209                             SDValue &Base, SDValue &Scale,
210                             SDValue &Index, SDValue &Disp,
211                             SDValue &Segment,
212                             SDValue &NodeWithChain);
213
214    bool TryFoldLoad(SDNode *P, SDValue N,
215                     SDValue &Base, SDValue &Scale,
216                     SDValue &Index, SDValue &Disp,
217                     SDValue &Segment);
218
219    /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
220    /// inline asm expressions.
221    virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
222                                              char ConstraintCode,
223                                              std::vector<SDValue> &OutOps);
224
225    void EmitSpecialCodeForMain(MachineBasicBlock *BB, MachineFrameInfo *MFI);
226
227    inline void getAddressOperands(X86ISelAddressMode &AM, SDValue &Base,
228                                   SDValue &Scale, SDValue &Index,
229                                   SDValue &Disp, SDValue &Segment) {
230      Base  = (AM.BaseType == X86ISelAddressMode::FrameIndexBase) ?
231        CurDAG->getTargetFrameIndex(AM.Base_FrameIndex,
232                                    getTargetLowering()->getPointerTy()) :
233        AM.Base_Reg;
234      Scale = getI8Imm(AM.Scale);
235      Index = AM.IndexReg;
236      // These are 32-bit even in 64-bit mode since RIP relative offset
237      // is 32-bit.
238      if (AM.GV)
239        Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
240                                              MVT::i32, AM.Disp,
241                                              AM.SymbolFlags);
242      else if (AM.CP)
243        Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32,
244                                             AM.Align, AM.Disp, AM.SymbolFlags);
245      else if (AM.ES) {
246        assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
247        Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
248      } else if (AM.JT != -1) {
249        assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
250        Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
251      } else if (AM.BlockAddr)
252        Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
253                                             AM.SymbolFlags);
254      else
255        Disp = CurDAG->getTargetConstant(AM.Disp, MVT::i32);
256
257      if (AM.Segment.getNode())
258        Segment = AM.Segment;
259      else
260        Segment = CurDAG->getRegister(0, MVT::i32);
261    }
262
263    /// getI8Imm - Return a target constant with the specified value, of type
264    /// i8.
265    inline SDValue getI8Imm(unsigned Imm) {
266      return CurDAG->getTargetConstant(Imm, MVT::i8);
267    }
268
269    /// getI32Imm - Return a target constant with the specified value, of type
270    /// i32.
271    inline SDValue getI32Imm(unsigned Imm) {
272      return CurDAG->getTargetConstant(Imm, MVT::i32);
273    }
274
275    /// getGlobalBaseReg - Return an SDNode that returns the value of
276    /// the global base register. Output instructions required to
277    /// initialize the global base register, if necessary.
278    ///
279    SDNode *getGlobalBaseReg();
280
281    /// getTargetMachine - Return a reference to the TargetMachine, casted
282    /// to the target-specific type.
283    const X86TargetMachine &getTargetMachine() const {
284      return static_cast<const X86TargetMachine &>(TM);
285    }
286
287    /// getInstrInfo - Return a reference to the TargetInstrInfo, casted
288    /// to the target-specific type.
289    const X86InstrInfo *getInstrInfo() const {
290      return getTargetMachine().getInstrInfo();
291    }
292  };
293}
294
295
296bool
297X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
298  if (OptLevel == CodeGenOpt::None) return false;
299
300  if (!N.hasOneUse())
301    return false;
302
303  if (N.getOpcode() != ISD::LOAD)
304    return true;
305
306  // If N is a load, do additional profitability checks.
307  if (U == Root) {
308    switch (U->getOpcode()) {
309    default: break;
310    case X86ISD::ADD:
311    case X86ISD::SUB:
312    case X86ISD::AND:
313    case X86ISD::XOR:
314    case X86ISD::OR:
315    case ISD::ADD:
316    case ISD::ADDC:
317    case ISD::ADDE:
318    case ISD::AND:
319    case ISD::OR:
320    case ISD::XOR: {
321      SDValue Op1 = U->getOperand(1);
322
323      // If the other operand is a 8-bit immediate we should fold the immediate
324      // instead. This reduces code size.
325      // e.g.
326      // movl 4(%esp), %eax
327      // addl $4, %eax
328      // vs.
329      // movl $4, %eax
330      // addl 4(%esp), %eax
331      // The former is 2 bytes shorter. In case where the increment is 1, then
332      // the saving can be 4 bytes (by using incl %eax).
333      if (ConstantSDNode *Imm = dyn_cast<ConstantSDNode>(Op1))
334        if (Imm->getAPIntValue().isSignedIntN(8))
335          return false;
336
337      // If the other operand is a TLS address, we should fold it instead.
338      // This produces
339      // movl    %gs:0, %eax
340      // leal    i@NTPOFF(%eax), %eax
341      // instead of
342      // movl    $i@NTPOFF, %eax
343      // addl    %gs:0, %eax
344      // if the block also has an access to a second TLS address this will save
345      // a load.
346      // FIXME: This is probably also true for non TLS addresses.
347      if (Op1.getOpcode() == X86ISD::Wrapper) {
348        SDValue Val = Op1.getOperand(0);
349        if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
350          return false;
351      }
352    }
353    }
354  }
355
356  return true;
357}
358
359/// MoveBelowCallOrigChain - Replace the original chain operand of the call with
360/// load's chain operand and move load below the call's chain operand.
361static void MoveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
362                               SDValue Call, SDValue OrigChain) {
363  SmallVector<SDValue, 8> Ops;
364  SDValue Chain = OrigChain.getOperand(0);
365  if (Chain.getNode() == Load.getNode())
366    Ops.push_back(Load.getOperand(0));
367  else {
368    assert(Chain.getOpcode() == ISD::TokenFactor &&
369           "Unexpected chain operand");
370    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
371      if (Chain.getOperand(i).getNode() == Load.getNode())
372        Ops.push_back(Load.getOperand(0));
373      else
374        Ops.push_back(Chain.getOperand(i));
375    SDValue NewChain =
376      CurDAG->getNode(ISD::TokenFactor, SDLoc(Load),
377                      MVT::Other, &Ops[0], Ops.size());
378    Ops.clear();
379    Ops.push_back(NewChain);
380  }
381  for (unsigned i = 1, e = OrigChain.getNumOperands(); i != e; ++i)
382    Ops.push_back(OrigChain.getOperand(i));
383  CurDAG->UpdateNodeOperands(OrigChain.getNode(), &Ops[0], Ops.size());
384  CurDAG->UpdateNodeOperands(Load.getNode(), Call.getOperand(0),
385                             Load.getOperand(1), Load.getOperand(2));
386
387  unsigned NumOps = Call.getNode()->getNumOperands();
388  Ops.clear();
389  Ops.push_back(SDValue(Load.getNode(), 1));
390  for (unsigned i = 1, e = NumOps; i != e; ++i)
391    Ops.push_back(Call.getOperand(i));
392  CurDAG->UpdateNodeOperands(Call.getNode(), &Ops[0], NumOps);
393}
394
395/// isCalleeLoad - Return true if call address is a load and it can be
396/// moved below CALLSEQ_START and the chains leading up to the call.
397/// Return the CALLSEQ_START by reference as a second output.
398/// In the case of a tail call, there isn't a callseq node between the call
399/// chain and the load.
400static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
401  // The transformation is somewhat dangerous if the call's chain was glued to
402  // the call. After MoveBelowOrigChain the load is moved between the call and
403  // the chain, this can create a cycle if the load is not folded. So it is
404  // *really* important that we are sure the load will be folded.
405  if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
406    return false;
407  LoadSDNode *LD = dyn_cast<LoadSDNode>(Callee.getNode());
408  if (!LD ||
409      LD->isVolatile() ||
410      LD->getAddressingMode() != ISD::UNINDEXED ||
411      LD->getExtensionType() != ISD::NON_EXTLOAD)
412    return false;
413
414  // Now let's find the callseq_start.
415  while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
416    if (!Chain.hasOneUse())
417      return false;
418    Chain = Chain.getOperand(0);
419  }
420
421  if (!Chain.getNumOperands())
422    return false;
423  // Since we are not checking for AA here, conservatively abort if the chain
424  // writes to memory. It's not safe to move the callee (a load) across a store.
425  if (isa<MemSDNode>(Chain.getNode()) &&
426      cast<MemSDNode>(Chain.getNode())->writeMem())
427    return false;
428  if (Chain.getOperand(0).getNode() == Callee.getNode())
429    return true;
430  if (Chain.getOperand(0).getOpcode() == ISD::TokenFactor &&
431      Callee.getValue(1).isOperandOf(Chain.getOperand(0).getNode()) &&
432      Callee.getValue(1).hasOneUse())
433    return true;
434  return false;
435}
436
437void X86DAGToDAGISel::PreprocessISelDAG() {
438  // OptForSize is used in pattern predicates that isel is matching.
439  OptForSize = MF->getFunction()->getAttributes().
440    hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
441
442  for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
443       E = CurDAG->allnodes_end(); I != E; ) {
444    SDNode *N = I++;  // Preincrement iterator to avoid invalidation issues.
445
446    if (OptLevel != CodeGenOpt::None &&
447        // Only does this when target favors doesn't favor register indirect
448        // call.
449        ((N->getOpcode() == X86ISD::CALL && !Subtarget->callRegIndirect()) ||
450         (N->getOpcode() == X86ISD::TC_RETURN &&
451          // Only does this if load can be folded into TC_RETURN.
452          (Subtarget->is64Bit() ||
453           getTargetMachine().getRelocationModel() != Reloc::PIC_)))) {
454      /// Also try moving call address load from outside callseq_start to just
455      /// before the call to allow it to be folded.
456      ///
457      ///     [Load chain]
458      ///         ^
459      ///         |
460      ///       [Load]
461      ///       ^    ^
462      ///       |    |
463      ///      /      \--
464      ///     /          |
465      ///[CALLSEQ_START] |
466      ///     ^          |
467      ///     |          |
468      /// [LOAD/C2Reg]   |
469      ///     |          |
470      ///      \        /
471      ///       \      /
472      ///       [CALL]
473      bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
474      SDValue Chain = N->getOperand(0);
475      SDValue Load  = N->getOperand(1);
476      if (!isCalleeLoad(Load, Chain, HasCallSeq))
477        continue;
478      MoveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain);
479      ++NumLoadMoved;
480      continue;
481    }
482
483    // Lower fpround and fpextend nodes that target the FP stack to be store and
484    // load to the stack.  This is a gross hack.  We would like to simply mark
485    // these as being illegal, but when we do that, legalize produces these when
486    // it expands calls, then expands these in the same legalize pass.  We would
487    // like dag combine to be able to hack on these between the call expansion
488    // and the node legalization.  As such this pass basically does "really
489    // late" legalization of these inline with the X86 isel pass.
490    // FIXME: This should only happen when not compiled with -O0.
491    if (N->getOpcode() != ISD::FP_ROUND && N->getOpcode() != ISD::FP_EXTEND)
492      continue;
493
494    EVT SrcVT = N->getOperand(0).getValueType();
495    EVT DstVT = N->getValueType(0);
496
497    // If any of the sources are vectors, no fp stack involved.
498    if (SrcVT.isVector() || DstVT.isVector())
499      continue;
500
501    // If the source and destination are SSE registers, then this is a legal
502    // conversion that should not be lowered.
503    const X86TargetLowering *X86Lowering =
504        static_cast<const X86TargetLowering *>(getTargetLowering());
505    bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(SrcVT);
506    bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(DstVT);
507    if (SrcIsSSE && DstIsSSE)
508      continue;
509
510    if (!SrcIsSSE && !DstIsSSE) {
511      // If this is an FPStack extension, it is a noop.
512      if (N->getOpcode() == ISD::FP_EXTEND)
513        continue;
514      // If this is a value-preserving FPStack truncation, it is a noop.
515      if (N->getConstantOperandVal(1))
516        continue;
517    }
518
519    // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
520    // FPStack has extload and truncstore.  SSE can fold direct loads into other
521    // operations.  Based on this, decide what we want to do.
522    EVT MemVT;
523    if (N->getOpcode() == ISD::FP_ROUND)
524      MemVT = DstVT;  // FP_ROUND must use DstVT, we can't do a 'trunc load'.
525    else
526      MemVT = SrcIsSSE ? SrcVT : DstVT;
527
528    SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT);
529    SDLoc dl(N);
530
531    // FIXME: optimize the case where the src/dest is a load or store?
532    SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl,
533                                          N->getOperand(0),
534                                          MemTmp, MachinePointerInfo(), MemVT,
535                                          false, false, 0);
536    SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp,
537                                        MachinePointerInfo(),
538                                        MemVT, false, false, 0);
539
540    // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
541    // extload we created.  This will cause general havok on the dag because
542    // anything below the conversion could be folded into other existing nodes.
543    // To avoid invalidating 'I', back it up to the convert node.
544    --I;
545    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
546
547    // Now that we did that, the node is dead.  Increment the iterator to the
548    // next node to process, then delete N.
549    ++I;
550    CurDAG->DeleteNode(N);
551  }
552}
553
554
555/// EmitSpecialCodeForMain - Emit any code that needs to be executed only in
556/// the main function.
557void X86DAGToDAGISel::EmitSpecialCodeForMain(MachineBasicBlock *BB,
558                                             MachineFrameInfo *MFI) {
559  const TargetInstrInfo *TII = TM.getInstrInfo();
560  if (Subtarget->isTargetCygMing()) {
561    unsigned CallOp =
562      Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32;
563    BuildMI(BB, DebugLoc(),
564            TII->get(CallOp)).addExternalSymbol("__main");
565  }
566}
567
568void X86DAGToDAGISel::EmitFunctionEntryCode() {
569  // If this is main, emit special code for main.
