1//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation is designed for use by code generators which do not yet
11// support stack unwinding.  This pass supports two models of exception handling
12// lowering, the 'cheap' support and the 'expensive' support.
13//
14// 'Cheap' exception handling support gives the program the ability to execute
15// any program which does not "throw an exception", by turning 'invoke'
16// instructions into calls and by turning 'unwind' instructions into calls to
17// abort().  If the program does dynamically use the unwind instruction, the
18// program will print a message then abort.
19//
20// 'Expensive' exception handling support gives the full exception handling
21// support to the program at the cost of making the 'invoke' instruction
22// really expensive.  It basically inserts setjmp/longjmp calls to emulate the
23// exception handling as necessary.
24//
25// Because the 'expensive' support slows down programs a lot, and EH is only
26// used for a subset of the programs, it must be specifically enabled by an
27// option.
28//
29// Note that after this pass runs the CFG is not entirely accurate (exceptional
30// control flow edges are not correct anymore) so only very simple things should
31// be done after the lowerinvoke pass has run (like generation of native code).
32// This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't
33// support the invoke instruction yet" lowering pass.
34//
35//===----------------------------------------------------------------------===//
36
37#define DEBUG_TYPE "lowerinvoke"
38#include "llvm/Transforms/Scalar.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/Statistic.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Module.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Target/TargetLowering.h"
50#include "llvm/Transforms/Utils/BasicBlockUtils.h"
51#include "llvm/Transforms/Utils/Local.h"
52#include <csetjmp>
53#include <set>
54using namespace llvm;
55
56STATISTIC(NumInvokes, "Number of invokes replaced");
57STATISTIC(NumSpilled, "Number of registers live across unwind edges");
58
59static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support",
60 cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code"));
61
62namespace {
63  class LowerInvoke : public FunctionPass {
64    const TargetMachine *TM;
65
66    // Used for both models.
67    Constant *AbortFn;
68
69    // Used for expensive EH support.
70    StructType *JBLinkTy;
71    GlobalVariable *JBListHead;
72    Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn;
73    bool useExpensiveEHSupport;
74
75  public:
76    static char ID; // Pass identification, replacement for typeid
77    explicit LowerInvoke(const TargetMachine *TM = 0,
78                         bool useExpensiveEHSupport = ExpensiveEHSupport)
79      : FunctionPass(ID), TM(TM),
80        useExpensiveEHSupport(useExpensiveEHSupport) {
81      initializeLowerInvokePass(*PassRegistry::getPassRegistry());
82    }
83    bool doInitialization(Module &M);
84    bool runOnFunction(Function &F);
85
86    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87      // This is a cluster of orthogonal Transforms
88      AU.addPreserved("mem2reg");
89      AU.addPreservedID(LowerSwitchID);
90    }
91
92  private:
93    bool insertCheapEHSupport(Function &F);
94    void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes);
95    void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
96                                AllocaInst *InvokeNum, AllocaInst *StackPtr,
97                                SwitchInst *CatchSwitch);
98    bool insertExpensiveEHSupport(Function &F);
99  };
100}
101
102char LowerInvoke::ID = 0;
103INITIALIZE_PASS(LowerInvoke, "lowerinvoke",
104                "Lower invoke and unwind, for unwindless code generators",
105                false, false)
106
107char &llvm::LowerInvokePassID = LowerInvoke::ID;
108
109// Public Interface To the LowerInvoke pass.
110FunctionPass *llvm::createLowerInvokePass(const TargetMachine *TM,
111                                          bool useExpensiveEHSupport) {
112  return new LowerInvoke(TM, useExpensiveEHSupport || ExpensiveEHSupport);
113}
114
115// doInitialization - Make sure that there is a prototype for abort in the
116// current module.
117bool LowerInvoke::doInitialization(Module &M) {
118  Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext());
119  if (useExpensiveEHSupport) {
120    // Insert a type for the linked list of jump buffers.
