1//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass munges the code in the input function to better prepare it for
11// SelectionDAG-based code generation. This works around limitations in it's
12// basic-block-at-a-time approach. It should eventually be removed.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "codegenprepare"
17#include "llvm/Transforms/Scalar.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/SmallSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/ValueMap.h"
22#include "llvm/Analysis/DominatorInternals.h"
23#include "llvm/Analysis/Dominators.h"
24#include "llvm/Analysis/InstructionSimplify.h"
25#include "llvm/Analysis/ProfileInfo.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/IRBuilder.h"
32#include "llvm/IR/InlineAsm.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/IntrinsicInst.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/CallSite.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/PatternMatch.h"
41#include "llvm/Support/ValueHandle.h"
42#include "llvm/Support/raw_ostream.h"
43#include "llvm/Target/TargetLibraryInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/BuildLibCalls.h"
47#include "llvm/Transforms/Utils/BypassSlowDivision.h"
48#include "llvm/Transforms/Utils/Local.h"
49using namespace llvm;
50using namespace llvm::PatternMatch;
51
52STATISTIC(NumBlocksElim, "Number of blocks eliminated");
53STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
54STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
55STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
56                      "sunken Cmps");
57STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
58                       "of sunken Casts");
59STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
60                          "computations were sunk");
61STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
62STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
63STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
64STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
65STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
66
67static cl::opt<bool> DisableBranchOpts(
68  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
69  cl::desc("Disable branch optimizations in CodeGenPrepare"));
70
71static cl::opt<bool> DisableSelectToBranch(
72  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
73  cl::desc("Disable select to branch conversion."));
74
75namespace {
76  class CodeGenPrepare : public FunctionPass {
77    /// TLI - Keep a pointer of a TargetLowering to consult for determining
78    /// transformation profitability.
79    const TargetMachine *TM;
80    const TargetLowering *TLI;
81    const TargetLibraryInfo *TLInfo;
82    DominatorTree *DT;
83    ProfileInfo *PFI;
84
85    /// CurInstIterator - As we scan instructions optimizing them, this is the
86    /// next instruction to optimize.  Xforms that can invalidate this should
87    /// update it.
88    BasicBlock::iterator CurInstIterator;
89
90    /// Keeps track of non-local addresses that have been sunk into a block.
91    /// This allows us to avoid inserting duplicate code for blocks with
92    /// multiple load/stores of the same address.
93    ValueMap<Value*, Value*> SunkAddrs;
94
95    /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
96    /// be updated.
97    bool ModifiedDT;
98
99    /// OptSize - True if optimizing for size.
100    bool OptSize;
101
102  public:
103    static char ID; // Pass identification, replacement for typeid
104    explicit CodeGenPrepare(const TargetMachine *TM = 0)
105      : FunctionPass(ID), TM(TM), TLI(0) {
106        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
107      }
108    bool runOnFunction(Function &F);
109
110    const char *getPassName() const { return "CodeGen Prepare"; }
111
112    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
113      AU.addPreserved<DominatorTree>();
114      AU.addPreserved<ProfileInfo>();
115      AU.addRequired<TargetLibraryInfo>();
116    }
117
118  private:
119    bool EliminateFallThrough(Function &F);
120    bool EliminateMostlyEmptyBlocks(Function &F);
121    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
122    void EliminateMostlyEmptyBlock(BasicBlock *BB);
123    bool OptimizeBlock(BasicBlock &BB);
124    bool OptimizeInst(Instruction *I);
125    bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
126    bool OptimizeInlineAsmInst(CallInst *CS);
127    bool OptimizeCallInst(CallInst *CI);
128    bool MoveExtToFormExtLoad(Instruction *I);
129    bool OptimizeExtUses(Instruction *I);
130    bool OptimizeSelectInst(SelectInst *SI);
131    bool DupRetToEnableTailCallOpts(BasicBlock *BB);
132    bool PlaceDbgValues(Function &F);
133  };
134}
135
136char CodeGenPrepare::ID = 0;
137INITIALIZE_PASS_BEGIN(CodeGenPrepare, "codegenprepare",
138                "Optimize for code generation", false, false)
139INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
140INITIALIZE_PASS_END(CodeGenPrepare, "codegenprepare",
141                "Optimize for code generation", false, false)
142
143FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
144  return new CodeGenPrepare(TM);
145}
146
147bool CodeGenPrepare::runOnFunction(Function &F) {
148  bool EverMadeChange = false;
149
150  ModifiedDT = false;
151  if (TM) TLI = TM->getTargetLowering();
152  TLInfo = &getAnalysis<TargetLibraryInfo>();
153  DT = getAnalysisIfAvailable<DominatorTree>();
154  PFI = getAnalysisIfAvailable<ProfileInfo>();
155  OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
156                                           Attribute::OptimizeForSize);
157
158  /// This optimization identifies DIV instructions that can be
159  /// profitably bypassed and carried out with a shorter, faster divide.
160  if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
161    const DenseMap<unsigned int, unsigned int> &BypassWidths =
162       TLI->getBypassSlowDivWidths();
163    for (Function::iterator I = F.begin(); I != F.end(); I++)
164      EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
165  }
166
167  // Eliminate blocks that contain only PHI nodes and an
168  // unconditional branch.
169  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
170
171  // llvm.dbg.value is far away from the value then iSel may not be able
172  // handle it properly. iSel will drop llvm.dbg.value if it can not
173  // find a node corresponding to the value.
174  EverMadeChange |= PlaceDbgValues(F);
175
176  bool MadeChange = true;
177  while (MadeChange) {
178    MadeChange = false;
179    for (Function::iterator I = F.begin(); I != F.end(); ) {
180      BasicBlock *BB = I++;
181      MadeChange |= OptimizeBlock(*BB);
182    }
183    EverMadeChange |= MadeChange;
184  }
185
186  SunkAddrs.clear();
187
188  if (!DisableBranchOpts) {
189    MadeChange = false;
190    SmallPtrSet<BasicBlock*, 8> WorkList;
191    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
192      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
193      MadeChange |= ConstantFoldTerminator(BB, true);
194      if (!MadeChange) continue;
195
196      for (SmallVectorImpl<BasicBlock*>::iterator
197             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
198        if (pred_begin(*II) == pred_end(*II))
199          WorkList.insert(*II);
200    }
201
202    // Delete the dead blocks and any of their dead successors.
203    MadeChange |= !WorkList.empty();
204    while (!WorkList.empty()) {
205      BasicBlock *BB = *WorkList.begin();
206      WorkList.erase(BB);
207      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
208
209      DeleteDeadBlock(BB);
210
211      for (SmallVectorImpl<BasicBlock*>::iterator
212             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
213        if (pred_begin(*II) == pred_end(*II))
214          WorkList.insert(*II);
215    }
216
217    // Merge pairs of basic blocks with unconditional branches, connected by
218    // a single edge.
219    if (EverMadeChange || MadeChange)
220      MadeChange |= EliminateFallThrough(F);
221
222    if (MadeChange)
223      ModifiedDT = true;
224    EverMadeChange |= MadeChange;
225  }
226
227  if (ModifiedDT && DT)
228    DT->DT->recalculate(F);
229
230  return EverMadeChange;
231}
232
233/// EliminateFallThrough - Merge basic blocks which are connected
234/// by a single edge, where one of the basic blocks has a single successor
235/// pointing to the other basic block, which has a single predecessor.
236bool CodeGenPrepare::EliminateFallThrough(Function &F) {
237  bool Changed = false;
238  // Scan all of the blocks in the function, except for the entry block.
239  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
240    BasicBlock *BB = I++;
241    // If the destination block has a single pred, then this is a trivial
242    // edge, just collapse it.
243    BasicBlock *SinglePred = BB->getSinglePredecessor();
244
245    // Don't merge if BB's address is taken.
246    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
247
248    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
249    if (Term && !Term->isConditional()) {
250      Changed = true;
251      DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
252      // Remember if SinglePred was the entry block of the function.
253      // If so, we will need to move BB back to the entry position.