570  if (const Function *Fn = MF->getFunction())
571    if (Fn->hasExternalLinkage() && Fn->getName() == "main")
572      EmitSpecialCodeForMain(MF->begin(), MF->getFrameInfo());
573}
574
575static bool isDispSafeForFrameIndex(int64_t Val) {
576  // On 64-bit platforms, we can run into an issue where a frame index
577  // includes a displacement that, when added to the explicit displacement,
578  // will overflow the displacement field. Assuming that the frame index
579  // displacement fits into a 31-bit integer  (which is only slightly more
580  // aggressive than the current fundamental assumption that it fits into
581  // a 32-bit integer), a 31-bit disp should always be safe.
582  return isInt<31>(Val);
583}
584
585bool X86DAGToDAGISel::FoldOffsetIntoAddress(uint64_t Offset,
586                                            X86ISelAddressMode &AM) {
587  int64_t Val = AM.Disp + Offset;
588  CodeModel::Model M = TM.getCodeModel();
589  if (Subtarget->is64Bit()) {
590    if (!X86::isOffsetSuitableForCodeModel(Val, M,
591                                           AM.hasSymbolicDisplacement()))
592      return true;
593    // In addition to the checks required for a register base, check that
594    // we do not try to use an unsafe Disp with a frame index.
595    if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
596        !isDispSafeForFrameIndex(Val))
597      return true;
598  }
599  AM.Disp = Val;
600  return false;
601
602}
603
604bool X86DAGToDAGISel::MatchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){
605  SDValue Address = N->getOperand(1);
606
607  // load gs:0 -> GS segment register.
608  // load fs:0 -> FS segment register.
609  //
610  // This optimization is valid because the GNU TLS model defines that
611  // gs:0 (or fs:0 on X86-64) contains its own address.
612  // For more information see http://people.redhat.com/drepper/tls.pdf
613  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Address))
614    if (C->getSExtValue() == 0 && AM.Segment.getNode() == 0 &&
615        Subtarget->isTargetLinux())
616      switch (N->getPointerInfo().getAddrSpace()) {
617      case 256:
618        AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
619        return false;
620      case 257:
621        AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
622        return false;
623      }
624
625  return true;
626}
627
628/// MatchWrapper - Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes
629/// into an addressing mode.  These wrap things that will resolve down into a
630/// symbol reference.  If no match is possible, this returns true, otherwise it
631/// returns false.
632bool X86DAGToDAGISel::MatchWrapper(SDValue N, X86ISelAddressMode &AM) {
633  // If the addressing mode already has a symbol as the displacement, we can
634  // never match another symbol.
635  if (AM.hasSymbolicDisplacement())
636    return true;
637
638  SDValue N0 = N.getOperand(0);
639  CodeModel::Model M = TM.getCodeModel();
640
641  // Handle X86-64 rip-relative addresses.  We check this before checking direct
642  // folding because RIP is preferable to non-RIP accesses.
643  if (Subtarget->is64Bit() && N.getOpcode() == X86ISD::WrapperRIP &&
644      // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
645      // they cannot be folded into immediate fields.
646      // FIXME: This can be improved for kernel and other models?
647      (M == CodeModel::Small || M == CodeModel::Kernel)) {
648    // Base and index reg must be 0 in order to use %rip as base.
649    if (AM.hasBaseOrIndexReg())
650      return true;
651    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
652      X86ISelAddressMode Backup = AM;
653      AM.GV = G->getGlobal();
654      AM.SymbolFlags = G->getTargetFlags();
655      if (FoldOffsetIntoAddress(G->getOffset(), AM)) {
656        AM = Backup;
657        return true;
658      }
659    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
660      X86ISelAddressMode Backup = AM;
661      AM.CP = CP->getConstVal();
662      AM.Align = CP->getAlignment();
663      AM.SymbolFlags = CP->getTargetFlags();
664      if (FoldOffsetIntoAddress(CP->getOffset(), AM)) {
665        AM = Backup;
666        return true;
667      }
668    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
669      AM.ES = S->getSymbol();
670      AM.SymbolFlags = S->getTargetFlags();
671    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
672      AM.JT = J->getIndex();
673      AM.SymbolFlags = J->getTargetFlags();
674    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
675      X86ISelAddressMode Backup = AM;
676      AM.BlockAddr = BA->getBlockAddress();
677      AM.SymbolFlags = BA->getTargetFlags();
678      if (FoldOffsetIntoAddress(BA->getOffset(), AM)) {
679        AM = Backup;
680        return true;
681      }
682    } else
683      llvm_unreachable("Unhandled symbol reference node.");
684
685    if (N.getOpcode() == X86ISD::WrapperRIP)
686      AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
687    return false;
688  }
689
690  // Handle the case when globals fit in our immediate field: This is true for
691  // X86-32 always and X86-64 when in -mcmodel=small mode.  In 64-bit
692  // mode, this only applies to a non-RIP-relative computation.
693  if (!Subtarget->is64Bit() ||
694      M == CodeModel::Small || M == CodeModel::Kernel) {
695    assert(N.getOpcode() != X86ISD::WrapperRIP &&
696           "RIP-relative addressing already handled");
697    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(N0)) {
698      AM.GV = G->getGlobal();
699      AM.Disp += G->getOffset();
700      AM.SymbolFlags = G->getTargetFlags();
701    } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) {
702      AM.CP = CP->getConstVal();
703      AM.Align = CP->getAlignment();
704      AM.Disp += CP->getOffset();
705      AM.SymbolFlags = CP->getTargetFlags();
706    } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) {
707      AM.ES = S->getSymbol();
708      AM.SymbolFlags = S->getTargetFlags();
709    } else if (JumpTableSDNode *J = dyn_cast<JumpTableSDNode>(N0)) {
710      AM.JT = J->getIndex();
711      AM.SymbolFlags = J->getTargetFlags();
712    } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(N0)) {
713      AM.BlockAddr = BA->getBlockAddress();
714      AM.Disp += BA->getOffset();
715      AM.SymbolFlags = BA->getTargetFlags();
716    } else
717      llvm_unreachable("Unhandled symbol reference node.");
718    return false;
719  }
720
721  return true;
722}
723
724/// MatchAddress - Add the specified node to the specified addressing mode,
725/// returning true if it cannot be done.  This just pattern matches for the
726/// addressing mode.
727bool X86DAGToDAGISel::MatchAddress(SDValue N, X86ISelAddressMode &AM) {
728  if (MatchAddressRecursively(N, AM, 0))
729    return true;
730
731  // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
732  // a smaller encoding and avoids a scaled-index.
733  if (AM.Scale == 2 &&
734      AM.BaseType == X86ISelAddressMode::RegBase &&
735      AM.Base_Reg.getNode() == 0) {
736    AM.Base_Reg = AM.IndexReg;
737    AM.Scale = 1;
738  }
739
740  // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
741  // because it has a smaller encoding.
742  // TODO: Which other code models can use this?
743  if (TM.getCodeModel() == CodeModel::Small &&
744      Subtarget->is64Bit() &&
745      AM.Scale == 1 &&
746      AM.BaseType == X86ISelAddressMode::RegBase &&
747      AM.Base_Reg.getNode() == 0 &&
748      AM.IndexReg.getNode() == 0 &&
749      AM.SymbolFlags == X86II::MO_NO_FLAG &&
750      AM.hasSymbolicDisplacement())
751    AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
752
753  return false;
754}
755
756// Insert a node into the DAG at least before the Pos node's position. This
757// will reposition the node as needed, and will assign it a node ID that is <=
758// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
759// IDs! The selection DAG must no longer depend on their uniqueness when this
760// is used.
761static void InsertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
762  if (N.getNode()->getNodeId() == -1 ||
763      N.getNode()->getNodeId() > Pos.getNode()->getNodeId()) {
764    DAG.RepositionNode(Pos.getNode(), N.getNode());
765    N.getNode()->setNodeId(Pos.getNode()->getNodeId());
766  }
767}
768
769// Transform "(X >> (8-C1)) & C2" to "(X >> 8) & 0xff)" if safe. This
770// allows us to convert the shift and and into an h-register extract and
771// a scaled index. Returns false if the simplification is performed.
772static bool FoldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
773                                      uint64_t Mask,
774                                      SDValue Shift, SDValue X,
775                                      X86ISelAddressMode &AM) {
776  if (Shift.getOpcode() != ISD::SRL ||
777      !isa<ConstantSDNode>(Shift.getOperand(1)) ||
778      !Shift.hasOneUse())
779    return true;
780
781  int ScaleLog = 8 - Shift.getConstantOperandVal(1);
782  if (ScaleLog <= 0 || ScaleLog >= 4 ||
783      Mask != (0xffu << ScaleLog))
784    return true;
785
786  EVT VT = N.getValueType();
787  SDLoc DL(N);
788  SDValue Eight = DAG.getConstant(8, MVT::i8);
789  SDValue NewMask = DAG.getConstant(0xff, VT);
790  SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, X, Eight);
791  SDValue And = DAG.getNode(ISD::AND, DL, VT, Srl, NewMask);
792  SDValue ShlCount = DAG.getConstant(ScaleLog, MVT::i8);
793  SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, And, ShlCount);
794
795  // Insert the new nodes into the topological ordering. We must do this in
796  // a valid topological ordering as nothing is going to go back and re-sort
797  // these nodes. We continually insert before 'N' in sequence as this is
798  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
799  // hierarchy left to express.
800  InsertDAGNode(DAG, N, Eight);
801  InsertDAGNode(DAG, N, Srl);
802  InsertDAGNode(DAG, N, NewMask);
803  InsertDAGNode(DAG, N, And);
804  InsertDAGNode(DAG, N, ShlCount);
805  InsertDAGNode(DAG, N, Shl);
806  DAG.ReplaceAllUsesWith(N, Shl);
807  AM.IndexReg = And;
808  AM.Scale = (1 << ScaleLog);
809  return false;
810}
811
812// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
813// allows us to fold the shift into this addressing mode. Returns false if the
814// transform succeeded.
815static bool FoldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
816                                        uint64_t Mask,
817                                        SDValue Shift, SDValue X,
818                                        X86ISelAddressMode &AM) {
819  if (Shift.getOpcode() != ISD::SHL ||
820      !isa<ConstantSDNode>(Shift.getOperand(1)))
821    return true;
822
823  // Not likely to be profitable if either the AND or SHIFT node has more
824  // than one use (unless all uses are for address computation). Besides,
825  // isel mechanism requires their node ids to be reused.
826  if (!N.hasOneUse() || !Shift.hasOneUse())
827    return true;
828
829  // Verify that the shift amount is something we can fold.
830  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
831  if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
832    return true;
833
834  EVT VT = N.getValueType();
835  SDLoc DL(N);
836  SDValue NewMask = DAG.getConstant(Mask >> ShiftAmt, VT);
837  SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, NewMask);
838  SDValue NewShift = DAG.getNode(ISD::SHL, DL, VT, NewAnd, Shift.getOperand(1));
839
840  // Insert the new nodes into the topological ordering. We must do this in
841  // a valid topological ordering as nothing is going to go back and re-sort
842  // these nodes. We continually insert before 'N' in sequence as this is
843  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
844  // hierarchy left to express.
845  InsertDAGNode(DAG, N, NewMask);
846  InsertDAGNode(DAG, N, NewAnd);
847  InsertDAGNode(DAG, N, NewShift);
848  DAG.ReplaceAllUsesWith(N, NewShift);
849
850  AM.Scale = 1 << ShiftAmt;
851  AM.IndexReg = NewAnd;
852  return false;
853}
854
855// Implement some heroics to detect shifts of masked values where the mask can
856// be replaced by extending the shift and undoing that in the addressing mode
857// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
858// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
859// the addressing mode. This results in code such as:
860//
861//   int f(short *y, int *lookup_table) {
862//     ...
863//     return *y + lookup_table[*y >> 11];
864//   }
865//
866// Turning into:
867//   movzwl (%rdi), %eax
868//   movl %eax, %ecx
869//   shrl $11, %ecx
870//   addl (%rsi,%rcx,4), %eax
871//
872// Instead of:
873//   movzwl (%rdi), %eax
874//   movl %eax, %ecx
875//   shrl $9, %ecx
876//   andl $124, %rcx
877//   addl (%rsi,%rcx), %eax
878//
879// Note that this function assumes the mask is provided as a mask *after* the
880// value is shifted. The input chain may or may not match that, but computing
881// such a mask is trivial.
882static bool FoldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
883                                    uint64_t Mask,
884                                    SDValue Shift, SDValue X,
885                                    X86ISelAddressMode &AM) {
886  if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
887      !isa<ConstantSDNode>(Shift.getOperand(1)))
888    return true;
889
890  unsigned ShiftAmt = Shift.getConstantOperandVal(1);
891  unsigned MaskLZ = countLeadingZeros(Mask);
892  unsigned MaskTZ = countTrailingZeros(Mask);
893
894  // The amount of shift we're trying to fit into the addressing mode is taken
895  // from the trailing zeros of the mask.
896  unsigned AMShiftAmt = MaskTZ;
897
898  // There is nothing we can do here unless the mask is removing some bits.
899  // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
900  if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true;
901
902  // We also need to ensure that mask is a continuous run of bits.
903  if (CountTrailingOnes_64(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true;
904
905  // Scale the leading zero count down based on the actual size of the value.
