1//--------------------------------------------------------------------*/ 2//--- Massif: a heap profiling tool. ms_main.c ---*/ 3//--------------------------------------------------------------------*/ 4 5/* 6 This file is part of Massif, a Valgrind tool for profiling memory 7 usage of programs. 8 9 Copyright (C) 2003-2012 Nicholas Nethercote 10 njn@valgrind.org 11 12 This program is free software; you can redistribute it and/or 13 modify it under the terms of the GNU General Public License as 14 published by the Free Software Foundation; either version 2 of the 15 License, or (at your option) any later version. 16 17 This program is distributed in the hope that it will be useful, but 18 WITHOUT ANY WARRANTY; without even the implied warranty of 19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 General Public License for more details. 21 22 You should have received a copy of the GNU General Public License 23 along with this program; if not, write to the Free Software 24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 25 02111-1307, USA. 26 27 The GNU General Public License is contained in the file COPYING. 28*/ 29 30//--------------------------------------------------------------------------- 31// XXX: 32//--------------------------------------------------------------------------- 33// Todo -- nice, but less critical: 34// - do a graph-drawing test 35// - make file format more generic. Obstacles: 36// - unit prefixes are not generic 37// - preset column widths for stats are not generic 38// - preset column headers are not generic 39// - "Massif arguments:" line is not generic 40// - do snapshots on client requests 41// - (Michael Meeks): have an interactive way to request a dump 42// (callgrind_control-style) 43// - "profile now" 44// - "show me the extra allocations since the last snapshot" 45// - "start/stop logging" (eg. quickly skip boring bits) 46// - Add ability to draw multiple graphs, eg. heap-only, stack-only, total. 47// Give each graph a title. (try to do it generically!) 48// - allow truncation of long fnnames if the exact line number is 49// identified? [hmm, could make getting the name of alloc-fns more 50// difficult] [could dump full names to file, truncate in ms_print] 51// - make --show-below-main=no work 52// - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)' 53// don't work in a .valgrindrc file or in $VALGRIND_OPTS. 54// m_commandline.c:add_args_from_string() needs to respect single quotes. 55// - With --stack=yes, want to add a stack trace for detailed snapshots so 56// it's clear where/why the peak is occurring. (Mattieu Castet) Also, 57// possibly useful even with --stack=no? (Andi Yin) 58// 59// Performance: 60// - To run the benchmarks: 61// 62// perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif 63// time valgrind --tool=massif --depth=100 konqueror 64// 65// The other benchmarks don't do much allocation, and so give similar speeds 66// to Nulgrind. 67// 68// Timing results on 'nevermore' (njn's machine) as of r7013: 69// 70// heap 0.53s ma:12.4s (23.5x, -----) 71// tinycc 0.46s ma: 4.9s (10.7x, -----) 72// many-xpts 0.08s ma: 2.0s (25.0x, -----) 73// konqueror 29.6s real 0:21.0s user 74// 75// [Introduction of --time-unit=i as the default slowed things down by 76// roughly 0--20%.] 77// 78// - get_XCon accounts for about 9% of konqueror startup time. Try 79// keeping XPt children sorted by 'ip' and use binary search in get_XCon. 80// Requires factoring out binary search code from various places into a 81// VG_(bsearch) function. 82// 83// Todo -- low priority: 84// - In each XPt, record both bytes and the number of allocations, and 85// possibly the global number of allocations. 86// - (Andy Lin) Give a stack trace on detailed snapshots? 87// - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger 88// than a certain size! Because: "linux's malloc allows to set a 89// MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will 90// be handled directly by the kernel, and are guaranteed to be returned to 91// the system when freed. So we needed to profile only blocks below this 92// limit." 93// 94// File format working notes: 95 96#if 0 97desc: --heap-admin=foo 98cmd: date 99time_unit: ms 100#----------- 101snapshot=0 102#----------- 103time=0 104mem_heap_B=0 105mem_heap_admin_B=0 106mem_stacks_B=0 107heap_tree=empty 108#----------- 109snapshot=1 110#----------- 111time=353 112mem_heap_B=5 113mem_heap_admin_B=0 114mem_stacks_B=0 115heap_tree=detailed 116n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 117 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 118 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so) 119 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so) 120 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so) 121 n1: 5 0x8049821: (within /bin/date) 122 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so) 123 124 125n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 126t_events: B 127n 0 0 0 0 0 128n 0 0 0 0 0 129t1: 5 <string...> 130 t1: 6 <string...> 131 132Ideas: 133- each snapshot specifies an x-axis value and one or more y-axis values. 134- can display the y-axis values separately if you like 135- can completely separate connection between snapshots and trees. 136 137Challenges: 138- how to specify and scale/abbreviate units on axes? 139- how to combine multiple values into the y-axis? 140 141--------------------------------------------------------------------------------Command: date 142Massif arguments: --heap-admin=foo 143ms_print arguments: massif.out 144-------------------------------------------------------------------------------- 145 KB 1466.472^ :# 147 | :# :: . . 148 ... 149 | ::@ :@ :@ :@:::# :: : :::: 150 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713 151 152Number of snapshots: 50 153 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)] 154-------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 155-------------------------------------------------------------------------------- 0 0 0 0 0 0 156 1 345 5 5 0 0 157 2 353 5 5 0 0 158100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 159->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 160#endif 161 162//--------------------------------------------------------------------------- 163 164#include "pub_tool_basics.h" 165#include "pub_tool_vki.h" 166#include "pub_tool_aspacemgr.h" 167#include "pub_tool_debuginfo.h" 168#include "pub_tool_hashtable.h" 169#include "pub_tool_libcbase.h" 170#include "pub_tool_libcassert.h" 171#include "pub_tool_libcfile.h" 172#include "pub_tool_libcprint.h" 173#include "pub_tool_libcproc.h" 174#include "pub_tool_machine.h" 175#include "pub_tool_mallocfree.h" 176#include "pub_tool_options.h" 177#include "pub_tool_replacemalloc.h" 178#include "pub_tool_stacktrace.h" 179#include "pub_tool_threadstate.h" 180#include "pub_tool_tooliface.h" 181#include "pub_tool_xarray.h" 182#include "pub_tool_clientstate.h" 183#include "pub_tool_gdbserver.h" 184 185#include "valgrind.h" // For {MALLOC,FREE}LIKE_BLOCK 186 187//------------------------------------------------------------*/ 188//--- Overview of operation ---*/ 189//------------------------------------------------------------*/ 190 191// The size of the stacks and heap is tracked. The heap is tracked in a lot 192// of detail, enough to tell how many bytes each line of code is responsible 193// for, more or less. The main data structure is a tree representing the 194// call tree beneath all the allocation functions like malloc(). 195// (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at 196// the page level, and each page is treated much like a heap block. We use 197// "heap" throughout below to cover this case because the concepts are all the 198// same.) 199// 200// "Snapshots" are recordings of the memory usage. There are two basic 201// kinds: 202// - Normal: these record the current time, total memory size, total heap 203// size, heap admin size and stack size. 204// - Detailed: these record those things in a normal snapshot, plus a very 205// detailed XTree (see below) indicating how the heap is structured. 206// 207// Snapshots are taken every so often. There are two storage classes of 208// snapshots: 209// - Temporary: Massif does a temporary snapshot every so often. The idea 210// is to always have a certain number of temporary snapshots around. So 211// we take them frequently to begin with, but decreasingly often as the 212// program continues to run. Also, we remove some old ones after a while. 213// Overall it's a kind of exponential decay thing. Most of these are 214// normal snapshots, a small fraction are detailed snapshots. 215// - Permanent: Massif takes a permanent (detailed) snapshot in some 216// circumstances. They are: 217// - Peak snapshot: When the memory usage peak is reached, it takes a 218// snapshot. It keeps this, unless the peak is subsequently exceeded, 219// in which case it will overwrite the peak snapshot. 220// - User-requested snapshots: These are done in response to client 221// requests. They are always kept. 222 223// Used for printing things when clo_verbosity > 1. 224#define VERB(verb, format, args...) \ 225 if (VG_(clo_verbosity) > verb) { \ 226 VG_(dmsg)("Massif: " format, ##args); \ 227 } 228 229// Used for printing stats when clo_stats == True. 230#define STATS(format, args...) \ 231 if (VG_(clo_stats)) { \ 232 VG_(dmsg)("Massif: " format, ##args); \ 233 } 234 235//------------------------------------------------------------// 236//--- Statistics ---// 237//------------------------------------------------------------// 238 239// Konqueror startup, to give an idea of the numbers involved with a biggish 240// program, with default depth: 241// 242// depth=3 depth=40 243// - 310,000 allocations 244// - 300,000 frees 245// - 15,000 XPts 800,000 XPts 246// - 1,800 top-XPts 247 248static UInt n_heap_allocs = 0; 249static UInt n_heap_reallocs = 0; 250static UInt n_heap_frees = 0; 251static UInt n_ignored_heap_allocs = 0; 252static UInt n_ignored_heap_frees = 0; 253static UInt n_ignored_heap_reallocs = 0; 254static UInt n_stack_allocs = 0; 255static UInt n_stack_frees = 0; 256static UInt n_xpts = 0; 257static UInt n_xpt_init_expansions = 0; 258static UInt n_xpt_later_expansions = 0; 259static UInt n_sxpt_allocs = 0; 260static UInt n_sxpt_frees = 0; 261static UInt n_skipped_snapshots = 0; 262static UInt n_real_snapshots = 0; 263static UInt n_detailed_snapshots = 0; 264static UInt n_peak_snapshots = 0; 265static UInt n_cullings = 0; 266static UInt n_XCon_redos = 0; 267 268//------------------------------------------------------------// 269//--- Globals ---// 270//------------------------------------------------------------// 271 272// Number of guest instructions executed so far. Only used with 273// --time-unit=i. 274static Long guest_instrs_executed = 0; 275 276static SizeT heap_szB = 0; // Live heap size 277static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes 278static SizeT stacks_szB = 0; // Live stacks size 279 280// This is the total size from the current peak snapshot, or 0 if no peak 281// snapshot has been taken yet. 282static SizeT peak_snapshot_total_szB = 0; 283 284// Incremented every time memory is allocated/deallocated, by the 285// allocated/deallocated amount; includes heap, heap-admin and stack 286// memory. An alternative to milliseconds as a unit of program "time". 