1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This transformation implements the well known scalar replacement of
11/// aggregates transformation. It tries to identify promotable elements of an
12/// aggregate alloca, and promote them to registers. It will also try to
13/// convert uses of an element (or set of elements) of an alloca into a vector
14/// or bitfield-style integer scalar if appropriate.
15///
16/// It works to do this with minimal slicing of the alloca so that regions
17/// which are merely transferred in and out of external memory remain unchanged
18/// and are not decomposed to scalar code.
19///
20/// Because this also performs alloca promotion, it can be thought of as also
21/// serving the purpose of SSA formation. The algorithm iterates on the
22/// function until all opportunities for promotion have been realized.
23///
24//===----------------------------------------------------------------------===//
25
26#define DEBUG_TYPE "sroa"
27#include "llvm/Transforms/Scalar.h"
28#include "llvm/ADT/STLExtras.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Analysis/Loads.h"
34#include "llvm/Analysis/PtrUseVisitor.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/DIBuilder.h"
37#include "llvm/DebugInfo.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/IRBuilder.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Operator.h"
47#include "llvm/InstVisitor.h"
48#include "llvm/Pass.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Compiler.h"
51#include "llvm/Support/Debug.h"
52#include "llvm/Support/ErrorHandling.h"
53#include "llvm/Support/MathExtras.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Transforms/Utils/Local.h"
56#include "llvm/Transforms/Utils/PromoteMemToReg.h"
57#include "llvm/Transforms/Utils/SSAUpdater.h"
58using namespace llvm;
59
60STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
61STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
62STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
63STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
64STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
65STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
66STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
67STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
68STATISTIC(NumDeleted, "Number of instructions deleted");
69STATISTIC(NumVectorized, "Number of vectorized aggregates");
70
71/// Hidden option to force the pass to not use DomTree and mem2reg, instead
72/// forming SSA values through the SSAUpdater infrastructure.
73static cl::opt<bool>
74ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden);
75
76namespace {
77/// \brief A custom IRBuilder inserter which prefixes all names if they are
78/// preserved.
79template <bool preserveNames = true>
80class IRBuilderPrefixedInserter :
81    public IRBuilderDefaultInserter<preserveNames> {
82  std::string Prefix;
83
84public:
85  void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
86
87protected:
88  void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
89                    BasicBlock::iterator InsertPt) const {
90    IRBuilderDefaultInserter<preserveNames>::InsertHelper(
91        I, Name.isTriviallyEmpty() ? Name : Prefix + Name, BB, InsertPt);
92  }
93};
94
95// Specialization for not preserving the name is trivial.
96template <>
97class IRBuilderPrefixedInserter<false> :
98    public IRBuilderDefaultInserter<false> {
99public:
100  void SetNamePrefix(const Twine &P) {}
101};
102
103/// \brief Provide a typedef for IRBuilder that drops names in release builds.
104#ifndef NDEBUG
105typedef llvm::IRBuilder<true, ConstantFolder,
106                        IRBuilderPrefixedInserter<true> > IRBuilderTy;
107#else
108typedef llvm::IRBuilder<false, ConstantFolder,
109                        IRBuilderPrefixedInserter<false> > IRBuilderTy;
110#endif
111}
112
113namespace {
114/// \brief A used slice of an alloca.
115///
116/// This structure represents a slice of an alloca used by some instruction. It
117/// stores both the begin and end offsets of this use, a pointer to the use
118/// itself, and a flag indicating whether we can classify the use as splittable
119/// or not when forming partitions of the alloca.
120class Slice {
121  /// \brief The beginning offset of the range.
122  uint64_t BeginOffset;
123
124  /// \brief The ending offset, not included in the range.
125  uint64_t EndOffset;
126
127  /// \brief Storage for both the use of this slice and whether it can be
128  /// split.
129  PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
130
131public:
132  Slice() : BeginOffset(), EndOffset() {}
133  Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
134      : BeginOffset(BeginOffset), EndOffset(EndOffset),
135        UseAndIsSplittable(U, IsSplittable) {}
136
137  uint64_t beginOffset() const { return BeginOffset; }
138  uint64_t endOffset() const { return EndOffset; }
139
140  bool isSplittable() const { return UseAndIsSplittable.getInt(); }
141  void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
142
143  Use *getUse() const { return UseAndIsSplittable.getPointer(); }
144
145  bool isDead() const { return getUse() == 0; }
146  void kill() { UseAndIsSplittable.setPointer(0); }
147
148  /// \brief Support for ordering ranges.
149  ///
150  /// This provides an ordering over ranges such that start offsets are
151  /// always increasing, and within equal start offsets, the end offsets are
152  /// decreasing. Thus the spanning range comes first in a cluster with the
153  /// same start position.
154  bool operator<(const Slice &RHS) const {
155    if (beginOffset() < RHS.beginOffset()) return true;
156    if (beginOffset() > RHS.beginOffset()) return false;
157    if (isSplittable() != RHS.isSplittable()) return !isSplittable();
158    if (endOffset() > RHS.endOffset()) return true;
159    return false;
160  }
161
162  /// \brief Support comparison with a single offset to allow binary searches.
163  friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
164                                              uint64_t RHSOffset) {
165    return LHS.beginOffset() < RHSOffset;
166  }
167  friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
168                                              const Slice &RHS) {
169    return LHSOffset < RHS.beginOffset();
170  }
171
172  bool operator==(const Slice &RHS) const {
173    return isSplittable() == RHS.isSplittable() &&
174           beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
175  }
176  bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
177};
178} // end anonymous namespace
179
180namespace llvm {
181template <typename T> struct isPodLike;
182template <> struct isPodLike<Slice> {
183   static const bool value = true;
184};
185}
186
187namespace {
188/// \brief Representation of the alloca slices.
189///
190/// This class represents the slices of an alloca which are formed by its
191/// various uses. If a pointer escapes, we can't fully build a representation
192/// for the slices used and we reflect that in this structure. The uses are
193/// stored, sorted by increasing beginning offset and with unsplittable slices
194/// starting at a particular offset before splittable slices.
195class AllocaSlices {
196public:
197  /// \brief Construct the slices of a particular alloca.
198  AllocaSlices(const DataLayout &DL, AllocaInst &AI);
199
200  /// \brief Test whether a pointer to the allocation escapes our analysis.
201  ///
202  /// If this is true, the slices are never fully built and should be
203  /// ignored.
204  bool isEscaped() const { return PointerEscapingInstr; }
205
206  /// \brief Support for iterating over the slices.
207  /// @{
208  typedef SmallVectorImpl<Slice>::iterator iterator;
209  iterator begin() { return Slices.begin(); }
210  iterator end() { return Slices.end(); }
211
212  typedef SmallVectorImpl<Slice>::const_iterator const_iterator;
213  const_iterator begin() const { return Slices.begin(); }
214  const_iterator end() const { return Slices.end(); }
215  /// @}
216
217  /// \brief Allow iterating the dead users for this alloca.
218  ///
219  /// These are instructions which will never actually use the alloca as they
220  /// are outside the allocated range. They are safe to replace with undef and
221  /// delete.
222  /// @{
223  typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator;
224  dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); }
225  dead_user_iterator dead_user_end() const { return DeadUsers.end(); }
226  /// @}
227
228  /// \brief Allow iterating the dead expressions referring to this alloca.
229  ///
230  /// These are operands which have cannot actually be used to refer to the
231  /// alloca as they are outside its range and the user doesn't correct for
232  /// that. These mostly consist of PHI node inputs and the like which we just
233  /// need to replace with undef.
234  /// @{
235  typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator;
236  dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); }
237  dead_op_iterator dead_op_end() const { return DeadOperands.end(); }
238  /// @}
239
240#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
241  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
242  void printSlice(raw_ostream &OS, const_iterator I,
243                  StringRef Indent = "  ") const;
244  void printUse(raw_ostream &OS, const_iterator I,
245                StringRef Indent = "  ") const;
246  void print(raw_ostream &OS) const;
247  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const;
248  void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const;
249#endif
250
251private:
252  template <typename DerivedT, typename RetT = void> class BuilderBase;
253  class SliceBuilder;
254  friend class AllocaSlices::SliceBuilder;
255
256#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
257  /// \brief Handle to alloca instruction to simplify method interfaces.
258  AllocaInst &AI;
259#endif
260
261  /// \brief The instruction responsible for this alloca not having a known set
262  /// of slices.
263  ///
264  /// When an instruction (potentially) escapes the pointer to the alloca, we
265  /// store a pointer to that here and abort trying to form slices of the
266  /// alloca. This will be null if the alloca slices are analyzed successfully.
267  Instruction *PointerEscapingInstr;
268
269  /// \brief The slices of the alloca.
270  ///
271  /// We store a vector of the slices formed by uses of the alloca here. This
272  /// vector is sorted by increasing begin offset, and then the unsplittable
273  /// slices before the splittable ones. See the Slice inner class for more
274  /// details.
275  SmallVector<Slice, 8> Slices;
276
277  /// \brief Instructions which will become dead if we rewrite the alloca.
278  ///
279  /// Note that these are not separated by slice. This is because we expect an
280  /// alloca to be completely rewritten or not rewritten at all. If rewritten,
281  /// all these instructions can simply be removed and replaced with undef as
282  /// they come from outside of the allocated space.
283  SmallVector<Instruction *, 8> DeadUsers;
284
285  /// \brief Operands which will become dead if we rewrite the alloca.
286  ///
287  /// These are operands that in their particular use can be replaced with
288  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
289  /// to PHI nodes and the like. They aren't entirely dead (there might be
290  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
291  /// want to swap this particular input for undef to simplify the use lists of
292  /// the alloca.
293  SmallVector<Use *, 8> DeadOperands;
294};
295}
296
297static Value *foldSelectInst(SelectInst &SI) {
298  // If the condition being selected on is a constant or the same value is
299  // being selected between, fold the select. Yes this does (rarely) happen
300  // early on.
301  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
302    return SI.getOperand(1+CI->isZero());
303  if (SI.getOperand(1) == SI.getOperand(2))
304    return SI.getOperand(1);
305
306  return 0;
307}
308
309/// \brief Builder for the alloca slices.
310///
311/// This class builds a set of alloca slices by recursively visiting the uses
312/// of an alloca and making a slice for each load and store at each offset.
313class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
314  friend class PtrUseVisitor<SliceBuilder>;
315  friend class InstVisitor<SliceBuilder>;
316  typedef PtrUseVisitor<SliceBuilder> Base;
317
318  const uint64_t AllocSize;
319  AllocaSlices &S;
320
321  SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
322  SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
323
324  /// \brief Set to de-duplicate dead instructions found in the use walk.
325  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
326
327public:
328  SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &S)
329      : PtrUseVisitor<SliceBuilder>(DL),
330        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), S(S) {}
331
332private:
333  void markAsDead(Instruction &I) {
334    if (VisitedDeadInsts.insert(&I))
335      S.DeadUsers.push_back(&I);
336  }
337
338  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
339                 bool IsSplittable = false) {
340    // Completely skip uses which have a zero size or start either before or
341    // past the end of the allocation.
342    if (Size == 0 || Offset.isNegative() || Offset.uge(AllocSize)) {
343      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset
344                   << " which has zero size or starts outside of the "
345                   << AllocSize << " byte alloca:\n"
346                   << "    alloca: " << S.AI << "\n"
347                   << "       use: " << I << "\n");
348      return markAsDead(I);
349    }
350
351    uint64_t BeginOffset = Offset.getZExtValue();
352    uint64_t EndOffset = BeginOffset + Size;
353
354    // Clamp the end offset to the end of the allocation. Note that this is
355    // formulated to handle even the case where "BeginOffset + Size" overflows.
356    // This may appear superficially to be something we could ignore entirely,
357    // but that is not so! There may be widened loads or PHI-node uses where
358    // some instructions are dead but not others. We can't completely ignore
359    // them, and so have to record at least the information here.
360    assert(AllocSize >= BeginOffset); // Established above.
361    if (Size > AllocSize - BeginOffset) {
362      DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset
363                   << " to remain within the " << AllocSize << " byte alloca:\n"
364                   << "    alloca: " << S.AI << "\n"
365                   << "       use: " << I << "\n");
366      EndOffset = AllocSize;
367    }
368
369    S.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
370  }
371
372  void visitBitCastInst(BitCastInst &BC) {
373    if (BC.use_empty())
374      return markAsDead(BC);
375
376    return Base::visitBitCastInst(BC);
377  }
378
379  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
380    if (GEPI.use_empty())
381      return markAsDead(GEPI);
382
383    return Base::visitGetElementPtrInst(GEPI);
384  }
385
386  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
387                         uint64_t Size, bool IsVolatile) {
388    // We allow splitting of loads and stores where the type is an integer type
389    // and cover the entire alloca. This prevents us from splitting over
390    // eagerly.
391    // FIXME: In the great blue eventually, we should eagerly split all integer
392    // loads and stores, and then have a separate step that merges adjacent
393    // alloca partitions into a single partition suitable for integer widening.
394    // Or we should skip the merge step and rely on GVN and other passes to
395    // merge adjacent loads and stores that survive mem2reg.
396    bool IsSplittable =
397        Ty->isIntegerTy() && !IsVolatile && Offset == 0 && Size >= AllocSize;
398
399    insertUse(I, Offset, Size, IsSplittable);
400  }
401
402  void visitLoadInst(LoadInst &LI) {
403    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
404           "All simple FCA loads should have been pre-split");
405
406    if (!IsOffsetKnown)
407      return PI.setAborted(&LI);
408
409    uint64_t Size = DL.getTypeStoreSize(LI.getType());
410    return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
411  }
412
413  void visitStoreInst(StoreInst &SI) {
414    Value *ValOp = SI.getValueOperand();
415    if (ValOp == *U)
416      return PI.setEscapedAndAborted(&SI);
417    if (!IsOffsetKnown)
418      return PI.setAborted(&SI);
419
420    uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
421
422    // If this memory access can be shown to *statically* extend outside the
423    // bounds of of the allocation, it's behavior is undefined, so simply
424    // ignore it. Note that this is more strict than the generic clamping
425    // behavior of insertUse. We also try to handle cases which might run the
426    // risk of overflow.
427    // FIXME: We should instead consider the pointer to have escaped if this
428    // function is being instrumented for addressing bugs or race conditions.
429    if (Offset.isNegative() || Size > AllocSize ||
430        Offset.ugt(AllocSize - Size)) {
431      DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" << Offset
432                   << " which extends past the end of the " << AllocSize
433                   << " byte alloca:\n"
434                   << "    alloca: " << S.AI << "\n"
435                   << "       use: " << SI << "\n");
436      return markAsDead(SI);
437    }
438
439    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
440           "All simple FCA stores should have been pre-split");
441    handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
442  }
443
444
445  void visitMemSetInst(MemSetInst &II) {
446    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
447    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
448    if ((Length && Length->getValue() == 0) ||
449        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
450      // Zero-length mem transfer intrinsics can be ignored entirely.
451      return markAsDead(II);
452
453    if (!IsOffsetKnown)
454      return PI.setAborted(&II);
455
456    insertUse(II, Offset,
457              Length ? Length->getLimitedValue()
458                     : AllocSize - Offset.getLimitedValue(),
459              (bool)Length);
460  }
461
462  void visitMemTransferInst(MemTransferInst &II) {
463    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
464    if ((Length && Length->getValue() == 0) ||
465        (IsOffsetKnown && !Offset.isNegative() && Offset.uge(AllocSize)))
466      // Zero-length mem transfer intrinsics can be ignored entirely.
467      return markAsDead(II);
468
469    if (!IsOffsetKnown)
470      return PI.setAborted(&II);
471
472    uint64_t RawOffset = Offset.getLimitedValue();
473    uint64_t Size = Length ? Length->getLimitedValue()
474                           : AllocSize - RawOffset;
475
476    // Check for the special case where the same exact value is used for both
477    // source and dest.
478    if (*U == II.getRawDest() && *U == II.getRawSource()) {
479      // For non-volatile transfers this is a no-op.
480      if (!II.isVolatile())
481        return markAsDead(II);
482
483      return insertUse(II, Offset, Size, /*IsSplittable=*/false);
484    }
485
486    // If we have seen both source and destination for a mem transfer, then
487    // they both point to the same alloca.