906  // Also scale it down based on the size of the shift.
907  MaskLZ -= (64 - X.getValueSizeInBits()) + ShiftAmt;
908
909  // The final check is to ensure that any masked out high bits of X are
910  // already known to be zero. Otherwise, the mask has a semantic impact
911  // other than masking out a couple of low bits. Unfortunately, because of
912  // the mask, zero extensions will be removed from operands in some cases.
913  // This code works extra hard to look through extensions because we can
914  // replace them with zero extensions cheaply if necessary.
915  bool ReplacingAnyExtend = false;
916  if (X.getOpcode() == ISD::ANY_EXTEND) {
917    unsigned ExtendBits =
918      X.getValueSizeInBits() - X.getOperand(0).getValueSizeInBits();
919    // Assume that we'll replace the any-extend with a zero-extend, and
920    // narrow the search to the extended value.
921    X = X.getOperand(0);
922    MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
923    ReplacingAnyExtend = true;
924  }
925  APInt MaskedHighBits = APInt::getHighBitsSet(X.getValueSizeInBits(),
926                                               MaskLZ);
927  APInt KnownZero, KnownOne;
928  DAG.ComputeMaskedBits(X, KnownZero, KnownOne);
929  if (MaskedHighBits != KnownZero) return true;
930
931  // We've identified a pattern that can be transformed into a single shift
932  // and an addressing mode. Make it so.
933  EVT VT = N.getValueType();
934  if (ReplacingAnyExtend) {
935    assert(X.getValueType() != VT);
936    // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
937    SDValue NewX = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(X), VT, X);
938    InsertDAGNode(DAG, N, NewX);
939    X = NewX;
940  }
941  SDLoc DL(N);
942  SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, MVT::i8);
943  SDValue NewSRL = DAG.getNode(ISD::SRL, DL, VT, X, NewSRLAmt);
944  SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, MVT::i8);
945  SDValue NewSHL = DAG.getNode(ISD::SHL, DL, VT, NewSRL, NewSHLAmt);
946
947  // Insert the new nodes into the topological ordering. We must do this in
948  // a valid topological ordering as nothing is going to go back and re-sort
949  // these nodes. We continually insert before 'N' in sequence as this is
950  // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
951  // hierarchy left to express.
952  InsertDAGNode(DAG, N, NewSRLAmt);
953  InsertDAGNode(DAG, N, NewSRL);
954  InsertDAGNode(DAG, N, NewSHLAmt);
955  InsertDAGNode(DAG, N, NewSHL);
956  DAG.ReplaceAllUsesWith(N, NewSHL);
957
958  AM.Scale = 1 << AMShiftAmt;
959  AM.IndexReg = NewSRL;
960  return false;
961}
962
963bool X86DAGToDAGISel::MatchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
964                                              unsigned Depth) {
965  SDLoc dl(N);
966  DEBUG({
967      dbgs() << "MatchAddress: ";
968      AM.dump();
969    });
970  // Limit recursion.
971  if (Depth > 5)
972    return MatchAddressBase(N, AM);
973
974  // If this is already a %rip relative address, we can only merge immediates
975  // into it.  Instead of handling this in every case, we handle it here.
976  // RIP relative addressing: %rip + 32-bit displacement!
977  if (AM.isRIPRelative()) {
978    // FIXME: JumpTable and ExternalSymbol address currently don't like
979    // displacements.  It isn't very important, but this should be fixed for
980    // consistency.
981    if (!AM.ES && AM.JT != -1) return true;
982
983    if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N))
984      if (!FoldOffsetIntoAddress(Cst->getSExtValue(), AM))
985        return false;
986    return true;
987  }
988
989  switch (N.getOpcode()) {
990  default: break;
991  case ISD::Constant: {
992    uint64_t Val = cast<ConstantSDNode>(N)->getSExtValue();
993    if (!FoldOffsetIntoAddress(Val, AM))
994      return false;
995    break;
996  }
997
998  case X86ISD::Wrapper:
999  case X86ISD::WrapperRIP:
1000    if (!MatchWrapper(N, AM))
1001      return false;
1002    break;
1003
1004  case ISD::LOAD:
1005    if (!MatchLoadInAddress(cast<LoadSDNode>(N), AM))
1006      return false;
1007    break;
1008
1009  case ISD::FrameIndex:
1010    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1011        AM.Base_Reg.getNode() == 0 &&
1012        (!Subtarget->is64Bit() || isDispSafeForFrameIndex(AM.Disp))) {
1013      AM.BaseType = X86ISelAddressMode::FrameIndexBase;
1014      AM.Base_FrameIndex = cast<FrameIndexSDNode>(N)->getIndex();
1015      return false;
1016    }
1017    break;
1018
1019  case ISD::SHL:
1020    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1)
1021      break;
1022
1023    if (ConstantSDNode
1024          *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1))) {
1025      unsigned Val = CN->getZExtValue();
1026      // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
1027      // that the base operand remains free for further matching. If
1028      // the base doesn't end up getting used, a post-processing step
1029      // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
1030      if (Val == 1 || Val == 2 || Val == 3) {
1031        AM.Scale = 1 << Val;
1032        SDValue ShVal = N.getNode()->getOperand(0);
1033
1034        // Okay, we know that we have a scale by now.  However, if the scaled
1035        // value is an add of something and a constant, we can fold the
1036        // constant into the disp field here.
1037        if (CurDAG->isBaseWithConstantOffset(ShVal)) {
1038          AM.IndexReg = ShVal.getNode()->getOperand(0);
1039          ConstantSDNode *AddVal =
1040            cast<ConstantSDNode>(ShVal.getNode()->getOperand(1));
1041          uint64_t Disp = (uint64_t)AddVal->getSExtValue() << Val;
1042          if (!FoldOffsetIntoAddress(Disp, AM))
1043            return false;
1044        }
1045
1046        AM.IndexReg = ShVal;
1047        return false;
1048      }
1049    }
1050    break;
1051
1052  case ISD::SRL: {
1053    // Scale must not be used already.
1054    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1055
1056    SDValue And = N.getOperand(0);
1057    if (And.getOpcode() != ISD::AND) break;
1058    SDValue X = And.getOperand(0);
1059
1060    // We only handle up to 64-bit values here as those are what matter for
1061    // addressing mode optimizations.
1062    if (X.getValueSizeInBits() > 64) break;
1063
1064    // The mask used for the transform is expected to be post-shift, but we
1065    // found the shift first so just apply the shift to the mask before passing
1066    // it down.
1067    if (!isa<ConstantSDNode>(N.getOperand(1)) ||
1068        !isa<ConstantSDNode>(And.getOperand(1)))
1069      break;
1070    uint64_t Mask = And.getConstantOperandVal(1) >> N.getConstantOperandVal(1);
1071
1072    // Try to fold the mask and shift into the scale, and return false if we
1073    // succeed.
1074    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, N, X, AM))
1075      return false;
1076    break;
1077  }
1078
1079  case ISD::SMUL_LOHI:
1080  case ISD::UMUL_LOHI:
1081    // A mul_lohi where we need the low part can be folded as a plain multiply.
1082    if (N.getResNo() != 0) break;
1083    // FALL THROUGH
1084  case ISD::MUL:
1085  case X86ISD::MUL_IMM:
1086    // X*[3,5,9] -> X+X*[2,4,8]
1087    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1088        AM.Base_Reg.getNode() == 0 &&
1089        AM.IndexReg.getNode() == 0) {
1090      if (ConstantSDNode
1091            *CN = dyn_cast<ConstantSDNode>(N.getNode()->getOperand(1)))
1092        if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
1093            CN->getZExtValue() == 9) {
1094          AM.Scale = unsigned(CN->getZExtValue())-1;
1095
1096          SDValue MulVal = N.getNode()->getOperand(0);
1097          SDValue Reg;
1098
1099          // Okay, we know that we have a scale by now.  However, if the scaled
1100          // value is an add of something and a constant, we can fold the
1101          // constant into the disp field here.
1102          if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
1103              isa<ConstantSDNode>(MulVal.getNode()->getOperand(1))) {
1104            Reg = MulVal.getNode()->getOperand(0);
1105            ConstantSDNode *AddVal =
1106              cast<ConstantSDNode>(MulVal.getNode()->getOperand(1));
1107            uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
1108            if (FoldOffsetIntoAddress(Disp, AM))
1109              Reg = N.getNode()->getOperand(0);
1110          } else {
1111            Reg = N.getNode()->getOperand(0);
1112          }
1113
1114          AM.IndexReg = AM.Base_Reg = Reg;
1115          return false;
1116        }
1117    }
1118    break;
1119
1120  case ISD::SUB: {
1121    // Given A-B, if A can be completely folded into the address and
1122    // the index field with the index field unused, use -B as the index.
1123    // This is a win if a has multiple parts that can be folded into
1124    // the address. Also, this saves a mov if the base register has
1125    // other uses, since it avoids a two-address sub instruction, however
1126    // it costs an additional mov if the index register has other uses.
1127
1128    // Add an artificial use to this node so that we can keep track of
1129    // it if it gets CSE'd with a different node.
1130    HandleSDNode Handle(N);
1131
1132    // Test if the LHS of the sub can be folded.
1133    X86ISelAddressMode Backup = AM;
1134    if (MatchAddressRecursively(N.getNode()->getOperand(0), AM, Depth+1)) {
1135      AM = Backup;
1136      break;
1137    }
1138    // Test if the index field is free for use.
1139    if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
1140      AM = Backup;
1141      break;
1142    }
1143
1144    int Cost = 0;
1145    SDValue RHS = Handle.getValue().getNode()->getOperand(1);
1146    // If the RHS involves a register with multiple uses, this
1147    // transformation incurs an extra mov, due to the neg instruction
1148    // clobbering its operand.
1149    if (!RHS.getNode()->hasOneUse() ||
1150        RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
1151        RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
1152        RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
1153        (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
1154         RHS.getNode()->getOperand(0).getValueType() == MVT::i32))
1155      ++Cost;
1156    // If the base is a register with multiple uses, this
1157    // transformation may save a mov.
1158    if ((AM.BaseType == X86ISelAddressMode::RegBase &&
1159         AM.Base_Reg.getNode() &&
1160         !AM.Base_Reg.getNode()->hasOneUse()) ||
1161        AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1162      --Cost;
1163    // If the folded LHS was interesting, this transformation saves
1164    // address arithmetic.
1165    if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
1166        ((AM.Disp != 0) && (Backup.Disp == 0)) +
1167        (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
1168      --Cost;
1169    // If it doesn't look like it may be an overall win, don't do it.
1170    if (Cost >= 0) {
1171      AM = Backup;
1172      break;
1173    }
1174
1175    // Ok, the transformation is legal and appears profitable. Go for it.
1176    SDValue Zero = CurDAG->getConstant(0, N.getValueType());
1177    SDValue Neg = CurDAG->getNode(ISD::SUB, dl, N.getValueType(), Zero, RHS);
1178    AM.IndexReg = Neg;
1179    AM.Scale = 1;
1180
1181    // Insert the new nodes into the topological ordering.
1182    InsertDAGNode(*CurDAG, N, Zero);
1183    InsertDAGNode(*CurDAG, N, Neg);
1184    return false;
1185  }
1186
1187  case ISD::ADD: {
1188    // Add an artificial use to this node so that we can keep track of
1189    // it if it gets CSE'd with a different node.
1190    HandleSDNode Handle(N);
1191
1192    X86ISelAddressMode Backup = AM;
1193    if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1194        !MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1))
1195      return false;
1196    AM = Backup;
1197
1198    // Try again after commuting the operands.
1199    if (!MatchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1)&&
1200        !MatchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1))
1201      return false;
1202    AM = Backup;
1203
1204    // If we couldn't fold both operands into the address at the same time,
1205    // see if we can just put each operand into a register and fold at least
1206    // the add.
1207    if (AM.BaseType == X86ISelAddressMode::RegBase &&
1208        !AM.Base_Reg.getNode() &&
1209        !AM.IndexReg.getNode()) {
1210      N = Handle.getValue();
1211      AM.Base_Reg = N.getOperand(0);
1212      AM.IndexReg = N.getOperand(1);
1213      AM.Scale = 1;
1214      return false;
1215    }
1216    N = Handle.getValue();
1217    break;
1218  }
1219
1220  case ISD::OR:
1221    // Handle "X | C" as "X + C" iff X is known to have C bits clear.
1222    if (CurDAG->isBaseWithConstantOffset(N)) {
1223      X86ISelAddressMode Backup = AM;
1224      ConstantSDNode *CN = cast<ConstantSDNode>(N.getOperand(1));
1225
1226      // Start with the LHS as an addr mode.
1227      if (!MatchAddressRecursively(N.getOperand(0), AM, Depth+1) &&
1228          !FoldOffsetIntoAddress(CN->getSExtValue(), AM))
1229        return false;
1230      AM = Backup;
1231    }
1232    break;
1233
1234  case ISD::AND: {
1235    // Perform some heroic transforms on an and of a constant-count shift
1236    // with a constant to enable use of the scaled offset field.
1237
1238    // Scale must not be used already.
1239    if (AM.IndexReg.getNode() != 0 || AM.Scale != 1) break;
1240
1241    SDValue Shift = N.getOperand(0);
1242    if (Shift.getOpcode() != ISD::SRL && Shift.getOpcode() != ISD::SHL) break;
1243    SDValue X = Shift.getOperand(0);
1244
1245    // We only handle up to 64-bit values here as those are what matter for
1246    // addressing mode optimizations.