287static ULong total_allocs_deallocs_szB = 0; 288 289// When running with --heap=yes --pages-as-heap=no, we don't start taking 290// snapshots until the first basic block is executed, rather than doing it in 291// ms_post_clo_init (which is the obvious spot), for two reasons. 292// - It lets us ignore stack events prior to that, because they're not 293// really proper ones and just would screw things up. 294// - Because there's still some core initialisation to do, and so there 295// would be an artificial time gap between the first and second snapshots. 296// 297// When running with --heap=yes --pages-as-heap=yes, snapshots start much 298// earlier due to new_mem_startup so this isn't relevant. 299// 300static Bool have_started_executing_code = False; 301 302//------------------------------------------------------------// 303//--- Alloc fns ---// 304//------------------------------------------------------------// 305 306static XArray* alloc_fns; 307static XArray* ignore_fns; 308 309static void init_alloc_fns(void) 310{ 311 // Create the list, and add the default elements. 312 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1", 313 VG_(free), sizeof(Char*)); 314 #define DO(x) { Char* s = x; VG_(addToXA)(alloc_fns, &s); } 315 316 // Ordered roughly according to (presumed) frequency. 317 // Nb: The C++ "operator new*" ones are overloadable. We include them 318 // always anyway, because even if they're overloaded, it would be a 319 // prodigiously stupid overloading that caused them to not allocate 320 // memory. 321 // 322 // XXX: because we don't look at the first stack entry (unless it's a 323 // custom allocation) there's not much point to having all these alloc 324 // functions here -- they should never appear anywhere (I think?) other 325 // than the top stack entry. The only exceptions are those that in 326 // vg_replace_malloc.c are partly or fully implemented in terms of another 327 // alloc function: realloc (which uses malloc); valloc, 328 // malloc_zone_valloc, posix_memalign and memalign_common (which use 329 // memalign). 330 // 331 DO("malloc" ); 332 DO("__builtin_new" ); 333 DO("operator new(unsigned)" ); 334 DO("operator new(unsigned long)" ); 335 DO("__builtin_vec_new" ); 336 DO("operator new[](unsigned)" ); 337 DO("operator new[](unsigned long)" ); 338 DO("calloc" ); 339 DO("realloc" ); 340 DO("memalign" ); 341 DO("posix_memalign" ); 342 DO("valloc" ); 343 DO("operator new(unsigned, std::nothrow_t const&)" ); 344 DO("operator new[](unsigned, std::nothrow_t const&)" ); 345 DO("operator new(unsigned long, std::nothrow_t const&)" ); 346 DO("operator new[](unsigned long, std::nothrow_t const&)"); 347#if defined(VGO_darwin) 348 DO("malloc_zone_malloc" ); 349 DO("malloc_zone_calloc" ); 350 DO("malloc_zone_realloc" ); 351 DO("malloc_zone_memalign" ); 352 DO("malloc_zone_valloc" ); 353#endif 354} 355 356static void init_ignore_fns(void) 357{ 358 // Create the (empty) list. 359 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1", 360 VG_(free), sizeof(Char*)); 361} 362 363// Determines if the named function is a member of the XArray. 364static Bool is_member_fn(XArray* fns, Char* fnname) 365{ 366 Char** fn_ptr; 367 Int i; 368 369 // Nb: It's a linear search through the list, because we're comparing 370 // strings rather than pointers to strings. 371 // Nb: This gets called a lot. It was an OSet, but they're quite slow to 372 // iterate through so it wasn't a good choice. 373 for (i = 0; i < VG_(sizeXA)(fns); i++) { 374 fn_ptr = VG_(indexXA)(fns, i); 375 if (VG_STREQ(fnname, *fn_ptr)) 376 return True; 377 } 378 return False; 379} 380 381 382//------------------------------------------------------------// 383//--- Command line args ---// 384//------------------------------------------------------------// 385 386#define MAX_DEPTH 200 387 388typedef enum { TimeI, TimeMS, TimeB } TimeUnit; 389 390static Char* TimeUnit_to_string(TimeUnit time_unit) 391{ 392 switch (time_unit) { 393 case TimeI: return "i"; 394 case TimeMS: return "ms"; 395 case TimeB: return "B"; 396 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit"); 397 } 398} 399 400static Bool clo_heap = True; 401 // clo_heap_admin is deliberately a word-sized type. At one point it was 402 // a UInt, but this caused problems on 64-bit machines when it was 403 // multiplied by a small negative number and then promoted to a 404 // word-sized type -- it ended up with a value of 4.2 billion. Sigh. 405static SSizeT clo_heap_admin = 8; 406static Bool clo_pages_as_heap = False; 407static Bool clo_stacks = False; 408static Int clo_depth = 30; 409static double clo_threshold = 1.0; // percentage 410static double clo_peak_inaccuracy = 1.0; // percentage 411static Int clo_time_unit = TimeI; 412static Int clo_detailed_freq = 10; 413static Int clo_max_snapshots = 100; 414static Char* clo_massif_out_file = "massif.out.%p"; 415 416static XArray* args_for_massif; 417 418static Bool ms_process_cmd_line_option(Char* arg) 419{ 420 Char* tmp_str; 421 422 // Remember the arg for later use. 423 VG_(addToXA)(args_for_massif, &arg); 424 425 if VG_BOOL_CLO(arg, "--heap", clo_heap) {} 426 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {} 427 428 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {} 429 430 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {} 431 432 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {} 433 434 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) { 435 VG_(addToXA)(alloc_fns, &tmp_str); 436 } 437 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) { 438 VG_(addToXA)(ignore_fns, &tmp_str); 439 } 440 441 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) { 442 if (clo_threshold < 0 || clo_threshold > 100) { 443 VG_(fmsg_bad_option)(arg, 444 "--threshold must be between 0.0 and 100.0\n"); 445 } 446 } 447 448 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {} 449 450 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {} 451 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {} 452 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {} 453 454 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {} 455 456 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {} 457 458 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {} 459 460 else 461 return VG_(replacement_malloc_process_cmd_line_option)(arg); 462 463 return True; 464} 465 466static void ms_print_usage(void) 467{ 468 VG_(printf)( 469" --heap=no|yes profile heap blocks [yes]\n" 470" --heap-admin=<size> average admin bytes per heap block;\n" 471" ignored if --heap=no [8]\n" 472" --stacks=no|yes profile stack(s) [no]\n" 473" --pages-as-heap=no|yes profile memory at the page level [no]\n" 474" --depth=<number> depth of contexts [30]\n" 475" --alloc-fn=<name> specify <name> as an alloc function [empty]\n" 476" --ignore-fn=<name> ignore heap allocations within <name> [empty]\n" 477" --threshold=<m.n> significance threshold, as a percentage [1.0]\n" 478" --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n" 479" --time-unit=i|ms|B time unit: instructions executed, milliseconds\n" 480" or heap bytes alloc'd/dealloc'd [i]\n" 481" --detailed-freq=<N> every Nth snapshot should be detailed [10]\n" 482" --max-snapshots=<N> maximum number of snapshots recorded [100]\n" 483" --massif-out-file=<file> output file name [massif.out.%%p]\n" 484 ); 485} 486 487static void ms_print_debug_usage(void) 488{ 489 VG_(printf)( 490" (none)\n" 491 ); 492} 493 494 495//------------------------------------------------------------// 496//--- XPts, XTrees and XCons ---// 497//------------------------------------------------------------// 498 499// An XPt represents an "execution point", ie. a code address. Each XPt is 500// part of a tree of XPts (an "execution tree", or "XTree"). The details of 501// the heap are represented by a single XTree. 502// 503// The root of the tree is 'alloc_xpt', which represents all allocation 504// functions, eg: 505// - malloc/calloc/realloc/memalign/new/new[]; 506// - user-specified allocation functions (using --alloc-fn); 507// - custom allocation (MALLOCLIKE) points 508// It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because 509// it makes the code simpler. 510// 511// Any child of 'alloc_xpt' is called a "top-XPt". The XPts at the bottom 512// of an XTree (leaf nodes) are "bottom-XPTs". 513// 514// Each path from a top-XPt to a bottom-XPt through an XTree gives an 515// execution context ("XCon"), ie. a stack trace. (And sub-paths represent 516// stack sub-traces.) The number of XCons in an XTree is equal to the 517// number of bottom-XPTs in that XTree. 518// 519// alloc_xpt XTrees are bi-directional. 520// | ^ 521// v | 522// > parent < Example: if child1() calls parent() and child2() 523// / | \ also calls parent(), and parent() calls malloc(), 524// | / \ | the XTree will look like this. 525// | v v | 526// child1 child2 527// 528// (Note that malformed stack traces can lead to difficulties. See the 529// comment at the bottom of get_XCon.) 530// 531// XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short 532// for "saved". When the XTree is duplicated for a snapshot, we duplicate 533// it as an SXTree, which is similar but omits some things it does not need, 534// and aggregates up insignificant nodes. This is important as an SXTree is 535// typically much smaller than an XTree. 536 537// XXX: make XPt and SXPt extensible arrays, to avoid having to do two 538// allocations per Pt. 539 540typedef struct _XPt XPt; 541struct _XPt { 542 Addr ip; // code address 543 544 // Bottom-XPts: space for the precise context. 545 // Other XPts: space of all the descendent bottom-XPts. 546 // Nb: this value goes up and down as the program executes. 547 SizeT szB; 548 549 XPt* parent; // pointer to parent XPt 550 551 // Children. 552 // n_children and max_children are 32-bit integers. 16-bit integers 553 // are too small -- a very big program might have more than 65536 554 // allocation points (ie. top-XPts) -- Konqueror starting up has 1800. 555 UInt n_children; // number of children 556 UInt max_children; // capacity of children array 557 XPt** children; // pointers to children XPts 558}; 559 560typedef 561 enum { 562 SigSXPt, 563 InsigSXPt 564 } 565 SXPtTag; 566 567typedef struct _SXPt SXPt; 568struct _SXPt { 569 SXPtTag tag; 570 SizeT szB; // memory size for the node, be it Sig or Insig 571 union { 572 // An SXPt representing a single significant code location. Much like 573 // an XPt, minus the fields that aren't necessary. 574 struct { 575 Addr ip; 576 UInt n_children; 577 SXPt** children; 578 } 579 Sig; 580 581 // An SXPt representing one or more code locations, all below the 582 // significance threshold. 