254      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
255      MergeBasicBlockIntoOnlyPred(BB, this);
256
257      if (isEntry && BB != &BB->getParent()->getEntryBlock())
258        BB->moveBefore(&BB->getParent()->getEntryBlock());
259
260      // We have erased a block. Update the iterator.
261      I = BB;
262    }
263  }
264  return Changed;
265}
266
267/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
268/// debug info directives, and an unconditional branch.  Passes before isel
269/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
270/// isel.  Start by eliminating these blocks so we can split them the way we
271/// want them.
272bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
273  bool MadeChange = false;
274  // Note that this intentionally skips the entry block.
275  for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) {
276    BasicBlock *BB = I++;
277
278    // If this block doesn't end with an uncond branch, ignore it.
279    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
280    if (!BI || !BI->isUnconditional())
281      continue;
282
283    // If the instruction before the branch (skipping debug info) isn't a phi
284    // node, then other stuff is happening here.
285    BasicBlock::iterator BBI = BI;
286    if (BBI != BB->begin()) {
287      --BBI;
288      while (isa<DbgInfoIntrinsic>(BBI)) {
289        if (BBI == BB->begin())
290          break;
291        --BBI;
292      }
293      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
294        continue;
295    }
296
297    // Do not break infinite loops.
298    BasicBlock *DestBB = BI->getSuccessor(0);
299    if (DestBB == BB)
300      continue;
301
302    if (!CanMergeBlocks(BB, DestBB))
303      continue;
304
305    EliminateMostlyEmptyBlock(BB);
306    MadeChange = true;
307  }
308  return MadeChange;
309}
310
311/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
312/// single uncond branch between them, and BB contains no other non-phi
313/// instructions.
314bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
315                                    const BasicBlock *DestBB) const {
316  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
317  // the successor.  If there are more complex condition (e.g. preheaders),
318  // don't mess around with them.
319  BasicBlock::const_iterator BBI = BB->begin();
320  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
321    for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
322         UI != E; ++UI) {
323      const Instruction *User = cast<Instruction>(*UI);
324      if (User->getParent() != DestBB || !isa<PHINode>(User))
325        return false;
326      // If User is inside DestBB block and it is a PHINode then check
327      // incoming value. If incoming value is not from BB then this is
328      // a complex condition (e.g. preheaders) we want to avoid here.
329      if (User->getParent() == DestBB) {
330        if (const PHINode *UPN = dyn_cast<PHINode>(User))
331          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
332            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
333            if (Insn && Insn->getParent() == BB &&
334                Insn->getParent() != UPN->getIncomingBlock(I))
335              return false;
336          }
337      }
338    }
339  }
340
341  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
342  // and DestBB may have conflicting incoming values for the block.  If so, we
343  // can't merge the block.
344  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
345  if (!DestBBPN) return true;  // no conflict.
346
347  // Collect the preds of BB.
348  SmallPtrSet<const BasicBlock*, 16> BBPreds;
349  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
350    // It is faster to get preds from a PHI than with pred_iterator.
351    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
352      BBPreds.insert(BBPN->getIncomingBlock(i));
353  } else {
354    BBPreds.insert(pred_begin(BB), pred_end(BB));
355  }
356
357  // Walk the preds of DestBB.
358  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
359    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
360    if (BBPreds.count(Pred)) {   // Common predecessor?
361      BBI = DestBB->begin();
362      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
363        const Value *V1 = PN->getIncomingValueForBlock(Pred);
364        const Value *V2 = PN->getIncomingValueForBlock(BB);
365
366        // If V2 is a phi node in BB, look up what the mapped value will be.
367        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
368          if (V2PN->getParent() == BB)
369            V2 = V2PN->getIncomingValueForBlock(Pred);
370
371        // If there is a conflict, bail out.
372        if (V1 != V2) return false;
373      }
374    }
375  }
376
377  return true;
378}
379
380
381/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
382/// an unconditional branch in it.
383void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
384  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
385  BasicBlock *DestBB = BI->getSuccessor(0);
386
387  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
388
389  // If the destination block has a single pred, then this is a trivial edge,
390  // just collapse it.
391  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
392    if (SinglePred != DestBB) {
393      // Remember if SinglePred was the entry block of the function.  If so, we
394      // will need to move BB back to the entry position.
395      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
396      MergeBasicBlockIntoOnlyPred(DestBB, this);
397
398      if (isEntry && BB != &BB->getParent()->getEntryBlock())
399        BB->moveBefore(&BB->getParent()->getEntryBlock());
400
401      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
402      return;
403    }
404  }
405
406  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
407  // to handle the new incoming edges it is about to have.
408  PHINode *PN;
409  for (BasicBlock::iterator BBI = DestBB->begin();
410       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
411    // Remove the incoming value for BB, and remember it.
412    Value *InVal = PN->removeIncomingValue(BB, false);
413
414    // Two options: either the InVal is a phi node defined in BB or it is some
415    // value that dominates BB.
416    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
417    if (InValPhi && InValPhi->getParent() == BB) {
418      // Add all of the input values of the input PHI as inputs of this phi.
419      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
420        PN->addIncoming(InValPhi->getIncomingValue(i),
421                        InValPhi->getIncomingBlock(i));
422    } else {
423      // Otherwise, add one instance of the dominating value for each edge that
424      // we will be adding.
425      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
426        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
427          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
428      } else {
429        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
430          PN->addIncoming(InVal, *PI);
431      }
432    }
433  }
434
435  // The PHIs are now updated, change everything that refers to BB to use
436  // DestBB and remove BB.
437  BB->replaceAllUsesWith(DestBB);
438  if (DT && !ModifiedDT) {
439    BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
440    BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
441    BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
442    DT->changeImmediateDominator(DestBB, NewIDom);
443    DT->eraseNode(BB);
444  }
445  if (PFI) {
446    PFI->replaceAllUses(BB, DestBB);
447    PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB));
448  }
449  BB->eraseFromParent();
450  ++NumBlocksElim;
451
452  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
453}
454
455/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
456/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
457/// sink it into user blocks to reduce the number of virtual
458/// registers that must be created and coalesced.
459///
460/// Return true if any changes are made.
461///
462static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
463  // If this is a noop copy,
464  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
465  EVT DstVT = TLI.getValueType(CI->getType());
466
467  // This is an fp<->int conversion?
468  if (SrcVT.isInteger() != DstVT.isInteger())
469    return false;
470
471  // If this is an extension, it will be a zero or sign extension, which
472  // isn't a noop.
473  if (SrcVT.bitsLT(DstVT)) return false;
474
475  // If these values will be promoted, find out what they will be promoted
476  // to.  This helps us consider truncates on PPC as noop copies when they
477  // are.
478  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
479      TargetLowering::TypePromoteInteger)
480    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
481  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
482      TargetLowering::TypePromoteInteger)
483    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
484
485  // If, after promotion, these are the same types, this is a noop copy.
486  if (SrcVT != DstVT)
487    return false;
488
489  BasicBlock *DefBB = CI->getParent();
490
491  /// InsertedCasts - Only insert a cast in each block once.
492  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
493
494  bool MadeChange = false;
495  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
496       UI != E; ) {
497    Use &TheUse = UI.getUse();
498    Instruction *User = cast<Instruction>(*UI);
499
500    // Figure out which BB this cast is used in.  For PHI's this is the
501    // appropriate predecessor block.
502    BasicBlock *UserBB = User->getParent();
503    if (PHINode *PN = dyn_cast<PHINode>(User)) {
504      UserBB = PN->getIncomingBlock(UI);
505    }
506
507    // Preincrement use iterator so we don't invalidate it.
508    ++UI;
509
510    // If this user is in the same block as the cast, don't change the cast.
511    if (UserBB == DefBB) continue;
512
513    // If we have already inserted a cast into this block, use it.
514    CastInst *&InsertedCast = InsertedCasts[UserBB];
515
516    if (!InsertedCast) {
517      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
518      InsertedCast =
519        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
520                         InsertPt);
521      MadeChange = true;
522    }
523
524    // Replace a use of the cast with a use of the new cast.