488    bool Inserted;
489    SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
490    llvm::tie(MTPI, Inserted) =
491        MemTransferSliceMap.insert(std::make_pair(&II, S.Slices.size()));
492    unsigned PrevIdx = MTPI->second;
493    if (!Inserted) {
494      Slice &PrevP = S.Slices[PrevIdx];
495
496      // Check if the begin offsets match and this is a non-volatile transfer.
497      // In that case, we can completely elide the transfer.
498      if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
499        PrevP.kill();
500        return markAsDead(II);
501      }
502
503      // Otherwise we have an offset transfer within the same alloca. We can't
504      // split those.
505      PrevP.makeUnsplittable();
506    }
507
508    // Insert the use now that we've fixed up the splittable nature.
509    insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
510
511    // Check that we ended up with a valid index in the map.
512    assert(S.Slices[PrevIdx].getUse()->getUser() == &II &&
513           "Map index doesn't point back to a slice with this user.");
514  }
515
516  // Disable SRoA for any intrinsics except for lifetime invariants.
517  // FIXME: What about debug intrinsics? This matches old behavior, but
518  // doesn't make sense.
519  void visitIntrinsicInst(IntrinsicInst &II) {
520    if (!IsOffsetKnown)
521      return PI.setAborted(&II);
522
523    if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
524        II.getIntrinsicID() == Intrinsic::lifetime_end) {
525      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
526      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
527                               Length->getLimitedValue());
528      insertUse(II, Offset, Size, true);
529      return;
530    }
531
532    Base::visitIntrinsicInst(II);
533  }
534
535  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
536    // We consider any PHI or select that results in a direct load or store of
537    // the same offset to be a viable use for slicing purposes. These uses
538    // are considered unsplittable and the size is the maximum loaded or stored
539    // size.
540    SmallPtrSet<Instruction *, 4> Visited;
541    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
542    Visited.insert(Root);
543    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
544    // If there are no loads or stores, the access is dead. We mark that as
545    // a size zero access.
546    Size = 0;
547    do {
548      Instruction *I, *UsedI;
549      llvm::tie(UsedI, I) = Uses.pop_back_val();
550
551      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
552        Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
553        continue;
554      }
555      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
556        Value *Op = SI->getOperand(0);
557        if (Op == UsedI)
558          return SI;
559        Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
560        continue;
561      }
562
563      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
564        if (!GEP->hasAllZeroIndices())
565          return GEP;
566      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
567                 !isa<SelectInst>(I)) {
568        return I;
569      }
570
571      for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
572           ++UI)
573        if (Visited.insert(cast<Instruction>(*UI)))
574          Uses.push_back(std::make_pair(I, cast<Instruction>(*UI)));
575    } while (!Uses.empty());
576
577    return 0;
578  }
579
580  void visitPHINode(PHINode &PN) {
581    if (PN.use_empty())
582      return markAsDead(PN);
583    if (!IsOffsetKnown)
584      return PI.setAborted(&PN);
585
586    // See if we already have computed info on this node.
587    uint64_t &PHISize = PHIOrSelectSizes[&PN];
588    if (!PHISize) {
589      // This is a new PHI node, check for an unsafe use of the PHI node.
590      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&PN, PHISize))
591        return PI.setAborted(UnsafeI);
592    }
593
594    // For PHI and select operands outside the alloca, we can't nuke the entire
595    // phi or select -- the other side might still be relevant, so we special
596    // case them here and use a separate structure to track the operands
597    // themselves which should be replaced with undef.
598    // FIXME: This should instead be escaped in the event we're instrumenting
599    // for address sanitization.
600    if ((Offset.isNegative() && (-Offset).uge(PHISize)) ||
601        (!Offset.isNegative() && Offset.uge(AllocSize))) {
602      S.DeadOperands.push_back(U);
603      return;
604    }
605
606    insertUse(PN, Offset, PHISize);
607  }
608
609  void visitSelectInst(SelectInst &SI) {
610    if (SI.use_empty())
611      return markAsDead(SI);
612    if (Value *Result = foldSelectInst(SI)) {
613      if (Result == *U)
614        // If the result of the constant fold will be the pointer, recurse
615        // through the select as if we had RAUW'ed it.
616        enqueueUsers(SI);
617      else
618        // Otherwise the operand to the select is dead, and we can replace it
619        // with undef.
620        S.DeadOperands.push_back(U);
621
622      return;
623    }
624    if (!IsOffsetKnown)
625      return PI.setAborted(&SI);
626
627    // See if we already have computed info on this node.
628    uint64_t &SelectSize = PHIOrSelectSizes[&SI];
629    if (!SelectSize) {
630      // This is a new Select, check for an unsafe use of it.
631      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&SI, SelectSize))
632        return PI.setAborted(UnsafeI);
633    }
634
635    // For PHI and select operands outside the alloca, we can't nuke the entire
636    // phi or select -- the other side might still be relevant, so we special
637    // case them here and use a separate structure to track the operands
638    // themselves which should be replaced with undef.
639    // FIXME: This should instead be escaped in the event we're instrumenting
640    // for address sanitization.
641    if ((Offset.isNegative() && Offset.uge(SelectSize)) ||
642        (!Offset.isNegative() && Offset.uge(AllocSize))) {
643      S.DeadOperands.push_back(U);
644      return;
645    }
646
647    insertUse(SI, Offset, SelectSize);
648  }
649
650  /// \brief Disable SROA entirely if there are unhandled users of the alloca.
651  void visitInstruction(Instruction &I) {
652    PI.setAborted(&I);
653  }
654};
655
656AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
657    :
658#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
659      AI(AI),
660#endif
661      PointerEscapingInstr(0) {
662  SliceBuilder PB(DL, AI, *this);
663  SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
664  if (PtrI.isEscaped() || PtrI.isAborted()) {
665    // FIXME: We should sink the escape vs. abort info into the caller nicely,
666    // possibly by just storing the PtrInfo in the AllocaSlices.
667    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
668                                                  : PtrI.getAbortingInst();
669    assert(PointerEscapingInstr && "Did not track a bad instruction");
670    return;
671  }
672
673  Slices.erase(std::remove_if(Slices.begin(), Slices.end(),
674                              std::mem_fun_ref(&Slice::isDead)),
675               Slices.end());
676
677  // Sort the uses. This arranges for the offsets to be in ascending order,
678  // and the sizes to be in descending order.
679  std::sort(Slices.begin(), Slices.end());
680}
681
682#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
683
684void AllocaSlices::print(raw_ostream &OS, const_iterator I,
685                         StringRef Indent) const {
686  printSlice(OS, I, Indent);
687  printUse(OS, I, Indent);
688}
689
690void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
691                              StringRef Indent) const {
692  OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
693     << " slice #" << (I - begin())
694     << (I->isSplittable() ? " (splittable)" : "") << "\n";
695}
696
697void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
698                            StringRef Indent) const {
699  OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
700}
701
702void AllocaSlices::print(raw_ostream &OS) const {
703  if (PointerEscapingInstr) {
704    OS << "Can't analyze slices for alloca: " << AI << "\n"
705       << "  A pointer to this alloca escaped by:\n"
706       << "  " << *PointerEscapingInstr << "\n";
707    return;
708  }
709
710  OS << "Slices of alloca: " << AI << "\n";
711  for (const_iterator I = begin(), E = end(); I != E; ++I)
712    print(OS, I);
713}
714
715void AllocaSlices::dump(const_iterator I) const { print(dbgs(), I); }
716void AllocaSlices::dump() const { print(dbgs()); }
717
718#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
719
720namespace {
721/// \brief Implementation of LoadAndStorePromoter for promoting allocas.
722///
723/// This subclass of LoadAndStorePromoter adds overrides to handle promoting
724/// the loads and stores of an alloca instruction, as well as updating its
725/// debug information. This is used when a domtree is unavailable and thus
726/// mem2reg in its full form can't be used to handle promotion of allocas to
727/// scalar values.
728class AllocaPromoter : public LoadAndStorePromoter {
729  AllocaInst &AI;
730  DIBuilder &DIB;
731
732  SmallVector<DbgDeclareInst *, 4> DDIs;
733  SmallVector<DbgValueInst *, 4> DVIs;
734
735public:
736  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
737                 AllocaInst &AI, DIBuilder &DIB)
738    : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {}
739
740  void run(const SmallVectorImpl<Instruction*> &Insts) {
741    // Retain the debug information attached to the alloca for use when
742    // rewriting loads and stores.
743    if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) {
744      for (Value::use_iterator UI = DebugNode->use_begin(),
745                               UE = DebugNode->use_end();
746           UI != UE; ++UI)
747        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
748          DDIs.push_back(DDI);
749        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
750          DVIs.push_back(DVI);
751    }
752
753    LoadAndStorePromoter::run(Insts);
754
755    // While we have the debug information, clear it off of the alloca. The
756    // caller takes care of deleting the alloca.
757    while (!DDIs.empty())
758      DDIs.pop_back_val()->eraseFromParent();
759    while (!DVIs.empty())
760      DVIs.pop_back_val()->eraseFromParent();
761  }
762
763  virtual bool isInstInList(Instruction *I,
764                            const SmallVectorImpl<Instruction*> &Insts) const {
765    if (LoadInst *LI = dyn_cast<LoadInst>(I))
766      return LI->getOperand(0) == &AI;
767    return cast<StoreInst>(I)->getPointerOperand() == &AI;
768  }
769
770  virtual void updateDebugInfo(Instruction *Inst) const {
771    for (SmallVectorImpl<DbgDeclareInst *>::const_iterator I = DDIs.begin(),
772           E = DDIs.end(); I != E; ++I) {
773      DbgDeclareInst *DDI = *I;
774      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
775        ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
776      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
777        ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
778    }
779    for (SmallVectorImpl<DbgValueInst *>::const_iterator I = DVIs.begin(),
780           E = DVIs.end(); I != E; ++I) {
781      DbgValueInst *DVI = *I;
782      Value *Arg = 0;
783      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
784        // If an argument is zero extended then use argument directly. The ZExt
785        // may be zapped by an optimization pass in future.
786        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
787          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
788        else if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
789          Arg = dyn_cast<Argument>(SExt->getOperand(0));
790        if (!Arg)
791          Arg = SI->getValueOperand();
792      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
793        Arg = LI->getPointerOperand();
794      } else {
795        continue;
796      }
797      Instruction *DbgVal =
798        DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
799                                     Inst);
800      DbgVal->setDebugLoc(DVI->getDebugLoc());
801    }
802  }
803};
804} // end anon namespace
805
806
807namespace {
808/// \brief An optimization pass providing Scalar Replacement of Aggregates.
809///
810/// This pass takes allocations which can be completely analyzed (that is, they
811/// don't escape) and tries to turn them into scalar SSA values. There are
812/// a few steps to this process.
813///
814/// 1) It takes allocations of aggregates and analyzes the ways in which they
815///    are used to try to split them into smaller allocations, ideally of
816///    a single scalar data type. It will split up memcpy and memset accesses
817///    as necessary and try to isolate individual scalar accesses.
818/// 2) It will transform accesses into forms which are suitable for SSA value
819///    promotion. This can be replacing a memset with a scalar store of an
820///    integer value, or it can involve speculating operations on a PHI or
821///    select to be a PHI or select of the results.
822/// 3) Finally, this will try to detect a pattern of accesses which map cleanly
823///    onto insert and extract operations on a vector value, and convert them to
824///    this form. By doing so, it will enable promotion of vector aggregates to
825///    SSA vector values.
826class SROA : public FunctionPass {
827  const bool RequiresDomTree;
828
829  LLVMContext *C;
830  const DataLayout *DL;
831  DominatorTree *DT;
832
833  /// \brief Worklist of alloca instructions to simplify.
834  ///
835  /// Each alloca in the function is added to this. Each new alloca formed gets
836  /// added to it as well to recursively simplify unless that alloca can be
837  /// directly promoted. Finally, each time we rewrite a use of an alloca other
838  /// the one being actively rewritten, we add it back onto the list if not
839  /// already present to ensure it is re-visited.
840  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist;
841
842  /// \brief A collection of instructions to delete.
843  /// We try to batch deletions to simplify code and make things a bit more
844  /// efficient.
845  SetVector<Instruction *, SmallVector<Instruction *, 8> > DeadInsts;
846
847  /// \brief Post-promotion worklist.
848  ///
849  /// Sometimes we discover an alloca which has a high probability of becoming
850  /// viable for SROA after a round of promotion takes place. In those cases,
851  /// the alloca is enqueued here for re-processing.
852  ///
853  /// Note that we have to be very careful to clear allocas out of this list in
854  /// the event they are deleted.
855  SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > PostPromotionWorklist;
856
857  /// \brief A collection of alloca instructions we can directly promote.
858  std::vector<AllocaInst *> PromotableAllocas;
859
860  /// \brief A worklist of PHIs to speculate prior to promoting allocas.
861  ///
862  /// All of these PHIs have been checked for the safety of speculation and by
863  /// being speculated will allow promoting allocas currently in the promotable
864  /// queue.
865  SetVector<PHINode *, SmallVector<PHINode *, 2> > SpeculatablePHIs;
866
867  /// \brief A worklist of select instructions to speculate prior to promoting
868  /// allocas.
869  ///
870  /// All of these select instructions have been checked for the safety of
871  /// speculation and by being speculated will allow promoting allocas
872  /// currently in the promotable queue.
873  SetVector<SelectInst *, SmallVector<SelectInst *, 2> > SpeculatableSelects;
874
875public:
876  SROA(bool RequiresDomTree = true)
877      : FunctionPass(ID), RequiresDomTree(RequiresDomTree),
878        C(0), DL(0), DT(0) {
879    initializeSROAPass(*PassRegistry::getPassRegistry());
880  }
881  bool runOnFunction(Function &F);
882  void getAnalysisUsage(AnalysisUsage &AU) const;
883
884  const char *getPassName() const { return "SROA"; }
885  static char ID;
886
887private:
888  friend class PHIOrSelectSpeculator;
889  friend class AllocaSliceRewriter;
890
891  bool rewritePartition(AllocaInst &AI, AllocaSlices &S,
892                        AllocaSlices::iterator B, AllocaSlices::iterator E,
893                        int64_t BeginOffset, int64_t EndOffset,
894                        ArrayRef<AllocaSlices::iterator> SplitUses);
895  bool splitAlloca(AllocaInst &AI, AllocaSlices &S);
896  bool runOnAlloca(AllocaInst &AI);
897  void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas);
898  bool promoteAllocas(Function &F);
899};
900}
901
902char SROA::ID = 0;
903
904FunctionPass *llvm::createSROAPass(bool RequiresDomTree) {
905  return new SROA(RequiresDomTree);
906}
907
908INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates",
909                      false, false)
910INITIALIZE_PASS_DEPENDENCY(DominatorTree)
911INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates",
912                    false, false)
913
914/// Walk the range of a partitioning looking for a common type to cover this
915/// sequence of slices.
916static Type *findCommonType(AllocaSlices::const_iterator B,
917                            AllocaSlices::const_iterator E,
918                            uint64_t EndOffset) {
919  Type *Ty = 0;
920  for (AllocaSlices::const_iterator I = B; I != E; ++I) {
921    Use *U = I->getUse();
922    if (isa<IntrinsicInst>(*U->getUser()))
923      continue;
924    if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
925      continue;
926
927    Type *UserTy = 0;
928    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser()))
929      UserTy = LI->getType();
930    else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser()))
931      UserTy = SI->getValueOperand()->getType();
932    else
933      return 0; // Bail if we have weird uses.
934
935    if (IntegerType *ITy = dyn_cast<IntegerType>(UserTy)) {
936      // If the type is larger than the partition, skip it. We only encounter
937      // this for split integer operations where we want to use the type of the
938      // entity causing the split.
939      if (ITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
940        continue;
941
942      // If we have found an integer type use covering the alloca, use that
943      // regardless of the other types, as integers are often used for a
944      // "bucket
945      // of bits" type.
946      return ITy;
947    }
948
949    if (Ty && Ty != UserTy)
950      return 0;
951
952    Ty = UserTy;
953  }
954  return Ty;
955}
956
957/// PHI instructions that use an alloca and are subsequently loaded can be
958/// rewritten to load both input pointers in the pred blocks and then PHI the
959/// results, allowing the load of the alloca to be promoted.
960/// From this:
961///   %P2 = phi [i32* %Alloca, i32* %Other]
962///   %V = load i32* %P2
963/// to:
964///   %V1 = load i32* %Alloca      -> will be mem2reg'd
965///   ...