1247    if (X.getValueSizeInBits() > 64) break;
1248
1249    if (!isa<ConstantSDNode>(N.getOperand(1)))
1250      break;
1251    uint64_t Mask = N.getConstantOperandVal(1);
1252
1253    // Try to fold the mask and shift into an extract and scale.
1254    if (!FoldMaskAndShiftToExtract(*CurDAG, N, Mask, Shift, X, AM))
1255      return false;
1256
1257    // Try to fold the mask and shift directly into the scale.
1258    if (!FoldMaskAndShiftToScale(*CurDAG, N, Mask, Shift, X, AM))
1259      return false;
1260
1261    // Try to swap the mask and shift to place shifts which can be done as
1262    // a scale on the outside of the mask.
1263    if (!FoldMaskedShiftToScaledMask(*CurDAG, N, Mask, Shift, X, AM))
1264      return false;
1265    break;
1266  }
1267  }
1268
1269  return MatchAddressBase(N, AM);
1270}
1271
1272/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
1273/// specified addressing mode without any further recursion.
1274bool X86DAGToDAGISel::MatchAddressBase(SDValue N, X86ISelAddressMode &AM) {
1275  // Is the base register already occupied?
1276  if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
1277    // If so, check to see if the scale index register is set.
1278    if (AM.IndexReg.getNode() == 0) {
1279      AM.IndexReg = N;
1280      AM.Scale = 1;
1281      return false;
1282    }
1283
1284    // Otherwise, we cannot select it.
1285    return true;
1286  }
1287
1288  // Default, generate it as a register.
1289  AM.BaseType = X86ISelAddressMode::RegBase;
1290  AM.Base_Reg = N;
1291  return false;
1292}
1293
1294/// SelectAddr - returns true if it is able pattern match an addressing mode.
1295/// It returns the operands which make up the maximal addressing mode it can
1296/// match by reference.
1297///
1298/// Parent is the parent node of the addr operand that is being matched.  It
1299/// is always a load, store, atomic node, or null.  It is only null when
1300/// checking memory operands for inline asm nodes.
1301bool X86DAGToDAGISel::SelectAddr(SDNode *Parent, SDValue N, SDValue &Base,
1302                                 SDValue &Scale, SDValue &Index,
1303                                 SDValue &Disp, SDValue &Segment) {
1304  X86ISelAddressMode AM;
1305
1306  if (Parent &&
1307      // This list of opcodes are all the nodes that have an "addr:$ptr" operand
1308      // that are not a MemSDNode, and thus don't have proper addrspace info.
1309      Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
1310      Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
1311      Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
1312      Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
1313      Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
1314    unsigned AddrSpace =
1315      cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace();
1316    // AddrSpace 256 -> GS, 257 -> FS.
1317    if (AddrSpace == 256)
1318      AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1319    if (AddrSpace == 257)
1320      AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1321  }
1322
1323  if (MatchAddress(N, AM))
1324    return false;
1325
1326  EVT VT = N.getValueType();
1327  if (AM.BaseType == X86ISelAddressMode::RegBase) {
1328    if (!AM.Base_Reg.getNode())
1329      AM.Base_Reg = CurDAG->getRegister(0, VT);
1330  }
1331
1332  if (!AM.IndexReg.getNode())
1333    AM.IndexReg = CurDAG->getRegister(0, VT);
1334
1335  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1336  return true;
1337}
1338
1339/// SelectScalarSSELoad - Match a scalar SSE load.  In particular, we want to
1340/// match a load whose top elements are either undef or zeros.  The load flavor
1341/// is derived from the type of N, which is either v4f32 or v2f64.
1342///
1343/// We also return:
1344///   PatternChainNode: this is the matched node that has a chain input and
1345///   output.
1346bool X86DAGToDAGISel::SelectScalarSSELoad(SDNode *Root,
1347                                          SDValue N, SDValue &Base,
1348                                          SDValue &Scale, SDValue &Index,
1349                                          SDValue &Disp, SDValue &Segment,
1350                                          SDValue &PatternNodeWithChain) {
1351  if (N.getOpcode() == ISD::SCALAR_TO_VECTOR) {
1352    PatternNodeWithChain = N.getOperand(0);
1353    if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) &&
1354        PatternNodeWithChain.hasOneUse() &&
1355        IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1356        IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1357      LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain);
1358      if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1359        return false;
1360      return true;
1361    }
1362  }
1363
1364  // Also handle the case where we explicitly require zeros in the top
1365  // elements.  This is a vector shuffle from the zero vector.
1366  if (N.getOpcode() == X86ISD::VZEXT_MOVL && N.getNode()->hasOneUse() &&
1367      // Check to see if the top elements are all zeros (or bitcast of zeros).
1368      N.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR &&
1369      N.getOperand(0).getNode()->hasOneUse() &&
1370      ISD::isNON_EXTLoad(N.getOperand(0).getOperand(0).getNode()) &&
1371      N.getOperand(0).getOperand(0).hasOneUse() &&
1372      IsProfitableToFold(N.getOperand(0), N.getNode(), Root) &&
1373      IsLegalToFold(N.getOperand(0), N.getNode(), Root, OptLevel)) {
1374    // Okay, this is a zero extending load.  Fold it.
1375    LoadSDNode *LD = cast<LoadSDNode>(N.getOperand(0).getOperand(0));
1376    if (!SelectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, Segment))
1377      return false;
1378    PatternNodeWithChain = SDValue(LD, 0);
1379    return true;
1380  }
1381  return false;
1382}
1383
1384
1385bool X86DAGToDAGISel::SelectMOV64Imm32(SDValue N, SDValue &Imm) {
1386  if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1387    uint64_t ImmVal = CN->getZExtValue();
1388    if ((uint32_t)ImmVal != (uint64_t)ImmVal)
1389      return false;
1390
1391    Imm = CurDAG->getTargetConstant(ImmVal, MVT::i64);
1392    return true;
1393  }
1394
1395  // In static codegen with small code model, we can get the address of a label
1396  // into a register with 'movl'. TableGen has already made sure we're looking
1397  // at a label of some kind.
1398  assert(N->getOpcode() == X86ISD::Wrapper &&
1399         "Unexpected node type for MOV32ri64");
1400  N = N.getOperand(0);
1401
1402  if (N->getOpcode() != ISD::TargetConstantPool &&
1403      N->getOpcode() != ISD::TargetJumpTable &&
1404      N->getOpcode() != ISD::TargetGlobalAddress &&
1405      N->getOpcode() != ISD::TargetExternalSymbol &&
1406      N->getOpcode() != ISD::TargetBlockAddress)
1407    return false;
1408
1409  Imm = N;
1410  return TM.getCodeModel() == CodeModel::Small;
1411}
1412
1413bool X86DAGToDAGISel::SelectLEA64_32Addr(SDValue N, SDValue &Base,
1414                                         SDValue &Scale, SDValue &Index,
1415                                         SDValue &Disp, SDValue &Segment) {
1416  if (!SelectLEAAddr(N, Base, Scale, Index, Disp, Segment))
1417    return false;
1418
1419  SDLoc DL(N);
1420  RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Base);
1421  if (RN && RN->getReg() == 0)
1422    Base = CurDAG->getRegister(0, MVT::i64);
1423  else if (Base.getValueType() == MVT::i32 && !dyn_cast<FrameIndexSDNode>(N)) {
1424    // Base could already be %rip, particularly in the x32 ABI.
1425    Base = SDValue(CurDAG->getMachineNode(
1426                       TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1427                       CurDAG->getTargetConstant(0, MVT::i64),
1428                       Base,
1429                       CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1430                   0);
1431  }
1432
1433  RN = dyn_cast<RegisterSDNode>(Index);
1434  if (RN && RN->getReg() == 0)
1435    Index = CurDAG->getRegister(0, MVT::i64);
1436  else {
1437    assert(Index.getValueType() == MVT::i32 &&
1438           "Expect to be extending 32-bit registers for use in LEA");
1439    Index = SDValue(CurDAG->getMachineNode(
1440                        TargetOpcode::SUBREG_TO_REG, DL, MVT::i64,
1441                        CurDAG->getTargetConstant(0, MVT::i64),
1442                        Index,
1443                        CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
1444                    0);
1445  }
1446
1447  return true;
1448}
1449
1450/// SelectLEAAddr - it calls SelectAddr and determines if the maximal addressing
1451/// mode it matches can be cost effectively emitted as an LEA instruction.
1452bool X86DAGToDAGISel::SelectLEAAddr(SDValue N,
1453                                    SDValue &Base, SDValue &Scale,
1454                                    SDValue &Index, SDValue &Disp,
1455                                    SDValue &Segment) {
1456  X86ISelAddressMode AM;
1457
1458  // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
1459  // segments.
1460  SDValue Copy = AM.Segment;
1461  SDValue T = CurDAG->getRegister(0, MVT::i32);
1462  AM.Segment = T;
1463  if (MatchAddress(N, AM))
1464    return false;
1465  assert (T == AM.Segment);
1466  AM.Segment = Copy;
1467
1468  EVT VT = N.getValueType();
1469  unsigned Complexity = 0;
1470  if (AM.BaseType == X86ISelAddressMode::RegBase)
1471    if (AM.Base_Reg.getNode())
1472      Complexity = 1;
1473    else
1474      AM.Base_Reg = CurDAG->getRegister(0, VT);
1475  else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
1476    Complexity = 4;
1477
1478  if (AM.IndexReg.getNode())
1479    Complexity++;
1480  else
1481    AM.IndexReg = CurDAG->getRegister(0, VT);
1482
1483  // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
1484  // a simple shift.
1485  if (AM.Scale > 1)
1486    Complexity++;
1487
1488  // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
1489  // to a LEA. This is determined with some expermentation but is by no means
1490  // optimal (especially for code size consideration). LEA is nice because of
1491  // its three-address nature. Tweak the cost function again when we can run
1492  // convertToThreeAddress() at register allocation time.
1493  if (AM.hasSymbolicDisplacement()) {
1494    // For X86-64, we should always use lea to materialize RIP relative
1495    // addresses.
1496    if (Subtarget->is64Bit())
1497      Complexity = 4;
1498    else
1499      Complexity += 2;
1500  }
1501
1502  if (AM.Disp && (AM.Base_Reg.getNode() || AM.IndexReg.getNode()))
1503    Complexity++;
1504
1505  // If it isn't worth using an LEA, reject it.
1506  if (Complexity <= 2)
1507    return false;
1508
1509  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1510  return true;
1511}
1512
1513/// SelectTLSADDRAddr - This is only run on TargetGlobalTLSAddress nodes.
1514bool X86DAGToDAGISel::SelectTLSADDRAddr(SDValue N, SDValue &Base,
1515                                        SDValue &Scale, SDValue &Index,
1516                                        SDValue &Disp, SDValue &Segment) {
1517  assert(N.getOpcode() == ISD::TargetGlobalTLSAddress);
1518  const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
1519
1520  X86ISelAddressMode AM;
1521  AM.GV = GA->getGlobal();
1522  AM.Disp += GA->getOffset();
1523  AM.Base_Reg = CurDAG->getRegister(0, N.getValueType());
1524  AM.SymbolFlags = GA->getTargetFlags();
1525
1526  if (N.getValueType() == MVT::i32) {
1527    AM.Scale = 1;
1528    AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
1529  } else {
1530    AM.IndexReg = CurDAG->getRegister(0, MVT::i64);
1531  }
1532
1533  getAddressOperands(AM, Base, Scale, Index, Disp, Segment);
1534  return true;
1535}
1536
1537
1538bool X86DAGToDAGISel::TryFoldLoad(SDNode *P, SDValue N,
1539                                  SDValue &Base, SDValue &Scale,
1540                                  SDValue &Index, SDValue &Disp,
1541                                  SDValue &Segment) {
1542  if (!ISD::isNON_EXTLoad(N.getNode()) ||
1543      !IsProfitableToFold(N, P, P) ||
1544      !IsLegalToFold(N, P, P, OptLevel))
1545    return false;
1546
1547  return SelectAddr(N.getNode(),
1548                    N.getOperand(1), Base, Scale, Index, Disp, Segment);
1549}
1550
1551/// getGlobalBaseReg - Return an SDNode that returns the value of
1552/// the global base register. Output instructions required to
1553/// initialize the global base register, if necessary.