121    const TargetLowering *TLI = TM ? TM->getTargetLowering() : 0;
122    unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0;
123    JBSize = JBSize ? JBSize : 200;
124    Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize);
125
126    JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty");
127    Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) };
128    JBLinkTy->setBody(Elts);
129
130    Type *PtrJBList = PointerType::getUnqual(JBLinkTy);
131
132    // Now that we've done that, insert the jmpbuf list head global, unless it
133    // already exists.
134    if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) {
135      JBListHead = new GlobalVariable(M, PtrJBList, false,
136                                      GlobalValue::LinkOnceAnyLinkage,
137                                      Constant::getNullValue(PtrJBList),
138                                      "llvm.sjljeh.jblist");
139    }
140
141// VisualStudio defines setjmp as _setjmp
142#if defined(_MSC_VER) && defined(setjmp) && \
143                         !defined(setjmp_undefined_for_msvc)
144#  pragma push_macro("setjmp")
145#  undef setjmp
146#  define setjmp_undefined_for_msvc
147#endif
148
149    SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp);
150
151#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc)
152   // let's return it to _setjmp state
153#  pragma pop_macro("setjmp")
154#  undef setjmp_undefined_for_msvc
155#endif
156
157    LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp);
158    StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave);
159    StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore);
160  }
161
162  // We need the 'write' and 'abort' functions for both models.
163  AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()),
164                                  (Type *)0);
165  return true;
166}
167
168bool LowerInvoke::insertCheapEHSupport(Function &F) {
169  bool Changed = false;
170  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
171    if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
172      SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
173      // Insert a normal call instruction...
174      CallInst *NewCall = CallInst::Create(II->getCalledValue(),
175                                           CallArgs, "", II);
176      NewCall->takeName(II);
177      NewCall->setCallingConv(II->getCallingConv());
178      NewCall->setAttributes(II->getAttributes());
179      NewCall->setDebugLoc(II->getDebugLoc());
180      II->replaceAllUsesWith(NewCall);
181
182      // Insert an unconditional branch to the normal destination.
183      BranchInst::Create(II->getNormalDest(), II);
184
185      // Remove any PHI node entries from the exception destination.
186      II->getUnwindDest()->removePredecessor(BB);
187
188      // Remove the invoke instruction now.
189      BB->getInstList().erase(II);
190
191      ++NumInvokes; Changed = true;
192    }
193  return Changed;
194}
195
196/// rewriteExpensiveInvoke - Insert code and hack the function to replace the
197/// specified invoke instruction with a call.
198void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo,
199                                         AllocaInst *InvokeNum,
200                                         AllocaInst *StackPtr,
201                                         SwitchInst *CatchSwitch) {
202  ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()),
203                                            InvokeNo);
204
205  // If the unwind edge has phi nodes, split the edge.
206  if (isa<PHINode>(II->getUnwindDest()->begin())) {
207    SplitCriticalEdge(II, 1, this);
208
209    // If there are any phi nodes left, they must have a single predecessor.
210    while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) {
211      PN->replaceAllUsesWith(PN->getIncomingValue(0));
212      PN->eraseFromParent();
213    }
214  }
215
216  // Insert a store of the invoke num before the invoke and store zero into the
217  // location afterward.
218  new StoreInst(InvokeNoC, InvokeNum, true, II);  // volatile
219
220  // Insert a store of the stack ptr before the invoke, so we can restore it
221  // later in the exception case.
222  CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II);
223  new StoreInst(StackSaveRet, StackPtr, true, II); // volatile
224
225  BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt();
226  // nonvolatile.
227  new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())),
228                InvokeNum, false, NI);
229
230  Instruction* StackPtrLoad =
231    new LoadInst(StackPtr, "stackptr.restore", true,
232                 II->getUnwindDest()->getFirstInsertionPt());
233  CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad);
234
235  // Add a switch case to our unwind block.
236  CatchSwitch->addCase(InvokeNoC, II->getUnwindDest());
237
238  // Insert a normal call instruction.
239  SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3);
240  CallInst *NewCall = CallInst::Create(II->getCalledValue(),
241                                       CallArgs, "", II);
242  NewCall->takeName(II);
243  NewCall->setCallingConv(II->getCallingConv());
244  NewCall->setAttributes(II->getAttributes());
245  NewCall->setDebugLoc(II->getDebugLoc());
246  II->replaceAllUsesWith(NewCall);
247
248  // Replace the invoke with an uncond branch.