966///   %V2 = load i32* %Other
967///   ...
968///   %V = phi [i32 %V1, i32 %V2]
969///
970/// We can do this to a select if its only uses are loads and if the operands
971/// to the select can be loaded unconditionally.
972///
973/// FIXME: This should be hoisted into a generic utility, likely in
974/// Transforms/Util/Local.h
975static bool isSafePHIToSpeculate(PHINode &PN,
976                                 const DataLayout *DL = 0) {
977  // For now, we can only do this promotion if the load is in the same block
978  // as the PHI, and if there are no stores between the phi and load.
979  // TODO: Allow recursive phi users.
980  // TODO: Allow stores.
981  BasicBlock *BB = PN.getParent();
982  unsigned MaxAlign = 0;
983  bool HaveLoad = false;
984  for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); UI != UE;
985       ++UI) {
986    LoadInst *LI = dyn_cast<LoadInst>(*UI);
987    if (LI == 0 || !LI->isSimple())
988      return false;
989
990    // For now we only allow loads in the same block as the PHI.  This is
991    // a common case that happens when instcombine merges two loads through
992    // a PHI.
993    if (LI->getParent() != BB)
994      return false;
995
996    // Ensure that there are no instructions between the PHI and the load that
997    // could store.
998    for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI)
999      if (BBI->mayWriteToMemory())
1000        return false;
1001
1002    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1003    HaveLoad = true;
1004  }
1005
1006  if (!HaveLoad)
1007    return false;
1008
1009  // We can only transform this if it is safe to push the loads into the
1010  // predecessor blocks. The only thing to watch out for is that we can't put
1011  // a possibly trapping load in the predecessor if it is a critical edge.
1012  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1013    TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1014    Value *InVal = PN.getIncomingValue(Idx);
1015
1016    // If the value is produced by the terminator of the predecessor (an
1017    // invoke) or it has side-effects, there is no valid place to put a load
1018    // in the predecessor.
1019    if (TI == InVal || TI->mayHaveSideEffects())
1020      return false;
1021
1022    // If the predecessor has a single successor, then the edge isn't
1023    // critical.
1024    if (TI->getNumSuccessors() == 1)
1025      continue;
1026
1027    // If this pointer is always safe to load, or if we can prove that there
1028    // is already a load in the block, then we can move the load to the pred
1029    // block.
1030    if (InVal->isDereferenceablePointer() ||
1031        isSafeToLoadUnconditionally(InVal, TI, MaxAlign, DL))
1032      continue;
1033
1034    return false;
1035  }
1036
1037  return true;
1038}
1039
1040static void speculatePHINodeLoads(PHINode &PN) {
1041  DEBUG(dbgs() << "    original: " << PN << "\n");
1042
1043  Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1044  IRBuilderTy PHIBuilder(&PN);
1045  PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1046                                        PN.getName() + ".sroa.speculated");
1047
1048  // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1049  // matter which one we get and if any differ.
1050  LoadInst *SomeLoad = cast<LoadInst>(*PN.use_begin());
1051  MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1052  unsigned Align = SomeLoad->getAlignment();
1053
1054  // Rewrite all loads of the PN to use the new PHI.
1055  while (!PN.use_empty()) {
1056    LoadInst *LI = cast<LoadInst>(*PN.use_begin());
1057    LI->replaceAllUsesWith(NewPN);
1058    LI->eraseFromParent();
1059  }
1060
1061  // Inject loads into all of the pred blocks.
1062  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1063    BasicBlock *Pred = PN.getIncomingBlock(Idx);
1064    TerminatorInst *TI = Pred->getTerminator();
1065    Value *InVal = PN.getIncomingValue(Idx);
1066    IRBuilderTy PredBuilder(TI);
1067
1068    LoadInst *Load = PredBuilder.CreateLoad(
1069        InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1070    ++NumLoadsSpeculated;
1071    Load->setAlignment(Align);
1072    if (TBAATag)
1073      Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1074    NewPN->addIncoming(Load, Pred);
1075  }
1076
1077  DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1078  PN.eraseFromParent();
1079}
1080
1081/// Select instructions that use an alloca and are subsequently loaded can be
1082/// rewritten to load both input pointers and then select between the result,
1083/// allowing the load of the alloca to be promoted.
1084/// From this:
1085///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1086///   %V = load i32* %P2
1087/// to:
1088///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1089///   %V2 = load i32* %Other
1090///   %V = select i1 %cond, i32 %V1, i32 %V2
1091///
1092/// We can do this to a select if its only uses are loads and if the operand
1093/// to the select can be loaded unconditionally.
1094static bool isSafeSelectToSpeculate(SelectInst &SI, const DataLayout *DL = 0) {
1095  Value *TValue = SI.getTrueValue();
1096  Value *FValue = SI.getFalseValue();
1097  bool TDerefable = TValue->isDereferenceablePointer();
1098  bool FDerefable = FValue->isDereferenceablePointer();
1099
1100  for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); UI != UE;
1101       ++UI) {
1102    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1103    if (LI == 0 || !LI->isSimple())
1104      return false;
1105
1106    // Both operands to the select need to be dereferencable, either
1107    // absolutely (e.g. allocas) or at this point because we can see other
1108    // accesses to it.
1109    if (!TDerefable &&
1110        !isSafeToLoadUnconditionally(TValue, LI, LI->getAlignment(), DL))
1111      return false;
1112    if (!FDerefable &&
1113        !isSafeToLoadUnconditionally(FValue, LI, LI->getAlignment(), DL))
1114      return false;
1115  }
1116
1117  return true;
1118}
1119
1120static void speculateSelectInstLoads(SelectInst &SI) {
1121  DEBUG(dbgs() << "    original: " << SI << "\n");
1122
1123  IRBuilderTy IRB(&SI);
1124  Value *TV = SI.getTrueValue();
1125  Value *FV = SI.getFalseValue();
1126  // Replace the loads of the select with a select of two loads.
1127  while (!SI.use_empty()) {
1128    LoadInst *LI = cast<LoadInst>(*SI.use_begin());
1129    assert(LI->isSimple() && "We only speculate simple loads");
1130
1131    IRB.SetInsertPoint(LI);
1132    LoadInst *TL =
1133        IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1134    LoadInst *FL =
1135        IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1136    NumLoadsSpeculated += 2;
1137
1138    // Transfer alignment and TBAA info if present.
1139    TL->setAlignment(LI->getAlignment());
1140    FL->setAlignment(LI->getAlignment());
1141    if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1142      TL->setMetadata(LLVMContext::MD_tbaa, Tag);
1143      FL->setMetadata(LLVMContext::MD_tbaa, Tag);
1144    }
1145
1146    Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1147                                LI->getName() + ".sroa.speculated");
1148
1149    DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1150    LI->replaceAllUsesWith(V);
1151    LI->eraseFromParent();
1152  }
1153  SI.eraseFromParent();
1154}
1155
1156/// \brief Build a GEP out of a base pointer and indices.
1157///
1158/// This will return the BasePtr if that is valid, or build a new GEP
1159/// instruction using the IRBuilder if GEP-ing is needed.
1160static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1161                       SmallVectorImpl<Value *> &Indices) {
1162  if (Indices.empty())
1163    return BasePtr;
1164
1165  // A single zero index is a no-op, so check for this and avoid building a GEP
1166  // in that case.
1167  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1168    return BasePtr;
1169
1170  return IRB.CreateInBoundsGEP(BasePtr, Indices, "idx");
1171}
1172
1173/// \brief Get a natural GEP off of the BasePtr walking through Ty toward
1174/// TargetTy without changing the offset of the pointer.
1175///
1176/// This routine assumes we've already established a properly offset GEP with
1177/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1178/// zero-indices down through type layers until we find one the same as
1179/// TargetTy. If we can't find one with the same type, we at least try to use
1180/// one with the same size. If none of that works, we just produce the GEP as
1181/// indicated by Indices to have the correct offset.
1182static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1183                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1184                                    SmallVectorImpl<Value *> &Indices) {
1185  if (Ty == TargetTy)
1186    return buildGEP(IRB, BasePtr, Indices);
1187
1188  // See if we can descend into a struct and locate a field with the correct
1189  // type.
1190  unsigned NumLayers = 0;
1191  Type *ElementTy = Ty;
1192  do {
1193    if (ElementTy->isPointerTy())
1194      break;
1195    if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) {
1196      ElementTy = SeqTy->getElementType();
1197      // Note that we use the default address space as this index is over an
1198      // array or a vector, not a pointer.
1199      Indices.push_back(IRB.getInt(APInt(DL.getPointerSizeInBits(0), 0)));
1200    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1201      if (STy->element_begin() == STy->element_end())
1202        break; // Nothing left to descend into.
1203      ElementTy = *STy->element_begin();
1204      Indices.push_back(IRB.getInt32(0));
1205    } else {
1206      break;
1207    }
1208    ++NumLayers;
1209  } while (ElementTy != TargetTy);
1210  if (ElementTy != TargetTy)
1211    Indices.erase(Indices.end() - NumLayers, Indices.end());
1212
1213  return buildGEP(IRB, BasePtr, Indices);
1214}
1215
1216/// \brief Recursively compute indices for a natural GEP.
1217///
1218/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1219/// element types adding appropriate indices for the GEP.
1220static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1221                                       Value *Ptr, Type *Ty, APInt &Offset,
1222                                       Type *TargetTy,
1223                                       SmallVectorImpl<Value *> &Indices) {
1224  if (Offset == 0)
1225    return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices);
1226
1227  // We can't recurse through pointer types.
1228  if (Ty->isPointerTy())
1229    return 0;
1230
1231  // We try to analyze GEPs over vectors here, but note that these GEPs are
1232  // extremely poorly defined currently. The long-term goal is to remove GEPing
1233  // over a vector from the IR completely.
1234  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1235    unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1236    if (ElementSizeInBits % 8)
1237      return 0; // GEPs over non-multiple of 8 size vector elements are invalid.
1238    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1239    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1240    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1241      return 0;
1242    Offset -= NumSkippedElements * ElementSize;
1243    Indices.push_back(IRB.getInt(NumSkippedElements));
1244    return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1245                                    Offset, TargetTy, Indices);
1246  }
1247
1248  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1249    Type *ElementTy = ArrTy->getElementType();
1250    APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1251    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1252    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1253      return 0;
1254
1255    Offset -= NumSkippedElements * ElementSize;
1256    Indices.push_back(IRB.getInt(NumSkippedElements));
1257    return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1258                                    Indices);
1259  }
1260
1261  StructType *STy = dyn_cast<StructType>(Ty);
1262  if (!STy)
1263    return 0;
1264
1265  const StructLayout *SL = DL.getStructLayout(STy);
1266  uint64_t StructOffset = Offset.getZExtValue();
1267  if (StructOffset >= SL->getSizeInBytes())
1268    return 0;
1269  unsigned Index = SL->getElementContainingOffset(StructOffset);
1270  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1271  Type *ElementTy = STy->getElementType(Index);
1272  if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1273    return 0; // The offset points into alignment padding.
1274
1275  Indices.push_back(IRB.getInt32(Index));
1276  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1277                                  Indices);
1278}
1279
1280/// \brief Get a natural GEP from a base pointer to a particular offset and
1281/// resulting in a particular type.
1282///
1283/// The goal is to produce a "natural" looking GEP that works with the existing
1284/// composite types to arrive at the appropriate offset and element type for
1285/// a pointer. TargetTy is the element type the returned GEP should point-to if
1286/// possible. We recurse by decreasing Offset, adding the appropriate index to
1287/// Indices, and setting Ty to the result subtype.
1288///
1289/// If no natural GEP can be constructed, this function returns null.
1290static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1291                                      Value *Ptr, APInt Offset, Type *TargetTy,
1292                                      SmallVectorImpl<Value *> &Indices) {
1293  PointerType *Ty = cast<PointerType>(Ptr->getType());
1294
1295  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1296  // an i8.
1297  if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8))
1298    return 0;
1299
1300  Type *ElementTy = Ty->getElementType();
1301  if (!ElementTy->isSized())
1302    return 0; // We can't GEP through an unsized element.
1303  APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1304  if (ElementSize == 0)
1305    return 0; // Zero-length arrays can't help us build a natural GEP.
1306  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1307
1308  Offset -= NumSkippedElements * ElementSize;
1309  Indices.push_back(IRB.getInt(NumSkippedElements));
1310  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1311                                  Indices);
1312}
1313
1314/// \brief Compute an adjusted pointer from Ptr by Offset bytes where the
1315/// resulting pointer has PointerTy.
1316///
1317/// This tries very hard to compute a "natural" GEP which arrives at the offset
1318/// and produces the pointer type desired. Where it cannot, it will try to use
1319/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1320/// fails, it will try to use an existing i8* and GEP to the byte offset and
1321/// bitcast to the type.
1322///
1323/// The strategy for finding the more natural GEPs is to peel off layers of the
1324/// pointer, walking back through bit casts and GEPs, searching for a base
1325/// pointer from which we can compute a natural GEP with the desired
1326/// properties. The algorithm tries to fold as many constant indices into
1327/// a single GEP as possible, thus making each GEP more independent of the
1328/// surrounding code.
1329static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL,
1330                             Value *Ptr, APInt Offset, Type *PointerTy) {
1331  // Even though we don't look through PHI nodes, we could be called on an
1332  // instruction in an unreachable block, which may be on a cycle.
1333  SmallPtrSet<Value *, 4> Visited;
1334  Visited.insert(Ptr);
1335  SmallVector<Value *, 4> Indices;
1336
1337  // We may end up computing an offset pointer that has the wrong type. If we
1338  // never are able to compute one directly that has the correct type, we'll
1339  // fall back to it, so keep it around here.
1340  Value *OffsetPtr = 0;
1341
1342  // Remember any i8 pointer we come across to re-use if we need to do a raw
1343  // byte offset.
1344  Value *Int8Ptr = 0;
1345  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1346
1347  Type *TargetTy = PointerTy->getPointerElementType();
1348
1349  do {
1350    // First fold any existing GEPs into the offset.
1351    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1352      APInt GEPOffset(Offset.getBitWidth(), 0);
1353      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1354        break;
1355      Offset += GEPOffset;
1356      Ptr = GEP->getPointerOperand();
1357      if (!Visited.insert(Ptr))
1358        break;
1359    }
1360
1361    // See if we can perform a natural GEP here.
1362    Indices.clear();
1363    if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1364                                           Indices)) {
1365      if (P->getType() == PointerTy) {
1366        // Zap any offset pointer that we ended up computing in previous rounds.
1367        if (OffsetPtr && OffsetPtr->use_empty())
1368          if (Instruction *I = dyn_cast<Instruction>(OffsetPtr))
1369            I->eraseFromParent();
1370        return P;
1371      }
1372      if (!OffsetPtr) {
1373        OffsetPtr = P;
1374      }
1375    }
1376
1377    // Stash this pointer if we've found an i8*.
1378    if (Ptr->getType()->isIntegerTy(8)) {
1379      Int8Ptr = Ptr;
1380      Int8PtrOffset = Offset;
1381    }
1382
1383    // Peel off a layer of the pointer and update the offset appropriately.
1384    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1385      Ptr = cast<Operator>(Ptr)->getOperand(0);
1386    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1387      if (GA->mayBeOverridden())
1388        break;
1389      Ptr = GA->getAliasee();
1390    } else {
1391      break;
1392    }
1393    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1394  } while (Visited.insert(Ptr));
1395
1396  if (!OffsetPtr) {
1397    if (!Int8Ptr) {
1398      Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(),
1399                                  "raw_cast");
1400      Int8PtrOffset = Offset;
1401    }
1402
1403    OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr :
1404      IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset),
1405                            "raw_idx");
1406  }
1407  Ptr = OffsetPtr;
1408
1409  // On the off chance we were targeting i8*, guard the bitcast here.
1410  if (Ptr->getType() != PointerTy)
1411    Ptr = IRB.CreateBitCast(Ptr, PointerTy, "cast");
1412
1413  return Ptr;
1414}
1415
1416/// \brief Test whether we can convert a value from the old to the new type.
1417///
1418/// This predicate should be used to guard calls to convertValue in order to
1419/// ensure that we only try to convert viable values. The strategy is that we
1420/// will peel off single element struct and array wrappings to get to an
1421/// underlying value, and convert that value.