1554///
1555SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
1556  unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
1557  return CurDAG->getRegister(GlobalBaseReg,
1558                             getTargetLowering()->getPointerTy()).getNode();
1559}
1560
1561SDNode *X86DAGToDAGISel::SelectAtomic64(SDNode *Node, unsigned Opc) {
1562  SDValue Chain = Node->getOperand(0);
1563  SDValue In1 = Node->getOperand(1);
1564  SDValue In2L = Node->getOperand(2);
1565  SDValue In2H = Node->getOperand(3);
1566
1567  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1568  if (!SelectAddr(Node, In1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1569    return NULL;
1570  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1571  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1572  const SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, In2L, In2H, Chain};
1573  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node),
1574                                           MVT::i32, MVT::i32, MVT::Other, Ops);
1575  cast<MachineSDNode>(ResNode)->setMemRefs(MemOp, MemOp + 1);
1576  return ResNode;
1577}
1578
1579/// Atomic opcode table
1580///
1581enum AtomicOpc {
1582  ADD,
1583  SUB,
1584  INC,
1585  DEC,
1586  OR,
1587  AND,
1588  XOR,
1589  AtomicOpcEnd
1590};
1591
1592enum AtomicSz {
1593  ConstantI8,
1594  I8,
1595  SextConstantI16,
1596  ConstantI16,
1597  I16,
1598  SextConstantI32,
1599  ConstantI32,
1600  I32,
1601  SextConstantI64,
1602  ConstantI64,
1603  I64,
1604  AtomicSzEnd
1605};
1606
1607static const uint16_t AtomicOpcTbl[AtomicOpcEnd][AtomicSzEnd] = {
1608  {
1609    X86::LOCK_ADD8mi,
1610    X86::LOCK_ADD8mr,
1611    X86::LOCK_ADD16mi8,
1612    X86::LOCK_ADD16mi,
1613    X86::LOCK_ADD16mr,
1614    X86::LOCK_ADD32mi8,
1615    X86::LOCK_ADD32mi,
1616    X86::LOCK_ADD32mr,
1617    X86::LOCK_ADD64mi8,
1618    X86::LOCK_ADD64mi32,
1619    X86::LOCK_ADD64mr,
1620  },
1621  {
1622    X86::LOCK_SUB8mi,
1623    X86::LOCK_SUB8mr,
1624    X86::LOCK_SUB16mi8,
1625    X86::LOCK_SUB16mi,
1626    X86::LOCK_SUB16mr,
1627    X86::LOCK_SUB32mi8,
1628    X86::LOCK_SUB32mi,
1629    X86::LOCK_SUB32mr,
1630    X86::LOCK_SUB64mi8,
1631    X86::LOCK_SUB64mi32,
1632    X86::LOCK_SUB64mr,
1633  },
1634  {
1635    0,
1636    X86::LOCK_INC8m,
1637    0,
1638    0,
1639    X86::LOCK_INC16m,
1640    0,
1641    0,
1642    X86::LOCK_INC32m,
1643    0,
1644    0,
1645    X86::LOCK_INC64m,
1646  },
1647  {
1648    0,
1649    X86::LOCK_DEC8m,
1650    0,
1651    0,
1652    X86::LOCK_DEC16m,
1653    0,
1654    0,
1655    X86::LOCK_DEC32m,
1656    0,
1657    0,
1658    X86::LOCK_DEC64m,
1659  },
1660  {
1661    X86::LOCK_OR8mi,
1662    X86::LOCK_OR8mr,
1663    X86::LOCK_OR16mi8,
1664    X86::LOCK_OR16mi,
1665    X86::LOCK_OR16mr,
1666    X86::LOCK_OR32mi8,
1667    X86::LOCK_OR32mi,
1668    X86::LOCK_OR32mr,
1669    X86::LOCK_OR64mi8,
1670    X86::LOCK_OR64mi32,
1671    X86::LOCK_OR64mr,
1672  },
1673  {
1674    X86::LOCK_AND8mi,
1675    X86::LOCK_AND8mr,
1676    X86::LOCK_AND16mi8,
1677    X86::LOCK_AND16mi,
1678    X86::LOCK_AND16mr,
1679    X86::LOCK_AND32mi8,
1680    X86::LOCK_AND32mi,
1681    X86::LOCK_AND32mr,
1682    X86::LOCK_AND64mi8,
1683    X86::LOCK_AND64mi32,
1684    X86::LOCK_AND64mr,
1685  },
1686  {
1687    X86::LOCK_XOR8mi,
1688    X86::LOCK_XOR8mr,
1689    X86::LOCK_XOR16mi8,
1690    X86::LOCK_XOR16mi,
1691    X86::LOCK_XOR16mr,
1692    X86::LOCK_XOR32mi8,
1693    X86::LOCK_XOR32mi,
1694    X86::LOCK_XOR32mr,
1695    X86::LOCK_XOR64mi8,
1696    X86::LOCK_XOR64mi32,
1697    X86::LOCK_XOR64mr,
1698  }
1699};
1700
1701// Return the target constant operand for atomic-load-op and do simple
1702// translations, such as from atomic-load-add to lock-sub. The return value is
1703// one of the following 3 cases:
1704// + target-constant, the operand could be supported as a target constant.
1705// + empty, the operand is not needed any more with the new op selected.
1706// + non-empty, otherwise.
1707static SDValue getAtomicLoadArithTargetConstant(SelectionDAG *CurDAG,
1708                                                SDLoc dl,
1709                                                enum AtomicOpc &Op, EVT NVT,
1710                                                SDValue Val) {
1711  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val)) {
1712    int64_t CNVal = CN->getSExtValue();
1713    // Quit if not 32-bit imm.
1714    if ((int32_t)CNVal != CNVal)
1715      return Val;
1716    // For atomic-load-add, we could do some optimizations.
1717    if (Op == ADD) {
1718      // Translate to INC/DEC if ADD by 1 or -1.
1719      if ((CNVal == 1) || (CNVal == -1)) {
1720        Op = (CNVal == 1) ? INC : DEC;
1721        // No more constant operand after being translated into INC/DEC.
1722        return SDValue();
1723      }
1724      // Translate to SUB if ADD by negative value.
1725      if (CNVal < 0) {
1726        Op = SUB;
1727        CNVal = -CNVal;
1728      }
1729    }
1730    return CurDAG->getTargetConstant(CNVal, NVT);
1731  }
1732
1733  // If the value operand is single-used, try to optimize it.
1734  if (Op == ADD && Val.hasOneUse()) {
1735    // Translate (atomic-load-add ptr (sub 0 x)) back to (lock-sub x).
1736    if (Val.getOpcode() == ISD::SUB && X86::isZeroNode(Val.getOperand(0))) {
1737      Op = SUB;
1738      return Val.getOperand(1);
1739    }
1740    // A special case for i16, which needs truncating as, in most cases, it's
1741    // promoted to i32. We will translate
1742    // (atomic-load-add (truncate (sub 0 x))) to (lock-sub (EXTRACT_SUBREG x))
1743    if (Val.getOpcode() == ISD::TRUNCATE && NVT == MVT::i16 &&
1744        Val.getOperand(0).getOpcode() == ISD::SUB &&
1745        X86::isZeroNode(Val.getOperand(0).getOperand(0))) {
1746      Op = SUB;
1747      Val = Val.getOperand(0);
1748      return CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl, NVT,
1749                                            Val.getOperand(1));
1750    }
1751  }
1752
1753  return Val;
1754}
1755
1756SDNode *X86DAGToDAGISel::SelectAtomicLoadArith(SDNode *Node, EVT NVT) {
1757  if (Node->hasAnyUseOfValue(0))
1758    return 0;
1759
1760  SDLoc dl(Node);
1761
1762  // Optimize common patterns for __sync_or_and_fetch and similar arith
1763  // operations where the result is not used. This allows us to use the "lock"
1764  // version of the arithmetic instruction.
1765  SDValue Chain = Node->getOperand(0);
1766  SDValue Ptr = Node->getOperand(1);
1767  SDValue Val = Node->getOperand(2);
1768  SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
1769  if (!SelectAddr(Node, Ptr, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4))
1770    return 0;
1771
1772  // Which index into the table.
1773  enum AtomicOpc Op;
1774  switch (Node->getOpcode()) {
1775    default:
1776      return 0;
1777    case ISD::ATOMIC_LOAD_OR:
1778      Op = OR;
1779      break;
1780    case ISD::ATOMIC_LOAD_AND:
1781      Op = AND;
1782      break;
1783    case ISD::ATOMIC_LOAD_XOR:
1784      Op = XOR;
1785      break;
1786    case ISD::ATOMIC_LOAD_ADD:
1787      Op = ADD;
1788      break;
1789  }
1790
1791  Val = getAtomicLoadArithTargetConstant(CurDAG, dl, Op, NVT, Val);
1792  bool isUnOp = !Val.getNode();
1793  bool isCN = Val.getNode() && (Val.getOpcode() == ISD::TargetConstant);
1794
1795  unsigned Opc = 0;
1796  switch (NVT.getSimpleVT().SimpleTy) {
1797    default: return 0;
1798    case MVT::i8:
1799      if (isCN)
1800        Opc = AtomicOpcTbl[Op][ConstantI8];
1801      else
1802        Opc = AtomicOpcTbl[Op][I8];
1803      break;
1804    case MVT::i16:
1805      if (isCN) {
1806        if (immSext8(Val.getNode()))
1807          Opc = AtomicOpcTbl[Op][SextConstantI16];
1808        else
1809          Opc = AtomicOpcTbl[Op][ConstantI16];
1810      } else
1811        Opc = AtomicOpcTbl[Op][I16];
1812      break;
1813    case MVT::i32:
1814      if (isCN) {
1815        if (immSext8(Val.getNode()))
1816          Opc = AtomicOpcTbl[Op][SextConstantI32];
1817        else
1818          Opc = AtomicOpcTbl[Op][ConstantI32];
1819      } else
1820        Opc = AtomicOpcTbl[Op][I32];
1821      break;
1822    case MVT::i64:
1823      Opc = AtomicOpcTbl[Op][I64];
1824      if (isCN) {
1825        if (immSext8(Val.getNode()))
1826          Opc = AtomicOpcTbl[Op][SextConstantI64];
1827        else if (i64immSExt32(Val.getNode()))
1828          Opc = AtomicOpcTbl[Op][ConstantI64];
1829      }
1830      break;
1831  }
1832
1833  assert(Opc != 0 && "Invalid arith lock transform!");
1834
1835  SDValue Ret;
1836  SDValue Undef = SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
1837                                                 dl, NVT), 0);
1838  MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
1839  MemOp[0] = cast<MemSDNode>(Node)->getMemOperand();
1840  if (isUnOp) {
1841    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain };
1842    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1843  } else {
1844    SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Val, Chain };
1845    Ret = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops), 0);
1846  }
1847  cast<MachineSDNode>(Ret)->setMemRefs(MemOp, MemOp + 1);
1848  SDValue RetVals[] = { Undef, Ret };
1849  return CurDAG->getMergeValues(RetVals, 2, dl).getNode();
1850}
1851
1852/// HasNoSignedComparisonUses - Test whether the given X86ISD::CMP node has
1853/// any uses which require the SF or OF bits to be accurate.
1854static bool HasNoSignedComparisonUses(SDNode *N) {
1855  // Examine each user of the node.
1856  for (SDNode::use_iterator UI = N->use_begin(),
1857         UE = N->use_end(); UI != UE; ++UI) {
1858    // Only examine CopyToReg uses.
1859    if (UI->getOpcode() != ISD::CopyToReg)
1860      return false;
1861    // Only examine CopyToReg uses that copy to EFLAGS.
1862    if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() !=
1863          X86::EFLAGS)
1864      return false;
1865    // Examine each user of the CopyToReg use.
1866    for (SDNode::use_iterator FlagUI = UI->use_begin(),
1867           FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
1868      // Only examine the Flag result.
1869      if (FlagUI.getUse().getResNo() != 1) continue;
1870      // Anything unusual: assume conservatively.
1871      if (!FlagUI->isMachineOpcode()) return false;
1872      // Examine the opcode of the user.
1873      switch (FlagUI->getMachineOpcode()) {
1874      // These comparisons don't treat the most significant bit specially.
1875      case X86::SETAr: case X86::SETAEr: case X86::SETBr: case X86::SETBEr:
1876      case X86::SETEr: case X86::SETNEr: case X86::SETPr: case X86::SETNPr:
1877      case X86::SETAm: case X86::SETAEm: case X86::SETBm: case X86::SETBEm:
1878      case X86::SETEm: case X86::SETNEm: case X86::SETPm: case X86::SETNPm:
1879      case X86::JA_4: case X86::JAE_4: case X86::JB_4: case X86::JBE_4:
1880      case X86::JE_4: case X86::JNE_4: case X86::JP_4: case X86::JNP_4:
1881      case X86::CMOVA16rr: case X86::CMOVA16rm:
1882      case X86::CMOVA32rr: case X86::CMOVA32rm:
1883      case X86::CMOVA64rr: case X86::CMOVA64rm:
1884      case X86::CMOVAE16rr: case X86::CMOVAE16rm:
1885      case X86::CMOVAE32rr: case X86::CMOVAE32rm:
1886      case X86::CMOVAE64rr: case X86::CMOVAE64rm:
1887      case X86::CMOVB16rr: case X86::CMOVB16rm:
1888      case X86::CMOVB32rr: case X86::CMOVB32rm:
1889      case X86::CMOVB64rr: case X86::CMOVB64rm:
1890      case X86::CMOVBE16rr: case X86::CMOVBE16rm:
1891      case X86::CMOVBE32rr: case X86::CMOVBE32rm:
1892      case X86::CMOVBE64rr: case X86::CMOVBE64rm:
1893      case X86::CMOVE16rr: case X86::CMOVE16rm:
1894      case X86::CMOVE32rr: case X86::CMOVE32rm:
1895      case X86::CMOVE64rr: case X86::CMOVE64rm:
1896      case X86::CMOVNE16rr: case X86::CMOVNE16rm:
1897      case X86::CMOVNE32rr: case X86::CMOVNE32rm:
1898      case X86::CMOVNE64rr: case X86::CMOVNE64rm:
1899      case X86::CMOVNP16rr: case X86::CMOVNP16rm:
1900      case X86::CMOVNP32rr: case X86::CMOVNP32rm:
1901      case X86::CMOVNP64rr: case X86::CMOVNP64rm:
1902      case X86::CMOVP16rr: case X86::CMOVP16rm:
1903      case X86::CMOVP32rr: case X86::CMOVP32rm:
1904      case X86::CMOVP64rr: case X86::CMOVP64rm:
1905        continue;
1906      // Anything else: assume conservatively.