583 struct { 584 Int n_xpts; // number of aggregated XPts 585 } 586 Insig; 587 }; 588}; 589 590// Fake XPt representing all allocation functions like malloc(). Acts as 591// parent node to all top-XPts. 592static XPt* alloc_xpt; 593 594// Cheap allocation for blocks that never need to be freed. Saves about 10% 595// for Konqueror startup with --depth=40. 596static void* perm_malloc(SizeT n_bytes) 597{ 598 static Addr hp = 0; // current heap pointer 599 static Addr hp_lim = 0; // maximum usable byte in current block 600 601 #define SUPERBLOCK_SIZE (1 << 20) // 1 MB 602 603 if (hp + n_bytes > hp_lim) { 604 hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE); 605 if (0 == hp) 606 VG_(out_of_memory_NORETURN)( "massif:perm_malloc", 607 SUPERBLOCK_SIZE); 608 hp_lim = hp + SUPERBLOCK_SIZE - 1; 609 } 610 611 hp += n_bytes; 612 613 return (void*)(hp - n_bytes); 614} 615 616static XPt* new_XPt(Addr ip, XPt* parent) 617{ 618 // XPts are never freed, so we can use perm_malloc to allocate them. 619 // Note that we cannot use perm_malloc for the 'children' array, because 620 // that needs to be resizable. 621 XPt* xpt = perm_malloc(sizeof(XPt)); 622 xpt->ip = ip; 623 xpt->szB = 0; 624 xpt->parent = parent; 625 626 // We don't initially allocate any space for children. We let that 627 // happen on demand. Many XPts (ie. all the bottom-XPts) don't have any 628 // children anyway. 629 xpt->n_children = 0; 630 xpt->max_children = 0; 631 xpt->children = NULL; 632 633 // Update statistics 634 n_xpts++; 635 636 return xpt; 637} 638 639static void add_child_xpt(XPt* parent, XPt* child) 640{ 641 // Expand 'children' if necessary. 642 tl_assert(parent->n_children <= parent->max_children); 643 if (parent->n_children == parent->max_children) { 644 if (0 == parent->max_children) { 645 parent->max_children = 4; 646 parent->children = VG_(malloc)( "ms.main.acx.1", 647 parent->max_children * sizeof(XPt*) ); 648 n_xpt_init_expansions++; 649 } else { 650 parent->max_children *= 2; // Double size 651 parent->children = VG_(realloc)( "ms.main.acx.2", 652 parent->children, 653 parent->max_children * sizeof(XPt*) ); 654 n_xpt_later_expansions++; 655 } 656 } 657 658 // Insert new child XPt in parent's children list. 659 parent->children[ parent->n_children++ ] = child; 660} 661 662// Reverse comparison for a reverse sort -- biggest to smallest. 663static Int SXPt_revcmp_szB(void* n1, void* n2) 664{ 665 SXPt* sxpt1 = *(SXPt**)n1; 666 SXPt* sxpt2 = *(SXPt**)n2; 667 return ( sxpt1->szB < sxpt2->szB ? 1 668 : sxpt1->szB > sxpt2->szB ? -1 669 : 0); 670} 671 672//------------------------------------------------------------// 673//--- XTree Operations ---// 674//------------------------------------------------------------// 675 676// Duplicates an XTree as an SXTree. 677static SXPt* dup_XTree(XPt* xpt, SizeT total_szB) 678{ 679 Int i, n_sig_children, n_insig_children, n_child_sxpts; 680 SizeT sig_child_threshold_szB; 681 SXPt* sxpt; 682 683 // Number of XPt children Action for SXPT 684 // ------------------ --------------- 685 // 0 sig, 0 insig alloc 0 children 686 // N sig, 0 insig alloc N children, dup all 687 // N sig, M insig alloc N+1, dup first N, aggregate remaining M 688 // 0 sig, M insig alloc 1, aggregate M 689 690 // Work out how big a child must be to be significant. If the current 691 // total_szB is zero, then we set it to 1, which means everything will be 692 // judged insignificant -- this is sensible, as there's no point showing 693 // any detail for this case. Unless they used --threshold=0, in which 694 // case we show them everything because that's what they asked for. 695 // 696 // Nb: We do this once now, rather than once per child, because if we do 697 // that the cost of all the divisions adds up to something significant. 698 if (0 == total_szB && 0 != clo_threshold) { 699 sig_child_threshold_szB = 1; 700 } else { 701 sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100); 702 } 703 704 // How many children are significant? And do we need an aggregate SXPt? 705 n_sig_children = 0; 706 for (i = 0; i < xpt->n_children; i++) { 707 if (xpt->children[i]->szB >= sig_child_threshold_szB) { 708 n_sig_children++; 709 } 710 } 711 n_insig_children = xpt->n_children - n_sig_children; 712 n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 ); 713 714 // Duplicate the XPt. 715 sxpt = VG_(malloc)("ms.main.dX.1", sizeof(SXPt)); 716 n_sxpt_allocs++; 717 sxpt->tag = SigSXPt; 718 sxpt->szB = xpt->szB; 719 sxpt->Sig.ip = xpt->ip; 720 sxpt->Sig.n_children = n_child_sxpts; 721 722 // Create the SXPt's children. 723 if (n_child_sxpts > 0) { 724 Int j; 725 SizeT sig_children_szB = 0, insig_children_szB = 0; 726 sxpt->Sig.children = VG_(malloc)("ms.main.dX.2", 727 n_child_sxpts * sizeof(SXPt*)); 728 729 // Duplicate the significant children. (Nb: sig_children_szB + 730 // insig_children_szB doesn't necessarily equal xpt->szB.) 731 j = 0; 732 for (i = 0; i < xpt->n_children; i++) { 733 if (xpt->children[i]->szB >= sig_child_threshold_szB) { 734 sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB); 735 sig_children_szB += xpt->children[i]->szB; 736 } else { 737 insig_children_szB += xpt->children[i]->szB; 738 } 739 } 740 741 // Create the SXPt for the insignificant children, if any, and put it 742 // in the last child entry. 743 if (n_insig_children > 0) { 744 // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt 745 // doesn't involve a call to dup_XTree(). 746 SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt)); 747 n_sxpt_allocs++; 748 insig_sxpt->tag = InsigSXPt; 749 insig_sxpt->szB = insig_children_szB; 750 insig_sxpt->Insig.n_xpts = n_insig_children; 751 sxpt->Sig.children[n_sig_children] = insig_sxpt; 752 } 753 } else { 754 sxpt->Sig.children = NULL; 755 } 756 757 return sxpt; 758} 759 760static void free_SXTree(SXPt* sxpt) 761{ 762 Int i; 763 tl_assert(sxpt != NULL); 764 765 switch (sxpt->tag) { 766 case SigSXPt: 767 // Free all children SXPts, then the children array. 768 for (i = 0; i < sxpt->Sig.n_children; i++) { 769 free_SXTree(sxpt->Sig.children[i]); 770 sxpt->Sig.children[i] = NULL; 771 } 772 VG_(free)(sxpt->Sig.children); sxpt->Sig.children = NULL; 773 break; 774 775 case InsigSXPt: 776 break; 777 778 default: tl_assert2(0, "free_SXTree: unknown SXPt tag"); 779 } 780 781 // Free the SXPt itself. 782 VG_(free)(sxpt); sxpt = NULL; 783 n_sxpt_frees++; 784} 785 786// Sanity checking: we periodically check the heap XTree with 787// ms_expensive_sanity_check. 788static void sanity_check_XTree(XPt* xpt, XPt* parent) 789{ 790 tl_assert(xpt != NULL); 791 792 // Check back-pointer. 793 tl_assert2(xpt->parent == parent, 794 "xpt->parent = %p, parent = %p\n", xpt->parent, parent); 795 796 // Check children counts look sane. 797 tl_assert(xpt->n_children <= xpt->max_children); 798 799 // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's 800 // children's sizes. See comment at the bottom of get_XCon. 801} 802 803// Sanity checking: we check SXTrees (which are in snapshots) after 804// snapshots are created, before they are deleted, and before they are 805// printed. 806static void sanity_check_SXTree(SXPt* sxpt) 807{ 808 Int i; 809 810 tl_assert(sxpt != NULL); 811 812 // Check the sum of any children szBs equals the SXPt's szB. Check the 813 // children at the same time. 814 switch (sxpt->tag) { 815 case SigSXPt: { 816 if (sxpt->Sig.n_children > 0) { 817 for (i = 0; i < sxpt->Sig.n_children; i++) { 818 sanity_check_SXTree(sxpt->Sig.children[i]); 819 } 820 } 821 break; 822 } 823 case InsigSXPt: 824 break; // do nothing 825 826 default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag"); 827 } 828} 829 830 831//------------------------------------------------------------// 832//--- XCon Operations ---// 833//------------------------------------------------------------// 834 835// This is the limit on the number of removed alloc-fns that can be in a 836// single XCon. 837#define MAX_OVERESTIMATE 50 838#define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE) 839 840// This is used for various buffers which can hold function names/IP 841// description. Some C++ names can get really long so 1024 isn't big 842// enough. 843#define BUF_LEN 2048 844 845// Determine if the given IP belongs to a function that should be ignored. 846static Bool fn_should_be_ignored(Addr ip) 847{ 848 static Char buf[BUF_LEN]; 849 return 850 ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf) 851 ? True : False ); 852} 853 854// Get the stack trace for an XCon, filtering out uninteresting entries: 855// alloc-fns and entries above alloc-fns, and entries below main-or-below-main. 856// Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c 857// becomes: a / b / main 858// Nb: it's possible to end up with an empty trace, eg. if 'main' is marked 859// as an alloc-fn. This is ok. 860static 861Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[]) 862{ 863 static Char buf[BUF_LEN]; 864 Int n_ips, i, n_alloc_fns_removed; 865 Int overestimate; 866 Bool redo; 867 868 // We ask for a few more IPs than clo_depth suggests we need. Then we 869 // remove every entry that is an alloc-fn. Depending on the 870 // circumstances, we may need to redo it all, asking for more IPs. 871 // Details: 872 // - If the original stack trace is smaller than asked-for, redo=False 873 // - Else if after filtering we have >= clo_depth IPs, redo=False 874 // - Else redo=True 875 // In other words, to redo, we'd have to get a stack trace as big as we 876 // asked for and remove more than 'overestimate' alloc-fns. 877 878 // Main loop. 879 redo = True; // Assume this to begin with. 880 for (overestimate = 3; redo; overestimate += 6) { 881 // This should never happen -- would require MAX_OVERESTIMATE 882 // alloc-fns to be removed from the stack trace. 883 if (overestimate > MAX_OVERESTIMATE) 884 VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?"); 885 886 // Ask for more IPs than clo_depth suggests we need. 887 n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate, 888 NULL/*array to dump SP values in*/, 889 NULL/*array to dump FP values in*/, 890 0/*first_ip_delta*/ ); 891 tl_assert(n_ips > 0); 892 893 // If the original stack trace is smaller than asked-for, redo=False. 894 if (n_ips < clo_depth + overestimate) { redo = False; } 895 896 // Filter out alloc fns. If requested, we automatically remove the 897 // first entry (which presumably will be something like malloc or 898 // __builtin_new that we're sure to filter out) without looking at it, 899 // because VG_(get_fnname) is expensive. 900 n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 ); 901 for (i = n_alloc_fns_removed; i < n_ips; i++) { 902 if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) { 903 if (is_member_fn(alloc_fns, buf)) { 904 n_alloc_fns_removed++; 905 } else { 906 break; 907 } 908 } 909 } 910 // Remove the alloc fns by shuffling the rest down over them. 911 n_ips -= n_alloc_fns_removed; 912 for (i = 0; i < n_ips; i++) { 913 ips[i] = ips[i + n_alloc_fns_removed]; 914 } 915 916 // If after filtering we have >= clo_depth IPs, redo=False 917 if (n_ips >= clo_depth) { 918 redo = False; 919 n_ips = clo_depth; // Ignore any IPs below --depth. 