1422static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1423  if (OldTy == NewTy)
1424    return true;
1425  if (IntegerType *OldITy = dyn_cast<IntegerType>(OldTy))
1426    if (IntegerType *NewITy = dyn_cast<IntegerType>(NewTy))
1427      if (NewITy->getBitWidth() >= OldITy->getBitWidth())
1428        return true;
1429  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1430    return false;
1431  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1432    return false;
1433
1434  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1435    if (NewTy->isPointerTy() && OldTy->isPointerTy())
1436      return true;
1437    if (NewTy->isIntegerTy() || OldTy->isIntegerTy())
1438      return true;
1439    return false;
1440  }
1441
1442  return true;
1443}
1444
1445/// \brief Generic routine to convert an SSA value to a value of a different
1446/// type.
1447///
1448/// This will try various different casting techniques, such as bitcasts,
1449/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1450/// two types for viability with this routine.
1451static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1452                           Type *Ty) {
1453  assert(canConvertValue(DL, V->getType(), Ty) &&
1454         "Value not convertable to type");
1455  if (V->getType() == Ty)
1456    return V;
1457  if (IntegerType *OldITy = dyn_cast<IntegerType>(V->getType()))
1458    if (IntegerType *NewITy = dyn_cast<IntegerType>(Ty))
1459      if (NewITy->getBitWidth() > OldITy->getBitWidth())
1460        return IRB.CreateZExt(V, NewITy);
1461  if (V->getType()->isIntegerTy() && Ty->isPointerTy())
1462    return IRB.CreateIntToPtr(V, Ty);
1463  if (V->getType()->isPointerTy() && Ty->isIntegerTy())
1464    return IRB.CreatePtrToInt(V, Ty);
1465
1466  return IRB.CreateBitCast(V, Ty);
1467}
1468
1469/// \brief Test whether the given slice use can be promoted to a vector.
1470///
1471/// This function is called to test each entry in a partioning which is slated
1472/// for a single slice.
1473static bool isVectorPromotionViableForSlice(
1474    const DataLayout &DL, AllocaSlices &S, uint64_t SliceBeginOffset,
1475    uint64_t SliceEndOffset, VectorType *Ty, uint64_t ElementSize,
1476    AllocaSlices::const_iterator I) {
1477  // First validate the slice offsets.
1478  uint64_t BeginOffset =
1479      std::max(I->beginOffset(), SliceBeginOffset) - SliceBeginOffset;
1480  uint64_t BeginIndex = BeginOffset / ElementSize;
1481  if (BeginIndex * ElementSize != BeginOffset ||
1482      BeginIndex >= Ty->getNumElements())
1483    return false;
1484  uint64_t EndOffset =
1485      std::min(I->endOffset(), SliceEndOffset) - SliceBeginOffset;
1486  uint64_t EndIndex = EndOffset / ElementSize;
1487  if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1488    return false;
1489
1490  assert(EndIndex > BeginIndex && "Empty vector!");
1491  uint64_t NumElements = EndIndex - BeginIndex;
1492  Type *SliceTy =
1493      (NumElements == 1) ? Ty->getElementType()
1494                         : VectorType::get(Ty->getElementType(), NumElements);
1495
1496  Type *SplitIntTy =
1497      Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1498
1499  Use *U = I->getUse();
1500
1501  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1502    if (MI->isVolatile())
1503      return false;
1504    if (!I->isSplittable())
1505      return false; // Skip any unsplittable intrinsics.
1506  } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1507    // Disable vector promotion when there are loads or stores of an FCA.
1508    return false;
1509  } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1510    if (LI->isVolatile())
1511      return false;
1512    Type *LTy = LI->getType();
1513    if (SliceBeginOffset > I->beginOffset() ||
1514        SliceEndOffset < I->endOffset()) {
1515      assert(LTy->isIntegerTy());
1516      LTy = SplitIntTy;
1517    }
1518    if (!canConvertValue(DL, SliceTy, LTy))
1519      return false;
1520  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1521    if (SI->isVolatile())
1522      return false;
1523    Type *STy = SI->getValueOperand()->getType();
1524    if (SliceBeginOffset > I->beginOffset() ||
1525        SliceEndOffset < I->endOffset()) {
1526      assert(STy->isIntegerTy());
1527      STy = SplitIntTy;
1528    }
1529    if (!canConvertValue(DL, STy, SliceTy))
1530      return false;
1531  } else {
1532    return false;
1533  }
1534
1535  return true;
1536}
1537
1538/// \brief Test whether the given alloca partitioning and range of slices can be
1539/// promoted to a vector.
1540///
1541/// This is a quick test to check whether we can rewrite a particular alloca
1542/// partition (and its newly formed alloca) into a vector alloca with only
1543/// whole-vector loads and stores such that it could be promoted to a vector
1544/// SSA value. We only can ensure this for a limited set of operations, and we
1545/// don't want to do the rewrites unless we are confident that the result will
1546/// be promotable, so we have an early test here.
1547static bool
1548isVectorPromotionViable(const DataLayout &DL, Type *AllocaTy, AllocaSlices &S,
1549                        uint64_t SliceBeginOffset, uint64_t SliceEndOffset,
1550                        AllocaSlices::const_iterator I,
1551                        AllocaSlices::const_iterator E,
1552                        ArrayRef<AllocaSlices::iterator> SplitUses) {
1553  VectorType *Ty = dyn_cast<VectorType>(AllocaTy);
1554  if (!Ty)
1555    return false;
1556
1557  uint64_t ElementSize = DL.getTypeSizeInBits(Ty->getScalarType());
1558
1559  // While the definition of LLVM vectors is bitpacked, we don't support sizes
1560  // that aren't byte sized.
1561  if (ElementSize % 8)
1562    return false;
1563  assert((DL.getTypeSizeInBits(Ty) % 8) == 0 &&
1564         "vector size not a multiple of element size?");
1565  ElementSize /= 8;
1566
1567  for (; I != E; ++I)
1568    if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1569                                         SliceEndOffset, Ty, ElementSize, I))
1570      return false;
1571
1572  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1573                                                        SUE = SplitUses.end();
1574       SUI != SUE; ++SUI)
1575    if (!isVectorPromotionViableForSlice(DL, S, SliceBeginOffset,
1576                                         SliceEndOffset, Ty, ElementSize, *SUI))
1577      return false;
1578
1579  return true;
1580}
1581
1582/// \brief Test whether a slice of an alloca is valid for integer widening.
1583///
1584/// This implements the necessary checking for the \c isIntegerWideningViable
1585/// test below on a single slice of the alloca.
1586static bool isIntegerWideningViableForSlice(const DataLayout &DL,
1587                                            Type *AllocaTy,
1588                                            uint64_t AllocBeginOffset,
1589                                            uint64_t Size, AllocaSlices &S,
1590                                            AllocaSlices::const_iterator I,
1591                                            bool &WholeAllocaOp) {
1592  uint64_t RelBegin = I->beginOffset() - AllocBeginOffset;
1593  uint64_t RelEnd = I->endOffset() - AllocBeginOffset;
1594
1595  // We can't reasonably handle cases where the load or store extends past
1596  // the end of the aloca's type and into its padding.
1597  if (RelEnd > Size)
1598    return false;
1599
1600  Use *U = I->getUse();
1601
1602  if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1603    if (LI->isVolatile())
1604      return false;
1605    if (RelBegin == 0 && RelEnd == Size)
1606      WholeAllocaOp = true;
1607    if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
1608      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1609        return false;
1610    } else if (RelBegin != 0 || RelEnd != Size ||
1611               !canConvertValue(DL, AllocaTy, LI->getType())) {
1612      // Non-integer loads need to be convertible from the alloca type so that
1613      // they are promotable.
1614      return false;
1615    }
1616  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1617    Type *ValueTy = SI->getValueOperand()->getType();
1618    if (SI->isVolatile())
1619      return false;
1620    if (RelBegin == 0 && RelEnd == Size)
1621      WholeAllocaOp = true;
1622    if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
1623      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1624        return false;
1625    } else if (RelBegin != 0 || RelEnd != Size ||
1626               !canConvertValue(DL, ValueTy, AllocaTy)) {
1627      // Non-integer stores need to be convertible to the alloca type so that
1628      // they are promotable.
1629      return false;
1630    }
1631  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1632    if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
1633      return false;
1634    if (!I->isSplittable())
1635      return false; // Skip any unsplittable intrinsics.
1636  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1637    if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1638        II->getIntrinsicID() != Intrinsic::lifetime_end)
1639      return false;
1640  } else {
1641    return false;
1642  }
1643
1644  return true;
1645}
1646
1647/// \brief Test whether the given alloca partition's integer operations can be
1648/// widened to promotable ones.
1649///
1650/// This is a quick test to check whether we can rewrite the integer loads and
1651/// stores to a particular alloca into wider loads and stores and be able to
1652/// promote the resulting alloca.
1653static bool
1654isIntegerWideningViable(const DataLayout &DL, Type *AllocaTy,
1655                        uint64_t AllocBeginOffset, AllocaSlices &S,
1656                        AllocaSlices::const_iterator I,
1657                        AllocaSlices::const_iterator E,
1658                        ArrayRef<AllocaSlices::iterator> SplitUses) {
1659  uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
1660  // Don't create integer types larger than the maximum bitwidth.
1661  if (SizeInBits > IntegerType::MAX_INT_BITS)
1662    return false;
1663
1664  // Don't try to handle allocas with bit-padding.
1665  if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
1666    return false;
1667
1668  // We need to ensure that an integer type with the appropriate bitwidth can
1669  // be converted to the alloca type, whatever that is. We don't want to force
1670  // the alloca itself to have an integer type if there is a more suitable one.
1671  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
1672  if (!canConvertValue(DL, AllocaTy, IntTy) ||
1673      !canConvertValue(DL, IntTy, AllocaTy))
1674    return false;
1675
1676  uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1677
1678  // While examining uses, we ensure that the alloca has a covering load or
1679  // store. We don't want to widen the integer operations only to fail to
1680  // promote due to some other unsplittable entry (which we may make splittable
1681  // later). However, if there are only splittable uses, go ahead and assume
1682  // that we cover the alloca.
1683  bool WholeAllocaOp = (I != E) ? false : DL.isLegalInteger(SizeInBits);
1684
1685  for (; I != E; ++I)
1686    if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1687                                         S, I, WholeAllocaOp))
1688      return false;
1689
1690  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
1691                                                        SUE = SplitUses.end();
1692       SUI != SUE; ++SUI)
1693    if (!isIntegerWideningViableForSlice(DL, AllocaTy, AllocBeginOffset, Size,
1694                                         S, *SUI, WholeAllocaOp))
1695      return false;
1696
1697  return WholeAllocaOp;
1698}
1699
1700static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1701                             IntegerType *Ty, uint64_t Offset,
1702                             const Twine &Name) {
1703  DEBUG(dbgs() << "       start: " << *V << "\n");
1704  IntegerType *IntTy = cast<IntegerType>(V->getType());
1705  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1706         "Element extends past full value");
1707  uint64_t ShAmt = 8*Offset;
1708  if (DL.isBigEndian())
1709    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1710  if (ShAmt) {
1711    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
1712    DEBUG(dbgs() << "     shifted: " << *V << "\n");
1713  }
1714  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1715         "Cannot extract to a larger integer!");
1716  if (Ty != IntTy) {
1717    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
1718    DEBUG(dbgs() << "     trunced: " << *V << "\n");
1719  }
1720  return V;
1721}
1722
1723static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
1724                            Value *V, uint64_t Offset, const Twine &Name) {
1725  IntegerType *IntTy = cast<IntegerType>(Old->getType());
1726  IntegerType *Ty = cast<IntegerType>(V->getType());
1727  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
1728         "Cannot insert a larger integer!");
1729  DEBUG(dbgs() << "       start: " << *V << "\n");
1730  if (Ty != IntTy) {
1731    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
1732    DEBUG(dbgs() << "    extended: " << *V << "\n");
1733  }
1734  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
1735         "Element store outside of alloca store");
1736  uint64_t ShAmt = 8*Offset;
1737  if (DL.isBigEndian())
1738    ShAmt = 8*(DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
1739  if (ShAmt) {
1740    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
1741    DEBUG(dbgs() << "     shifted: " << *V << "\n");
1742  }
1743
1744  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
1745    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
1746    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
1747    DEBUG(dbgs() << "      masked: " << *Old << "\n");
1748    V = IRB.CreateOr(Old, V, Name + ".insert");
1749    DEBUG(dbgs() << "    inserted: " << *V << "\n");
1750  }
1751  return V;
1752}
1753
1754static Value *extractVector(IRBuilderTy &IRB, Value *V,
1755                            unsigned BeginIndex, unsigned EndIndex,
1756                            const Twine &Name) {
1757  VectorType *VecTy = cast<VectorType>(V->getType());
1758  unsigned NumElements = EndIndex - BeginIndex;
1759  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
1760
1761  if (NumElements == VecTy->getNumElements())
1762    return V;
1763
1764  if (NumElements == 1) {
1765    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
1766                                 Name + ".extract");
1767    DEBUG(dbgs() << "     extract: " << *V << "\n");
1768    return V;
1769  }
1770
1771  SmallVector<Constant*, 8> Mask;
1772  Mask.reserve(NumElements);
1773  for (unsigned i = BeginIndex; i != EndIndex; ++i)
1774    Mask.push_back(IRB.getInt32(i));
1775  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1776                              ConstantVector::get(Mask),
1777                              Name + ".extract");
1778  DEBUG(dbgs() << "     shuffle: " << *V << "\n");
1779  return V;
1780}
1781
1782static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
1783                           unsigned BeginIndex, const Twine &Name) {
1784  VectorType *VecTy = cast<VectorType>(Old->getType());
1785  assert(VecTy && "Can only insert a vector into a vector");
1786
1787  VectorType *Ty = dyn_cast<VectorType>(V->getType());
1788  if (!Ty) {
1789    // Single element to insert.
1790    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
1791                                Name + ".insert");
1792    DEBUG(dbgs() <<  "     insert: " << *V << "\n");
1793    return V;
1794  }
1795
1796  assert(Ty->getNumElements() <= VecTy->getNumElements() &&
1797         "Too many elements!");
1798  if (Ty->getNumElements() == VecTy->getNumElements()) {
1799    assert(V->getType() == VecTy && "Vector type mismatch");
1800    return V;
1801  }
1802  unsigned EndIndex = BeginIndex + Ty->getNumElements();
1803
1804  // When inserting a smaller vector into the larger to store, we first
1805  // use a shuffle vector to widen it with undef elements, and then
1806  // a second shuffle vector to select between the loaded vector and the
1807  // incoming vector.
1808  SmallVector<Constant*, 8> Mask;
1809  Mask.reserve(VecTy->getNumElements());
1810  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1811    if (i >= BeginIndex && i < EndIndex)
1812      Mask.push_back(IRB.getInt32(i - BeginIndex));
1813    else
1814      Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
1815  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
1816                              ConstantVector::get(Mask),
1817                              Name + ".expand");
1818  DEBUG(dbgs() << "    shuffle: " << *V << "\n");
1819
1820  Mask.clear();
1821  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
1822    Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
1823
1824  V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
1825
1826  DEBUG(dbgs() << "    blend: " << *V << "\n");
1827  return V;
1828}
1829
1830namespace {
1831/// \brief Visitor to rewrite instructions using p particular slice of an alloca
1832/// to use a new alloca.
1833///
1834/// Also implements the rewriting to vector-based accesses when the partition
1835/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
1836/// lives here.
1837class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> {
1838  // Befriend the base class so it can delegate to private visit methods.
1839  friend class llvm::InstVisitor<AllocaSliceRewriter, bool>;
1840  typedef llvm::InstVisitor<AllocaSliceRewriter, bool> Base;
1841
1842  const DataLayout &DL;
1843  AllocaSlices &S;
1844  SROA &Pass;
1845  AllocaInst &OldAI, &NewAI;
1846  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
1847  Type *NewAllocaTy;
1848
1849  // If we are rewriting an alloca partition which can be written as pure
1850  // vector operations, we stash extra information here. When VecTy is
1851  // non-null, we have some strict guarantees about the rewritten alloca:
1852  //   - The new alloca is exactly the size of the vector type here.
1853  //   - The accesses all either map to the entire vector or to a single
1854  //     element.
1855  //   - The set of accessing instructions is only one of those handled above
1856  //     in isVectorPromotionViable. Generally these are the same access kinds
1857  //     which are promotable via mem2reg.