1907      default: return false;
1908      }
1909    }
1910  }
1911  return true;
1912}
1913
1914/// isLoadIncOrDecStore - Check whether or not the chain ending in StoreNode
1915/// is suitable for doing the {load; increment or decrement; store} to modify
1916/// transformation.
1917static bool isLoadIncOrDecStore(StoreSDNode *StoreNode, unsigned Opc,
1918                                SDValue StoredVal, SelectionDAG *CurDAG,
1919                                LoadSDNode* &LoadNode, SDValue &InputChain) {
1920
1921  // is the value stored the result of a DEC or INC?
1922  if (!(Opc == X86ISD::DEC || Opc == X86ISD::INC)) return false;
1923
1924  // is the stored value result 0 of the load?
1925  if (StoredVal.getResNo() != 0) return false;
1926
1927  // are there other uses of the loaded value than the inc or dec?
1928  if (!StoredVal.getNode()->hasNUsesOfValue(1, 0)) return false;
1929
1930  // is the store non-extending and non-indexed?
1931  if (!ISD::isNormalStore(StoreNode) || StoreNode->isNonTemporal())
1932    return false;
1933
1934  SDValue Load = StoredVal->getOperand(0);
1935  // Is the stored value a non-extending and non-indexed load?
1936  if (!ISD::isNormalLoad(Load.getNode())) return false;
1937
1938  // Return LoadNode by reference.
1939  LoadNode = cast<LoadSDNode>(Load);
1940  // is the size of the value one that we can handle? (i.e. 64, 32, 16, or 8)
1941  EVT LdVT = LoadNode->getMemoryVT();
1942  if (LdVT != MVT::i64 && LdVT != MVT::i32 && LdVT != MVT::i16 &&
1943      LdVT != MVT::i8)
1944    return false;
1945
1946  // Is store the only read of the loaded value?
1947  if (!Load.hasOneUse())
1948    return false;
1949
1950  // Is the address of the store the same as the load?
1951  if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
1952      LoadNode->getOffset() != StoreNode->getOffset())
1953    return false;
1954
1955  // Check if the chain is produced by the load or is a TokenFactor with
1956  // the load output chain as an operand. Return InputChain by reference.
1957  SDValue Chain = StoreNode->getChain();
1958
1959  bool ChainCheck = false;
1960  if (Chain == Load.getValue(1)) {
1961    ChainCheck = true;
1962    InputChain = LoadNode->getChain();
1963  } else if (Chain.getOpcode() == ISD::TokenFactor) {
1964    SmallVector<SDValue, 4> ChainOps;
1965    for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
1966      SDValue Op = Chain.getOperand(i);
1967      if (Op == Load.getValue(1)) {
1968        ChainCheck = true;
1969        continue;
1970      }
1971
1972      // Make sure using Op as part of the chain would not cause a cycle here.
1973      // In theory, we could check whether the chain node is a predecessor of
1974      // the load. But that can be very expensive. Instead visit the uses and
1975      // make sure they all have smaller node id than the load.
1976      int LoadId = LoadNode->getNodeId();
1977      for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
1978             UE = UI->use_end(); UI != UE; ++UI) {
1979        if (UI.getUse().getResNo() != 0)
1980          continue;
1981        if (UI->getNodeId() > LoadId)
1982          return false;
1983      }
1984
1985      ChainOps.push_back(Op);
1986    }
1987
1988    if (ChainCheck)
1989      // Make a new TokenFactor with all the other input chains except
1990      // for the load.
1991      InputChain = CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain),
1992                                   MVT::Other, &ChainOps[0], ChainOps.size());
1993  }
1994  if (!ChainCheck)
1995    return false;
1996
1997  return true;
1998}
1999
2000/// getFusedLdStOpcode - Get the appropriate X86 opcode for an in memory
2001/// increment or decrement. Opc should be X86ISD::DEC or X86ISD::INC.
2002static unsigned getFusedLdStOpcode(EVT &LdVT, unsigned Opc) {
2003  if (Opc == X86ISD::DEC) {
2004    if (LdVT == MVT::i64) return X86::DEC64m;
2005    if (LdVT == MVT::i32) return X86::DEC32m;
2006    if (LdVT == MVT::i16) return X86::DEC16m;
2007    if (LdVT == MVT::i8)  return X86::DEC8m;
2008  } else {
2009    assert(Opc == X86ISD::INC && "unrecognized opcode");
2010    if (LdVT == MVT::i64) return X86::INC64m;
2011    if (LdVT == MVT::i32) return X86::INC32m;
2012    if (LdVT == MVT::i16) return X86::INC16m;
2013    if (LdVT == MVT::i8)  return X86::INC8m;
2014  }
2015  llvm_unreachable("unrecognized size for LdVT");
2016}
2017
2018/// SelectGather - Customized ISel for GATHER operations.
2019///
2020SDNode *X86DAGToDAGISel::SelectGather(SDNode *Node, unsigned Opc) {
2021  // Operands of Gather: VSrc, Base, VIdx, VMask, Scale
2022  SDValue Chain = Node->getOperand(0);
2023  SDValue VSrc = Node->getOperand(2);
2024  SDValue Base = Node->getOperand(3);
2025  SDValue VIdx = Node->getOperand(4);
2026  SDValue VMask = Node->getOperand(5);
2027  ConstantSDNode *Scale = dyn_cast<ConstantSDNode>(Node->getOperand(6));
2028  if (!Scale)
2029    return 0;
2030
2031  SDVTList VTs = CurDAG->getVTList(VSrc.getValueType(), VSrc.getValueType(),
2032                                   MVT::Other);
2033
2034  // Memory Operands: Base, Scale, Index, Disp, Segment
2035  SDValue Disp = CurDAG->getTargetConstant(0, MVT::i32);
2036  SDValue Segment = CurDAG->getRegister(0, MVT::i32);
2037  const SDValue Ops[] = { VSrc, Base, getI8Imm(Scale->getSExtValue()), VIdx,
2038                          Disp, Segment, VMask, Chain};
2039  SDNode *ResNode = CurDAG->getMachineNode(Opc, SDLoc(Node), VTs, Ops);
2040  // Node has 2 outputs: VDst and MVT::Other.
2041  // ResNode has 3 outputs: VDst, VMask_wb, and MVT::Other.
2042  // We replace VDst of Node with VDst of ResNode, and Other of Node with Other
2043  // of ResNode.
2044  ReplaceUses(SDValue(Node, 0), SDValue(ResNode, 0));
2045  ReplaceUses(SDValue(Node, 1), SDValue(ResNode, 2));
2046  return ResNode;
2047}
2048
2049SDNode *X86DAGToDAGISel::Select(SDNode *Node) {
2050  EVT NVT = Node->getValueType(0);
2051  unsigned Opc, MOpc;
2052  unsigned Opcode = Node->getOpcode();
2053  SDLoc dl(Node);
2054
2055  DEBUG(dbgs() << "Selecting: "; Node->dump(CurDAG); dbgs() << '\n');
2056
2057  if (Node->isMachineOpcode()) {
2058    DEBUG(dbgs() << "== ";  Node->dump(CurDAG); dbgs() << '\n');
2059    return NULL;   // Already selected.
2060  }
2061
2062  switch (Opcode) {
2063  default: break;
2064  case ISD::INTRINSIC_W_CHAIN: {
2065    unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
2066    switch (IntNo) {
2067    default: break;
2068    case Intrinsic::x86_avx2_gather_d_pd:
2069    case Intrinsic::x86_avx2_gather_d_pd_256:
2070    case Intrinsic::x86_avx2_gather_q_pd:
2071    case Intrinsic::x86_avx2_gather_q_pd_256:
2072    case Intrinsic::x86_avx2_gather_d_ps:
2073    case Intrinsic::x86_avx2_gather_d_ps_256:
2074    case Intrinsic::x86_avx2_gather_q_ps:
2075    case Intrinsic::x86_avx2_gather_q_ps_256:
2076    case Intrinsic::x86_avx2_gather_d_q:
2077    case Intrinsic::x86_avx2_gather_d_q_256:
2078    case Intrinsic::x86_avx2_gather_q_q:
2079    case Intrinsic::x86_avx2_gather_q_q_256:
2080    case Intrinsic::x86_avx2_gather_d_d:
2081    case Intrinsic::x86_avx2_gather_d_d_256:
2082    case Intrinsic::x86_avx2_gather_q_d:
2083    case Intrinsic::x86_avx2_gather_q_d_256: {
2084      if (!Subtarget->hasAVX2())
2085        break;
2086      unsigned Opc;
2087      switch (IntNo) {
2088      default: llvm_unreachable("Impossible intrinsic");
2089      case Intrinsic::x86_avx2_gather_d_pd:     Opc = X86::VGATHERDPDrm;  break;
2090      case Intrinsic::x86_avx2_gather_d_pd_256: Opc = X86::VGATHERDPDYrm; break;
2091      case Intrinsic::x86_avx2_gather_q_pd:     Opc = X86::VGATHERQPDrm;  break;
2092      case Intrinsic::x86_avx2_gather_q_pd_256: Opc = X86::VGATHERQPDYrm; break;
2093      case Intrinsic::x86_avx2_gather_d_ps:     Opc = X86::VGATHERDPSrm;  break;
2094      case Intrinsic::x86_avx2_gather_d_ps_256: Opc = X86::VGATHERDPSYrm; break;
2095      case Intrinsic::x86_avx2_gather_q_ps:     Opc = X86::VGATHERQPSrm;  break;
2096      case Intrinsic::x86_avx2_gather_q_ps_256: Opc = X86::VGATHERQPSYrm; break;
2097      case Intrinsic::x86_avx2_gather_d_q:      Opc = X86::VPGATHERDQrm;  break;
2098      case Intrinsic::x86_avx2_gather_d_q_256:  Opc = X86::VPGATHERDQYrm; break;
2099      case Intrinsic::x86_avx2_gather_q_q:      Opc = X86::VPGATHERQQrm;  break;
2100      case Intrinsic::x86_avx2_gather_q_q_256:  Opc = X86::VPGATHERQQYrm; break;
2101      case Intrinsic::x86_avx2_gather_d_d:      Opc = X86::VPGATHERDDrm;  break;
2102      case Intrinsic::x86_avx2_gather_d_d_256:  Opc = X86::VPGATHERDDYrm; break;
2103      case Intrinsic::x86_avx2_gather_q_d:      Opc = X86::VPGATHERQDrm;  break;
2104      case Intrinsic::x86_avx2_gather_q_d_256:  Opc = X86::VPGATHERQDYrm; break;
2105      }
2106      SDNode *RetVal = SelectGather(Node, Opc);
2107      if (RetVal)
2108        // We already called ReplaceUses inside SelectGather.
2109        return NULL;
2110      break;
2111    }
2112    }
2113    break;
2114  }
2115  case X86ISD::GlobalBaseReg:
2116    return getGlobalBaseReg();
2117
2118
2119  case X86ISD::ATOMOR64_DAG:
2120  case X86ISD::ATOMXOR64_DAG:
2121  case X86ISD::ATOMADD64_DAG:
2122  case X86ISD::ATOMSUB64_DAG:
2123  case X86ISD::ATOMNAND64_DAG:
2124  case X86ISD::ATOMAND64_DAG:
2125  case X86ISD::ATOMMAX64_DAG:
2126  case X86ISD::ATOMMIN64_DAG:
2127  case X86ISD::ATOMUMAX64_DAG:
2128  case X86ISD::ATOMUMIN64_DAG:
2129  case X86ISD::ATOMSWAP64_DAG: {
2130    unsigned Opc;
2131    switch (Opcode) {
2132    default: llvm_unreachable("Impossible opcode");
2133    case X86ISD::ATOMOR64_DAG:   Opc = X86::ATOMOR6432;   break;
2134    case X86ISD::ATOMXOR64_DAG:  Opc = X86::ATOMXOR6432;  break;
2135    case X86ISD::ATOMADD64_DAG:  Opc = X86::ATOMADD6432;  break;
2136    case X86ISD::ATOMSUB64_DAG:  Opc = X86::ATOMSUB6432;  break;
2137    case X86ISD::ATOMNAND64_DAG: Opc = X86::ATOMNAND6432; break;
2138    case X86ISD::ATOMAND64_DAG:  Opc = X86::ATOMAND6432;  break;
2139    case X86ISD::ATOMMAX64_DAG:  Opc = X86::ATOMMAX6432;  break;
2140    case X86ISD::ATOMMIN64_DAG:  Opc = X86::ATOMMIN6432;  break;
2141    case X86ISD::ATOMUMAX64_DAG: Opc = X86::ATOMUMAX6432; break;
2142    case X86ISD::ATOMUMIN64_DAG: Opc = X86::ATOMUMIN6432; break;
2143    case X86ISD::ATOMSWAP64_DAG: Opc = X86::ATOMSWAP6432; break;
2144    }
2145    SDNode *RetVal = SelectAtomic64(Node, Opc);
2146    if (RetVal)
2147      return RetVal;
2148    break;
2149  }
2150
2151  case ISD::ATOMIC_LOAD_XOR:
2152  case ISD::ATOMIC_LOAD_AND:
2153  case ISD::ATOMIC_LOAD_OR:
2154  case ISD::ATOMIC_LOAD_ADD: {
2155    SDNode *RetVal = SelectAtomicLoadArith(Node, NVT);
2156    if (RetVal)
2157      return RetVal;
2158    break;
2159  }
2160  case ISD::AND:
2161  case ISD::OR:
2162  case ISD::XOR: {
2163    // For operations of the form (x << C1) op C2, check if we can use a smaller
2164    // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
2165    SDValue N0 = Node->getOperand(0);
2166    SDValue N1 = Node->getOperand(1);
2167
2168    if (N0->getOpcode() != ISD::SHL || !N0->hasOneUse())
2169      break;
2170
2171    // i8 is unshrinkable, i16 should be promoted to i32.