920 } 921 922 if (redo) { 923 n_XCon_redos++; 924 } 925 } 926 return n_ips; 927} 928 929// Gets an XCon and puts it in the tree. Returns the XCon's bottom-XPt. 930// Unless the allocation should be ignored, in which case we return NULL. 931static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry ) 932{ 933 static Addr ips[MAX_IPS]; 934 Int i; 935 XPt* xpt = alloc_xpt; 936 937 // After this call, the IPs we want are in ips[0]..ips[n_ips-1]. 938 Int n_ips = get_IPs(tid, exclude_first_entry, ips); 939 940 // Should we ignore this allocation? (Nb: n_ips can be zero, eg. if 941 // 'main' is marked as an alloc-fn.) 942 if (n_ips > 0 && fn_should_be_ignored(ips[0])) { 943 return NULL; 944 } 945 946 // Now do the search/insertion of the XCon. 947 for (i = 0; i < n_ips; i++) { 948 Addr ip = ips[i]; 949 Int ch; 950 // Look for IP in xpt's children. 951 // Linear search, ugh -- about 10% of time for konqueror startup tried 952 // caching last result, only hit about 4% for konqueror. 953 // Nb: this search hits about 98% of the time for konqueror 954 for (ch = 0; True; ch++) { 955 if (ch == xpt->n_children) { 956 // IP not found in the children. 957 // Create and add new child XPt, then stop. 958 XPt* new_child_xpt = new_XPt(ip, xpt); 959 add_child_xpt(xpt, new_child_xpt); 960 xpt = new_child_xpt; 961 break; 962 963 } else if (ip == xpt->children[ch]->ip) { 964 // Found the IP in the children, stop. 965 xpt = xpt->children[ch]; 966 break; 967 } 968 } 969 } 970 971 // [Note: several comments refer to this comment. Do not delete it 972 // without updating them.] 973 // 974 // A complication... If all stack traces were well-formed, then the 975 // returned xpt would always be a bottom-XPt. As a consequence, an XPt's 976 // size would always be equal to the sum of its children's sizes, which 977 // is an excellent sanity check. 978 // 979 // Unfortunately, stack traces occasionally are malformed, ie. truncated. 980 // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a 981 // sub-trace of a/b/c/d. So we can't assume this xpt is a bottom-XPt; 982 // nor can we do sanity check an XPt's size against its children's sizes. 983 // This is annoying, but must be dealt with. (Older versions of Massif 984 // had this assertion in, and it was reported to fail by real users a 985 // couple of times.) Even more annoyingly, I can't come up with a simple 986 // test case that exhibit such a malformed stack trace, so I can't 987 // regression test it. Sigh. 988 // 989 // However, we can print a warning, so that if it happens (unexpectedly) 990 // in existing regression tests we'll know. Also, it warns users that 991 // the output snapshots may not add up the way they might expect. 992 // 993 //tl_assert(0 == xpt->n_children); // Must be bottom-XPt 994 if (0 != xpt->n_children) { 995 static Int n_moans = 0; 996 if (n_moans < 3) { 997 VG_(umsg)( 998 "Warning: Malformed stack trace detected. In Massif's output,\n"); 999 VG_(umsg)( 1000 " the size of an entry's child entries may not sum up\n"); 1001 VG_(umsg)( 1002 " to the entry's size as they normally do.\n"); 1003 n_moans++; 1004 if (3 == n_moans) 1005 VG_(umsg)( 1006 " (And Massif now won't warn about this again.)\n"); 1007 } 1008 } 1009 return xpt; 1010} 1011 1012// Update 'szB' of every XPt in the XCon, by percolating upwards. 1013static void update_XCon(XPt* xpt, SSizeT space_delta) 1014{ 1015 tl_assert(clo_heap); 1016 tl_assert(NULL != xpt); 1017 1018 if (0 == space_delta) 1019 return; 1020 1021 while (xpt != alloc_xpt) { 1022 if (space_delta < 0) tl_assert(xpt->szB >= -space_delta); 1023 xpt->szB += space_delta; 1024 xpt = xpt->parent; 1025 } 1026 if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta); 1027 alloc_xpt->szB += space_delta; 1028} 1029 1030 1031//------------------------------------------------------------// 1032//--- Snapshots ---// 1033//------------------------------------------------------------// 1034 1035// Snapshots are done in a way so that we always have a reasonable number of 1036// them. We start by taking them quickly. Once we hit our limit, we cull 1037// some (eg. half), and start taking them more slowly. Once we hit the 1038// limit again, we again cull and then take them even more slowly, and so 1039// on. 1040 1041// Time is measured either in i or ms or bytes, depending on the --time-unit 1042// option. It's a Long because it can exceed 32-bits reasonably easily, and 1043// because we need to allow negative values to represent unset times. 1044typedef Long Time; 1045 1046#define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number. 1047 1048typedef 1049 enum { 1050 Normal = 77, 1051 Peak, 1052 Unused 1053 } 1054 SnapshotKind; 1055 1056typedef 1057 struct { 1058 SnapshotKind kind; 1059 Time time; 1060 SizeT heap_szB; 1061 SizeT heap_extra_szB;// Heap slop + admin bytes. 1062 SizeT stacks_szB; 1063 SXPt* alloc_sxpt; // Heap XTree root, if a detailed snapshot, 1064 } // otherwise NULL. 1065 Snapshot; 1066 1067static UInt next_snapshot_i = 0; // Index of where next snapshot will go. 1068static Snapshot* snapshots; // Array of snapshots. 1069 1070static Bool is_snapshot_in_use(Snapshot* snapshot) 1071{ 1072 if (Unused == snapshot->kind) { 1073 // If snapshot is unused, check all the fields are unset. 1074 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME); 1075 tl_assert(snapshot->heap_extra_szB == 0); 1076 tl_assert(snapshot->heap_szB == 0); 1077 tl_assert(snapshot->stacks_szB == 0); 1078 tl_assert(snapshot->alloc_sxpt == NULL); 1079 return False; 1080 } else { 1081 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME); 1082 return True; 1083 } 1084} 1085 1086static Bool is_detailed_snapshot(Snapshot* snapshot) 1087{ 1088 return (snapshot->alloc_sxpt ? True : False); 1089} 1090 1091static Bool is_uncullable_snapshot(Snapshot* snapshot) 1092{ 1093 return &snapshots[0] == snapshot // First snapshot 1094 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot 1095 || snapshot->kind == Peak; // Peak snapshot 1096} 1097 1098static void sanity_check_snapshot(Snapshot* snapshot) 1099{ 1100 if (snapshot->alloc_sxpt) { 1101 sanity_check_SXTree(snapshot->alloc_sxpt); 1102 } 1103} 1104 1105// All the used entries should look used, all the unused ones should be clear. 1106static void sanity_check_snapshots_array(void) 1107{ 1108 Int i; 1109 for (i = 0; i < next_snapshot_i; i++) { 1110 tl_assert( is_snapshot_in_use( & snapshots[i] )); 1111 } 1112 for ( ; i < clo_max_snapshots; i++) { 1113 tl_assert(!is_snapshot_in_use( & snapshots[i] )); 1114 } 1115} 1116 1117// This zeroes all the fields in the snapshot, but does not free the heap 1118// XTree if present. It also does a sanity check unless asked not to; we 1119// can't sanity check at startup when clearing the initial snapshots because 1120// they're full of junk. 1121static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check) 1122{ 1123 if (do_sanity_check) sanity_check_snapshot(snapshot); 1124 snapshot->kind = Unused; 1125 snapshot->time = UNUSED_SNAPSHOT_TIME; 1126 snapshot->heap_extra_szB = 0; 1127 snapshot->heap_szB = 0; 1128 snapshot->stacks_szB = 0; 1129 snapshot->alloc_sxpt = NULL; 1130} 1131 1132// This zeroes all the fields in the snapshot, and frees the heap XTree if 1133// present. 1134static void delete_snapshot(Snapshot* snapshot) 1135{ 1136 // Nb: if there's an XTree, we free it after calling clear_snapshot, 1137 // because clear_snapshot does a sanity check which includes checking the 1138 // XTree. 1139 SXPt* tmp_sxpt = snapshot->alloc_sxpt; 1140 clear_snapshot(snapshot, /*do_sanity_check*/True); 1141 if (tmp_sxpt) { 1142 free_SXTree(tmp_sxpt); 1143 } 1144} 1145 1146static void VERB_snapshot(Int verbosity, Char* prefix, Int i) 1147{ 1148 Snapshot* snapshot = &snapshots[i]; 1149 Char* suffix; 1150 switch (snapshot->kind) { 1151 case Peak: suffix = "p"; break; 1152 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break; 1153 case Unused: suffix = "u"; break; 1154 default: 1155 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind); 1156 } 1157 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)\n", 1158 prefix, suffix, i, 1159 snapshot->time, 1160 snapshot->heap_szB, 1161 snapshot->heap_extra_szB, 1162 snapshot->stacks_szB 1163 ); 1164} 1165 1166// Cull half the snapshots; we choose those that represent the smallest 1167// time-spans, because that gives us the most even distribution of snapshots 1168// over time. (It's possible to lose interesting spikes, however.) 1169// 1170// Algorithm for N snapshots: We find the snapshot representing the smallest 1171// timeframe, and remove it. We repeat this until (N/2) snapshots are gone. 1172// We have to do this one snapshot at a time, rather than finding the (N/2) 1173// smallest snapshots in one hit, because when a snapshot is removed, its 1174// neighbours immediately cover greater timespans. So it's O(N^2), but N is 1175// small, and it's not done very often. 1176// 1177// Once we're done, we return the new smallest interval between snapshots. 1178// That becomes our minimum time interval. 1179static UInt cull_snapshots(void) 1180{ 1181 Int i, jp, j, jn, min_timespan_i; 1182 Int n_deleted = 0; 1183 Time min_timespan; 1184 1185 n_cullings++; 1186 1187 // Sets j to the index of the first not-yet-removed snapshot at or after i 1188 #define FIND_SNAPSHOT(i, j) \ 1189 for (j = i; \ 1190 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \ 1191 j++) { } 1192 1193 VERB(2, "Culling...\n"); 1194 1195 // First we remove enough snapshots by clearing them in-place. Once 1196 // that's done, we can slide the remaining ones down. 1197 for (i = 0; i < clo_max_snapshots/2; i++) { 1198 // Find the snapshot representing the smallest timespan. The timespan 1199 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between 1200 // snapshot A and B. We don't consider the first and last snapshots for 1201 // removal. 1202 Snapshot* min_snapshot; 1203 Int min_j; 1204 1205 // Initial triple: (prev, curr, next) == (jp, j, jn) 1206 // Initial min_timespan is the first one. 1207 jp = 0; 1208 FIND_SNAPSHOT(1, j); 1209 FIND_SNAPSHOT(j+1, jn); 1210 min_timespan = 0x7fffffffffffffffLL; 1211 min_j = -1; 1212 while (jn < clo_max_snapshots) { 1213 Time timespan = snapshots[jn].time - snapshots[jp].time; 1214 tl_assert(timespan >= 0); 1215 // Nb: We never cull the peak snapshot. 1216 if (Peak != snapshots[j].kind && timespan < min_timespan) { 1217 min_timespan = timespan; 1218 min_j = j; 1219 } 1220 // Move on to next triple 1221 jp = j; 1222 j = jn; 1223 FIND_SNAPSHOT(jn+1, jn); 1224 } 1225 // We've found the least important snapshot, now delete it. First 1226 // print it if necessary. 1227 tl_assert(-1 != min_j); // Check we found a minimum. 