1858  VectorType *VecTy;
1859  Type *ElementTy;
1860  uint64_t ElementSize;
1861
1862  // This is a convenience and flag variable that will be null unless the new
1863  // alloca's integer operations should be widened to this integer type due to
1864  // passing isIntegerWideningViable above. If it is non-null, the desired
1865  // integer type will be stored here for easy access during rewriting.
1866  IntegerType *IntTy;
1867
1868  // The offset of the slice currently being rewritten.
1869  uint64_t BeginOffset, EndOffset;
1870  bool IsSplittable;
1871  bool IsSplit;
1872  Use *OldUse;
1873  Instruction *OldPtr;
1874
1875  // Output members carrying state about the result of visiting and rewriting
1876  // the slice of the alloca.
1877  bool IsUsedByRewrittenSpeculatableInstructions;
1878
1879  // Utility IR builder, whose name prefix is setup for each visited use, and
1880  // the insertion point is set to point to the user.
1881  IRBuilderTy IRB;
1882
1883public:
1884  AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &S, SROA &Pass,
1885                      AllocaInst &OldAI, AllocaInst &NewAI,
1886                      uint64_t NewBeginOffset, uint64_t NewEndOffset,
1887                      bool IsVectorPromotable = false,
1888                      bool IsIntegerPromotable = false)
1889      : DL(DL), S(S), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
1890        NewAllocaBeginOffset(NewBeginOffset), NewAllocaEndOffset(NewEndOffset),
1891        NewAllocaTy(NewAI.getAllocatedType()),
1892        VecTy(IsVectorPromotable ? cast<VectorType>(NewAllocaTy) : 0),
1893        ElementTy(VecTy ? VecTy->getElementType() : 0),
1894        ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
1895        IntTy(IsIntegerPromotable
1896                  ? Type::getIntNTy(
1897                        NewAI.getContext(),
1898                        DL.getTypeSizeInBits(NewAI.getAllocatedType()))
1899                  : 0),
1900        BeginOffset(), EndOffset(), IsSplittable(), IsSplit(), OldUse(),
1901        OldPtr(), IsUsedByRewrittenSpeculatableInstructions(false),
1902        IRB(NewAI.getContext(), ConstantFolder()) {
1903    if (VecTy) {
1904      assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
1905             "Only multiple-of-8 sized vector elements are viable");
1906      ++NumVectorized;
1907    }
1908    assert((!IsVectorPromotable && !IsIntegerPromotable) ||
1909           IsVectorPromotable != IsIntegerPromotable);
1910  }
1911
1912  bool visit(AllocaSlices::const_iterator I) {
1913    bool CanSROA = true;
1914    BeginOffset = I->beginOffset();
1915    EndOffset = I->endOffset();
1916    IsSplittable = I->isSplittable();
1917    IsSplit =
1918        BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
1919
1920    OldUse = I->getUse();
1921    OldPtr = cast<Instruction>(OldUse->get());
1922
1923    Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
1924    IRB.SetInsertPoint(OldUserI);
1925    IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
1926    IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
1927
1928    CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
1929    if (VecTy || IntTy)
1930      assert(CanSROA);
1931    return CanSROA;
1932  }
1933
1934  /// \brief Query whether this slice is used by speculatable instructions after
1935  /// rewriting.
1936  ///
1937  /// These instructions (PHIs and Selects currently) require the alloca slice
1938  /// to run back through the rewriter. Thus, they are promotable, but not on
1939  /// this iteration. This is distinct from a slice which is unpromotable for
1940  /// some other reason, in which case we don't even want to perform the
1941  /// speculation. This can be querried at any time and reflects whether (at
1942  /// that point) a visit call has rewritten a speculatable instruction on the
1943  /// current slice.
1944  bool isUsedByRewrittenSpeculatableInstructions() const {
1945    return IsUsedByRewrittenSpeculatableInstructions;
1946  }
1947
1948private:
1949  // Make sure the other visit overloads are visible.
1950  using Base::visit;
1951
1952  // Every instruction which can end up as a user must have a rewrite rule.
1953  bool visitInstruction(Instruction &I) {
1954    DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
1955    llvm_unreachable("No rewrite rule for this instruction!");
1956  }
1957
1958  Value *getAdjustedAllocaPtr(IRBuilderTy &IRB, uint64_t Offset,
1959                              Type *PointerTy) {
1960    assert(Offset >= NewAllocaBeginOffset);
1961    return getAdjustedPtr(IRB, DL, &NewAI, APInt(DL.getPointerSizeInBits(),
1962                                                 Offset - NewAllocaBeginOffset),
1963                          PointerTy);
1964  }
1965
1966  /// \brief Compute suitable alignment to access an offset into the new alloca.
1967  unsigned getOffsetAlign(uint64_t Offset) {
1968    unsigned NewAIAlign = NewAI.getAlignment();
1969    if (!NewAIAlign)
1970      NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
1971    return MinAlign(NewAIAlign, Offset);
1972  }
1973
1974  /// \brief Compute suitable alignment to access a type at an offset of the
1975  /// new alloca.
1976  ///
1977  /// \returns zero if the type's ABI alignment is a suitable alignment,
1978  /// otherwise returns the maximal suitable alignment.
1979  unsigned getOffsetTypeAlign(Type *Ty, uint64_t Offset) {
1980    unsigned Align = getOffsetAlign(Offset);
1981    return Align == DL.getABITypeAlignment(Ty) ? 0 : Align;
1982  }
1983
1984  unsigned getIndex(uint64_t Offset) {
1985    assert(VecTy && "Can only call getIndex when rewriting a vector");
1986    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
1987    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
1988    uint32_t Index = RelOffset / ElementSize;
1989    assert(Index * ElementSize == RelOffset);
1990    return Index;
1991  }
1992
1993  void deleteIfTriviallyDead(Value *V) {
1994    Instruction *I = cast<Instruction>(V);
1995    if (isInstructionTriviallyDead(I))
1996      Pass.DeadInsts.insert(I);
1997  }
1998
1999  Value *rewriteVectorizedLoadInst(uint64_t NewBeginOffset,
2000                                   uint64_t NewEndOffset) {
2001    unsigned BeginIndex = getIndex(NewBeginOffset);
2002    unsigned EndIndex = getIndex(NewEndOffset);
2003    assert(EndIndex > BeginIndex && "Empty vector!");
2004
2005    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2006                                     "load");
2007    return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2008  }
2009
2010  Value *rewriteIntegerLoad(LoadInst &LI, uint64_t NewBeginOffset,
2011                            uint64_t NewEndOffset) {
2012    assert(IntTy && "We cannot insert an integer to the alloca");
2013    assert(!LI.isVolatile());
2014    Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2015                                     "load");
2016    V = convertValue(DL, IRB, V, IntTy);
2017    assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2018    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2019    if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
2020      V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
2021                         "extract");
2022    return V;
2023  }
2024
2025  bool visitLoadInst(LoadInst &LI) {
2026    DEBUG(dbgs() << "    original: " << LI << "\n");
2027    Value *OldOp = LI.getOperand(0);
2028    assert(OldOp == OldPtr);
2029
2030    // Compute the intersecting offset range.
2031    assert(BeginOffset < NewAllocaEndOffset);
2032    assert(EndOffset > NewAllocaBeginOffset);
2033    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2034    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2035
2036    uint64_t Size = NewEndOffset - NewBeginOffset;
2037
2038    Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), Size * 8)
2039                             : LI.getType();
2040    bool IsPtrAdjusted = false;
2041    Value *V;
2042    if (VecTy) {
2043      V = rewriteVectorizedLoadInst(NewBeginOffset, NewEndOffset);
2044    } else if (IntTy && LI.getType()->isIntegerTy()) {
2045      V = rewriteIntegerLoad(LI, NewBeginOffset, NewEndOffset);
2046    } else if (NewBeginOffset == NewAllocaBeginOffset &&
2047               canConvertValue(DL, NewAllocaTy, LI.getType())) {
2048      V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2049                                LI.isVolatile(), "load");
2050    } else {
2051      Type *LTy = TargetTy->getPointerTo();
2052      V = IRB.CreateAlignedLoad(
2053          getAdjustedAllocaPtr(IRB, NewBeginOffset, LTy),
2054          getOffsetTypeAlign(TargetTy, NewBeginOffset - NewAllocaBeginOffset),
2055          LI.isVolatile(), "load");
2056      IsPtrAdjusted = true;
2057    }
2058    V = convertValue(DL, IRB, V, TargetTy);
2059
2060    if (IsSplit) {
2061      assert(!LI.isVolatile());
2062      assert(LI.getType()->isIntegerTy() &&
2063             "Only integer type loads and stores are split");
2064      assert(Size < DL.getTypeStoreSize(LI.getType()) &&
2065             "Split load isn't smaller than original load");
2066      assert(LI.getType()->getIntegerBitWidth() ==
2067             DL.getTypeStoreSizeInBits(LI.getType()) &&
2068             "Non-byte-multiple bit width");
2069      // Move the insertion point just past the load so that we can refer to it.
2070      IRB.SetInsertPoint(llvm::next(BasicBlock::iterator(&LI)));
2071      // Create a placeholder value with the same type as LI to use as the
2072      // basis for the new value. This allows us to replace the uses of LI with
2073      // the computed value, and then replace the placeholder with LI, leaving
2074      // LI only used for this computation.
2075      Value *Placeholder
2076        = new LoadInst(UndefValue::get(LI.getType()->getPointerTo()));
2077      V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset,
2078                        "insert");
2079      LI.replaceAllUsesWith(V);
2080      Placeholder->replaceAllUsesWith(&LI);
2081      delete Placeholder;
2082    } else {
2083      LI.replaceAllUsesWith(V);
2084    }
2085
2086    Pass.DeadInsts.insert(&LI);
2087    deleteIfTriviallyDead(OldOp);
2088    DEBUG(dbgs() << "          to: " << *V << "\n");
2089    return !LI.isVolatile() && !IsPtrAdjusted;
2090  }
2091
2092  bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2093                                  uint64_t NewBeginOffset,
2094                                  uint64_t NewEndOffset) {
2095    if (V->getType() != VecTy) {
2096      unsigned BeginIndex = getIndex(NewBeginOffset);
2097      unsigned EndIndex = getIndex(NewEndOffset);
2098      assert(EndIndex > BeginIndex && "Empty vector!");
2099      unsigned NumElements = EndIndex - BeginIndex;
2100      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2101      Type *SliceTy =
2102          (NumElements == 1) ? ElementTy
2103                             : VectorType::get(ElementTy, NumElements);
2104      if (V->getType() != SliceTy)
2105        V = convertValue(DL, IRB, V, SliceTy);
2106
2107      // Mix in the existing elements.
2108      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2109                                         "load");
2110      V = insertVector(IRB, Old, V, BeginIndex, "vec");
2111    }
2112    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2113    Pass.DeadInsts.insert(&SI);
2114
2115    (void)Store;
2116    DEBUG(dbgs() << "          to: " << *Store << "\n");
2117    return true;
2118  }
2119
2120  bool rewriteIntegerStore(Value *V, StoreInst &SI,
2121                           uint64_t NewBeginOffset, uint64_t NewEndOffset) {
2122    assert(IntTy && "We cannot extract an integer from the alloca");
2123    assert(!SI.isVolatile());
2124    if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2125      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2126                                         "oldload");
2127      Old = convertValue(DL, IRB, Old, IntTy);
2128      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2129      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2130      V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset,
2131                        "insert");
2132    }
2133    V = convertValue(DL, IRB, V, NewAllocaTy);
2134    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2135    Pass.DeadInsts.insert(&SI);
2136    (void)Store;
2137    DEBUG(dbgs() << "          to: " << *Store << "\n");
2138    return true;
2139  }
2140
2141  bool visitStoreInst(StoreInst &SI) {
2142    DEBUG(dbgs() << "    original: " << SI << "\n");
2143    Value *OldOp = SI.getOperand(1);
2144    assert(OldOp == OldPtr);
2145
2146    Value *V = SI.getValueOperand();
2147
2148    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2149    // alloca that should be re-examined after promoting this alloca.
2150    if (V->getType()->isPointerTy())
2151      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2152        Pass.PostPromotionWorklist.insert(AI);
2153
2154    // Compute the intersecting offset range.
2155    assert(BeginOffset < NewAllocaEndOffset);
2156    assert(EndOffset > NewAllocaBeginOffset);
2157    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2158    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2159
2160    uint64_t Size = NewEndOffset - NewBeginOffset;
2161    if (Size < DL.getTypeStoreSize(V->getType())) {
2162      assert(!SI.isVolatile());
2163      assert(V->getType()->isIntegerTy() &&
2164             "Only integer type loads and stores are split");
2165      assert(V->getType()->getIntegerBitWidth() ==
2166             DL.getTypeStoreSizeInBits(V->getType()) &&
2167             "Non-byte-multiple bit width");
2168      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), Size * 8);
2169      V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset,
2170                         "extract");
2171    }
2172
2173    if (VecTy)
2174      return rewriteVectorizedStoreInst(V, SI, OldOp, NewBeginOffset,
2175                                        NewEndOffset);
2176    if (IntTy && V->getType()->isIntegerTy())
2177      return rewriteIntegerStore(V, SI, NewBeginOffset, NewEndOffset);
2178
2179    StoreInst *NewSI;
2180    if (NewBeginOffset == NewAllocaBeginOffset &&
2181        NewEndOffset == NewAllocaEndOffset &&
2182        canConvertValue(DL, V->getType(), NewAllocaTy)) {
2183      V = convertValue(DL, IRB, V, NewAllocaTy);
2184      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2185                                     SI.isVolatile());
2186    } else {
2187      Value *NewPtr = getAdjustedAllocaPtr(IRB, NewBeginOffset,
2188                                           V->getType()->getPointerTo());
2189      NewSI = IRB.CreateAlignedStore(
2190          V, NewPtr, getOffsetTypeAlign(
2191                         V->getType(), NewBeginOffset - NewAllocaBeginOffset),
2192          SI.isVolatile());
2193    }
2194    (void)NewSI;
2195    Pass.DeadInsts.insert(&SI);
2196    deleteIfTriviallyDead(OldOp);
2197
2198    DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2199    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2200  }
2201
2202  /// \brief Compute an integer value from splatting an i8 across the given
2203  /// number of bytes.
2204  ///
2205  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2206  /// call this routine.
2207  /// FIXME: Heed the advice above.
2208  ///
2209  /// \param V The i8 value to splat.
2210  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2211  Value *getIntegerSplat(Value *V, unsigned Size) {
2212    assert(Size > 0 && "Expected a positive number of bytes.");
2213    IntegerType *VTy = cast<IntegerType>(V->getType());
2214    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2215    if (Size == 1)
2216      return V;
2217
2218    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size*8);
2219    V = IRB.CreateMul(IRB.CreateZExt(V, SplatIntTy, "zext"),
2220                      ConstantExpr::getUDiv(
2221                        Constant::getAllOnesValue(SplatIntTy),
2222                        ConstantExpr::getZExt(
2223                          Constant::getAllOnesValue(V->getType()),
2224                          SplatIntTy)),
2225                      "isplat");
2226    return V;
2227  }
2228
2229  /// \brief Compute a vector splat for a given element value.
2230  Value *getVectorSplat(Value *V, unsigned NumElements) {
2231    V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2232    DEBUG(dbgs() << "       splat: " << *V << "\n");
2233    return V;
2234  }
2235
2236  bool visitMemSetInst(MemSetInst &II) {
2237    DEBUG(dbgs() << "    original: " << II << "\n");
2238    assert(II.getRawDest() == OldPtr);
2239
2240    // If the memset has a variable size, it cannot be split, just adjust the
2241    // pointer to the new alloca.
2242    if (!isa<Constant>(II.getLength())) {
2243      assert(!IsSplit);
2244      assert(BeginOffset >= NewAllocaBeginOffset);
2245      II.setDest(
2246          getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
2247      Type *CstTy = II.getAlignmentCst()->getType();
2248      II.setAlignment(ConstantInt::get(CstTy, getOffsetAlign(BeginOffset)));
2249
2250      deleteIfTriviallyDead(OldPtr);
2251      return false;
2252    }
2253
2254    // Record this instruction for deletion.
2255    Pass.DeadInsts.insert(&II);
2256
2257    Type *AllocaTy = NewAI.getAllocatedType();
2258    Type *ScalarTy = AllocaTy->getScalarType();
2259
2260    // Compute the intersecting offset range.