525    TheUse = InsertedCast;
526    ++NumCastUses;
527  }
528
529  // If we removed all uses, nuke the cast.
530  if (CI->use_empty()) {
531    CI->eraseFromParent();
532    MadeChange = true;
533  }
534
535  return MadeChange;
536}
537
538/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
539/// the number of virtual registers that must be created and coalesced.  This is
540/// a clear win except on targets with multiple condition code registers
541///  (PowerPC), where it might lose; some adjustment may be wanted there.
542///
543/// Return true if any changes are made.
544static bool OptimizeCmpExpression(CmpInst *CI) {
545  BasicBlock *DefBB = CI->getParent();
546
547  /// InsertedCmp - Only insert a cmp in each block once.
548  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
549
550  bool MadeChange = false;
551  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
552       UI != E; ) {
553    Use &TheUse = UI.getUse();
554    Instruction *User = cast<Instruction>(*UI);
555
556    // Preincrement use iterator so we don't invalidate it.
557    ++UI;
558
559    // Don't bother for PHI nodes.
560    if (isa<PHINode>(User))
561      continue;
562
563    // Figure out which BB this cmp is used in.
564    BasicBlock *UserBB = User->getParent();
565
566    // If this user is in the same block as the cmp, don't change the cmp.
567    if (UserBB == DefBB) continue;
568
569    // If we have already inserted a cmp into this block, use it.
570    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
571
572    if (!InsertedCmp) {
573      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
574      InsertedCmp =
575        CmpInst::Create(CI->getOpcode(),
576                        CI->getPredicate(),  CI->getOperand(0),
577                        CI->getOperand(1), "", InsertPt);
578      MadeChange = true;
579    }
580
581    // Replace a use of the cmp with a use of the new cmp.
582    TheUse = InsertedCmp;
583    ++NumCmpUses;
584  }
585
586  // If we removed all uses, nuke the cmp.
587  if (CI->use_empty())
588    CI->eraseFromParent();
589
590  return MadeChange;
591}
592
593namespace {
594class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
595protected:
596  void replaceCall(Value *With) {
597    CI->replaceAllUsesWith(With);
598    CI->eraseFromParent();
599  }
600  bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
601      if (ConstantInt *SizeCI =
602                             dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
603        return SizeCI->isAllOnesValue();
604    return false;
605  }
606};
607} // end anonymous namespace
608
609bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
610  BasicBlock *BB = CI->getParent();
611
612  // Lower inline assembly if we can.
613  // If we found an inline asm expession, and if the target knows how to
614  // lower it to normal LLVM code, do so now.
615  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
616    if (TLI->ExpandInlineAsm(CI)) {
617      // Avoid invalidating the iterator.
618      CurInstIterator = BB->begin();
619      // Avoid processing instructions out of order, which could cause
620      // reuse before a value is defined.
621      SunkAddrs.clear();
622      return true;
623    }
624    // Sink address computing for memory operands into the block.
625    if (OptimizeInlineAsmInst(CI))
626      return true;
627  }
628
629  // Lower all uses of llvm.objectsize.*
630  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
631  if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
632    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
633    Type *ReturnTy = CI->getType();
634    Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
635
636    // Substituting this can cause recursive simplifications, which can
637    // invalidate our iterator.  Use a WeakVH to hold onto it in case this
638    // happens.
639    WeakVH IterHandle(CurInstIterator);
640
641    replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : 0,
642                                  TLInfo, ModifiedDT ? 0 : DT);
643
644    // If the iterator instruction was recursively deleted, start over at the
645    // start of the block.
646    if (IterHandle != CurInstIterator) {
647      CurInstIterator = BB->begin();
648      SunkAddrs.clear();
649    }
650    return true;
651  }
652
653  if (II && TLI) {
654    SmallVector<Value*, 2> PtrOps;
655    Type *AccessTy;
656    if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
657      while (!PtrOps.empty())
658        if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
659          return true;
660  }
661
662  // From here on out we're working with named functions.
663  if (CI->getCalledFunction() == 0) return false;
664
665  // We'll need DataLayout from here on out.
666  const DataLayout *TD = TLI ? TLI->getDataLayout() : 0;
667  if (!TD) return false;
668
669  // Lower all default uses of _chk calls.  This is very similar
670  // to what InstCombineCalls does, but here we are only lowering calls
671  // that have the default "don't know" as the objectsize.  Anything else
672  // should be left alone.
673  CodeGenPrepareFortifiedLibCalls Simplifier;
674  return Simplifier.fold(CI, TD, TLInfo);
675}
676
677/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
678/// instructions to the predecessor to enable tail call optimizations. The
679/// case it is currently looking for is:
680/// @code
681/// bb0:
682///   %tmp0 = tail call i32 @f0()
683///   br label %return
684/// bb1:
685///   %tmp1 = tail call i32 @f1()
686///   br label %return
687/// bb2:
688///   %tmp2 = tail call i32 @f2()
689///   br label %return
690/// return:
691///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
692///   ret i32 %retval
693/// @endcode
694///
695/// =>
696///
697/// @code
698/// bb0:
699///   %tmp0 = tail call i32 @f0()
700///   ret i32 %tmp0
701/// bb1:
702///   %tmp1 = tail call i32 @f1()
703///   ret i32 %tmp1
704/// bb2:
705///   %tmp2 = tail call i32 @f2()
706///   ret i32 %tmp2
707/// @endcode
708bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
709  if (!TLI)
710    return false;
711
712  ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
713  if (!RI)
714    return false;
715
716  PHINode *PN = 0;
717  BitCastInst *BCI = 0;
718  Value *V = RI->getReturnValue();
719  if (V) {
720    BCI = dyn_cast<BitCastInst>(V);
721    if (BCI)
722      V = BCI->getOperand(0);
723
724    PN = dyn_cast<PHINode>(V);
725    if (!PN)
726      return false;
727  }
728
729  if (PN && PN->getParent() != BB)
730    return false;
731
732  // It's not safe to eliminate the sign / zero extension of the return value.
733  // See llvm::isInTailCallPosition().
734  const Function *F = BB->getParent();
735  AttributeSet CallerAttrs = F->getAttributes();
736  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
737      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
738    return false;
739
740  // Make sure there are no instructions between the PHI and return, or that the
741  // return is the first instruction in the block.
742  if (PN) {
743    BasicBlock::iterator BI = BB->begin();
744    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
745    if (&*BI == BCI)
746      // Also skip over the bitcast.
747      ++BI;
748    if (&*BI != RI)
749      return false;
750  } else {
751    BasicBlock::iterator BI = BB->begin();
752    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
753    if (&*BI != RI)
754      return false;
755  }
756
757  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
758  /// call.
759  SmallVector<CallInst*, 4> TailCalls;
760  if (PN) {
761    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
762      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
763      // Make sure the phi value is indeed produced by the tail call.
764      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
765          TLI->mayBeEmittedAsTailCall(CI))
766        TailCalls.push_back(CI);
767    }
768  } else {
769    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
770    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
771      if (!VisitedBBs.insert(*PI))
772        continue;
773
774      BasicBlock::InstListType &InstList = (*PI)->getInstList();
775      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
776      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
777      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
778      if (RI == RE)
779        continue;
780
781      CallInst *CI = dyn_cast<CallInst>(&*RI);
782      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
783        TailCalls.push_back(CI);
784    }
785  }
786
787  bool Changed = false;
788  for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
789    CallInst *CI = TailCalls[i];
790    CallSite CS(CI);
791
792    // Conservatively require the attributes of the call to match those of the
793    // return. Ignore noalias because it doesn't affect the call sequence.
794    AttributeSet CalleeAttrs = CS.getAttributes();
795    if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
796          removeAttribute(Attribute::NoAlias) !=
797        AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
798          removeAttribute(Attribute::NoAlias))
799      continue;
800
801    // Make sure the call instruction is followed by an unconditional branch to
802    // the return block.