1228 min_snapshot = & snapshots[ min_j ]; 1229 if (VG_(clo_verbosity) > 1) { 1230 Char buf[64]; 1231 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan); 1232 VERB_snapshot(2, buf, min_j); 1233 } 1234 delete_snapshot(min_snapshot); 1235 n_deleted++; 1236 } 1237 1238 // Slide down the remaining snapshots over the removed ones. First set i 1239 // to point to the first empty slot, and j to the first full slot after 1240 // i. Then slide everything down. 1241 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { } 1242 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { } 1243 for ( ; j < clo_max_snapshots; j++) { 1244 if (is_snapshot_in_use( &snapshots[j] )) { 1245 snapshots[i++] = snapshots[j]; 1246 clear_snapshot(&snapshots[j], /*do_sanity_check*/True); 1247 } 1248 } 1249 next_snapshot_i = i; 1250 1251 // Check snapshots array looks ok after changes. 1252 sanity_check_snapshots_array(); 1253 1254 // Find the minimum timespan remaining; that will be our new minimum 1255 // time interval. Note that above we were finding timespans by measuring 1256 // two intervals around a snapshot that was under consideration for 1257 // deletion. Here we only measure single intervals because all the 1258 // deletions have occurred. 1259 // 1260 // But we have to be careful -- some snapshots (eg. snapshot 0, and the 1261 // peak snapshot) are uncullable. If two uncullable snapshots end up 1262 // next to each other, they'll never be culled (assuming the peak doesn't 1263 // change), and the time gap between them will not change. However, the 1264 // time between the remaining cullable snapshots will grow ever larger. 1265 // This means that the min_timespan found will always be that between the 1266 // two uncullable snapshots, and it will be much smaller than it should 1267 // be. To avoid this problem, when computing the minimum timespan, we 1268 // ignore any timespans between two uncullable snapshots. 1269 tl_assert(next_snapshot_i > 1); 1270 min_timespan = 0x7fffffffffffffffLL; 1271 min_timespan_i = -1; 1272 for (i = 1; i < next_snapshot_i; i++) { 1273 if (is_uncullable_snapshot(&snapshots[i]) && 1274 is_uncullable_snapshot(&snapshots[i-1])) 1275 { 1276 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i); 1277 } else { 1278 Time timespan = snapshots[i].time - snapshots[i-1].time; 1279 tl_assert(timespan >= 0); 1280 if (timespan < min_timespan) { 1281 min_timespan = timespan; 1282 min_timespan_i = i; 1283 } 1284 } 1285 } 1286 tl_assert(-1 != min_timespan_i); // Check we found a minimum. 1287 1288 // Print remaining snapshots, if necessary. 1289 if (VG_(clo_verbosity) > 1) { 1290 VERB(2, "Finished culling (%3d of %3d deleted)\n", 1291 n_deleted, clo_max_snapshots); 1292 for (i = 0; i < next_snapshot_i; i++) { 1293 VERB_snapshot(2, " post-cull", i); 1294 } 1295 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n", 1296 min_timespan, min_timespan_i-1, min_timespan_i); 1297 } 1298 1299 return min_timespan; 1300} 1301 1302static Time get_time(void) 1303{ 1304 // Get current time, in whatever time unit we're using. 1305 if (clo_time_unit == TimeI) { 1306 return guest_instrs_executed; 1307 } else if (clo_time_unit == TimeMS) { 1308 // Some stuff happens between the millisecond timer being initialised 1309 // to zero and us taking our first snapshot. We determine that time 1310 // gap so we can subtract it from all subsequent times so that our 1311 // first snapshot is considered to be at t = 0ms. Unfortunately, a 1312 // bunch of symbols get read after the first snapshot is taken but 1313 // before the second one (which is triggered by the first allocation), 1314 // so when the time-unit is 'ms' we always have a big gap between the 1315 // first two snapshots. But at least users won't have to wonder why 1316 // the first snapshot isn't at t=0. 1317 static Bool is_first_get_time = True; 1318 static Time start_time_ms; 1319 if (is_first_get_time) { 1320 start_time_ms = VG_(read_millisecond_timer)(); 1321 is_first_get_time = False; 1322 return 0; 1323 } else { 1324 return VG_(read_millisecond_timer)() - start_time_ms; 1325 } 1326 } else if (clo_time_unit == TimeB) { 1327 return total_allocs_deallocs_szB; 1328 } else { 1329 tl_assert2(0, "bad --time-unit value"); 1330 } 1331} 1332 1333// Take a snapshot, and only that -- decisions on whether to take a 1334// snapshot, or what kind of snapshot, are made elsewhere. 1335// Nb: we call the arg "my_time" because "time" shadows a global declaration 1336// in /usr/include/time.h on Darwin. 1337static void 1338take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time, 1339 Bool is_detailed) 1340{ 1341 tl_assert(!is_snapshot_in_use(snapshot)); 1342 if (!clo_pages_as_heap) { 1343 tl_assert(have_started_executing_code); 1344 } 1345 1346 // Heap and heap admin. 1347 if (clo_heap) { 1348 snapshot->heap_szB = heap_szB; 1349 if (is_detailed) { 1350 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; 1351 snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB); 1352 tl_assert( alloc_xpt->szB == heap_szB); 1353 tl_assert(snapshot->alloc_sxpt->szB == heap_szB); 1354 } 1355 snapshot->heap_extra_szB = heap_extra_szB; 1356 } 1357 1358 // Stack(s). 1359 if (clo_stacks) { 1360 snapshot->stacks_szB = stacks_szB; 1361 } 1362 1363 // Rest of snapshot. 1364 snapshot->kind = kind; 1365 snapshot->time = my_time; 1366 sanity_check_snapshot(snapshot); 1367 1368 // Update stats. 1369 if (Peak == kind) n_peak_snapshots++; 1370 if (is_detailed) n_detailed_snapshots++; 1371 n_real_snapshots++; 1372} 1373 1374 1375// Take a snapshot, if it's time, or if we've hit a peak. 1376static void 1377maybe_take_snapshot(SnapshotKind kind, Char* what) 1378{ 1379 // 'min_time_interval' is the minimum time interval between snapshots. 1380 // If we try to take a snapshot and less than this much time has passed, 1381 // we don't take it. It gets larger as the program runs longer. It's 1382 // initialised to zero so that we begin by taking snapshots as quickly as 1383 // possible. 1384 static Time min_time_interval = 0; 1385 // Zero allows startup snapshot. 1386 static Time earliest_possible_time_of_next_snapshot = 0; 1387 static Int n_snapshots_since_last_detailed = 0; 1388 static Int n_skipped_snapshots_since_last_snapshot = 0; 1389 1390 Snapshot* snapshot; 1391 Bool is_detailed; 1392 // Nb: we call this variable "my_time" because "time" shadows a global 1393 // declaration in /usr/include/time.h on Darwin. 1394 Time my_time = get_time(); 1395 1396 switch (kind) { 1397 case Normal: 1398 // Only do a snapshot if it's time. 1399 if (my_time < earliest_possible_time_of_next_snapshot) { 1400 n_skipped_snapshots++; 1401 n_skipped_snapshots_since_last_snapshot++; 1402 return; 1403 } 1404 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed); 1405 break; 1406 1407 case Peak: { 1408 // Because we're about to do a deallocation, we're coming down from a 1409 // local peak. If it is (a) actually a global peak, and (b) a certain 1410 // amount bigger than the previous peak, then we take a peak snapshot. 1411 // By not taking a snapshot for every peak, we save a lot of effort -- 1412 // because many peaks remain peak only for a short time. 1413 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; 1414 SizeT excess_szB_for_new_peak = 1415 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100); 1416 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) { 1417 return; 1418 } 1419 is_detailed = True; 1420 break; 1421 } 1422 1423 default: 1424 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind"); 1425 } 1426 1427 // Take the snapshot. 1428 snapshot = & snapshots[next_snapshot_i]; 1429 take_snapshot(snapshot, kind, my_time, is_detailed); 1430 1431 // Record if it was detailed. 1432 if (is_detailed) { 1433 n_snapshots_since_last_detailed = 0; 1434 } else { 1435 n_snapshots_since_last_detailed++; 1436 } 1437 1438 // Update peak data, if it's a Peak snapshot. 1439 if (Peak == kind) { 1440 Int i, number_of_peaks_snapshots_found = 0; 1441 1442 // Sanity check the size, then update our recorded peak. 1443 SizeT snapshot_total_szB = 1444 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; 1445 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB, 1446 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB); 1447 peak_snapshot_total_szB = snapshot_total_szB; 1448 1449 // Find the old peak snapshot, if it exists, and mark it as normal. 1450 for (i = 0; i < next_snapshot_i; i++) { 1451 if (Peak == snapshots[i].kind) { 1452 snapshots[i].kind = Normal; 1453 number_of_peaks_snapshots_found++; 1454 } 1455 } 1456 tl_assert(number_of_peaks_snapshots_found <= 1); 1457 } 1458 1459 // Finish up verbosity and stats stuff. 1460 if (n_skipped_snapshots_since_last_snapshot > 0) { 1461 VERB(2, " (skipped %d snapshot%s)\n", 1462 n_skipped_snapshots_since_last_snapshot, 1463 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") ); 1464 } 1465 VERB_snapshot(2, what, next_snapshot_i); 1466 n_skipped_snapshots_since_last_snapshot = 0; 1467 1468 // Cull the entries, if our snapshot table is full. 1469 next_snapshot_i++; 1470 if (clo_max_snapshots == next_snapshot_i) { 1471 min_time_interval = cull_snapshots(); 1472 } 1473 1474 // Work out the earliest time when the next snapshot can happen. 1475 earliest_possible_time_of_next_snapshot = my_time + min_time_interval; 1476} 1477 1478 1479//------------------------------------------------------------// 1480//--- Sanity checking ---// 1481//------------------------------------------------------------// 1482 1483static Bool ms_cheap_sanity_check ( void ) 1484{ 1485 return True; // Nothing useful we can cheaply check. 1486} 1487 1488static Bool ms_expensive_sanity_check ( void ) 1489{ 1490 sanity_check_XTree(alloc_xpt, /*parent*/NULL); 1491 sanity_check_snapshots_array(); 1492 return True; 1493} 1494 1495 1496//------------------------------------------------------------// 1497//--- Heap management ---// 1498//------------------------------------------------------------// 1499 1500// Metadata for heap blocks. Each one contains a pointer to a bottom-XPt, 1501// which is a foothold into the XCon at which it was allocated. From 1502// HP_Chunks, XPt 'space' fields are incremented (at allocation) and 1503// decremented (at deallocation). 1504// 1505// Nb: first two fields must match core's VgHashNode. 1506typedef 1507 struct _HP_Chunk { 1508 struct _HP_Chunk* next; 1509 Addr data; // Ptr to actual block 1510 SizeT req_szB; // Size requested 1511 SizeT slop_szB; // Extra bytes given above those requested 1512 XPt* where; // Where allocated; bottom-XPt 1513 } 1514 HP_Chunk; 1515 1516static VgHashTable malloc_list = NULL; // HP_Chunks 1517 1518static void update_alloc_stats(SSizeT szB_delta) 1519{ 1520 // Update total_allocs_deallocs_szB. 1521 if (szB_delta < 0) szB_delta = -szB_delta; 1522 total_allocs_deallocs_szB += szB_delta; 1523} 1524 1525static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta) 1526{ 1527 if (heap_szB_delta < 0) 1528 tl_assert(heap_szB >= -heap_szB_delta); 1529 if (heap_extra_szB_delta < 0) 1530 tl_assert(heap_extra_szB >= -heap_extra_szB_delta); 1531 1532 heap_extra_szB += heap_extra_szB_delta; 1533 heap_szB += heap_szB_delta; 1534 1535 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta); 1536} 1537 1538static 1539void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB, 1540 Bool exclude_first_entry, Bool maybe_snapshot ) 1541{ 1542 // Make new HP_Chunk node, add to malloc_list 1543 HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk)); 1544 hc->req_szB = req_szB; 1545 hc->slop_szB = slop_szB; 1546 hc->data = (Addr)p; 1547 hc->where = NULL; 1548 VG_(HT_add_node)(malloc_list, hc); 1549 1550 if (clo_heap) { 1551 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB); 1552 1553 hc->where = get_XCon( tid, exclude_first_entry ); 1554 1555 if (hc->where) { 1556 // Update statistics. 