2172    if (NVT != MVT::i32 && NVT != MVT::i64)
2173      break;
2174
2175    ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(N1);
2176    ConstantSDNode *ShlCst = dyn_cast<ConstantSDNode>(N0->getOperand(1));
2177    if (!Cst || !ShlCst)
2178      break;
2179
2180    int64_t Val = Cst->getSExtValue();
2181    uint64_t ShlVal = ShlCst->getZExtValue();
2182
2183    // Make sure that we don't change the operation by removing bits.
2184    // This only matters for OR and XOR, AND is unaffected.
2185    uint64_t RemovedBitsMask = (1ULL << ShlVal) - 1;
2186    if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
2187      break;
2188
2189    unsigned ShlOp, Op;
2190    EVT CstVT = NVT;
2191
2192    // Check the minimum bitwidth for the new constant.
2193    // TODO: AND32ri is the same as AND64ri32 with zext imm.
2194    // TODO: MOV32ri+OR64r is cheaper than MOV64ri64+OR64rr
2195    // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
2196    if (!isInt<8>(Val) && isInt<8>(Val >> ShlVal))
2197      CstVT = MVT::i8;
2198    else if (!isInt<32>(Val) && isInt<32>(Val >> ShlVal))
2199      CstVT = MVT::i32;
2200
2201    // Bail if there is no smaller encoding.
2202    if (NVT == CstVT)
2203      break;
2204
2205    switch (NVT.getSimpleVT().SimpleTy) {
2206    default: llvm_unreachable("Unsupported VT!");
2207    case MVT::i32:
2208      assert(CstVT == MVT::i8);
2209      ShlOp = X86::SHL32ri;
2210
2211      switch (Opcode) {
2212      default: llvm_unreachable("Impossible opcode");
2213      case ISD::AND: Op = X86::AND32ri8; break;
2214      case ISD::OR:  Op =  X86::OR32ri8; break;
2215      case ISD::XOR: Op = X86::XOR32ri8; break;
2216      }
2217      break;
2218    case MVT::i64:
2219      assert(CstVT == MVT::i8 || CstVT == MVT::i32);
2220      ShlOp = X86::SHL64ri;
2221
2222      switch (Opcode) {
2223      default: llvm_unreachable("Impossible opcode");
2224      case ISD::AND: Op = CstVT==MVT::i8? X86::AND64ri8 : X86::AND64ri32; break;
2225      case ISD::OR:  Op = CstVT==MVT::i8?  X86::OR64ri8 :  X86::OR64ri32; break;
2226      case ISD::XOR: Op = CstVT==MVT::i8? X86::XOR64ri8 : X86::XOR64ri32; break;
2227      }
2228      break;
2229    }
2230
2231    // Emit the smaller op and the shift.
2232    SDValue NewCst = CurDAG->getTargetConstant(Val >> ShlVal, CstVT);
2233    SDNode *New = CurDAG->getMachineNode(Op, dl, NVT, N0->getOperand(0),NewCst);
2234    return CurDAG->SelectNodeTo(Node, ShlOp, NVT, SDValue(New, 0),
2235                                getI8Imm(ShlVal));
2236  }
2237  case X86ISD::UMUL: {
2238    SDValue N0 = Node->getOperand(0);
2239    SDValue N1 = Node->getOperand(1);
2240
2241    unsigned LoReg;
2242    switch (NVT.getSimpleVT().SimpleTy) {
2243    default: llvm_unreachable("Unsupported VT!");
2244    case MVT::i8:  LoReg = X86::AL;  Opc = X86::MUL8r; break;
2245    case MVT::i16: LoReg = X86::AX;  Opc = X86::MUL16r; break;
2246    case MVT::i32: LoReg = X86::EAX; Opc = X86::MUL32r; break;
2247    case MVT::i64: LoReg = X86::RAX; Opc = X86::MUL64r; break;
2248    }
2249
2250    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg,
2251                                          N0, SDValue()).getValue(1);
2252
2253    SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
2254    SDValue Ops[] = {N1, InFlag};
2255    SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2256
2257    ReplaceUses(SDValue(Node, 0), SDValue(CNode, 0));
2258    ReplaceUses(SDValue(Node, 1), SDValue(CNode, 1));
2259    ReplaceUses(SDValue(Node, 2), SDValue(CNode, 2));
2260    return NULL;
2261  }
2262
2263  case ISD::SMUL_LOHI:
2264  case ISD::UMUL_LOHI: {
2265    SDValue N0 = Node->getOperand(0);
2266    SDValue N1 = Node->getOperand(1);
2267
2268    bool isSigned = Opcode == ISD::SMUL_LOHI;
2269    bool hasBMI2 = Subtarget->hasBMI2();
2270    if (!isSigned) {
2271      switch (NVT.getSimpleVT().SimpleTy) {
2272      default: llvm_unreachable("Unsupported VT!");
2273      case MVT::i8:  Opc = X86::MUL8r;  MOpc = X86::MUL8m;  break;
2274      case MVT::i16: Opc = X86::MUL16r; MOpc = X86::MUL16m; break;
2275      case MVT::i32: Opc = hasBMI2 ? X86::MULX32rr : X86::MUL32r;
2276                     MOpc = hasBMI2 ? X86::MULX32rm : X86::MUL32m; break;
2277      case MVT::i64: Opc = hasBMI2 ? X86::MULX64rr : X86::MUL64r;
2278                     MOpc = hasBMI2 ? X86::MULX64rm : X86::MUL64m; break;
2279      }
2280    } else {
2281      switch (NVT.getSimpleVT().SimpleTy) {
2282      default: llvm_unreachable("Unsupported VT!");
2283      case MVT::i8:  Opc = X86::IMUL8r;  MOpc = X86::IMUL8m;  break;
2284      case MVT::i16: Opc = X86::IMUL16r; MOpc = X86::IMUL16m; break;
2285      case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break;
2286      case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break;
2287      }
2288    }
2289
2290    unsigned SrcReg, LoReg, HiReg;
2291    switch (Opc) {
2292    default: llvm_unreachable("Unknown MUL opcode!");
2293    case X86::IMUL8r:
2294    case X86::MUL8r:
2295      SrcReg = LoReg = X86::AL; HiReg = X86::AH;
2296      break;
2297    case X86::IMUL16r:
2298    case X86::MUL16r:
2299      SrcReg = LoReg = X86::AX; HiReg = X86::DX;
2300      break;
2301    case X86::IMUL32r:
2302    case X86::MUL32r:
2303      SrcReg = LoReg = X86::EAX; HiReg = X86::EDX;
2304      break;
2305    case X86::IMUL64r:
2306    case X86::MUL64r:
2307      SrcReg = LoReg = X86::RAX; HiReg = X86::RDX;
2308      break;
2309    case X86::MULX32rr:
2310      SrcReg = X86::EDX; LoReg = HiReg = 0;
2311      break;
2312    case X86::MULX64rr:
2313      SrcReg = X86::RDX; LoReg = HiReg = 0;
2314      break;
2315    }
2316
2317    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2318    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2319    // Multiply is commmutative.
2320    if (!foldedLoad) {
2321      foldedLoad = TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2322      if (foldedLoad)
2323        std::swap(N0, N1);
2324    }
2325
2326    SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg,
2327                                          N0, SDValue()).getValue(1);
2328    SDValue ResHi, ResLo;
2329
2330    if (foldedLoad) {
2331      SDValue Chain;
2332      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2333                        InFlag };
2334      if (MOpc == X86::MULX32rm || MOpc == X86::MULX64rm) {
2335        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other, MVT::Glue);
2336        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2337        ResHi = SDValue(CNode, 0);
2338        ResLo = SDValue(CNode, 1);
2339        Chain = SDValue(CNode, 2);
2340        InFlag = SDValue(CNode, 3);
2341      } else {
2342        SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
2343        SDNode *CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops);
2344        Chain = SDValue(CNode, 0);
2345        InFlag = SDValue(CNode, 1);
2346      }
2347
2348      // Update the chain.
2349      ReplaceUses(N1.getValue(1), Chain);
2350    } else {
2351      SDValue Ops[] = { N1, InFlag };
2352      if (Opc == X86::MULX32rr || Opc == X86::MULX64rr) {
2353        SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Glue);
2354        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2355        ResHi = SDValue(CNode, 0);
2356        ResLo = SDValue(CNode, 1);
2357        InFlag = SDValue(CNode, 2);
2358      } else {
2359        SDVTList VTs = CurDAG->getVTList(MVT::Glue);
2360        SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops);
2361        InFlag = SDValue(CNode, 0);
2362      }
2363    }
2364
2365    // Prevent use of AH in a REX instruction by referencing AX instead.
2366    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2367        !SDValue(Node, 1).use_empty()) {
2368      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2369                                              X86::AX, MVT::i16, InFlag);
2370      InFlag = Result.getValue(2);
2371      // Get the low part if needed. Don't use getCopyFromReg for aliasing
2372      // registers.
2373      if (!SDValue(Node, 0).use_empty())
2374        ReplaceUses(SDValue(Node, 1),
2375          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2376
2377      // Shift AX down 8 bits.
2378      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2379                                              Result,
2380                                     CurDAG->getTargetConstant(8, MVT::i8)), 0);
2381      // Then truncate it down to i8.
2382      ReplaceUses(SDValue(Node, 1),
2383        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2384    }
2385    // Copy the low half of the result, if it is needed.
2386    if (!SDValue(Node, 0).use_empty()) {
2387      if (ResLo.getNode() == 0) {
2388        assert(LoReg && "Register for low half is not defined!");
2389        ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, NVT,
2390                                       InFlag);
2391        InFlag = ResLo.getValue(2);
2392      }
2393      ReplaceUses(SDValue(Node, 0), ResLo);
2394      DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n');
2395    }
2396    // Copy the high half of the result, if it is needed.
2397    if (!SDValue(Node, 1).use_empty()) {
2398      if (ResHi.getNode() == 0) {
2399        assert(HiReg && "Register for high half is not defined!");
2400        ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, NVT,
2401                                       InFlag);
2402        InFlag = ResHi.getValue(2);
2403      }
2404      ReplaceUses(SDValue(Node, 1), ResHi);
2405      DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n');
2406    }
2407
2408    return NULL;
2409  }
2410
2411  case ISD::SDIVREM:
2412  case ISD::UDIVREM: {
2413    SDValue N0 = Node->getOperand(0);
2414    SDValue N1 = Node->getOperand(1);
2415
2416    bool isSigned = Opcode == ISD::SDIVREM;
2417    if (!isSigned) {
2418      switch (NVT.getSimpleVT().SimpleTy) {
2419      default: llvm_unreachable("Unsupported VT!");
2420      case MVT::i8:  Opc = X86::DIV8r;  MOpc = X86::DIV8m;  break;
2421      case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break;
2422      case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break;
2423      case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break;
2424      }
2425    } else {
2426      switch (NVT.getSimpleVT().SimpleTy) {
2427      default: llvm_unreachable("Unsupported VT!");
2428      case MVT::i8:  Opc = X86::IDIV8r;  MOpc = X86::IDIV8m;  break;
2429      case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
2430      case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
2431      case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
2432      }
2433    }
2434
2435    unsigned LoReg, HiReg, ClrReg;
2436    unsigned SExtOpcode;
2437    switch (NVT.getSimpleVT().SimpleTy) {
2438    default: llvm_unreachable("Unsupported VT!");
2439    case MVT::i8:
2440      LoReg = X86::AL;  ClrReg = HiReg = X86::AH;
2441      SExtOpcode = X86::CBW;
2442      break;
2443    case MVT::i16:
2444      LoReg = X86::AX;  HiReg = X86::DX;
2445      ClrReg = X86::DX;
2446      SExtOpcode = X86::CWD;
2447      break;
2448    case MVT::i32:
2449      LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
2450      SExtOpcode = X86::CDQ;
2451      break;
2452    case MVT::i64:
2453      LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
2454      SExtOpcode = X86::CQO;
2455      break;
2456    }
2457
2458    SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
2459    bool foldedLoad = TryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4);
2460    bool signBitIsZero = CurDAG->SignBitIsZero(N0);
2461
2462    SDValue InFlag;
2463    if (NVT == MVT::i8 && (!isSigned || signBitIsZero)) {
2464      // Special case for div8, just use a move with zero extension to AX to
2465      // clear the upper 8 bits (AH).
2466      SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Move, Chain;
2467      if (TryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
2468        SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(0) };
2469        Move =
2470          SDValue(CurDAG->getMachineNode(X86::MOVZX32rm8, dl, MVT::i32,
2471                                         MVT::Other, Ops), 0);
2472        Chain = Move.getValue(1);
2473        ReplaceUses(N0.getValue(1), Chain);
2474      } else {
2475        Move =
2476          SDValue(CurDAG->getMachineNode(X86::MOVZX32rr8, dl, MVT::i32, N0),0);
2477        Chain = CurDAG->getEntryNode();
2478      }
2479      Chain  = CurDAG->getCopyToReg(Chain, dl, X86::EAX, Move, SDValue());
2480      InFlag = Chain.getValue(1);
2481    } else {
2482      InFlag =
2483        CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl,
2484                             LoReg, N0, SDValue()).getValue(1);
2485      if (isSigned && !signBitIsZero) {
2486        // Sign extend the low part into the high part.