249  BranchInst::Create(II->getNormalDest(), NewCall->getParent());
250  II->eraseFromParent();
251}
252
253/// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until
254/// we reach blocks we've already seen.
255static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) {
256  if (!LiveBBs.insert(BB).second) return; // already been here.
257
258  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
259    MarkBlocksLiveIn(*PI, LiveBBs);
260}
261
262// First thing we need to do is scan the whole function for values that are
263// live across unwind edges.  Each value that is live across an unwind edge
264// we spill into a stack location, guaranteeing that there is nothing live
265// across the unwind edge.  This process also splits all critical edges
266// coming out of invoke's.
267void LowerInvoke::
268splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) {
269  // First step, split all critical edges from invoke instructions.
270  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
271    InvokeInst *II = Invokes[i];
272    SplitCriticalEdge(II, 0, this);
273    SplitCriticalEdge(II, 1, this);
274    assert(!isa<PHINode>(II->getNormalDest()) &&
275           !isa<PHINode>(II->getUnwindDest()) &&
276           "critical edge splitting left single entry phi nodes?");
277  }
278
279  Function *F = Invokes.back()->getParent()->getParent();
280
281  // To avoid having to handle incoming arguments specially, we lower each arg
282  // to a copy instruction in the entry block.  This ensures that the argument
283  // value itself cannot be live across the entry block.
284  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
285  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
286        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
287    ++AfterAllocaInsertPt;
288  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
289       AI != E; ++AI) {
290    Type *Ty = AI->getType();
291    // Aggregate types can't be cast, but are legal argument types, so we have
292    // to handle them differently. We use an extract/insert pair as a
293    // lightweight method to achieve the same goal.
294    if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
295      Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt);
296      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
297      NI->insertAfter(EI);
298      AI->replaceAllUsesWith(NI);
299      // Set the operand of the instructions back to the AllocaInst.
300      EI->setOperand(0, AI);
301      NI->setOperand(0, AI);
302    } else {
303      // This is always a no-op cast because we're casting AI to AI->getType()
304      // so src and destination types are identical. BitCast is the only
305      // possibility.
306      CastInst *NC = new BitCastInst(
307        AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
308      AI->replaceAllUsesWith(NC);
309      // Set the operand of the cast instruction back to the AllocaInst.
310      // Normally it's forbidden to replace a CastInst's operand because it
311      // could cause the opcode to reflect an illegal conversion. However,
312      // we're replacing it here with the same value it was constructed with.
313      // We do this because the above replaceAllUsesWith() clobbered the
314      // operand, but we want this one to remain.
315      NC->setOperand(0, AI);
316    }
317  }
318
319  // Finally, scan the code looking for instructions with bad live ranges.
320  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
321    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
322      // Ignore obvious cases we don't have to handle.  In particular, most
323      // instructions either have no uses or only have a single use inside the
324      // current block.  Ignore them quickly.
325      Instruction *Inst = II;
326      if (Inst->use_empty()) continue;
327      if (Inst->hasOneUse() &&
328          cast<Instruction>(Inst->use_back())->getParent() == BB &&
329          !isa<PHINode>(Inst->use_back())) continue;
330
331      // If this is an alloca in the entry block, it's not a real register
332      // value.
333      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
334        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
335          continue;
336
337      // Avoid iterator invalidation by copying users to a temporary vector.
338      SmallVector<Instruction*,16> Users;
339      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
340           UI != E; ++UI) {
341        Instruction *User = cast<Instruction>(*UI);
342        if (User->getParent() != BB || isa<PHINode>(User))
343          Users.push_back(User);
344      }
345
346      // Scan all of the uses and see if the live range is live across an unwind
347      // edge.  If we find a use live across an invoke edge, create an alloca
348      // and spill the value.
349      std::set<InvokeInst*> InvokesWithStoreInserted;
350
351      // Find all of the blocks that this value is live in.