803    BasicBlock *CallBB = CI->getParent();
804    BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
805    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
806      continue;
807
808    // Duplicate the return into CallBB.
809    (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
810    ModifiedDT = Changed = true;
811    ++NumRetsDup;
812  }
813
814  // If we eliminated all predecessors of the block, delete the block now.
815  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
816    BB->eraseFromParent();
817
818  return Changed;
819}
820
821//===----------------------------------------------------------------------===//
822// Memory Optimization
823//===----------------------------------------------------------------------===//
824
825namespace {
826
827/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
828/// which holds actual Value*'s for register values.
829struct ExtAddrMode : public TargetLowering::AddrMode {
830  Value *BaseReg;
831  Value *ScaledReg;
832  ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
833  void print(raw_ostream &OS) const;
834  void dump() const;
835
836  bool operator==(const ExtAddrMode& O) const {
837    return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
838           (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
839           (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
840  }
841};
842
843static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
844  AM.print(OS);
845  return OS;
846}
847
848void ExtAddrMode::print(raw_ostream &OS) const {
849  bool NeedPlus = false;
850  OS << "[";
851  if (BaseGV) {
852    OS << (NeedPlus ? " + " : "")
853       << "GV:";
854    WriteAsOperand(OS, BaseGV, /*PrintType=*/false);
855    NeedPlus = true;
856  }
857
858  if (BaseOffs)
859    OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
860
861  if (BaseReg) {
862    OS << (NeedPlus ? " + " : "")
863       << "Base:";
864    WriteAsOperand(OS, BaseReg, /*PrintType=*/false);
865    NeedPlus = true;
866  }
867  if (Scale) {
868    OS << (NeedPlus ? " + " : "")
869       << Scale << "*";
870    WriteAsOperand(OS, ScaledReg, /*PrintType=*/false);
871  }
872
873  OS << ']';
874}
875
876#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
877void ExtAddrMode::dump() const {
878  print(dbgs());
879  dbgs() << '\n';
880}
881#endif
882
883
884/// \brief A helper class for matching addressing modes.
885///
886/// This encapsulates the logic for matching the target-legal addressing modes.
887class AddressingModeMatcher {
888  SmallVectorImpl<Instruction*> &AddrModeInsts;
889  const TargetLowering &TLI;
890
891  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
892  /// the memory instruction that we're computing this address for.
893  Type *AccessTy;
894  Instruction *MemoryInst;
895
896  /// AddrMode - This is the addressing mode that we're building up.  This is
897  /// part of the return value of this addressing mode matching stuff.
898  ExtAddrMode &AddrMode;
899
900  /// IgnoreProfitability - This is set to true when we should not do
901  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
902  /// always returns true.
903  bool IgnoreProfitability;
904
905  AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
906                        const TargetLowering &T, Type *AT,
907                        Instruction *MI, ExtAddrMode &AM)
908    : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) {
909    IgnoreProfitability = false;
910  }
911public:
912
913  /// Match - Find the maximal addressing mode that a load/store of V can fold,
914  /// give an access type of AccessTy.  This returns a list of involved
915  /// instructions in AddrModeInsts.
916  static ExtAddrMode Match(Value *V, Type *AccessTy,
917                           Instruction *MemoryInst,
918                           SmallVectorImpl<Instruction*> &AddrModeInsts,
919                           const TargetLowering &TLI) {
920    ExtAddrMode Result;
921
922    bool Success =
923      AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
924                            MemoryInst, Result).MatchAddr(V, 0);
925    (void)Success; assert(Success && "Couldn't select *anything*?");
926    return Result;
927  }
928private:
929  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
930  bool MatchAddr(Value *V, unsigned Depth);
931  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth);
932  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
933                                            ExtAddrMode &AMBefore,
934                                            ExtAddrMode &AMAfter);
935  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
936};
937
938/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
939/// Return true and update AddrMode if this addr mode is legal for the target,
940/// false if not.
941bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
942                                             unsigned Depth) {
943  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
944  // mode.  Just process that directly.
945  if (Scale == 1)
946    return MatchAddr(ScaleReg, Depth);
947
948  // If the scale is 0, it takes nothing to add this.
949  if (Scale == 0)
950    return true;
951
952  // If we already have a scale of this value, we can add to it, otherwise, we
953  // need an available scale field.
954  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
955    return false;
956
957  ExtAddrMode TestAddrMode = AddrMode;
958
959  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
960  // [A+B + A*7] -> [B+A*8].
961  TestAddrMode.Scale += Scale;
962  TestAddrMode.ScaledReg = ScaleReg;
963
964  // If the new address isn't legal, bail out.
965  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
966    return false;
967
968  // It was legal, so commit it.
969  AddrMode = TestAddrMode;
970
971  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
972  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
973  // X*Scale + C*Scale to addr mode.
974  ConstantInt *CI = 0; Value *AddLHS = 0;
975  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
976      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
977    TestAddrMode.ScaledReg = AddLHS;
978    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
979
980    // If this addressing mode is legal, commit it and remember that we folded
981    // this instruction.
982    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
983      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
984      AddrMode = TestAddrMode;
985      return true;
986    }
987  }
988
989  // Otherwise, not (x+c)*scale, just return what we have.
990  return true;
991}
992
993/// MightBeFoldableInst - This is a little filter, which returns true if an
994/// addressing computation involving I might be folded into a load/store
995/// accessing it.  This doesn't need to be perfect, but needs to accept at least
996/// the set of instructions that MatchOperationAddr can.
997static bool MightBeFoldableInst(Instruction *I) {
998  switch (I->getOpcode()) {
999  case Instruction::BitCast:
1000    // Don't touch identity bitcasts.
1001    if (I->getType() == I->getOperand(0)->getType())
1002      return false;
1003    return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
1004  case Instruction::PtrToInt:
1005    // PtrToInt is always a noop, as we know that the int type is pointer sized.
1006    return true;
1007  case Instruction::IntToPtr:
1008    // We know the input is intptr_t, so this is foldable.
1009    return true;
1010  case Instruction::Add:
1011    return true;
1012  case Instruction::Mul:
1013  case Instruction::Shl:
1014    // Can only handle X*C and X << C.
1015    return isa<ConstantInt>(I->getOperand(1));
1016  case Instruction::GetElementPtr:
1017    return true;
1018  default:
1019    return false;
1020  }
1021}
1022
1023/// MatchOperationAddr - Given an instruction or constant expr, see if we can
1024/// fold the operation into the addressing mode.  If so, update the addressing
1025/// mode and return true, otherwise return false without modifying AddrMode.
1026bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
1027                                               unsigned Depth) {
1028  // Avoid exponential behavior on extremely deep expression trees.
1029  if (Depth >= 5) return false;
1030
1031  switch (Opcode) {
1032  case Instruction::PtrToInt:
1033    // PtrToInt is always a noop, as we know that the int type is pointer sized.
1034    return MatchAddr(AddrInst->getOperand(0), Depth);
1035  case Instruction::IntToPtr:
1036    // This inttoptr is a no-op if the integer type is pointer sized.
1037    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
1038        TLI.getPointerTy())
1039      return MatchAddr(AddrInst->getOperand(0), Depth);
1040    return false;
1041  case Instruction::BitCast:
1042    // BitCast is always a noop, and we can handle it as long as it is
1043    // int->int or pointer->pointer (we don't want int<->fp or something).
1044    if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
1045         AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
1046        // Don't touch identity bitcasts.  These were probably put here by LSR,
1047        // and we don't want to mess around with them.  Assume it knows what it
1048        // is doing.
1049        AddrInst->getOperand(0)->getType() != AddrInst->getType())
1050      return MatchAddr(AddrInst->getOperand(0), Depth);
1051    return false;
1052  case Instruction::Add: {
1053    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
1054    ExtAddrMode BackupAddrMode = AddrMode;
1055    unsigned OldSize = AddrModeInsts.size();
1056    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
1057        MatchAddr(AddrInst->getOperand(0), Depth+1))
1058      return true;
1059
1060    // Restore the old addr mode info.