1557 n_heap_allocs++; 1558 1559 // Update heap stats. 1560 update_heap_stats(req_szB, clo_heap_admin + slop_szB); 1561 1562 // Update XTree. 1563 update_XCon(hc->where, req_szB); 1564 1565 // Maybe take a snapshot. 1566 if (maybe_snapshot) { 1567 maybe_take_snapshot(Normal, " alloc"); 1568 } 1569 1570 } else { 1571 // Ignored allocation. 1572 n_ignored_heap_allocs++; 1573 1574 VERB(3, "(ignored)\n"); 1575 } 1576 1577 VERB(3, ">>>\n"); 1578 } 1579 1580 return p; 1581} 1582 1583static __inline__ 1584void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB, 1585 Bool is_zeroed ) 1586{ 1587 SizeT actual_szB, slop_szB; 1588 void* p; 1589 1590 if ((SSizeT)req_szB < 0) return NULL; 1591 1592 // Allocate and zero if necessary. 1593 p = VG_(cli_malloc)( req_alignB, req_szB ); 1594 if (!p) { 1595 return NULL; 1596 } 1597 if (is_zeroed) VG_(memset)(p, 0, req_szB); 1598 actual_szB = VG_(malloc_usable_size)(p); 1599 tl_assert(actual_szB >= req_szB); 1600 slop_szB = actual_szB - req_szB; 1601 1602 // Record block. 1603 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True, 1604 /*maybe_snapshot*/True); 1605 1606 return p; 1607} 1608 1609static __inline__ 1610void unrecord_block ( void* p, Bool maybe_snapshot ) 1611{ 1612 // Remove HP_Chunk from malloc_list 1613 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p); 1614 if (NULL == hc) { 1615 return; // must have been a bogus free() 1616 } 1617 1618 if (clo_heap) { 1619 VERB(3, "<<< unrecord_block\n"); 1620 1621 if (hc->where) { 1622 // Update statistics. 1623 n_heap_frees++; 1624 1625 // Maybe take a peak snapshot, since it's a deallocation. 1626 if (maybe_snapshot) { 1627 maybe_take_snapshot(Peak, "de-PEAK"); 1628 } 1629 1630 // Update heap stats. 1631 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB); 1632 1633 // Update XTree. 1634 update_XCon(hc->where, -hc->req_szB); 1635 1636 // Maybe take a snapshot. 1637 if (maybe_snapshot) { 1638 maybe_take_snapshot(Normal, "dealloc"); 1639 } 1640 1641 } else { 1642 n_ignored_heap_frees++; 1643 1644 VERB(3, "(ignored)\n"); 1645 } 1646 1647 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB); 1648 } 1649 1650 // Actually free the chunk, and the heap block (if necessary) 1651 VG_(free)( hc ); hc = NULL; 1652} 1653 1654// Nb: --ignore-fn is tricky for realloc. If the block's original alloc was 1655// ignored, but the realloc is not requested to be ignored, and we are 1656// shrinking the block, then we have to ignore the realloc -- otherwise we 1657// could end up with negative heap sizes. This isn't a danger if we are 1658// growing such a block, but for consistency (it also simplifies things) we 1659// ignore such reallocs as well. 1660static __inline__ 1661void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB ) 1662{ 1663 HP_Chunk* hc; 1664 void* p_new; 1665 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB; 1666 XPt *old_where, *new_where; 1667 Bool is_ignored = False; 1668 1669 // Remove the old block 1670 hc = VG_(HT_remove)(malloc_list, (UWord)p_old); 1671 if (hc == NULL) { 1672 return NULL; // must have been a bogus realloc() 1673 } 1674 1675 old_req_szB = hc->req_szB; 1676 old_slop_szB = hc->slop_szB; 1677 1678 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes. 1679 if (clo_heap) { 1680 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB); 1681 1682 if (hc->where) { 1683 // Update statistics. 1684 n_heap_reallocs++; 1685 1686 // Maybe take a peak snapshot, if it's (effectively) a deallocation. 1687 if (new_req_szB < old_req_szB) { 1688 maybe_take_snapshot(Peak, "re-PEAK"); 1689 } 1690 } else { 1691 // The original malloc was ignored, so we have to ignore the 1692 // realloc as well. 1693 is_ignored = True; 1694 } 1695 } 1696 1697 // Actually do the allocation, if necessary. 1698 if (new_req_szB <= old_req_szB + old_slop_szB) { 1699 // New size is smaller or same; block not moved. 1700 p_new = p_old; 1701 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB); 1702 1703 } else { 1704 // New size is bigger; make new block, copy shared contents, free old. 1705 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB); 1706 if (!p_new) { 1707 // Nb: if realloc fails, NULL is returned but the old block is not 1708 // touched. What an awful function. 1709 return NULL; 1710 } 1711 VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB); 1712 VG_(cli_free)(p_old); 1713 new_actual_szB = VG_(malloc_usable_size)(p_new); 1714 tl_assert(new_actual_szB >= new_req_szB); 1715 new_slop_szB = new_actual_szB - new_req_szB; 1716 } 1717 1718 if (p_new) { 1719 // Update HP_Chunk. 1720 hc->data = (Addr)p_new; 1721 hc->req_szB = new_req_szB; 1722 hc->slop_szB = new_slop_szB; 1723 old_where = hc->where; 1724 hc->where = NULL; 1725 1726 // Update XTree. 1727 if (clo_heap) { 1728 new_where = get_XCon( tid, /*exclude_first_entry*/True); 1729 if (!is_ignored && new_where) { 1730 hc->where = new_where; 1731 update_XCon(old_where, -old_req_szB); 1732 update_XCon(new_where, new_req_szB); 1733 } else { 1734 // The realloc itself is ignored. 1735 is_ignored = True; 1736 1737 // Update statistics. 1738 n_ignored_heap_reallocs++; 1739 } 1740 } 1741 } 1742 1743 // Now insert the new hc (with a possibly new 'data' field) into 1744 // malloc_list. If this realloc() did not increase the memory size, we 1745 // will have removed and then re-added hc unnecessarily. But that's ok 1746 // because shrinking a block with realloc() is (presumably) much rarer 1747 // than growing it, and this way simplifies the growing case. 1748 VG_(HT_add_node)(malloc_list, hc); 1749 1750 if (clo_heap) { 1751 if (!is_ignored) { 1752 // Update heap stats. 1753 update_heap_stats(new_req_szB - old_req_szB, 1754 new_slop_szB - old_slop_szB); 1755 1756 // Maybe take a snapshot. 1757 maybe_take_snapshot(Normal, "realloc"); 1758 } else { 1759 1760 VERB(3, "(ignored)\n"); 1761 } 1762 1763 VERB(3, ">>> (%ld, %ld)\n", 1764 new_req_szB - old_req_szB, new_slop_szB - old_slop_szB); 1765 } 1766 1767 return p_new; 1768} 1769 1770 1771//------------------------------------------------------------// 1772//--- malloc() et al replacement wrappers ---// 1773//------------------------------------------------------------// 1774 1775static void* ms_malloc ( ThreadId tid, SizeT szB ) 1776{ 1777 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1778} 1779 1780static void* ms___builtin_new ( ThreadId tid, SizeT szB ) 1781{ 1782 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1783} 1784 1785static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB ) 1786{ 1787 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1788} 1789 1790static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB ) 1791{ 1792 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True ); 1793} 1794 1795static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB ) 1796{ 1797 return alloc_and_record_block( tid, szB, alignB, False ); 1798} 1799 1800static void ms_free ( ThreadId tid __attribute__((unused)), void* p ) 1801{ 1802 unrecord_block(p, /*maybe_snapshot*/True); 1803 VG_(cli_free)(p); 1804} 1805 1806static void ms___builtin_delete ( ThreadId tid, void* p ) 1807{ 1808 unrecord_block(p, /*maybe_snapshot*/True); 1809 VG_(cli_free)(p); 1810} 1811 1812static void ms___builtin_vec_delete ( ThreadId tid, void* p ) 1813{ 1814 unrecord_block(p, /*maybe_snapshot*/True); 1815 VG_(cli_free)(p); 1816} 1817 1818static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB ) 1819{ 1820 return realloc_block(tid, p_old, new_szB); 1821} 1822 1823static SizeT ms_malloc_usable_size ( ThreadId tid, void* p ) 1824{ 1825 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p ); 1826 1827 return ( hc ? hc->req_szB + hc->slop_szB : 0 ); 1828} 1829 1830//------------------------------------------------------------// 1831//--- Page handling ---// 1832//------------------------------------------------------------// 1833 1834static 1835void ms_record_page_mem ( Addr a, SizeT len ) 1836{ 1837 ThreadId tid = VG_(get_running_tid)(); 1838 Addr end; 1839 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1840 tl_assert(len >= VKI_PAGE_SIZE); 1841 // Record the first N-1 pages as blocks, but don't do any snapshots. 1842 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1843 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1844 /*exclude_first_entry*/False, /*maybe_snapshot*/False ); 1845 } 1846 // Record the last page as a block, and maybe do a snapshot afterwards. 1847 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1848 /*exclude_first_entry*/False, /*maybe_snapshot*/True ); 1849} 1850 1851static 1852void ms_unrecord_page_mem( Addr a, SizeT len ) 1853{ 1854 Addr end; 1855 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1856 tl_assert(len >= VKI_PAGE_SIZE); 1857 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1858 unrecord_block((void*)a, /*maybe_snapshot*/False); 1859 } 1860 unrecord_block((void*)a, /*maybe_snapshot*/True); 1861} 1862 1863//------------------------------------------------------------// 1864 1865static 1866void ms_new_mem_mmap ( Addr a, SizeT len, 1867 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1868{ 1869 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1870 ms_record_page_mem(a, len); 1871} 1872 1873static 1874void ms_new_mem_startup( Addr a, SizeT len, 1875 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1876{ 1877 // startup maps are always be page-sized, except the trampoline page is 1878 // marked by the core as only being the size of the trampoline itself, 1879 // which is something like 57 bytes. Round it up to page size. 1880 len = VG_PGROUNDUP(len); 1881 ms_record_page_mem(a, len); 1882} 1883 1884static 1885void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid ) 1886{ 1887 // brk limit is not necessarily aligned on a page boundary. 1888 // If new memory being brk-ed implies to allocate a new page, 1889 // then call ms_record_page_mem with page aligned parameters 1890 // otherwise just ignore. 1891 Addr old_bottom_page = VG_PGROUNDDN(a - 1); 1892 Addr new_top_page = VG_PGROUNDDN(a + len - 1); 1893 if (old_bottom_page != new_top_page) 1894 ms_record_page_mem(VG_PGROUNDDN(a), 1895 (new_top_page - old_bottom_page)); 1896} 1897 1898static 1899void ms_copy_mem_remap( Addr from, Addr to, SizeT len) 1900{ 1901 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1902 ms_unrecord_page_mem(from, len); 1903 ms_record_page_mem(to, len); 1904} 1905 1906static 1907void ms_die_mem_munmap( Addr a, SizeT len ) 1908{ 1909 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1910 ms_unrecord_page_mem(a, len); 1911} 1912 1913static 1914void ms_die_mem_brk( Addr a, SizeT len ) 1915{ 1916 // Call ms_unrecord_page_mem only if one or more pages are de-allocated. 