352      std::set<BasicBlock*> LiveBBs;
353      LiveBBs.insert(Inst->getParent());
354      while (!Users.empty()) {
355        Instruction *U = Users.back();
356        Users.pop_back();
357
358        if (!isa<PHINode>(U)) {
359          MarkBlocksLiveIn(U->getParent(), LiveBBs);
360        } else {
361          // Uses for a PHI node occur in their predecessor block.
362          PHINode *PN = cast<PHINode>(U);
363          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
364            if (PN->getIncomingValue(i) == Inst)
365              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
366        }
367      }
368
369      // Now that we know all of the blocks that this thing is live in, see if
370      // it includes any of the unwind locations.
371      bool NeedsSpill = false;
372      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
373        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
374        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
375          NeedsSpill = true;
376        }
377      }
378
379      // If we decided we need a spill, do it.
380      if (NeedsSpill) {
381        ++NumSpilled;
382        DemoteRegToStack(*Inst, true);
383      }
384    }
385}
386
387bool LowerInvoke::insertExpensiveEHSupport(Function &F) {
388  SmallVector<ReturnInst*,16> Returns;
389  SmallVector<InvokeInst*,16> Invokes;
390  UnreachableInst* UnreachablePlaceholder = 0;
391
392  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
393    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
394      // Remember all return instructions in case we insert an invoke into this
395      // function.
396      Returns.push_back(RI);
397    } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
398      Invokes.push_back(II);
399    }
400
401  if (Invokes.empty()) return false;
402
403  NumInvokes += Invokes.size();
404
405  // TODO: This is not an optimal way to do this.  In particular, this always
406  // inserts setjmp calls into the entries of functions with invoke instructions
407  // even though there are possibly paths through the function that do not
408  // execute any invokes.  In particular, for functions with early exits, e.g.
409  // the 'addMove' method in hexxagon, it would be nice to not have to do the
410  // setjmp stuff on the early exit path.  This requires a bit of dataflow, but
411  // would not be too hard to do.
412
413  // If we have an invoke instruction, insert a setjmp that dominates all
414  // invokes.  After the setjmp, use a cond branch that goes to the original
415  // code path on zero, and to a designated 'catch' block of nonzero.
416  Value *OldJmpBufPtr = 0;
417  if (!Invokes.empty()) {
418    // First thing we need to do is scan the whole function for values that are
419    // live across unwind edges.  Each value that is live across an unwind edge
420    // we spill into a stack location, guaranteeing that there is nothing live
421    // across the unwind edge.  This process also splits all critical edges
422    // coming out of invoke's.
423    splitLiveRangesLiveAcrossInvokes(Invokes);
424
425    BasicBlock *EntryBB = F.begin();
426
427    // Create an alloca for the incoming jump buffer ptr and the new jump buffer
428    // that needs to be restored on all exits from the function.  This is an
429    // alloca because the value needs to be live across invokes.
430    const TargetLowering *TLI = TM ? TM->getTargetLowering() : 0;
431    unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0;
432    AllocaInst *JmpBuf =
433      new AllocaInst(JBLinkTy, 0, Align,
434                     "jblink", F.begin()->begin());
435
436    Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
437                     ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) };
438    OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf",
439                                             EntryBB->getTerminator());
440
441    // Copy the JBListHead to the alloca.
442    Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true,
443                                 EntryBB->getTerminator());
444    new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator());
445
446    // Add the new jumpbuf to the list.
447    new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator());
448
449    // Create the catch block.  The catch block is basically a big switch
450    // statement that goes to all of the invoke catch blocks.
451    BasicBlock *CatchBB =
452            BasicBlock::Create(F.getContext(), "setjmp.catch", &F);
453
454    // Create an alloca which keeps track of the stack pointer before every
455    // invoke, this allows us to properly restore the stack pointer after
456    // long jumping.
457    AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0,
458                                          "stackptr", EntryBB->begin());
459
460    // Create an alloca which keeps track of which invoke is currently
461    // executing.  For normal calls it contains zero.