1061    AddrMode = BackupAddrMode;
1062    AddrModeInsts.resize(OldSize);
1063
1064    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
1065    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
1066        MatchAddr(AddrInst->getOperand(1), Depth+1))
1067      return true;
1068
1069    // Otherwise we definitely can't merge the ADD in.
1070    AddrMode = BackupAddrMode;
1071    AddrModeInsts.resize(OldSize);
1072    break;
1073  }
1074  //case Instruction::Or:
1075  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
1076  //break;
1077  case Instruction::Mul:
1078  case Instruction::Shl: {
1079    // Can only handle X*C and X << C.
1080    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
1081    if (!RHS) return false;
1082    int64_t Scale = RHS->getSExtValue();
1083    if (Opcode == Instruction::Shl)
1084      Scale = 1LL << Scale;
1085
1086    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
1087  }
1088  case Instruction::GetElementPtr: {
1089    // Scan the GEP.  We check it if it contains constant offsets and at most
1090    // one variable offset.
1091    int VariableOperand = -1;
1092    unsigned VariableScale = 0;
1093
1094    int64_t ConstantOffset = 0;
1095    const DataLayout *TD = TLI.getDataLayout();
1096    gep_type_iterator GTI = gep_type_begin(AddrInst);
1097    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
1098      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1099        const StructLayout *SL = TD->getStructLayout(STy);
1100        unsigned Idx =
1101          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
1102        ConstantOffset += SL->getElementOffset(Idx);
1103      } else {
1104        uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
1105        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
1106          ConstantOffset += CI->getSExtValue()*TypeSize;
1107        } else if (TypeSize) {  // Scales of zero don't do anything.
1108          // We only allow one variable index at the moment.
1109          if (VariableOperand != -1)
1110            return false;
1111
1112          // Remember the variable index.
1113          VariableOperand = i;
1114          VariableScale = TypeSize;
1115        }
1116      }
1117    }
1118
1119    // A common case is for the GEP to only do a constant offset.  In this case,
1120    // just add it to the disp field and check validity.
1121    if (VariableOperand == -1) {
1122      AddrMode.BaseOffs += ConstantOffset;
1123      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
1124        // Check to see if we can fold the base pointer in too.
1125        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
1126          return true;
1127      }
1128      AddrMode.BaseOffs -= ConstantOffset;
1129      return false;
1130    }
1131
1132    // Save the valid addressing mode in case we can't match.
1133    ExtAddrMode BackupAddrMode = AddrMode;
1134    unsigned OldSize = AddrModeInsts.size();
1135
1136    // See if the scale and offset amount is valid for this target.
1137    AddrMode.BaseOffs += ConstantOffset;
1138
1139    // Match the base operand of the GEP.
1140    if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
1141      // If it couldn't be matched, just stuff the value in a register.
1142      if (AddrMode.HasBaseReg) {
1143        AddrMode = BackupAddrMode;
1144        AddrModeInsts.resize(OldSize);
1145        return false;
1146      }
1147      AddrMode.HasBaseReg = true;
1148      AddrMode.BaseReg = AddrInst->getOperand(0);
1149    }
1150
1151    // Match the remaining variable portion of the GEP.
1152    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
1153                          Depth)) {
1154      // If it couldn't be matched, try stuffing the base into a register
1155      // instead of matching it, and retrying the match of the scale.
1156      AddrMode = BackupAddrMode;
1157      AddrModeInsts.resize(OldSize);
1158      if (AddrMode.HasBaseReg)
1159        return false;
1160      AddrMode.HasBaseReg = true;
1161      AddrMode.BaseReg = AddrInst->getOperand(0);
1162      AddrMode.BaseOffs += ConstantOffset;
1163      if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
1164                            VariableScale, Depth)) {
1165        // If even that didn't work, bail.
1166        AddrMode = BackupAddrMode;
1167        AddrModeInsts.resize(OldSize);
1168        return false;
1169      }
1170    }
1171
1172    return true;
1173  }
1174  }
1175  return false;
1176}
1177
1178/// MatchAddr - If we can, try to add the value of 'Addr' into the current
1179/// addressing mode.  If Addr can't be added to AddrMode this returns false and
1180/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
1181/// or intptr_t for the target.
1182///
1183bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
1184  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
1185    // Fold in immediates if legal for the target.
1186    AddrMode.BaseOffs += CI->getSExtValue();
1187    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
1188      return true;
1189    AddrMode.BaseOffs -= CI->getSExtValue();
1190  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
1191    // If this is a global variable, try to fold it into the addressing mode.
1192    if (AddrMode.BaseGV == 0) {
1193      AddrMode.BaseGV = GV;
1194      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
1195        return true;
1196      AddrMode.BaseGV = 0;
1197    }
1198  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
1199    ExtAddrMode BackupAddrMode = AddrMode;
1200    unsigned OldSize = AddrModeInsts.size();
1201
1202    // Check to see if it is possible to fold this operation.
1203    if (MatchOperationAddr(I, I->getOpcode(), Depth)) {
1204      // Okay, it's possible to fold this.  Check to see if it is actually
1205      // *profitable* to do so.  We use a simple cost model to avoid increasing
1206      // register pressure too much.
1207      if (I->hasOneUse() ||
1208          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
1209        AddrModeInsts.push_back(I);
1210        return true;
1211      }
1212
1213      // It isn't profitable to do this, roll back.
1214      //cerr << "NOT FOLDING: " << *I;
1215      AddrMode = BackupAddrMode;
1216      AddrModeInsts.resize(OldSize);
1217    }
1218  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
1219    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
1220      return true;
1221  } else if (isa<ConstantPointerNull>(Addr)) {
1222    // Null pointer gets folded without affecting the addressing mode.
1223    return true;
1224  }
1225
1226  // Worse case, the target should support [reg] addressing modes. :)
1227  if (!AddrMode.HasBaseReg) {
1228    AddrMode.HasBaseReg = true;
1229    AddrMode.BaseReg = Addr;
1230    // Still check for legality in case the target supports [imm] but not [i+r].
1231    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
1232      return true;
1233    AddrMode.HasBaseReg = false;
1234    AddrMode.BaseReg = 0;
1235  }
1236
1237  // If the base register is already taken, see if we can do [r+r].
1238  if (AddrMode.Scale == 0) {
1239    AddrMode.Scale = 1;
1240    AddrMode.ScaledReg = Addr;
1241    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
1242      return true;
1243    AddrMode.Scale = 0;
1244    AddrMode.ScaledReg = 0;
1245  }
1246  // Couldn't match.
1247  return false;
1248}
1249
1250/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
1251/// inline asm call are due to memory operands.  If so, return true, otherwise
1252/// return false.
1253static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
1254                                    const TargetLowering &TLI) {
1255  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
1256  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
1257    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
1258
1259    // Compute the constraint code and ConstraintType to use.
1260    TLI.ComputeConstraintToUse(OpInfo, SDValue());
1261
1262    // If this asm operand is our Value*, and if it isn't an indirect memory
1263    // operand, we can't fold it!
1264    if (OpInfo.CallOperandVal == OpVal &&
1265        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
1266         !OpInfo.isIndirect))
1267      return false;
1268  }
1269
1270  return true;
1271}
1272
1273/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
1274/// memory use.  If we find an obviously non-foldable instruction, return true.
1275/// Add the ultimately found memory instructions to MemoryUses.
1276static bool FindAllMemoryUses(Instruction *I,
1277                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
1278                              SmallPtrSet<Instruction*, 16> &ConsideredInsts,
1279                              const TargetLowering &TLI) {
1280  // If we already considered this instruction, we're done.
1281  if (!ConsideredInsts.insert(I))
1282    return false;
1283
1284  // If this is an obviously unfoldable instruction, bail out.
1285  if (!MightBeFoldableInst(I))
1286    return true;
1287
1288  // Loop over all the uses, recursively processing them.
1289  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1290       UI != E; ++UI) {
1291    User *U = *UI;
1292
1293    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1294      MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
1295      continue;
1296    }
1297
1298    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1299      unsigned opNo = UI.getOperandNo();
1300      if (opNo == 0) return true; // Storing addr, not into addr.