1917 // See ms_new_mem_brk for more details. 1918 Addr new_bottom_page = VG_PGROUNDDN(a - 1); 1919 Addr old_top_page = VG_PGROUNDDN(a + len - 1); 1920 if (old_top_page != new_bottom_page) 1921 ms_unrecord_page_mem(VG_PGROUNDDN(a), 1922 (old_top_page - new_bottom_page)); 1923 1924} 1925 1926//------------------------------------------------------------// 1927//--- Stacks ---// 1928//------------------------------------------------------------// 1929 1930// We really want the inlining to occur... 1931#define INLINE inline __attribute__((always_inline)) 1932 1933static void update_stack_stats(SSizeT stack_szB_delta) 1934{ 1935 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta); 1936 stacks_szB += stack_szB_delta; 1937 1938 update_alloc_stats(stack_szB_delta); 1939} 1940 1941static INLINE void new_mem_stack_2(SizeT len, Char* what) 1942{ 1943 if (have_started_executing_code) { 1944 VERB(3, "<<< new_mem_stack (%ld)\n", len); 1945 n_stack_allocs++; 1946 update_stack_stats(len); 1947 maybe_take_snapshot(Normal, what); 1948 VERB(3, ">>>\n"); 1949 } 1950} 1951 1952static INLINE void die_mem_stack_2(SizeT len, Char* what) 1953{ 1954 if (have_started_executing_code) { 1955 VERB(3, "<<< die_mem_stack (%ld)\n", -len); 1956 n_stack_frees++; 1957 maybe_take_snapshot(Peak, "stkPEAK"); 1958 update_stack_stats(-len); 1959 maybe_take_snapshot(Normal, what); 1960 VERB(3, ">>>\n"); 1961 } 1962} 1963 1964static void new_mem_stack(Addr a, SizeT len) 1965{ 1966 new_mem_stack_2(len, "stk-new"); 1967} 1968 1969static void die_mem_stack(Addr a, SizeT len) 1970{ 1971 die_mem_stack_2(len, "stk-die"); 1972} 1973 1974static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid) 1975{ 1976 new_mem_stack_2(len, "sig-new"); 1977} 1978 1979static void die_mem_stack_signal(Addr a, SizeT len) 1980{ 1981 die_mem_stack_2(len, "sig-die"); 1982} 1983 1984 1985//------------------------------------------------------------// 1986//--- Client Requests ---// 1987//------------------------------------------------------------// 1988 1989static void print_monitor_help ( void ) 1990{ 1991 VG_(gdb_printf) ("\n"); 1992 VG_(gdb_printf) ("massif monitor commands:\n"); 1993 VG_(gdb_printf) (" snapshot [<filename>]\n"); 1994 VG_(gdb_printf) (" detailed_snapshot [<filename>]\n"); 1995 VG_(gdb_printf) (" takes a snapshot (or a detailed snapshot)\n"); 1996 VG_(gdb_printf) (" and saves it in <filename>\n"); 1997 VG_(gdb_printf) (" default <filename> is massif.vgdb.out\n"); 1998 VG_(gdb_printf) ("\n"); 1999} 2000 2001 2002/* Forward declaration. 2003 return True if request recognised, False otherwise */ 2004static Bool handle_gdb_monitor_command (ThreadId tid, Char *req); 2005static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret ) 2006{ 2007 switch (argv[0]) { 2008 case VG_USERREQ__MALLOCLIKE_BLOCK: { 2009 void* p = (void*)argv[1]; 2010 SizeT szB = argv[2]; 2011 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False, 2012 /*maybe_snapshot*/True ); 2013 *ret = 0; 2014 return True; 2015 } 2016 case VG_USERREQ__RESIZEINPLACE_BLOCK: { 2017 void* p = (void*)argv[1]; 2018 SizeT newSizeB = argv[3]; 2019 2020 unrecord_block(p, /*maybe_snapshot*/True); 2021 record_block(tid, p, newSizeB, /*slop_szB*/0, 2022 /*exclude_first_entry*/False, /*maybe_snapshot*/True); 2023 return True; 2024 } 2025 case VG_USERREQ__FREELIKE_BLOCK: { 2026 void* p = (void*)argv[1]; 2027 unrecord_block(p, /*maybe_snapshot*/True); 2028 *ret = 0; 2029 return True; 2030 } 2031 case VG_USERREQ__GDB_MONITOR_COMMAND: { 2032 Bool handled = handle_gdb_monitor_command (tid, (Char*)argv[1]); 2033 if (handled) 2034 *ret = 1; 2035 else 2036 *ret = 0; 2037 return handled; 2038 } 2039 2040 default: 2041 *ret = 0; 2042 return False; 2043 } 2044} 2045 2046//------------------------------------------------------------// 2047//--- Instrumentation ---// 2048//------------------------------------------------------------// 2049 2050static void add_counter_update(IRSB* sbOut, Int n) 2051{ 2052 #if defined(VG_BIGENDIAN) 2053 # define END Iend_BE 2054 #elif defined(VG_LITTLEENDIAN) 2055 # define END Iend_LE 2056 #else 2057 # error "Unknown endianness" 2058 #endif 2059 // Add code to increment 'guest_instrs_executed' by 'n', like this: 2060 // WrTmp(t1, Load64(&guest_instrs_executed)) 2061 // WrTmp(t2, Add64(RdTmp(t1), Const(n))) 2062 // Store(&guest_instrs_executed, t2) 2063 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64); 2064 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64); 2065 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed ); 2066 2067 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr)); 2068 IRStmt* st2 = 2069 IRStmt_WrTmp(t2, 2070 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1), 2071 IRExpr_Const(IRConst_U64(n)))); 2072 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2)); 2073 2074 addStmtToIRSB( sbOut, st1 ); 2075 addStmtToIRSB( sbOut, st2 ); 2076 addStmtToIRSB( sbOut, st3 ); 2077} 2078 2079static IRSB* ms_instrument2( IRSB* sbIn ) 2080{ 2081 Int i, n = 0; 2082 IRSB* sbOut; 2083 2084 // We increment the instruction count in two places: 2085 // - just before any Ist_Exit statements; 2086 // - just before the IRSB's end. 2087 // In the former case, we zero 'n' and then continue instrumenting. 2088 2089 sbOut = deepCopyIRSBExceptStmts(sbIn); 2090 2091 for (i = 0; i < sbIn->stmts_used; i++) { 2092 IRStmt* st = sbIn->stmts[i]; 2093 2094 if (!st || st->tag == Ist_NoOp) continue; 2095 2096 if (st->tag == Ist_IMark) { 2097 n++; 2098 } else if (st->tag == Ist_Exit) { 2099 if (n > 0) { 2100 // Add an increment before the Exit statement, then reset 'n'. 2101 add_counter_update(sbOut, n); 2102 n = 0; 2103 } 2104 } 2105 addStmtToIRSB( sbOut, st ); 2106 } 2107 2108 if (n > 0) { 2109 // Add an increment before the SB end. 2110 add_counter_update(sbOut, n); 2111 } 2112 return sbOut; 2113} 2114 2115static 2116IRSB* ms_instrument ( VgCallbackClosure* closure, 2117 IRSB* sbIn, 2118 VexGuestLayout* layout, 2119 VexGuestExtents* vge, 2120 IRType gWordTy, IRType hWordTy ) 2121{ 2122 if (! have_started_executing_code) { 2123 // Do an initial sample to guarantee that we have at least one. 2124 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure 2125 // 'maybe_take_snapshot's internal static variables are initialised. 2126 have_started_executing_code = True; 2127 maybe_take_snapshot(Normal, "startup"); 2128 } 2129 2130 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); } 2131 else if (clo_time_unit == TimeMS) { return sbIn; } 2132 else if (clo_time_unit == TimeB) { return sbIn; } 2133 else { tl_assert2(0, "bad --time-unit value"); } 2134} 2135 2136 2137//------------------------------------------------------------// 2138//--- Writing snapshots ---// 2139//------------------------------------------------------------// 2140 2141Char FP_buf[BUF_LEN]; 2142 2143// XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here. 2144// Then change Cachegrind to use it too. 2145#define FP(format, args...) ({ \ 2146 VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \ 2147 FP_buf[BUF_LEN-1] = '\0'; /* Make sure the string is terminated. */ \ 2148 VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \ 2149}) 2150 2151// Nb: uses a static buffer, each call trashes the last string returned. 2152static Char* make_perc(double x) 2153{ 2154 static Char mbuf[32]; 2155 2156 VG_(percentify)((ULong)(x * 100), 10000, 2, 6, mbuf); 2157 // XXX: this is bogus if the denominator was zero -- resulting string is 2158 // something like "0 --%") 2159 if (' ' == mbuf[0]) mbuf[0] = '0'; 2160 return mbuf; 2161} 2162 2163static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, Char* depth_str, 2164 Int depth_str_len, 2165 SizeT snapshot_heap_szB, SizeT snapshot_total_szB) 2166{ 2167 Int i, j, n_insig_children_sxpts; 2168 SXPt* child = NULL; 2169 2170 // Used for printing function names. Is made static to keep it out 2171 // of the stack frame -- this function is recursive. Obviously this 2172 // now means its contents are trashed across the recursive call. 2173 static Char ip_desc_array[BUF_LEN]; 2174 Char* ip_desc = ip_desc_array; 2175 2176 switch (sxpt->tag) { 2177 case SigSXPt: 2178 // Print the SXPt itself. 2179 if (0 == depth) { 2180 if (clo_heap) { 2181 ip_desc = 2182 ( clo_pages_as_heap 2183 ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc." 2184 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc." 2185 ); 2186 } else { 2187 // XXX: --alloc-fns? 2188 } 2189 } else { 2190 // If it's main-or-below-main, we (if appropriate) ignore everything 2191 // below it by pretending it has no children. 2192 if ( ! VG_(clo_show_below_main) ) { 2193 Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip); 2194 if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) { 2195 sxpt->Sig.n_children = 0; 2196 } 2197 } 2198 2199 // We need the -1 to get the line number right, But I'm not sure why. 2200 ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc, BUF_LEN); 2201 } 2202 2203 // Do the non-ip_desc part first... 2204 FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB); 2205 2206 // For ip_descs beginning with "0xABCD...:" addresses, we first 2207 // measure the length of the "0xabcd: " address at the start of the 2208 // ip_desc. 2209 j = 0; 2210 if ('0' == ip_desc[0] && 'x' == ip_desc[1]) { 2211 j = 2; 2212 while (True) { 2213 if (ip_desc[j]) { 2214 if (':' == ip_desc[j]) break; 2215 j++; 2216 } else { 2217 tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc); 2218 } 2219 } 2220 } 2221 // Nb: We treat this specially (ie. we don't use FP) so that if the 2222 // ip_desc is too long (eg. due to a long C++ function name), it'll 2223 // get truncated, but the '\n' is still there so its a valid file. 2224 // (At one point we were truncating without adding the '\n', which 2225 // caused bug #155929.) 2226 // 2227 // Also, we account for the length of the address in ip_desc when 2228 // truncating. (The longest address we could have is 18 chars: "0x" 2229 // plus 16 address digits.) This ensures that the truncated function 2230 // name always has the same length, which makes truncation 2231 // deterministic and thus makes testing easier. 2232 tl_assert(j <= 18); 2233 VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc); 2234 FP_buf[BUF_LEN-18+j-5] = '.'; // "..." at the end make the 2235 FP_buf[BUF_LEN-18+j-4] = '.'; // truncation more obvious. 2236 FP_buf[BUF_LEN-18+j-3] = '.'; 2237 FP_buf[BUF_LEN-18+j-2] = '\n'; // The last char is '\n'. 2238 FP_buf[BUF_LEN-18+j-1] = '\0'; // The string is terminated. 2239 VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); 2240 2241 // Indent. 2242 tl_assert(depth+1 < depth_str_len-1); // -1 for end NUL char 2243 depth_str[depth+0] = ' '; 2244 depth_str[depth+1] = '\0'; 2245 2246 // Sort SXPt's children by szB (reverse order: biggest to smallest). 