2487        InFlag =
2488          SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0);
2489      } else {
2490        // Zero out the high part, effectively zero extending the input.
2491        SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0);
2492        switch (NVT.getSimpleVT().SimpleTy) {
2493        case MVT::i16:
2494          ClrNode =
2495              SDValue(CurDAG->getMachineNode(
2496                          TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
2497                          CurDAG->getTargetConstant(X86::sub_16bit, MVT::i32)),
2498                      0);
2499          break;
2500        case MVT::i32:
2501          break;
2502        case MVT::i64:
2503          ClrNode =
2504              SDValue(CurDAG->getMachineNode(
2505                          TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
2506                          CurDAG->getTargetConstant(0, MVT::i64), ClrNode,
2507                          CurDAG->getTargetConstant(X86::sub_32bit, MVT::i32)),
2508                      0);
2509          break;
2510        default:
2511          llvm_unreachable("Unexpected division source");
2512        }
2513
2514        InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, ClrReg,
2515                                      ClrNode, InFlag).getValue(1);
2516      }
2517    }
2518
2519    if (foldedLoad) {
2520      SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0),
2521                        InFlag };
2522      SDNode *CNode =
2523        CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
2524      InFlag = SDValue(CNode, 1);
2525      // Update the chain.
2526      ReplaceUses(N1.getValue(1), SDValue(CNode, 0));
2527    } else {
2528      InFlag =
2529        SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0);
2530    }
2531
2532    // Prevent use of AH in a REX instruction by referencing AX instead.
2533    // Shift it down 8 bits.
2534    //
2535    // The current assumption of the register allocator is that isel
2536    // won't generate explicit references to the GPR8_NOREX registers. If
2537    // the allocator and/or the backend get enhanced to be more robust in
2538    // that regard, this can be, and should be, removed.
2539    if (HiReg == X86::AH && Subtarget->is64Bit() &&
2540        !SDValue(Node, 1).use_empty()) {
2541      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2542                                              X86::AX, MVT::i16, InFlag);
2543      InFlag = Result.getValue(2);
2544
2545      // If we also need AL (the quotient), get it by extracting a subreg from
2546      // Result. The fast register allocator does not like multiple CopyFromReg
2547      // nodes using aliasing registers.
2548      if (!SDValue(Node, 0).use_empty())
2549        ReplaceUses(SDValue(Node, 0),
2550          CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2551
2552      // Shift AX right by 8 bits instead of using AH.
2553      Result = SDValue(CurDAG->getMachineNode(X86::SHR16ri, dl, MVT::i16,
2554                                         Result,
2555                                         CurDAG->getTargetConstant(8, MVT::i8)),
2556                       0);
2557      ReplaceUses(SDValue(Node, 1),
2558        CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result));
2559    }
2560    // Copy the division (low) result, if it is needed.
2561    if (!SDValue(Node, 0).use_empty()) {
2562      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2563                                                LoReg, NVT, InFlag);
2564      InFlag = Result.getValue(2);
2565      ReplaceUses(SDValue(Node, 0), Result);
2566      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2567    }
2568    // Copy the remainder (high) result, if it is needed.
2569    if (!SDValue(Node, 1).use_empty()) {
2570      SDValue Result = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl,
2571                                              HiReg, NVT, InFlag);
2572      InFlag = Result.getValue(2);
2573      ReplaceUses(SDValue(Node, 1), Result);
2574      DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG); dbgs() << '\n');
2575    }
2576    return NULL;
2577  }
2578
2579  case X86ISD::CMP:
2580  case X86ISD::SUB: {
2581    // Sometimes a SUB is used to perform comparison.
2582    if (Opcode == X86ISD::SUB && Node->hasAnyUseOfValue(0))
2583      // This node is not a CMP.
2584      break;
2585    SDValue N0 = Node->getOperand(0);
2586    SDValue N1 = Node->getOperand(1);
2587
2588    // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
2589    // use a smaller encoding.
2590    if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
2591        HasNoSignedComparisonUses(Node))
2592      // Look past the truncate if CMP is the only use of it.
2593      N0 = N0.getOperand(0);
2594    if ((N0.getNode()->getOpcode() == ISD::AND ||
2595         (N0.getResNo() == 0 && N0.getNode()->getOpcode() == X86ISD::AND)) &&
2596        N0.getNode()->hasOneUse() &&
2597        N0.getValueType() != MVT::i8 &&
2598        X86::isZeroNode(N1)) {
2599      ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getNode()->getOperand(1));
2600      if (!C) break;
2601
2602      // For example, convert "testl %eax, $8" to "testb %al, $8"
2603      if ((C->getZExtValue() & ~UINT64_C(0xff)) == 0 &&
2604          (!(C->getZExtValue() & 0x80) ||
2605           HasNoSignedComparisonUses(Node))) {
2606        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i8);
2607        SDValue Reg = N0.getNode()->getOperand(0);
2608
2609        // On x86-32, only the ABCD registers have 8-bit subregisters.
2610        if (!Subtarget->is64Bit()) {
2611          const TargetRegisterClass *TRC;
2612          switch (N0.getValueType().getSimpleVT().SimpleTy) {
2613          case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2614          case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2615          default: llvm_unreachable("Unsupported TEST operand type!");
2616          }
2617          SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2618          Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2619                                               Reg.getValueType(), Reg, RC), 0);
2620        }
2621
2622        // Extract the l-register.
2623        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl,
2624                                                        MVT::i8, Reg);
2625
2626        // Emit a testb.
2627        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri, dl, MVT::i32,
2628                                                 Subreg, Imm);
2629        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2630        // one, do not call ReplaceAllUsesWith.
2631        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2632                    SDValue(NewNode, 0));
2633        return NULL;
2634      }
2635
2636      // For example, "testl %eax, $2048" to "testb %ah, $8".
2637      if ((C->getZExtValue() & ~UINT64_C(0xff00)) == 0 &&
2638          (!(C->getZExtValue() & 0x8000) ||
2639           HasNoSignedComparisonUses(Node))) {
2640        // Shift the immediate right by 8 bits.
2641        SDValue ShiftedImm = CurDAG->getTargetConstant(C->getZExtValue() >> 8,
2642                                                       MVT::i8);
2643        SDValue Reg = N0.getNode()->getOperand(0);
2644
2645        // Put the value in an ABCD register.
2646        const TargetRegisterClass *TRC;
2647        switch (N0.getValueType().getSimpleVT().SimpleTy) {
2648        case MVT::i64: TRC = &X86::GR64_ABCDRegClass; break;
2649        case MVT::i32: TRC = &X86::GR32_ABCDRegClass; break;
2650        case MVT::i16: TRC = &X86::GR16_ABCDRegClass; break;
2651        default: llvm_unreachable("Unsupported TEST operand type!");
2652        }
2653        SDValue RC = CurDAG->getTargetConstant(TRC->getID(), MVT::i32);
2654        Reg = SDValue(CurDAG->getMachineNode(X86::COPY_TO_REGCLASS, dl,
2655                                             Reg.getValueType(), Reg, RC), 0);
2656
2657        // Extract the h-register.
2658        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl,
2659                                                        MVT::i8, Reg);
2660
2661        // Emit a testb.  The EXTRACT_SUBREG becomes a COPY that can only
2662        // target GR8_NOREX registers, so make sure the register class is
2663        // forced.
2664        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST8ri_NOREX, dl,
2665                                                 MVT::i32, Subreg, ShiftedImm);
2666        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2667        // one, do not call ReplaceAllUsesWith.
2668        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2669                    SDValue(NewNode, 0));
2670        return NULL;
2671      }
2672
2673      // For example, "testl %eax, $32776" to "testw %ax, $32776".
2674      if ((C->getZExtValue() & ~UINT64_C(0xffff)) == 0 &&
2675          N0.getValueType() != MVT::i16 &&
2676          (!(C->getZExtValue() & 0x8000) ||
2677           HasNoSignedComparisonUses(Node))) {
2678        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i16);
2679        SDValue Reg = N0.getNode()->getOperand(0);
2680
2681        // Extract the 16-bit subregister.
2682        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_16bit, dl,
2683                                                        MVT::i16, Reg);
2684
2685        // Emit a testw.
2686        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST16ri, dl, MVT::i32,
2687                                                 Subreg, Imm);
2688        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2689        // one, do not call ReplaceAllUsesWith.
2690        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2691                    SDValue(NewNode, 0));
2692        return NULL;
2693      }
2694
2695      // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
2696      if ((C->getZExtValue() & ~UINT64_C(0xffffffff)) == 0 &&
2697          N0.getValueType() == MVT::i64 &&
2698          (!(C->getZExtValue() & 0x80000000) ||
2699           HasNoSignedComparisonUses(Node))) {
2700        SDValue Imm = CurDAG->getTargetConstant(C->getZExtValue(), MVT::i32);
2701        SDValue Reg = N0.getNode()->getOperand(0);
2702
2703        // Extract the 32-bit subregister.
2704        SDValue Subreg = CurDAG->getTargetExtractSubreg(X86::sub_32bit, dl,
2705                                                        MVT::i32, Reg);
2706
2707        // Emit a testl.
2708        SDNode *NewNode = CurDAG->getMachineNode(X86::TEST32ri, dl, MVT::i32,
2709                                                 Subreg, Imm);
2710        // Replace SUB|CMP with TEST, since SUB has two outputs while TEST has
2711        // one, do not call ReplaceAllUsesWith.
2712        ReplaceUses(SDValue(Node, (Opcode == X86ISD::SUB ? 1 : 0)),
2713                    SDValue(NewNode, 0));
2714        return NULL;
2715      }
2716    }
2717    break;
2718  }
2719  case ISD::STORE: {
2720    // Change a chain of {load; incr or dec; store} of the same value into
2721    // a simple increment or decrement through memory of that value, if the
2722    // uses of the modified value and its address are suitable.
2723    // The DEC64m tablegen pattern is currently not able to match the case where
2724    // the EFLAGS on the original DEC are used. (This also applies to
2725    // {INC,DEC}X{64,32,16,8}.)
2726    // We'll need to improve tablegen to allow flags to be transferred from a
2727    // node in the pattern to the result node.  probably with a new keyword
2728    // for example, we have this
2729    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2730    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2731    //   (implicit EFLAGS)]>;
2732    // but maybe need something like this
2733    // def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
2734    //  [(store (add (loadi64 addr:$dst), -1), addr:$dst),
2735    //   (transferrable EFLAGS)]>;
2736
2737    StoreSDNode *StoreNode = cast<StoreSDNode>(Node);
2738    SDValue StoredVal = StoreNode->getOperand(1);
2739    unsigned Opc = StoredVal->getOpcode();
2740
2741    LoadSDNode *LoadNode = 0;
2742    SDValue InputChain;
2743    if (!isLoadIncOrDecStore(StoreNode, Opc, StoredVal, CurDAG,
2744                             LoadNode, InputChain))
2745      break;
2746
2747    SDValue Base, Scale, Index, Disp, Segment;
2748    if (!SelectAddr(LoadNode, LoadNode->getBasePtr(),
2749                    Base, Scale, Index, Disp, Segment))
2750      break;
2751
2752    MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(2);
2753    MemOp[0] = StoreNode->getMemOperand();
2754    MemOp[1] = LoadNode->getMemOperand();
2755    const SDValue Ops[] = { Base, Scale, Index, Disp, Segment, InputChain };
2756    EVT LdVT = LoadNode->getMemoryVT();
2757    unsigned newOpc = getFusedLdStOpcode(LdVT, Opc);
2758    MachineSDNode *Result = CurDAG->getMachineNode(newOpc,
2759                                                   SDLoc(Node),
2760                                                   MVT::i32, MVT::Other, Ops);
2761    Result->setMemRefs(MemOp, MemOp + 2);
2762
2763    ReplaceUses(SDValue(StoreNode, 0), SDValue(Result, 1));
2764    ReplaceUses(SDValue(StoredVal.getNode(), 1), SDValue(Result, 0));
2765
2766    return Result;
2767  }
2768  }
2769
2770  SDNode *ResNode = SelectCode(Node);
2771
2772  DEBUG(dbgs() << "=> ";
2773        if (ResNode == NULL || ResNode == Node)
2774          Node->dump(CurDAG);
2775        else
2776          ResNode->dump(CurDAG);
2777        dbgs() << '\n');
2778
2779  return ResNode;
2780}
2781
2782bool X86DAGToDAGISel::
2783SelectInlineAsmMemoryOperand(const SDValue &Op, char ConstraintCode,
2784                             std::vector<SDValue> &OutOps) {
2785  SDValue Op0, Op1, Op2, Op3, Op4;
2786  switch (ConstraintCode) {
2787  case 'o':   // offsetable        ??
2788  case 'v':   // not offsetable    ??
2789  default: return true;
2790  case 'm':   // memory
2791    if (!SelectAddr(0, Op, Op0, Op1, Op2, Op3, Op4))
2792      return true;
2793    break;
2794  }
2795
2796  OutOps.push_back(Op0);
2797  OutOps.push_back(Op1);
2798  OutOps.push_back(Op2);
2799  OutOps.push_back(Op3);
2800  OutOps.push_back(Op4);
2801  return false;
2802}
2803
2804/// createX86ISelDag - This pass converts a legalized DAG into a
2805/// X86-specific DAG, ready for instruction scheduling.
2806///
2807FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
2808                                     CodeGenOpt::Level OptLevel) {
2809  return new X86DAGToDAGISel(TM, OptLevel);
2810}
2811