1301      MemoryUses.push_back(std::make_pair(SI, opNo));
1302      continue;
1303    }
1304
1305    if (CallInst *CI = dyn_cast<CallInst>(U)) {
1306      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
1307      if (!IA) return true;
1308
1309      // If this is a memory operand, we're cool, otherwise bail out.
1310      if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
1311        return true;
1312      continue;
1313    }
1314
1315    if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
1316                          TLI))
1317      return true;
1318  }
1319
1320  return false;
1321}
1322
1323/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
1324/// the use site that we're folding it into.  If so, there is no cost to
1325/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
1326/// that we know are live at the instruction already.
1327bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
1328                                                   Value *KnownLive2) {
1329  // If Val is either of the known-live values, we know it is live!
1330  if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
1331    return true;
1332
1333  // All values other than instructions and arguments (e.g. constants) are live.
1334  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
1335
1336  // If Val is a constant sized alloca in the entry block, it is live, this is
1337  // true because it is just a reference to the stack/frame pointer, which is
1338  // live for the whole function.
1339  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
1340    if (AI->isStaticAlloca())
1341      return true;
1342
1343  // Check to see if this value is already used in the memory instruction's
1344  // block.  If so, it's already live into the block at the very least, so we
1345  // can reasonably fold it.
1346  return Val->isUsedInBasicBlock(MemoryInst->getParent());
1347}
1348
1349/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
1350/// mode of the machine to fold the specified instruction into a load or store
1351/// that ultimately uses it.  However, the specified instruction has multiple
1352/// uses.  Given this, it may actually increase register pressure to fold it
1353/// into the load.  For example, consider this code:
1354///
1355///     X = ...
1356///     Y = X+1
1357///     use(Y)   -> nonload/store
1358///     Z = Y+1
1359///     load Z
1360///
1361/// In this case, Y has multiple uses, and can be folded into the load of Z
1362/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
1363/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
1364/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
1365/// number of computations either.
1366///
1367/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
1368/// X was live across 'load Z' for other reasons, we actually *would* want to
1369/// fold the addressing mode in the Z case.  This would make Y die earlier.
1370bool AddressingModeMatcher::
1371IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
1372                                     ExtAddrMode &AMAfter) {
1373  if (IgnoreProfitability) return true;
1374
1375  // AMBefore is the addressing mode before this instruction was folded into it,
1376  // and AMAfter is the addressing mode after the instruction was folded.  Get
1377  // the set of registers referenced by AMAfter and subtract out those
1378  // referenced by AMBefore: this is the set of values which folding in this
1379  // address extends the lifetime of.
1380  //
1381  // Note that there are only two potential values being referenced here,
1382  // BaseReg and ScaleReg (global addresses are always available, as are any
1383  // folded immediates).
1384  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
1385
1386  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
1387  // lifetime wasn't extended by adding this instruction.
1388  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
1389    BaseReg = 0;
1390  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
1391    ScaledReg = 0;
1392
1393  // If folding this instruction (and it's subexprs) didn't extend any live
1394  // ranges, we're ok with it.
1395  if (BaseReg == 0 && ScaledReg == 0)
1396    return true;
1397
1398  // If all uses of this instruction are ultimately load/store/inlineasm's,
1399  // check to see if their addressing modes will include this instruction.  If
1400  // so, we can fold it into all uses, so it doesn't matter if it has multiple
1401  // uses.
1402  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
1403  SmallPtrSet<Instruction*, 16> ConsideredInsts;
1404  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
1405    return false;  // Has a non-memory, non-foldable use!
1406
1407  // Now that we know that all uses of this instruction are part of a chain of
1408  // computation involving only operations that could theoretically be folded
1409  // into a memory use, loop over each of these uses and see if they could
1410  // *actually* fold the instruction.
1411  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
1412  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
1413    Instruction *User = MemoryUses[i].first;
1414    unsigned OpNo = MemoryUses[i].second;
1415
1416    // Get the access type of this use.  If the use isn't a pointer, we don't
1417    // know what it accesses.
1418    Value *Address = User->getOperand(OpNo);
1419    if (!Address->getType()->isPointerTy())
1420      return false;
1421    Type *AddressAccessTy =
1422      cast<PointerType>(Address->getType())->getElementType();
1423
1424    // Do a match against the root of this address, ignoring profitability. This
1425    // will tell us if the addressing mode for the memory operation will
1426    // *actually* cover the shared instruction.
1427    ExtAddrMode Result;
1428    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
1429                                  MemoryInst, Result);
1430    Matcher.IgnoreProfitability = true;
1431    bool Success = Matcher.MatchAddr(Address, 0);
1432    (void)Success; assert(Success && "Couldn't select *anything*?");
1433
1434    // If the match didn't cover I, then it won't be shared by it.
1435    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
1436                  I) == MatchedAddrModeInsts.end())
1437      return false;
1438
1439    MatchedAddrModeInsts.clear();
1440  }
1441
1442  return true;
1443}
1444
1445} // end anonymous namespace
1446
1447/// IsNonLocalValue - Return true if the specified values are defined in a
1448/// different basic block than BB.
1449static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
1450  if (Instruction *I = dyn_cast<Instruction>(V))
1451    return I->getParent() != BB;
1452  return false;
1453}
1454
1455/// OptimizeMemoryInst - Load and Store Instructions often have
1456/// addressing modes that can do significant amounts of computation.  As such,
1457/// instruction selection will try to get the load or store to do as much
1458/// computation as possible for the program.  The problem is that isel can only
1459/// see within a single block.  As such, we sink as much legal addressing mode
1460/// stuff into the block as possible.
1461///
1462/// This method is used to optimize both load/store and inline asms with memory
1463/// operands.
1464bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
1465                                        Type *AccessTy) {
1466  Value *Repl = Addr;
1467
1468  // Try to collapse single-value PHI nodes.  This is necessary to undo
1469  // unprofitable PRE transformations.
1470  SmallVector<Value*, 8> worklist;
1471  SmallPtrSet<Value*, 16> Visited;
1472  worklist.push_back(Addr);
1473
1474  // Use a worklist to iteratively look through PHI nodes, and ensure that
1475  // the addressing mode obtained from the non-PHI roots of the graph
1476  // are equivalent.
1477  Value *Consensus = 0;
1478  unsigned NumUsesConsensus = 0;
1479  bool IsNumUsesConsensusValid = false;
1480  SmallVector<Instruction*, 16> AddrModeInsts;
1481  ExtAddrMode AddrMode;
1482  while (!worklist.empty()) {
1483    Value *V = worklist.back();
1484    worklist.pop_back();
1485
1486    // Break use-def graph loops.
1487    if (!Visited.insert(V)) {
1488      Consensus = 0;
1489      break;
1490    }
1491
1492    // For a PHI node, push all of its incoming values.
1493    if (PHINode *P = dyn_cast<PHINode>(V)) {
1494      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
1495        worklist.push_back(P->getIncomingValue(i));
1496      continue;
1497    }
1498
1499    // For non-PHIs, determine the addressing mode being computed.
1500    SmallVector<Instruction*, 16> NewAddrModeInsts;
1501    ExtAddrMode NewAddrMode =
1502      AddressingModeMatcher::Match(V, AccessTy, MemoryInst,
1503                                   NewAddrModeInsts, *TLI);
1504
1505    // This check is broken into two cases with very similar code to avoid using
1506    // getNumUses() as much as possible. Some values have a lot of uses, so
1507    // calling getNumUses() unconditionally caused a significant compile-time
1508    // regression.
1509    if (!Consensus) {
1510      Consensus = V;
1511      AddrMode = NewAddrMode;
1512      AddrModeInsts = NewAddrModeInsts;
1513      continue;
1514    } else if (NewAddrMode == AddrMode) {
1515      if (!IsNumUsesConsensusValid) {
1516        NumUsesConsensus = Consensus->getNumUses();
1517        IsNumUsesConsensusValid = true;
1518      }
1519
1520      // Ensure that the obtained addressing mode is equivalent to that obtained
1521      // for all other roots of the PHI traversal.  Also, when choosing one
1522      // such root as representative, select the one with the most uses in order
1523      // to keep the cost modeling heuristics in AddressingModeMatcher
1524      // applicable.