2261    assert(BeginOffset < NewAllocaEndOffset);
2262    assert(EndOffset > NewAllocaBeginOffset);
2263    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2264    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2265    uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
2266
2267    // If this doesn't map cleanly onto the alloca type, and that type isn't
2268    // a single value type, just emit a memset.
2269    if (!VecTy && !IntTy &&
2270        (BeginOffset > NewAllocaBeginOffset ||
2271         EndOffset < NewAllocaEndOffset ||
2272         !AllocaTy->isSingleValueType() ||
2273         !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2274         DL.getTypeSizeInBits(ScalarTy)%8 != 0)) {
2275      Type *SizeTy = II.getLength()->getType();
2276      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2277      CallInst *New = IRB.CreateMemSet(
2278          getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getRawDest()->getType()),
2279          II.getValue(), Size, getOffsetAlign(SliceOffset), II.isVolatile());
2280      (void)New;
2281      DEBUG(dbgs() << "          to: " << *New << "\n");
2282      return false;
2283    }
2284
2285    // If we can represent this as a simple value, we have to build the actual
2286    // value to store, which requires expanding the byte present in memset to
2287    // a sensible representation for the alloca type. This is essentially
2288    // splatting the byte to a sufficiently wide integer, splatting it across
2289    // any desired vector width, and bitcasting to the final type.
2290    Value *V;
2291
2292    if (VecTy) {
2293      // If this is a memset of a vectorized alloca, insert it.
2294      assert(ElementTy == ScalarTy);
2295
2296      unsigned BeginIndex = getIndex(NewBeginOffset);
2297      unsigned EndIndex = getIndex(NewEndOffset);
2298      assert(EndIndex > BeginIndex && "Empty vector!");
2299      unsigned NumElements = EndIndex - BeginIndex;
2300      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2301
2302      Value *Splat =
2303          getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2304      Splat = convertValue(DL, IRB, Splat, ElementTy);
2305      if (NumElements > 1)
2306        Splat = getVectorSplat(Splat, NumElements);
2307
2308      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2309                                         "oldload");
2310      V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2311    } else if (IntTy) {
2312      // If this is a memset on an alloca where we can widen stores, insert the
2313      // set integer.
2314      assert(!II.isVolatile());
2315
2316      uint64_t Size = NewEndOffset - NewBeginOffset;
2317      V = getIntegerSplat(II.getValue(), Size);
2318
2319      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2320                    EndOffset != NewAllocaBeginOffset)) {
2321        Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2322                                           "oldload");
2323        Old = convertValue(DL, IRB, Old, IntTy);
2324        uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2325        V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2326      } else {
2327        assert(V->getType() == IntTy &&
2328               "Wrong type for an alloca wide integer!");
2329      }
2330      V = convertValue(DL, IRB, V, AllocaTy);
2331    } else {
2332      // Established these invariants above.
2333      assert(NewBeginOffset == NewAllocaBeginOffset);
2334      assert(NewEndOffset == NewAllocaEndOffset);
2335
2336      V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2337      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2338        V = getVectorSplat(V, AllocaVecTy->getNumElements());
2339
2340      V = convertValue(DL, IRB, V, AllocaTy);
2341    }
2342
2343    Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2344                                        II.isVolatile());
2345    (void)New;
2346    DEBUG(dbgs() << "          to: " << *New << "\n");
2347    return !II.isVolatile();
2348  }
2349
2350  bool visitMemTransferInst(MemTransferInst &II) {
2351    // Rewriting of memory transfer instructions can be a bit tricky. We break
2352    // them into two categories: split intrinsics and unsplit intrinsics.
2353
2354    DEBUG(dbgs() << "    original: " << II << "\n");
2355
2356    // Compute the intersecting offset range.
2357    assert(BeginOffset < NewAllocaEndOffset);
2358    assert(EndOffset > NewAllocaBeginOffset);
2359    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2360    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2361
2362    assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr);
2363    bool IsDest = II.getRawDest() == OldPtr;
2364
2365    // Compute the relative offset within the transfer.
2366    unsigned IntPtrWidth = DL.getPointerSizeInBits();
2367    APInt RelOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2368
2369    unsigned Align = II.getAlignment();
2370    uint64_t SliceOffset = NewBeginOffset - NewAllocaBeginOffset;
2371    if (Align > 1)
2372      Align =
2373          MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(),
2374                   MinAlign(II.getAlignment(), getOffsetAlign(SliceOffset)));
2375
2376    // For unsplit intrinsics, we simply modify the source and destination
2377    // pointers in place. This isn't just an optimization, it is a matter of
2378    // correctness. With unsplit intrinsics we may be dealing with transfers
2379    // within a single alloca before SROA ran, or with transfers that have
2380    // a variable length. We may also be dealing with memmove instead of
2381    // memcpy, and so simply updating the pointers is the necessary for us to
2382    // update both source and dest of a single call.
2383    if (!IsSplittable) {
2384      Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource();
2385      if (IsDest)
2386        II.setDest(
2387            getAdjustedAllocaPtr(IRB, BeginOffset, II.getRawDest()->getType()));
2388      else
2389        II.setSource(getAdjustedAllocaPtr(IRB, BeginOffset,
2390                                          II.getRawSource()->getType()));
2391
2392      Type *CstTy = II.getAlignmentCst()->getType();
2393      II.setAlignment(ConstantInt::get(CstTy, Align));
2394
2395      DEBUG(dbgs() << "          to: " << II << "\n");
2396      deleteIfTriviallyDead(OldOp);
2397      return false;
2398    }
2399    // For split transfer intrinsics we have an incredibly useful assurance:
2400    // the source and destination do not reside within the same alloca, and at
2401    // least one of them does not escape. This means that we can replace
2402    // memmove with memcpy, and we don't need to worry about all manner of
2403    // downsides to splitting and transforming the operations.
2404
2405    // If this doesn't map cleanly onto the alloca type, and that type isn't
2406    // a single value type, just emit a memcpy.
2407    bool EmitMemCpy
2408      = !VecTy && !IntTy && (BeginOffset > NewAllocaBeginOffset ||
2409                             EndOffset < NewAllocaEndOffset ||
2410                             !NewAI.getAllocatedType()->isSingleValueType());
2411
2412    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2413    // size hasn't been shrunk based on analysis of the viable range, this is
2414    // a no-op.
2415    if (EmitMemCpy && &OldAI == &NewAI) {
2416      // Ensure the start lines up.
2417      assert(NewBeginOffset == BeginOffset);
2418
2419      // Rewrite the size as needed.
2420      if (NewEndOffset != EndOffset)
2421        II.setLength(ConstantInt::get(II.getLength()->getType(),
2422                                      NewEndOffset - NewBeginOffset));
2423      return false;
2424    }
2425    // Record this instruction for deletion.
2426    Pass.DeadInsts.insert(&II);
2427
2428    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2429    // alloca that should be re-examined after rewriting this instruction.
2430    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2431    if (AllocaInst *AI
2432          = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets()))
2433      Pass.Worklist.insert(AI);
2434
2435    if (EmitMemCpy) {
2436      Type *OtherPtrTy = IsDest ? II.getRawSource()->getType()
2437                                : II.getRawDest()->getType();
2438
2439      // Compute the other pointer, folding as much as possible to produce
2440      // a single, simple GEP in most cases.
2441      OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
2442
2443      Value *OurPtr = getAdjustedAllocaPtr(
2444          IRB, NewBeginOffset,
2445          IsDest ? II.getRawDest()->getType() : II.getRawSource()->getType());
2446      Type *SizeTy = II.getLength()->getType();
2447      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2448
2449      CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr,
2450                                       IsDest ? OtherPtr : OurPtr,
2451                                       Size, Align, II.isVolatile());
2452      (void)New;
2453      DEBUG(dbgs() << "          to: " << *New << "\n");
2454      return false;
2455    }
2456
2457    // Note that we clamp the alignment to 1 here as a 0 alignment for a memcpy
2458    // is equivalent to 1, but that isn't true if we end up rewriting this as
2459    // a load or store.
2460    if (!Align)
2461      Align = 1;
2462
2463    bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2464                         NewEndOffset == NewAllocaEndOffset;
2465    uint64_t Size = NewEndOffset - NewBeginOffset;
2466    unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2467    unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2468    unsigned NumElements = EndIndex - BeginIndex;
2469    IntegerType *SubIntTy
2470      = IntTy ? Type::getIntNTy(IntTy->getContext(), Size*8) : 0;
2471
2472    Type *OtherPtrTy = NewAI.getType();
2473    if (VecTy && !IsWholeAlloca) {
2474      if (NumElements == 1)
2475        OtherPtrTy = VecTy->getElementType();
2476      else
2477        OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2478
2479      OtherPtrTy = OtherPtrTy->getPointerTo();
2480    } else if (IntTy && !IsWholeAlloca) {
2481      OtherPtrTy = SubIntTy->getPointerTo();
2482    }
2483
2484    Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, RelOffset, OtherPtrTy);
2485    Value *DstPtr = &NewAI;
2486    if (!IsDest)
2487      std::swap(SrcPtr, DstPtr);
2488
2489    Value *Src;
2490    if (VecTy && !IsWholeAlloca && !IsDest) {
2491      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2492                                  "load");
2493      Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
2494    } else if (IntTy && !IsWholeAlloca && !IsDest) {
2495      Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2496                                  "load");
2497      Src = convertValue(DL, IRB, Src, IntTy);
2498      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2499      Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
2500    } else {
2501      Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(),
2502                                  "copyload");
2503    }
2504
2505    if (VecTy && !IsWholeAlloca && IsDest) {
2506      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2507                                         "oldload");
2508      Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
2509    } else if (IntTy && !IsWholeAlloca && IsDest) {
2510      Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2511                                         "oldload");
2512      Old = convertValue(DL, IRB, Old, IntTy);
2513      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2514      Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
2515      Src = convertValue(DL, IRB, Src, NewAllocaTy);
2516    }
2517
2518    StoreInst *Store = cast<StoreInst>(
2519      IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile()));
2520    (void)Store;
2521    DEBUG(dbgs() << "          to: " << *Store << "\n");
2522    return !II.isVolatile();
2523  }
2524
2525  bool visitIntrinsicInst(IntrinsicInst &II) {
2526    assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
2527           II.getIntrinsicID() == Intrinsic::lifetime_end);
2528    DEBUG(dbgs() << "    original: " << II << "\n");
2529    assert(II.getArgOperand(1) == OldPtr);
2530
2531    // Compute the intersecting offset range.
2532    assert(BeginOffset < NewAllocaEndOffset);
2533    assert(EndOffset > NewAllocaBeginOffset);
2534    uint64_t NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2535    uint64_t NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2536
2537    // Record this instruction for deletion.
2538    Pass.DeadInsts.insert(&II);
2539
2540    ConstantInt *Size
2541      = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
2542                         NewEndOffset - NewBeginOffset);
2543    Value *Ptr =
2544        getAdjustedAllocaPtr(IRB, NewBeginOffset, II.getArgOperand(1)->getType());
2545    Value *New;
2546    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
2547      New = IRB.CreateLifetimeStart(Ptr, Size);
2548    else
2549      New = IRB.CreateLifetimeEnd(Ptr, Size);
2550
2551    (void)New;
2552    DEBUG(dbgs() << "          to: " << *New << "\n");
2553    return true;
2554  }
2555
2556  bool visitPHINode(PHINode &PN) {
2557    DEBUG(dbgs() << "    original: " << PN << "\n");
2558    assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
2559    assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
2560
2561    // We would like to compute a new pointer in only one place, but have it be
2562    // as local as possible to the PHI. To do that, we re-use the location of
2563    // the old pointer, which necessarily must be in the right position to
2564    // dominate the PHI.
2565    IRBuilderTy PtrBuilder(OldPtr);
2566    PtrBuilder.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) +
2567                             ".");
2568
2569    Value *NewPtr =
2570        getAdjustedAllocaPtr(PtrBuilder, BeginOffset, OldPtr->getType());
2571    // Replace the operands which were using the old pointer.
2572    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
2573
2574    DEBUG(dbgs() << "          to: " << PN << "\n");
2575    deleteIfTriviallyDead(OldPtr);
2576
2577    // Check whether we can speculate this PHI node, and if so remember that
2578    // fact and queue it up for another iteration after the speculation
2579    // occurs.
2580    if (isSafePHIToSpeculate(PN, &DL)) {
2581      Pass.SpeculatablePHIs.insert(&PN);
2582      IsUsedByRewrittenSpeculatableInstructions = true;
2583      return true;
2584    }
2585
2586    return false; // PHIs can't be promoted on their own.
2587  }
2588
2589  bool visitSelectInst(SelectInst &SI) {
2590    DEBUG(dbgs() << "    original: " << SI << "\n");
2591    assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
2592           "Pointer isn't an operand!");
2593    assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
2594    assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
2595
2596    Value *NewPtr = getAdjustedAllocaPtr(IRB, BeginOffset, OldPtr->getType());
2597    // Replace the operands which were using the old pointer.
2598    if (SI.getOperand(1) == OldPtr)
2599      SI.setOperand(1, NewPtr);
2600    if (SI.getOperand(2) == OldPtr)
2601      SI.setOperand(2, NewPtr);
2602
2603    DEBUG(dbgs() << "          to: " << SI << "\n");
2604    deleteIfTriviallyDead(OldPtr);
2605
2606    // Check whether we can speculate this select instruction, and if so
2607    // remember that fact and queue it up for another iteration after the
2608    // speculation occurs.
2609    if (isSafeSelectToSpeculate(SI, &DL)) {
2610      Pass.SpeculatableSelects.insert(&SI);
2611      IsUsedByRewrittenSpeculatableInstructions = true;
2612      return true;
2613    }
2614
2615    return false; // Selects can't be promoted on their own.
2616  }
2617
2618};
2619}
2620
2621namespace {
2622/// \brief Visitor to rewrite aggregate loads and stores as scalar.
2623///
2624/// This pass aggressively rewrites all aggregate loads and stores on
2625/// a particular pointer (or any pointer derived from it which we can identify)
2626/// with scalar loads and stores.
2627class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
2628  // Befriend the base class so it can delegate to private visit methods.
2629  friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>;
2630
2631  const DataLayout &DL;
2632
2633  /// Queue of pointer uses to analyze and potentially rewrite.
2634  SmallVector<Use *, 8> Queue;
2635
2636  /// Set to prevent us from cycling with phi nodes and loops.
2637  SmallPtrSet<User *, 8> Visited;
2638
2639  /// The current pointer use being rewritten. This is used to dig up the used
2640  /// value (as opposed to the user).
2641  Use *U;
2642
2643public:
2644  AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
2645
2646  /// Rewrite loads and stores through a pointer and all pointers derived from
2647  /// it.
2648  bool rewrite(Instruction &I) {
2649    DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
2650    enqueueUsers(I);
2651    bool Changed = false;
2652    while (!Queue.empty()) {
2653      U = Queue.pop_back_val();
2654      Changed |= visit(cast<Instruction>(U->getUser()));
2655    }
2656    return Changed;
2657  }
2658
2659private:
2660  /// Enqueue all the users of the given instruction for further processing.
2661  /// This uses a set to de-duplicate users.
2662  void enqueueUsers(Instruction &I) {
2663    for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
2664         ++UI)
2665      if (Visited.insert(*UI))
2666        Queue.push_back(&UI.getUse());
2667  }
2668
2669  // Conservative default is to not rewrite anything.
2670  bool visitInstruction(Instruction &I) { return false; }
2671
2672  /// \brief Generic recursive split emission class.
2673  template <typename Derived>
2674  class OpSplitter {
2675  protected:
2676    /// The builder used to form new instructions.
2677    IRBuilderTy IRB;
2678    /// The indices which to be used with insert- or extractvalue to select the
2679    /// appropriate value within the aggregate.
2680    SmallVector<unsigned, 4> Indices;
2681    /// The indices to a GEP instruction which will move Ptr to the correct slot
2682    /// within the aggregate.
2683    SmallVector<Value *, 4> GEPIndices;
2684    /// The base pointer of the original op, used as a base for GEPing the
2685    /// split operations.
2686    Value *Ptr;
2687
2688    /// Initialize the splitter with an insertion point, Ptr and start with a
2689    /// single zero GEP index.