462    AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0,
463                                           "invokenum",EntryBB->begin());
464    new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0),
465                  InvokeNum, true, EntryBB->getTerminator());
466
467    // Insert a load in the Catch block, and a switch on its value.  By default,
468    // we go to a block that just does an unwind (which is the correct action
469    // for a standard call). We insert an unreachable instruction here and
470    // modify the block to jump to the correct unwinding pad later.
471    BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F);
472    UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB);
473
474    Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB);
475    SwitchInst *CatchSwitch =
476      SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB);
477
478    // Now that things are set up, insert the setjmp call itself.
479
480    // Split the entry block to insert the conditional branch for the setjmp.
481    BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(),
482                                                     "setjmp.cont");
483
484    Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0);
485    Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf",
486                                                 EntryBB->getTerminator());
487    JmpBufPtr = new BitCastInst(JmpBufPtr,
488                        Type::getInt8PtrTy(F.getContext()),
489                                "tmp", EntryBB->getTerminator());
490    Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret",
491                                    EntryBB->getTerminator());
492
493    // Compare the return value to zero.
494    Value *IsNormal = new ICmpInst(EntryBB->getTerminator(),
495                                   ICmpInst::ICMP_EQ, SJRet,
496                                   Constant::getNullValue(SJRet->getType()),
497                                   "notunwind");
498    // Nuke the uncond branch.
499    EntryBB->getTerminator()->eraseFromParent();
500
501    // Put in a new condbranch in its place.
502    BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB);
503
504    // At this point, we are all set up, rewrite each invoke instruction.
505    for (unsigned i = 0, e = Invokes.size(); i != e; ++i)
506      rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch);
507  }
508
509  // We know that there is at least one unwind.
510
511  // Create three new blocks, the block to load the jmpbuf ptr and compare
512  // against null, the block to do the longjmp, and the error block for if it
513  // is null.  Add them at the end of the function because they are not hot.
514  BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(),
515                                                "dounwind", &F);
516  BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F);
517  BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F);
518
519  // If this function contains an invoke, restore the old jumpbuf ptr.
520  Value *BufPtr;
521  if (OldJmpBufPtr) {
522    // Before the return, insert a copy from the saved value to the new value.
523    BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler);
524    new StoreInst(BufPtr, JBListHead, UnwindHandler);
525  } else {
526    BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler);
527  }
528
529  // Load the JBList, if it's null, then there was no catch!
530  Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr,
531                                Constant::getNullValue(BufPtr->getType()),
532                                "notnull");
533  BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler);
534
535  // Create the block to do the longjmp.
536  // Get a pointer to the jmpbuf and longjmp.
537  Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())),
538                   ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) };
539  Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock);
540  Idx[0] = new BitCastInst(Idx[0],
541             Type::getInt8PtrTy(F.getContext()),
542                           "tmp", UnwindBlock);
543  Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1);
544  CallInst::Create(LongJmpFn, Idx, "", UnwindBlock);
545  new UnreachableInst(F.getContext(), UnwindBlock);
546
547  // Set up the term block ("throw without a catch").
548  new UnreachableInst(F.getContext(), TermBlock);
549
550  // Insert a call to abort()
551  CallInst::Create(AbortFn, "",
552                   TermBlock->getTerminator())->setTailCall();
553
554  // Replace the inserted unreachable with a branch to the unwind handler.
555  if (UnreachablePlaceholder) {
556    BranchInst::Create(UnwindHandler, UnreachablePlaceholder);
557    UnreachablePlaceholder->eraseFromParent();
558  }
559
560  // Finally, for any returns from this function, if this function contains an
561  // invoke, restore the old jmpbuf pointer to its input value.
562  if (OldJmpBufPtr) {
563    for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
564      ReturnInst *R = Returns[i];
565
566      // Before the return, insert a copy from the saved value to the new value.
567      Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R);
568      new StoreInst(OldBuf, JBListHead, true, R);
569    }
570  }
571
572  return true;
573}
574
575bool LowerInvoke::runOnFunction(Function &F) {
576  if (useExpensiveEHSupport)
577    return insertExpensiveEHSupport(F);
578  else
579    return insertCheapEHSupport(F);
580}
581