1525      unsigned NumUses = V->getNumUses();
1526      if (NumUses > NumUsesConsensus) {
1527        Consensus = V;
1528        NumUsesConsensus = NumUses;
1529        AddrModeInsts = NewAddrModeInsts;
1530      }
1531      continue;
1532    }
1533
1534    Consensus = 0;
1535    break;
1536  }
1537
1538  // If the addressing mode couldn't be determined, or if multiple different
1539  // ones were determined, bail out now.
1540  if (!Consensus) return false;
1541
1542  // Check to see if any of the instructions supersumed by this addr mode are
1543  // non-local to I's BB.
1544  bool AnyNonLocal = false;
1545  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
1546    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
1547      AnyNonLocal = true;
1548      break;
1549    }
1550  }
1551
1552  // If all the instructions matched are already in this BB, don't do anything.
1553  if (!AnyNonLocal) {
1554    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
1555    return false;
1556  }
1557
1558  // Insert this computation right after this user.  Since our caller is
1559  // scanning from the top of the BB to the bottom, reuse of the expr are
1560  // guaranteed to happen later.
1561  IRBuilder<> Builder(MemoryInst);
1562
1563  // Now that we determined the addressing expression we want to use and know
1564  // that we have to sink it into this block.  Check to see if we have already
1565  // done this for some other load/store instr in this block.  If so, reuse the
1566  // computation.
1567  Value *&SunkAddr = SunkAddrs[Addr];
1568  if (SunkAddr) {
1569    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
1570                 << *MemoryInst);
1571    if (SunkAddr->getType() != Addr->getType())
1572      SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
1573  } else {
1574    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
1575                 << *MemoryInst);
1576    Type *IntPtrTy =
1577          TLI->getDataLayout()->getIntPtrType(AccessTy->getContext());
1578
1579    Value *Result = 0;
1580
1581    // Start with the base register. Do this first so that subsequent address
1582    // matching finds it last, which will prevent it from trying to match it
1583    // as the scaled value in case it happens to be a mul. That would be
1584    // problematic if we've sunk a different mul for the scale, because then
1585    // we'd end up sinking both muls.
1586    if (AddrMode.BaseReg) {
1587      Value *V = AddrMode.BaseReg;
1588      if (V->getType()->isPointerTy())
1589        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
1590      if (V->getType() != IntPtrTy)
1591        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
1592      Result = V;
1593    }
1594
1595    // Add the scale value.
1596    if (AddrMode.Scale) {
1597      Value *V = AddrMode.ScaledReg;
1598      if (V->getType() == IntPtrTy) {
1599        // done.
1600      } else if (V->getType()->isPointerTy()) {
1601        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
1602      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
1603                 cast<IntegerType>(V->getType())->getBitWidth()) {
1604        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
1605      } else {
1606        V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr");
1607      }
1608      if (AddrMode.Scale != 1)
1609        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
1610                              "sunkaddr");
1611      if (Result)
1612        Result = Builder.CreateAdd(Result, V, "sunkaddr");
1613      else
1614        Result = V;
1615    }
1616
1617    // Add in the BaseGV if present.
1618    if (AddrMode.BaseGV) {
1619      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
1620      if (Result)
1621        Result = Builder.CreateAdd(Result, V, "sunkaddr");
1622      else
1623        Result = V;
1624    }
1625
1626    // Add in the Base Offset if present.
1627    if (AddrMode.BaseOffs) {
1628      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
1629      if (Result)
1630        Result = Builder.CreateAdd(Result, V, "sunkaddr");
1631      else
1632        Result = V;
1633    }
1634
1635    if (Result == 0)
1636      SunkAddr = Constant::getNullValue(Addr->getType());
1637    else
1638      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
1639  }
1640
1641  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
1642
1643  // If we have no uses, recursively delete the value and all dead instructions
1644  // using it.
1645  if (Repl->use_empty()) {
1646    // This can cause recursive deletion, which can invalidate our iterator.
1647    // Use a WeakVH to hold onto it in case this happens.
1648    WeakVH IterHandle(CurInstIterator);
1649    BasicBlock *BB = CurInstIterator->getParent();
1650
1651    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
1652
1653    if (IterHandle != CurInstIterator) {
1654      // If the iterator instruction was recursively deleted, start over at the
1655      // start of the block.
1656      CurInstIterator = BB->begin();
1657      SunkAddrs.clear();
1658    }
1659  }
1660  ++NumMemoryInsts;
1661  return true;
1662}
1663
1664/// OptimizeInlineAsmInst - If there are any memory operands, use
1665/// OptimizeMemoryInst to sink their address computing into the block when
1666/// possible / profitable.
1667bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
1668  bool MadeChange = false;
1669
1670  TargetLowering::AsmOperandInfoVector
1671    TargetConstraints = TLI->ParseConstraints(CS);
1672  unsigned ArgNo = 0;
1673  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
1674    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
1675
1676    // Compute the constraint code and ConstraintType to use.
1677    TLI->ComputeConstraintToUse(OpInfo, SDValue());
1678
1679    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
1680        OpInfo.isIndirect) {
1681      Value *OpVal = CS->getArgOperand(ArgNo++);
1682      MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
1683    } else if (OpInfo.Type == InlineAsm::isInput)
1684      ArgNo++;
1685  }
1686
1687  return MadeChange;
1688}
1689
1690/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
1691/// basic block as the load, unless conditions are unfavorable. This allows
1692/// SelectionDAG to fold the extend into the load.
1693///
1694bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
1695  // Look for a load being extended.
1696  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
1697  if (!LI) return false;
1698
1699  // If they're already in the same block, there's nothing to do.
1700  if (LI->getParent() == I->getParent())
1701    return false;
1702
1703  // If the load has other users and the truncate is not free, this probably
1704  // isn't worthwhile.
1705  if (!LI->hasOneUse() &&
1706      TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
1707              !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
1708      !TLI->isTruncateFree(I->getType(), LI->getType()))
1709    return false;
1710
1711  // Check whether the target supports casts folded into loads.
1712  unsigned LType;
1713  if (isa<ZExtInst>(I))
1714    LType = ISD::ZEXTLOAD;
1715  else {
1716    assert(isa<SExtInst>(I) && "Unexpected ext type!");
1717    LType = ISD::SEXTLOAD;
1718  }
1719  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
1720    return false;
1721
1722  // Move the extend into the same block as the load, so that SelectionDAG
1723  // can fold it.
1724  I->removeFromParent();
1725  I->insertAfter(LI);
1726  ++NumExtsMoved;
1727  return true;
1728}
1729
1730bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
1731  BasicBlock *DefBB = I->getParent();
1732
1733  // If the result of a {s|z}ext and its source are both live out, rewrite all
1734  // other uses of the source with result of extension.
1735  Value *Src = I->getOperand(0);
1736  if (Src->hasOneUse())
1737    return false;
1738
1739  // Only do this xform if truncating is free.
1740  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
1741    return false;
1742
1743  // Only safe to perform the optimization if the source is also defined in
1744  // this block.
1745  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
1746    return false;
1747
1748  bool DefIsLiveOut = false;
1749  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1750       UI != E; ++UI) {
1751    Instruction *User = cast<Instruction>(*UI);
1752
1753    // Figure out which BB this ext is used in.
1754    BasicBlock *UserBB = User->getParent();
1755    if (UserBB == DefBB) continue;
1756    DefIsLiveOut = true;
1757    break;
1758  }
1759  if (!DefIsLiveOut)
1760    return false;
1761
1762  // Make sure none of the uses are PHI nodes.
1763  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1764       UI != E; ++UI) {
1765    Instruction *User = cast<Instruction>(*UI);
1766    BasicBlock *UserBB = User->getParent();
1767    if (UserBB == DefBB) continue;
1768    // Be conservative. We don't want this xform to end up introducing
1769    // reloads just before load / store instructions.