2690    OpSplitter(Instruction *InsertionPoint, Value *Ptr)
2691      : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
2692
2693  public:
2694    /// \brief Generic recursive split emission routine.
2695    ///
2696    /// This method recursively splits an aggregate op (load or store) into
2697    /// scalar or vector ops. It splits recursively until it hits a single value
2698    /// and emits that single value operation via the template argument.
2699    ///
2700    /// The logic of this routine relies on GEPs and insertvalue and
2701    /// extractvalue all operating with the same fundamental index list, merely
2702    /// formatted differently (GEPs need actual values).
2703    ///
2704    /// \param Ty  The type being split recursively into smaller ops.
2705    /// \param Agg The aggregate value being built up or stored, depending on
2706    /// whether this is splitting a load or a store respectively.
2707    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
2708      if (Ty->isSingleValueType())
2709        return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
2710
2711      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2712        unsigned OldSize = Indices.size();
2713        (void)OldSize;
2714        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
2715             ++Idx) {
2716          assert(Indices.size() == OldSize && "Did not return to the old size");
2717          Indices.push_back(Idx);
2718          GEPIndices.push_back(IRB.getInt32(Idx));
2719          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
2720          GEPIndices.pop_back();
2721          Indices.pop_back();
2722        }
2723        return;
2724      }
2725
2726      if (StructType *STy = dyn_cast<StructType>(Ty)) {
2727        unsigned OldSize = Indices.size();
2728        (void)OldSize;
2729        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
2730             ++Idx) {
2731          assert(Indices.size() == OldSize && "Did not return to the old size");
2732          Indices.push_back(Idx);
2733          GEPIndices.push_back(IRB.getInt32(Idx));
2734          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
2735          GEPIndices.pop_back();
2736          Indices.pop_back();
2737        }
2738        return;
2739      }
2740
2741      llvm_unreachable("Only arrays and structs are aggregate loadable types");
2742    }
2743  };
2744
2745  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
2746    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2747      : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {}
2748
2749    /// Emit a leaf load of a single value. This is called at the leaves of the
2750    /// recursive emission to actually load values.
2751    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2752      assert(Ty->isSingleValueType());
2753      // Load the single value and insert it using the indices.
2754      Value *GEP = IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep");
2755      Value *Load = IRB.CreateLoad(GEP, Name + ".load");
2756      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
2757      DEBUG(dbgs() << "          to: " << *Load << "\n");
2758    }
2759  };
2760
2761  bool visitLoadInst(LoadInst &LI) {
2762    assert(LI.getPointerOperand() == *U);
2763    if (!LI.isSimple() || LI.getType()->isSingleValueType())
2764      return false;
2765
2766    // We have an aggregate being loaded, split it apart.
2767    DEBUG(dbgs() << "    original: " << LI << "\n");
2768    LoadOpSplitter Splitter(&LI, *U);
2769    Value *V = UndefValue::get(LI.getType());
2770    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
2771    LI.replaceAllUsesWith(V);
2772    LI.eraseFromParent();
2773    return true;
2774  }
2775
2776  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
2777    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr)
2778      : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {}
2779
2780    /// Emit a leaf store of a single value. This is called at the leaves of the
2781    /// recursive emission to actually produce stores.
2782    void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
2783      assert(Ty->isSingleValueType());
2784      // Extract the single value and store it using the indices.
2785      Value *Store = IRB.CreateStore(
2786        IRB.CreateExtractValue(Agg, Indices, Name + ".extract"),
2787        IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep"));
2788      (void)Store;
2789      DEBUG(dbgs() << "          to: " << *Store << "\n");
2790    }
2791  };
2792
2793  bool visitStoreInst(StoreInst &SI) {
2794    if (!SI.isSimple() || SI.getPointerOperand() != *U)
2795      return false;
2796    Value *V = SI.getValueOperand();
2797    if (V->getType()->isSingleValueType())
2798      return false;
2799
2800    // We have an aggregate being stored, split it apart.
2801    DEBUG(dbgs() << "    original: " << SI << "\n");
2802    StoreOpSplitter Splitter(&SI, *U);
2803    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
2804    SI.eraseFromParent();
2805    return true;
2806  }
2807
2808  bool visitBitCastInst(BitCastInst &BC) {
2809    enqueueUsers(BC);
2810    return false;
2811  }
2812
2813  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
2814    enqueueUsers(GEPI);
2815    return false;
2816  }
2817
2818  bool visitPHINode(PHINode &PN) {
2819    enqueueUsers(PN);
2820    return false;
2821  }
2822
2823  bool visitSelectInst(SelectInst &SI) {
2824    enqueueUsers(SI);
2825    return false;
2826  }
2827};
2828}
2829
2830/// \brief Strip aggregate type wrapping.
2831///
2832/// This removes no-op aggregate types wrapping an underlying type. It will
2833/// strip as many layers of types as it can without changing either the type
2834/// size or the allocated size.
2835static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
2836  if (Ty->isSingleValueType())
2837    return Ty;
2838
2839  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
2840  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
2841
2842  Type *InnerTy;
2843  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
2844    InnerTy = ArrTy->getElementType();
2845  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
2846    const StructLayout *SL = DL.getStructLayout(STy);
2847    unsigned Index = SL->getElementContainingOffset(0);
2848    InnerTy = STy->getElementType(Index);
2849  } else {
2850    return Ty;
2851  }
2852
2853  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
2854      TypeSize > DL.getTypeSizeInBits(InnerTy))
2855    return Ty;
2856
2857  return stripAggregateTypeWrapping(DL, InnerTy);
2858}
2859
2860/// \brief Try to find a partition of the aggregate type passed in for a given
2861/// offset and size.
2862///
2863/// This recurses through the aggregate type and tries to compute a subtype
2864/// based on the offset and size. When the offset and size span a sub-section
2865/// of an array, it will even compute a new array type for that sub-section,
2866/// and the same for structs.
2867///
2868/// Note that this routine is very strict and tries to find a partition of the
2869/// type which produces the *exact* right offset and size. It is not forgiving
2870/// when the size or offset cause either end of type-based partition to be off.
2871/// Also, this is a best-effort routine. It is reasonable to give up and not
2872/// return a type if necessary.
2873static Type *getTypePartition(const DataLayout &DL, Type *Ty,
2874                              uint64_t Offset, uint64_t Size) {
2875  if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
2876    return stripAggregateTypeWrapping(DL, Ty);
2877  if (Offset > DL.getTypeAllocSize(Ty) ||
2878      (DL.getTypeAllocSize(Ty) - Offset) < Size)
2879    return 0;
2880
2881  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
2882    // We can't partition pointers...
2883    if (SeqTy->isPointerTy())
2884      return 0;
2885
2886    Type *ElementTy = SeqTy->getElementType();
2887    uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
2888    uint64_t NumSkippedElements = Offset / ElementSize;
2889    if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) {
2890      if (NumSkippedElements >= ArrTy->getNumElements())
2891        return 0;
2892    } else if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) {
2893      if (NumSkippedElements >= VecTy->getNumElements())
2894        return 0;
2895    }
2896    Offset -= NumSkippedElements * ElementSize;
2897
2898    // First check if we need to recurse.
2899    if (Offset > 0 || Size < ElementSize) {
2900      // Bail if the partition ends in a different array element.
2901      if ((Offset + Size) > ElementSize)
2902        return 0;
2903      // Recurse through the element type trying to peel off offset bytes.
2904      return getTypePartition(DL, ElementTy, Offset, Size);
2905    }
2906    assert(Offset == 0);
2907
2908    if (Size == ElementSize)
2909      return stripAggregateTypeWrapping(DL, ElementTy);
2910    assert(Size > ElementSize);
2911    uint64_t NumElements = Size / ElementSize;
2912    if (NumElements * ElementSize != Size)
2913      return 0;
2914    return ArrayType::get(ElementTy, NumElements);
2915  }
2916
2917  StructType *STy = dyn_cast<StructType>(Ty);
2918  if (!STy)
2919    return 0;
2920
2921  const StructLayout *SL = DL.getStructLayout(STy);
2922  if (Offset >= SL->getSizeInBytes())
2923    return 0;
2924  uint64_t EndOffset = Offset + Size;
2925  if (EndOffset > SL->getSizeInBytes())
2926    return 0;
2927
2928  unsigned Index = SL->getElementContainingOffset(Offset);
2929  Offset -= SL->getElementOffset(Index);
2930
2931  Type *ElementTy = STy->getElementType(Index);
2932  uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
2933  if (Offset >= ElementSize)
2934    return 0; // The offset points into alignment padding.
2935
2936  // See if any partition must be contained by the element.
2937  if (Offset > 0 || Size < ElementSize) {
2938    if ((Offset + Size) > ElementSize)
2939      return 0;
2940    return getTypePartition(DL, ElementTy, Offset, Size);
2941  }
2942  assert(Offset == 0);
2943
2944  if (Size == ElementSize)
2945    return stripAggregateTypeWrapping(DL, ElementTy);
2946
2947  StructType::element_iterator EI = STy->element_begin() + Index,
2948                               EE = STy->element_end();
2949  if (EndOffset < SL->getSizeInBytes()) {
2950    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
2951    if (Index == EndIndex)
2952      return 0; // Within a single element and its padding.
2953
2954    // Don't try to form "natural" types if the elements don't line up with the
2955    // expected size.
2956    // FIXME: We could potentially recurse down through the last element in the
2957    // sub-struct to find a natural end point.
2958    if (SL->getElementOffset(EndIndex) != EndOffset)
2959      return 0;
2960
2961    assert(Index < EndIndex);
2962    EE = STy->element_begin() + EndIndex;
2963  }
2964
2965  // Try to build up a sub-structure.
2966  StructType *SubTy = StructType::get(STy->getContext(), makeArrayRef(EI, EE),
2967                                      STy->isPacked());
2968  const StructLayout *SubSL = DL.getStructLayout(SubTy);
2969  if (Size != SubSL->getSizeInBytes())
2970    return 0; // The sub-struct doesn't have quite the size needed.
2971
2972  return SubTy;
2973}
2974
2975/// \brief Rewrite an alloca partition's users.
2976///
2977/// This routine drives both of the rewriting goals of the SROA pass. It tries
2978/// to rewrite uses of an alloca partition to be conducive for SSA value
2979/// promotion. If the partition needs a new, more refined alloca, this will
2980/// build that new alloca, preserving as much type information as possible, and
2981/// rewrite the uses of the old alloca to point at the new one and have the
2982/// appropriate new offsets. It also evaluates how successful the rewrite was
2983/// at enabling promotion and if it was successful queues the alloca to be
2984/// promoted.
2985bool SROA::rewritePartition(AllocaInst &AI, AllocaSlices &S,
2986                            AllocaSlices::iterator B, AllocaSlices::iterator E,
2987                            int64_t BeginOffset, int64_t EndOffset,
2988                            ArrayRef<AllocaSlices::iterator> SplitUses) {
2989  assert(BeginOffset < EndOffset);
2990  uint64_t SliceSize = EndOffset - BeginOffset;
2991
2992  // Try to compute a friendly type for this partition of the alloca. This
2993  // won't always succeed, in which case we fall back to a legal integer type
2994  // or an i8 array of an appropriate size.
2995  Type *SliceTy = 0;
2996  if (Type *CommonUseTy = findCommonType(B, E, EndOffset))
2997    if (DL->getTypeAllocSize(CommonUseTy) >= SliceSize)
2998      SliceTy = CommonUseTy;
2999  if (!SliceTy)
3000    if (Type *TypePartitionTy = getTypePartition(*DL, AI.getAllocatedType(),
3001                                                 BeginOffset, SliceSize))
3002      SliceTy = TypePartitionTy;
3003  if ((!SliceTy || (SliceTy->isArrayTy() &&
3004                    SliceTy->getArrayElementType()->isIntegerTy())) &&
3005      DL->isLegalInteger(SliceSize * 8))
3006    SliceTy = Type::getIntNTy(*C, SliceSize * 8);
3007  if (!SliceTy)
3008    SliceTy = ArrayType::get(Type::getInt8Ty(*C), SliceSize);
3009  assert(DL->getTypeAllocSize(SliceTy) >= SliceSize);
3010
3011  bool IsVectorPromotable = isVectorPromotionViable(
3012      *DL, SliceTy, S, BeginOffset, EndOffset, B, E, SplitUses);
3013
3014  bool IsIntegerPromotable =
3015      !IsVectorPromotable &&
3016      isIntegerWideningViable(*DL, SliceTy, BeginOffset, S, B, E, SplitUses);
3017
3018  // Check for the case where we're going to rewrite to a new alloca of the
3019  // exact same type as the original, and with the same access offsets. In that
3020  // case, re-use the existing alloca, but still run through the rewriter to
3021  // perform phi and select speculation.
3022  AllocaInst *NewAI;
3023  if (SliceTy == AI.getAllocatedType()) {
3024    assert(BeginOffset == 0 &&
3025           "Non-zero begin offset but same alloca type");
3026    NewAI = &AI;
3027    // FIXME: We should be able to bail at this point with "nothing changed".
3028    // FIXME: We might want to defer PHI speculation until after here.
3029  } else {
3030    unsigned Alignment = AI.getAlignment();
3031    if (!Alignment) {
3032      // The minimum alignment which users can rely on when the explicit
3033      // alignment is omitted or zero is that required by the ABI for this
3034      // type.
3035      Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
3036    }
3037    Alignment = MinAlign(Alignment, BeginOffset);
3038    // If we will get at least this much alignment from the type alone, leave
3039    // the alloca's alignment unconstrained.
3040    if (Alignment <= DL->getABITypeAlignment(SliceTy))
3041      Alignment = 0;
3042    NewAI = new AllocaInst(SliceTy, 0, Alignment,
3043                           AI.getName() + ".sroa." + Twine(B - S.begin()), &AI);
3044    ++NumNewAllocas;
3045  }
3046
3047  DEBUG(dbgs() << "Rewriting alloca partition "
3048               << "[" << BeginOffset << "," << EndOffset << ") to: " << *NewAI
3049               << "\n");
3050
3051  // Track the high watermark on several worklists that are only relevant for
3052  // promoted allocas. We will reset it to this point if the alloca is not in
3053  // fact scheduled for promotion.
3054  unsigned PPWOldSize = PostPromotionWorklist.size();
3055  unsigned SPOldSize = SpeculatablePHIs.size();
3056  unsigned SSOldSize = SpeculatableSelects.size();
3057  unsigned NumUses = 0;
3058
3059  AllocaSliceRewriter Rewriter(*DL, S, *this, AI, *NewAI, BeginOffset,
3060                               EndOffset, IsVectorPromotable,
3061                               IsIntegerPromotable);
3062  bool Promotable = true;
3063  for (ArrayRef<AllocaSlices::iterator>::const_iterator SUI = SplitUses.begin(),
3064                                                        SUE = SplitUses.end();
3065       SUI != SUE; ++SUI) {
3066    DEBUG(dbgs() << "  rewriting split ");
3067    DEBUG(S.printSlice(dbgs(), *SUI, ""));
3068    Promotable &= Rewriter.visit(*SUI);
3069    ++NumUses;
3070  }
3071  for (AllocaSlices::iterator I = B; I != E; ++I) {
3072    DEBUG(dbgs() << "  rewriting ");
3073    DEBUG(S.printSlice(dbgs(), I, ""));
3074    Promotable &= Rewriter.visit(I);
3075    ++NumUses;
3076  }
3077
3078  NumAllocaPartitionUses += NumUses;
3079  MaxUsesPerAllocaPartition =
3080      std::max<unsigned>(NumUses, MaxUsesPerAllocaPartition);
3081
3082  if (Promotable && !Rewriter.isUsedByRewrittenSpeculatableInstructions()) {
3083    DEBUG(dbgs() << "  and queuing for promotion\n");
3084    PromotableAllocas.push_back(NewAI);
3085  } else if (NewAI != &AI ||
3086             (Promotable &&
3087              Rewriter.isUsedByRewrittenSpeculatableInstructions())) {
3088    // If we can't promote the alloca, iterate on it to check for new
3089    // refinements exposed by splitting the current alloca. Don't iterate on an
3090    // alloca which didn't actually change and didn't get promoted.
3091    //
3092    // Alternatively, if we could promote the alloca but have speculatable
3093    // instructions then we will speculate them after finishing our processing
3094    // of the original alloca. Mark the new one for re-visiting in the next
3095    // iteration so the speculated operations can be rewritten.
3096    //
3097    // FIXME: We should actually track whether the rewriter changed anything.
3098    Worklist.insert(NewAI);
3099  }
3100
3101  // Drop any post-promotion work items if promotion didn't happen.
3102  if (!Promotable) {
3103    while (PostPromotionWorklist.size() > PPWOldSize)
3104      PostPromotionWorklist.pop_back();
3105    while (SpeculatablePHIs.size() > SPOldSize)
3106      SpeculatablePHIs.pop_back();
3107    while (SpeculatableSelects.size() > SSOldSize)
3108      SpeculatableSelects.pop_back();
3109  }
3110
3111  return true;
3112}
3113
3114namespace {
3115struct IsSliceEndLessOrEqualTo {
3116  uint64_t UpperBound;
3117
3118  IsSliceEndLessOrEqualTo(uint64_t UpperBound) : UpperBound(UpperBound) {}
3119
3120  bool operator()(const AllocaSlices::iterator &I) {
3121    return I->endOffset() <= UpperBound;
3122  }
3123};
3124}
3125
3126static void
3127removeFinishedSplitUses(SmallVectorImpl<AllocaSlices::iterator> &SplitUses,
3128                        uint64_t &MaxSplitUseEndOffset, uint64_t Offset) {
3129  if (Offset >= MaxSplitUseEndOffset) {
3130    SplitUses.clear();
3131    MaxSplitUseEndOffset = 0;
3132    return;
3133  }
3134
3135  size_t SplitUsesOldSize = SplitUses.size();
3136  SplitUses.erase(std::remove_if(SplitUses.begin(), SplitUses.end(),
3137                                 IsSliceEndLessOrEqualTo(Offset)),
3138                  SplitUses.end());
3139  if (SplitUsesOldSize == SplitUses.size())
3140    return;
3141
3142  // Recompute the max. While this is linear, so is remove_if.
3143  MaxSplitUseEndOffset = 0;
3144  for (SmallVectorImpl<AllocaSlices::iterator>::iterator
3145           SUI = SplitUses.begin(),
3146           SUE = SplitUses.end();
3147       SUI != SUE; ++SUI)
3148    MaxSplitUseEndOffset = std::max((*SUI)->endOffset(), MaxSplitUseEndOffset);
3149}
3150
3151/// \brief Walks the slices of an alloca and form partitions based on them,
3152/// rewriting each of their uses.
3153bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &S) {
3154  if (S.begin() == S.end())
3155    return false;
3156
3157  unsigned NumPartitions = 0;
3158  bool Changed = false;
3159  SmallVector<AllocaSlices::iterator, 4> SplitUses;
3160  uint64_t MaxSplitUseEndOffset = 0;
3161
3162  uint64_t BeginOffset = S.begin()->beginOffset();
3163
3164  for (AllocaSlices::iterator SI = S.begin(), SJ = llvm::next(SI), SE = S.end();
3165       SI != SE; SI = SJ) {
3166    uint64_t MaxEndOffset = SI->endOffset();
3167
3168    if (!SI->isSplittable()) {
3169      // When we're forming an unsplittable region, it must always start at the
3170      // first slice and will extend through its end.
3171      assert(BeginOffset == SI->beginOffset());
3172
3173      // Form a partition including all of the overlapping slices with this
3174      // unsplittable slice.
3175      while (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3176        if (!SJ->isSplittable())
3177          MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3178        ++SJ;
3179      }
3180    } else {
3181      assert(SI->isSplittable()); // Established above.
3182
3183      // Collect all of the overlapping splittable slices.
3184      while (SJ != SE && SJ->beginOffset() < MaxEndOffset &&
3185             SJ->isSplittable()) {
3186        MaxEndOffset = std::max(MaxEndOffset, SJ->endOffset());
3187        ++SJ;
3188      }
3189
3190      // Back up MaxEndOffset and SJ if we ended the span early when
3191      // encountering an unsplittable slice.
3192      if (SJ != SE && SJ->beginOffset() < MaxEndOffset) {
3193        assert(!SJ->isSplittable());
3194        MaxEndOffset = SJ->beginOffset();
3195      }
3196    }
3197
3198    // Check if we have managed to move the end offset forward yet. If so,
3199    // we'll have to rewrite uses and erase old split uses.
3200    if (BeginOffset < MaxEndOffset) {
3201      // Rewrite a sequence of overlapping slices.
3202      Changed |=
3203          rewritePartition(AI, S, SI, SJ, BeginOffset, MaxEndOffset, SplitUses);
3204      ++NumPartitions;
3205
3206      removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset, MaxEndOffset);
3207    }
3208
3209    // Accumulate all the splittable slices from the [SI,SJ) region which
3210    // overlap going forward.
3211    for (AllocaSlices::iterator SK = SI; SK != SJ; ++SK)
3212      if (SK->isSplittable() && SK->endOffset() > MaxEndOffset) {
3213        SplitUses.push_back(SK);
3214        MaxSplitUseEndOffset = std::max(SK->endOffset(), MaxSplitUseEndOffset);
3215      }
3216
3217    // If we're already at the end and we have no split uses, we're done.
3218    if (SJ == SE && SplitUses.empty())
3219      break;
3220
3221    // If we have no split uses or no gap in offsets, we're ready to move to
3222    // the next slice.
3223    if (SplitUses.empty() || (SJ != SE && MaxEndOffset == SJ->beginOffset())) {
3224      BeginOffset = SJ->beginOffset();
3225      continue;
3226    }
3227
3228    // Even if we have split slices, if the next slice is splittable and the
3229    // split slices reach it, we can simply set up the beginning offset of the
3230    // next iteration to bridge between them.
3231    if (SJ != SE && SJ->isSplittable() &&
3232        MaxSplitUseEndOffset > SJ->beginOffset()) {
3233      BeginOffset = MaxEndOffset;
3234      continue;
3235    }
3236
3237    // Otherwise, we have a tail of split slices. Rewrite them with an empty
3238    // range of slices.
3239    uint64_t PostSplitEndOffset =
3240        SJ == SE ? MaxSplitUseEndOffset : SJ->beginOffset();
3241
3242    Changed |= rewritePartition(AI, S, SJ, SJ, MaxEndOffset, PostSplitEndOffset,
3243                                SplitUses);
3244    ++NumPartitions;
3245
3246    if (SJ == SE)
3247      break; // Skip the rest, we don't need to do any cleanup.
3248
3249    removeFinishedSplitUses(SplitUses, MaxSplitUseEndOffset,
3250                            PostSplitEndOffset);
3251
3252    // Now just reset the begin offset for the next iteration.
3253    BeginOffset = SJ->beginOffset();
3254  }
3255
3256  NumAllocaPartitions += NumPartitions;
3257  MaxPartitionsPerAlloca =
3258      std::max<unsigned>(NumPartitions, MaxPartitionsPerAlloca);
3259
3260  return Changed;
3261}
3262
3263/// \brief Analyze an alloca for SROA.
3264///
3265/// This analyzes the alloca to ensure we can reason about it, builds
3266/// the slices of the alloca, and then hands it off to be split and
3267/// rewritten as needed.
3268bool SROA::runOnAlloca(AllocaInst &AI) {
3269  DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
3270  ++NumAllocasAnalyzed;
3271
3272  // Special case dead allocas, as they're trivial.
3273  if (AI.use_empty()) {
3274    AI.eraseFromParent();
3275    return true;
3276  }
3277
3278  // Skip alloca forms that this analysis can't handle.
3279  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
3280      DL->getTypeAllocSize(AI.getAllocatedType()) == 0)
3281    return false;
3282
3283  bool Changed = false;
3284
3285  // First, split any FCA loads and stores touching this alloca to promote
3286  // better splitting and promotion opportunities.
3287  AggLoadStoreRewriter AggRewriter(*DL);
3288  Changed |= AggRewriter.rewrite(AI);
3289
3290  // Build the slices using a recursive instruction-visiting builder.
3291  AllocaSlices S(*DL, AI);
3292  DEBUG(S.print(dbgs()));
3293  if (S.isEscaped())
3294    return Changed;
3295
3296  // Delete all the dead users of this alloca before splitting and rewriting it.
3297  for (AllocaSlices::dead_user_iterator DI = S.dead_user_begin(),
3298                                        DE = S.dead_user_end();
3299       DI != DE; ++DI) {
3300    Changed = true;
3301    (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType()));
3302    DeadInsts.insert(*DI);
3303  }
3304  for (AllocaSlices::dead_op_iterator DO = S.dead_op_begin(),
3305                                      DE = S.dead_op_end();
3306       DO != DE; ++DO) {
3307    Value *OldV = **DO;
3308    // Clobber the use with an undef value.
3309    **DO = UndefValue::get(OldV->getType());
3310    if (Instruction *OldI = dyn_cast<Instruction>(OldV))
3311      if (isInstructionTriviallyDead(OldI)) {
3312        Changed = true;
3313        DeadInsts.insert(OldI);
3314      }
3315  }
3316
3317  // No slices to split. Leave the dead alloca for a later pass to clean up.
3318  if (S.begin() == S.end())
3319    return Changed;
3320
3321  Changed |= splitAlloca(AI, S);
3322
3323  DEBUG(dbgs() << "  Speculating PHIs\n");
3324  while (!SpeculatablePHIs.empty())
3325    speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
3326
3327  DEBUG(dbgs() << "  Speculating Selects\n");
3328  while (!SpeculatableSelects.empty())
3329    speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
3330
3331  return Changed;
3332}
3333
3334/// \brief Delete the dead instructions accumulated in this run.
3335///
3336/// Recursively deletes the dead instructions we've accumulated. This is done
3337/// at the very end to maximize locality of the recursive delete and to
3338/// minimize the problems of invalidated instruction pointers as such pointers
3339/// are used heavily in the intermediate stages of the algorithm.
3340///
3341/// We also record the alloca instructions deleted here so that they aren't
3342/// subsequently handed to mem2reg to promote.
3343void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) {
3344  while (!DeadInsts.empty()) {
3345    Instruction *I = DeadInsts.pop_back_val();
3346    DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
3347
3348    I->replaceAllUsesWith(UndefValue::get(I->getType()));
3349
3350    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
3351      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
3352        // Zero out the operand and see if it becomes trivially dead.
3353        *OI = 0;
3354        if (isInstructionTriviallyDead(U))
3355          DeadInsts.insert(U);
3356      }
3357
3358    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3359      DeletedAllocas.insert(AI);
3360
3361    ++NumDeleted;
3362    I->eraseFromParent();
3363  }
3364}
3365
3366static void enqueueUsersInWorklist(Instruction &I,
3367                                   SmallVectorImpl<Use *> &UseWorklist,
3368                                   SmallPtrSet<Use *, 8> &VisitedUses) {
3369  for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE;
3370       ++UI)
3371    if (VisitedUses.insert(&UI.getUse()))
3372      UseWorklist.push_back(&UI.getUse());
3373}
3374
3375/// \brief Promote the allocas, using the best available technique.
3376///
3377/// This attempts to promote whatever allocas have been identified as viable in
3378/// the PromotableAllocas list. If that list is empty, there is nothing to do.
3379/// If there is a domtree available, we attempt to promote using the full power
3380/// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is
3381/// based on the SSAUpdater utilities. This function returns whether any
3382/// promotion occurred.
3383bool SROA::promoteAllocas(Function &F) {
3384  if (PromotableAllocas.empty())
3385    return false;
3386
3387  NumPromoted += PromotableAllocas.size();
3388
3389  if (DT && !ForceSSAUpdater) {
3390    DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
3391    PromoteMemToReg(PromotableAllocas, *DT, DL);
3392    PromotableAllocas.clear();
3393    return true;
3394  }
3395
3396  DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n");
3397  SSAUpdater SSA;
3398  DIBuilder DIB(*F.getParent());
3399  SmallVector<Instruction*, 64> Insts;
3400
3401  // We need a worklist to walk the uses of each alloca.
3402  SmallVector<Use *, 8> UseWorklist;
3403  SmallPtrSet<Use *, 8> VisitedUses;
3404  SmallVector<Instruction *, 32> DeadInsts;
3405
3406  for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) {
3407    AllocaInst *AI = PromotableAllocas[Idx];
3408    UseWorklist.clear();
3409    VisitedUses.clear();
3410
3411    enqueueUsersInWorklist(*AI, UseWorklist, VisitedUses);
3412
3413    while (!UseWorklist.empty()) {
3414      Use *U = UseWorklist.pop_back_val();
3415      Instruction &I = *cast<Instruction>(U->getUser());
3416
3417      // FIXME: Currently the SSAUpdater infrastructure doesn't reason about
3418      // lifetime intrinsics and so we strip them (and the bitcasts+GEPs
3419      // leading to them) here. Eventually it should use them to optimize the
3420      // scalar values produced.
3421      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) {
3422        assert(II->getIntrinsicID() == Intrinsic::lifetime_start ||
3423               II->getIntrinsicID() == Intrinsic::lifetime_end);
3424        II->eraseFromParent();
3425        continue;
3426      }
3427
3428      // Push the loads and stores we find onto the list. SROA will already
3429      // have validated that all loads and stores are viable candidates for
3430      // promotion.
3431      if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3432        assert(LI->getType() == AI->getAllocatedType());
3433        Insts.push_back(LI);
3434        continue;
3435      }
3436      if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3437        assert(SI->getValueOperand()->getType() == AI->getAllocatedType());
3438        Insts.push_back(SI);
3439        continue;
3440      }
3441
3442      // For everything else, we know that only no-op bitcasts and GEPs will
3443      // make it this far, just recurse through them and recall them for later
3444      // removal.
3445      DeadInsts.push_back(&I);
3446      enqueueUsersInWorklist(I, UseWorklist, VisitedUses);
3447    }
3448    AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts);
3449    Insts.clear();
3450    while (!DeadInsts.empty())
3451      DeadInsts.pop_back_val()->eraseFromParent();
3452    AI->eraseFromParent();
3453  }
3454
3455  PromotableAllocas.clear();
3456  return true;
3457}
3458
3459namespace {
3460  /// \brief A predicate to test whether an alloca belongs to a set.
3461  class IsAllocaInSet {
3462    typedef SmallPtrSet<AllocaInst *, 4> SetType;
3463    const SetType &Set;
3464
3465  public:
3466    typedef AllocaInst *argument_type;
3467
3468    IsAllocaInSet(const SetType &Set) : Set(Set) {}
3469    bool operator()(AllocaInst *AI) const { return Set.count(AI); }
3470  };
3471}
3472
3473bool SROA::runOnFunction(Function &F) {
3474  DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
3475  C = &F.getContext();
3476  DL = getAnalysisIfAvailable<DataLayout>();
3477  if (!DL) {
3478    DEBUG(dbgs() << "  Skipping SROA -- no target data!\n");
3479    return false;
3480  }
3481  DT = getAnalysisIfAvailable<DominatorTree>();
3482
3483  BasicBlock &EntryBB = F.getEntryBlock();
3484  for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end());
3485       I != E; ++I)
3486    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
3487      Worklist.insert(AI);
3488
3489  bool Changed = false;
3490  // A set of deleted alloca instruction pointers which should be removed from
3491  // the list of promotable allocas.
3492  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
3493
3494  do {
3495    while (!Worklist.empty()) {
3496      Changed |= runOnAlloca(*Worklist.pop_back_val());
3497      deleteDeadInstructions(DeletedAllocas);
3498
3499      // Remove the deleted allocas from various lists so that we don't try to
3500      // continue processing them.
3501      if (!DeletedAllocas.empty()) {
3502        Worklist.remove_if(IsAllocaInSet(DeletedAllocas));
3503        PostPromotionWorklist.remove_if(IsAllocaInSet(DeletedAllocas));
3504        PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(),
3505                                               PromotableAllocas.end(),
3506                                               IsAllocaInSet(DeletedAllocas)),
3507                                PromotableAllocas.end());
3508        DeletedAllocas.clear();
3509      }
3510    }
3511
3512    Changed |= promoteAllocas(F);
3513
3514    Worklist = PostPromotionWorklist;
3515    PostPromotionWorklist.clear();
3516  } while (!Worklist.empty());
3517
3518  return Changed;
3519}
3520
3521void SROA::getAnalysisUsage(AnalysisUsage &AU) const {
3522  if (RequiresDomTree)
3523    AU.addRequired<DominatorTree>();
3524  AU.setPreservesCFG();
3525}
3526