1770    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
1771      return false;
1772  }
1773
1774  // InsertedTruncs - Only insert one trunc in each block once.
1775  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
1776
1777  bool MadeChange = false;
1778  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
1779       UI != E; ++UI) {
1780    Use &TheUse = UI.getUse();
1781    Instruction *User = cast<Instruction>(*UI);
1782
1783    // Figure out which BB this ext is used in.
1784    BasicBlock *UserBB = User->getParent();
1785    if (UserBB == DefBB) continue;
1786
1787    // Both src and def are live in this block. Rewrite the use.
1788    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
1789
1790    if (!InsertedTrunc) {
1791      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1792      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
1793    }
1794
1795    // Replace a use of the {s|z}ext source with a use of the result.
1796    TheUse = InsertedTrunc;
1797    ++NumExtUses;
1798    MadeChange = true;
1799  }
1800
1801  return MadeChange;
1802}
1803
1804/// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
1805/// turned into an explicit branch.
1806static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
1807  // FIXME: This should use the same heuristics as IfConversion to determine
1808  // whether a select is better represented as a branch.  This requires that
1809  // branch probability metadata is preserved for the select, which is not the
1810  // case currently.
1811
1812  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1813
1814  // If the branch is predicted right, an out of order CPU can avoid blocking on
1815  // the compare.  Emit cmovs on compares with a memory operand as branches to
1816  // avoid stalls on the load from memory.  If the compare has more than one use
1817  // there's probably another cmov or setcc around so it's not worth emitting a
1818  // branch.
1819  if (!Cmp)
1820    return false;
1821
1822  Value *CmpOp0 = Cmp->getOperand(0);
1823  Value *CmpOp1 = Cmp->getOperand(1);
1824
1825  // We check that the memory operand has one use to avoid uses of the loaded
1826  // value directly after the compare, making branches unprofitable.
1827  return Cmp->hasOneUse() &&
1828         ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
1829          (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
1830}
1831
1832
1833/// If we have a SelectInst that will likely profit from branch prediction,
1834/// turn it into a branch.
1835bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
1836  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
1837
1838  // Can we convert the 'select' to CF ?
1839  if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
1840    return false;
1841
1842  TargetLowering::SelectSupportKind SelectKind;
1843  if (VectorCond)
1844    SelectKind = TargetLowering::VectorMaskSelect;
1845  else if (SI->getType()->isVectorTy())
1846    SelectKind = TargetLowering::ScalarCondVectorVal;
1847  else
1848    SelectKind = TargetLowering::ScalarValSelect;
1849
1850  // Do we have efficient codegen support for this kind of 'selects' ?
1851  if (TLI->isSelectSupported(SelectKind)) {
1852    // We have efficient codegen support for the select instruction.
1853    // Check if it is profitable to keep this 'select'.
1854    if (!TLI->isPredictableSelectExpensive() ||
1855        !isFormingBranchFromSelectProfitable(SI))
1856      return false;
1857  }
1858
1859  ModifiedDT = true;
1860
1861  // First, we split the block containing the select into 2 blocks.
1862  BasicBlock *StartBlock = SI->getParent();
1863  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
1864  BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
1865
1866  // Create a new block serving as the landing pad for the branch.
1867  BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
1868                                             NextBlock->getParent(), NextBlock);
1869
1870  // Move the unconditional branch from the block with the select in it into our
1871  // landing pad block.
1872  StartBlock->getTerminator()->eraseFromParent();
1873  BranchInst::Create(NextBlock, SmallBlock);
1874
1875  // Insert the real conditional branch based on the original condition.
1876  BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
1877
1878  // The select itself is replaced with a PHI Node.
1879  PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
1880  PN->takeName(SI);
1881  PN->addIncoming(SI->getTrueValue(), StartBlock);
1882  PN->addIncoming(SI->getFalseValue(), SmallBlock);
1883  SI->replaceAllUsesWith(PN);
1884  SI->eraseFromParent();
1885
1886  // Instruct OptimizeBlock to skip to the next block.
1887  CurInstIterator = StartBlock->end();
1888  ++NumSelectsExpanded;
1889  return true;
1890}
1891
1892bool CodeGenPrepare::OptimizeInst(Instruction *I) {
1893  if (PHINode *P = dyn_cast<PHINode>(I)) {
1894    // It is possible for very late stage optimizations (such as SimplifyCFG)
1895    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
1896    // trivial PHI, go ahead and zap it here.
1897    if (Value *V = SimplifyInstruction(P)) {
1898      P->replaceAllUsesWith(V);
1899      P->eraseFromParent();
1900      ++NumPHIsElim;
1901      return true;
1902    }
1903    return false;
1904  }
1905
1906  if (CastInst *CI = dyn_cast<CastInst>(I)) {
1907    // If the source of the cast is a constant, then this should have
1908    // already been constant folded.  The only reason NOT to constant fold
1909    // it is if something (e.g. LSR) was careful to place the constant
1910    // evaluation in a block other than then one that uses it (e.g. to hoist
1911    // the address of globals out of a loop).  If this is the case, we don't
1912    // want to forward-subst the cast.
1913    if (isa<Constant>(CI->getOperand(0)))
1914      return false;
1915
1916    if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
1917      return true;
1918
1919    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
1920      bool MadeChange = MoveExtToFormExtLoad(I);
1921      return MadeChange | OptimizeExtUses(I);
1922    }
1923    return false;
1924  }
1925
1926  if (CmpInst *CI = dyn_cast<CmpInst>(I))
1927    return OptimizeCmpExpression(CI);
1928
1929  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1930    if (TLI)
1931      return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
1932    return false;
1933  }
1934
1935  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1936    if (TLI)
1937      return OptimizeMemoryInst(I, SI->getOperand(1),
1938                                SI->getOperand(0)->getType());
1939    return false;
1940  }
1941
1942  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1943    if (GEPI->hasAllZeroIndices()) {
1944      /// The GEP operand must be a pointer, so must its result -> BitCast
1945      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
1946                                        GEPI->getName(), GEPI);
1947      GEPI->replaceAllUsesWith(NC);
1948      GEPI->eraseFromParent();
1949      ++NumGEPsElim;
1950      OptimizeInst(NC);
1951      return true;
1952    }
1953    return false;
1954  }
1955
1956  if (CallInst *CI = dyn_cast<CallInst>(I))
1957    return OptimizeCallInst(CI);
1958
1959  if (SelectInst *SI = dyn_cast<SelectInst>(I))
1960    return OptimizeSelectInst(SI);
1961
1962  return false;
1963}
1964
1965// In this pass we look for GEP and cast instructions that are used
1966// across basic blocks and rewrite them to improve basic-block-at-a-time
1967// selection.
1968bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
1969  SunkAddrs.clear();
1970  bool MadeChange = false;
1971
1972  CurInstIterator = BB.begin();
1973  while (CurInstIterator != BB.end())
1974    MadeChange |= OptimizeInst(CurInstIterator++);
1975
1976  MadeChange |= DupRetToEnableTailCallOpts(&BB);
1977
1978  return MadeChange;
1979}
1980
1981// llvm.dbg.value is far away from the value then iSel may not be able
1982// handle it properly. iSel will drop llvm.dbg.value if it can not
1983// find a node corresponding to the value.
1984bool CodeGenPrepare::PlaceDbgValues(Function &F) {
1985  bool MadeChange = false;
1986  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1987    Instruction *PrevNonDbgInst = NULL;
1988    for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
1989      Instruction *Insn = BI; ++BI;
1990      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
1991      if (!DVI) {
1992        PrevNonDbgInst = Insn;
1993        continue;
1994      }
1995
1996      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
1997      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
1998        DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
1999        DVI->removeFromParent();
2000        if (isa<PHINode>(VI))
2001          DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
2002        else
2003          DVI->insertAfter(VI);
2004        MadeChange = true;
2005        ++NumDbgValueMoved;
2006      }
2007    }
2008  }
2009  return MadeChange;
2010}
2011