2247 // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for 2248 // two reasons. First, if we do it during dup_XTree, it can get 2249 // expensive (eg. 15% of execution time for konqueror 2250 // startup/shutdown). Second, this way we get the Insig SXPt (if one 2251 // is present) in its sorted position, not at the end. 2252 VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*), 2253 SXPt_revcmp_szB); 2254 2255 // Print the SXPt's children. They should already be in sorted order. 2256 n_insig_children_sxpts = 0; 2257 for (i = 0; i < sxpt->Sig.n_children; i++) { 2258 child = sxpt->Sig.children[i]; 2259 2260 if (InsigSXPt == child->tag) 2261 n_insig_children_sxpts++; 2262 2263 // Ok, print the child. NB: contents of ip_desc_array will be 2264 // trashed by this recursive call. Doesn't matter currently, 2265 // but worth noting. 2266 pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len, 2267 snapshot_heap_szB, snapshot_total_szB); 2268 } 2269 2270 // Unindent. 2271 depth_str[depth+0] = '\0'; 2272 depth_str[depth+1] = '\0'; 2273 2274 // There should be 0 or 1 Insig children SXPts. 2275 tl_assert(n_insig_children_sxpts <= 1); 2276 break; 2277 2278 case InsigSXPt: { 2279 Char* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" ); 2280 FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n", 2281 depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, 2282 make_perc(clo_threshold)); 2283 break; 2284 } 2285 2286 default: 2287 tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag"); 2288 } 2289} 2290 2291static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n) 2292{ 2293 sanity_check_snapshot(snapshot); 2294 2295 FP("#-----------\n"); 2296 FP("snapshot=%d\n", snapshot_n); 2297 FP("#-----------\n"); 2298 FP("time=%lld\n", snapshot->time); 2299 FP("mem_heap_B=%lu\n", snapshot->heap_szB); 2300 FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB); 2301 FP("mem_stacks_B=%lu\n", snapshot->stacks_szB); 2302 2303 if (is_detailed_snapshot(snapshot)) { 2304 // Detailed snapshot -- print heap tree. 2305 Int depth_str_len = clo_depth + 3; 2306 Char* depth_str = VG_(malloc)("ms.main.pps.1", 2307 sizeof(Char) * depth_str_len); 2308 SizeT snapshot_total_szB = 2309 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; 2310 depth_str[0] = '\0'; // Initialise depth_str to "". 2311 2312 FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" )); 2313 pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str, 2314 depth_str_len, snapshot->heap_szB, 2315 snapshot_total_szB); 2316 2317 VG_(free)(depth_str); 2318 2319 } else { 2320 FP("heap_tree=empty\n"); 2321 } 2322} 2323 2324static void write_snapshots_to_file(Char* massif_out_file, 2325 Snapshot snapshots_array[], 2326 Int nr_elements) 2327{ 2328 Int i, fd; 2329 SysRes sres; 2330 2331 sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY, 2332 VKI_S_IRUSR|VKI_S_IWUSR); 2333 if (sr_isError(sres)) { 2334 // If the file can't be opened for whatever reason (conflict 2335 // between multiple cachegrinded processes?), give up now. 2336 VG_(umsg)("error: can't open output file '%s'\n", massif_out_file ); 2337 VG_(umsg)(" ... so profiling results will be missing.\n"); 2338 return; 2339 } else { 2340 fd = sr_Res(sres); 2341 } 2342 2343 // Print massif-specific options that were used. 2344 // XXX: is it worth having a "desc:" line? Could just call it "options:" 2345 // -- this file format isn't as generic as Cachegrind's, so the 2346 // implied genericity of "desc:" is bogus. 2347 FP("desc:"); 2348 for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) { 2349 Char* arg = *(Char**)VG_(indexXA)(args_for_massif, i); 2350 FP(" %s", arg); 2351 } 2352 if (0 == i) FP(" (none)"); 2353 FP("\n"); 2354 2355 // Print "cmd:" line. 2356 FP("cmd: "); 2357 if (VG_(args_the_exename)) { 2358 FP("%s", VG_(args_the_exename)); 2359 for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) { 2360 HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i ); 2361 if (arg) 2362 FP(" %s", arg); 2363 } 2364 } else { 2365 FP(" ???"); 2366 } 2367 FP("\n"); 2368 2369 FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit)); 2370 2371 for (i = 0; i < nr_elements; i++) { 2372 Snapshot* snapshot = & snapshots_array[i]; 2373 pp_snapshot(fd, snapshot, i); // Detailed snapshot! 2374 } 2375 VG_(close) (fd); 2376} 2377 2378static void write_snapshots_array_to_file(void) 2379{ 2380 // Setup output filename. Nb: it's important to do this now, ie. as late 2381 // as possible. If we do it at start-up and the program forks and the 2382 // output file format string contains a %p (pid) specifier, both the 2383 // parent and child will incorrectly write to the same file; this 2384 // happened in 3.3.0. 2385 Char* massif_out_file = 2386 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file); 2387 write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i); 2388 VG_(free)(massif_out_file); 2389} 2390 2391static void handle_snapshot_monitor_command (Char *filename, Bool detailed) 2392{ 2393 Snapshot snapshot; 2394 2395 clear_snapshot(&snapshot, /* do_sanity_check */ False); 2396 take_snapshot(&snapshot, Normal, get_time(), detailed); 2397 write_snapshots_to_file ((filename == NULL) ? (Char*) "massif.vgdb.out" : filename, 2398 &snapshot, 2399 1); 2400 delete_snapshot(&snapshot); 2401} 2402 2403static Bool handle_gdb_monitor_command (ThreadId tid, Char *req) 2404{ 2405 Char* wcmd; 2406 Char s[VG_(strlen(req))]; /* copy for strtok_r */ 2407 Char *ssaveptr; 2408 2409 VG_(strcpy) (s, req); 2410 2411 wcmd = VG_(strtok_r) (s, " ", &ssaveptr); 2412 switch (VG_(keyword_id) ("help snapshot detailed_snapshot", 2413 wcmd, kwd_report_duplicated_matches)) { 2414 case -2: /* multiple matches */ 2415 return True; 2416 case -1: /* not found */ 2417 return False; 2418 case 0: /* help */ 2419 print_monitor_help(); 2420 return True; 2421 case 1: { /* snapshot */ 2422 Char* filename; 2423 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 2424 handle_snapshot_monitor_command (filename, False /* detailed */); 2425 return True; 2426 } 2427 case 2: { /* detailed_snapshot */ 2428 Char* filename; 2429 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 2430 handle_snapshot_monitor_command (filename, True /* detailed */); 2431 return True; 2432 } 2433 default: 2434 tl_assert(0); 2435 return False; 2436 } 2437} 2438 2439//------------------------------------------------------------// 2440//--- Finalisation ---// 2441//------------------------------------------------------------// 2442 2443static void ms_fini(Int exit_status) 2444{ 2445 // Output. 2446 write_snapshots_array_to_file(); 2447 2448 // Stats 2449 tl_assert(n_xpts > 0); // always have alloc_xpt 2450 STATS("heap allocs: %u\n", n_heap_allocs); 2451 STATS("heap reallocs: %u\n", n_heap_reallocs); 2452 STATS("heap frees: %u\n", n_heap_frees); 2453 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs); 2454 STATS("ignored heap frees: %u\n", n_ignored_heap_frees); 2455 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs); 2456 STATS("stack allocs: %u\n", n_stack_allocs); 2457 STATS("stack frees: %u\n", n_stack_frees); 2458 STATS("XPts: %u\n", n_xpts); 2459 STATS("top-XPts: %u (%d%%)\n", 2460 alloc_xpt->n_children, 2461 ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0)); 2462 STATS("XPt init expansions: %u\n", n_xpt_init_expansions); 2463 STATS("XPt later expansions: %u\n", n_xpt_later_expansions); 2464 STATS("SXPt allocs: %u\n", n_sxpt_allocs); 2465 STATS("SXPt frees: %u\n", n_sxpt_frees); 2466 STATS("skipped snapshots: %u\n", n_skipped_snapshots); 2467 STATS("real snapshots: %u\n", n_real_snapshots); 2468 STATS("detailed snapshots: %u\n", n_detailed_snapshots); 2469 STATS("peak snapshots: %u\n", n_peak_snapshots); 2470 STATS("cullings: %u\n", n_cullings); 2471 STATS("XCon redos: %u\n", n_XCon_redos); 2472} 2473 2474 2475//------------------------------------------------------------// 2476//--- Initialisation ---// 2477//------------------------------------------------------------// 2478 2479static void ms_post_clo_init(void) 2480{ 2481 Int i; 2482 Char* LD_PRELOAD_val; 2483 Char* s; 2484 Char* s2; 2485 2486 // Check options. 2487 if (clo_pages_as_heap) { 2488 if (clo_stacks) { 2489 VG_(fmsg_bad_option)( 2490 "--pages-as-heap=yes together with --stacks=yes", ""); 2491 } 2492 } 2493 if (!clo_heap) { 2494 clo_pages_as_heap = False; 2495 } 2496 2497 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we 2498 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or 2499 // platform-equivalent). We replace it entirely with spaces because then 2500 // the linker doesn't complain (it does complain if we just change the name 2501 // to a bogus file). This is a bit of a hack, but LD_PRELOAD is setup well 2502 // before tool initialisation, so this seems the best way to do it. 2503 if (clo_pages_as_heap) { 2504 clo_heap_admin = 0; // No heap admin on pages. 2505 2506 LD_PRELOAD_val = VG_(getenv)( (Char*)VG_(LD_PRELOAD_var_name) ); 2507 tl_assert(LD_PRELOAD_val); 2508 2509 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity. 2510 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core"); 2511 tl_assert(s2); 2512 2513 // Now find the vgpreload_massif-$PLATFORM entry. 2514 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif"); 2515 tl_assert(s2); 2516 2517 // Blank out everything to the previous ':', which must be there because 2518 // of the preceding vgpreload_core-$PLATFORM entry. 2519 for (s = s2; *s != ':'; s--) { 2520 *s = ' '; 2521 } 2522 2523 // Blank out everything to the end of the entry, which will be '\0' if 2524 // LD_PRELOAD was empty before Valgrind started, or ':' otherwise. 2525 for (s = s2; *s != ':' && *s != '\0'; s++) { 2526 *s = ' '; 2527 } 2528 } 2529 2530 // Print alloc-fns and ignore-fns, if necessary. 2531 if (VG_(clo_verbosity) > 1) { 2532 VERB(1, "alloc-fns:\n"); 2533 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) { 2534 Char** fn_ptr = VG_(indexXA)(alloc_fns, i); 2535 VERB(1, " %s\n", *fn_ptr); 2536 } 2537 2538 VERB(1, "ignore-fns:\n"); 2539 if (0 == VG_(sizeXA)(ignore_fns)) { 2540 VERB(1, " <empty>\n"); 2541 } 2542 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) { 2543 Char** fn_ptr = VG_(indexXA)(ignore_fns, i); 2544 VERB(1, " %d: %s\n", i, *fn_ptr); 2545 } 2546 } 2547 2548 // Events to track. 2549 if (clo_stacks) { 2550 VG_(track_new_mem_stack) ( new_mem_stack ); 2551 VG_(track_die_mem_stack) ( die_mem_stack ); 2552 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal ); 2553 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal ); 2554 } 2555 2556 if (clo_pages_as_heap) { 2557 VG_(track_new_mem_startup) ( ms_new_mem_startup ); 2558 VG_(track_new_mem_brk) ( ms_new_mem_brk ); 2559 VG_(track_new_mem_mmap) ( ms_new_mem_mmap ); 2560 2561 VG_(track_copy_mem_remap) ( ms_copy_mem_remap ); 2562 2563 VG_(track_die_mem_brk) ( ms_die_mem_brk ); 2564 VG_(track_die_mem_munmap) ( ms_die_mem_munmap ); 2565 } 2566 2567 // Initialise snapshot array, and sanity-check it. 2568 snapshots = VG_(malloc)("ms.main.mpoci.1", 2569 sizeof(Snapshot) * clo_max_snapshots); 2570 // We don't want to do snapshot sanity checks here, because they're 2571 // currently uninitialised. 2572 for (i = 0; i < clo_max_snapshots; i++) { 2573 clear_snapshot( & snapshots[i], /*do_sanity_check*/False ); 2574 } 2575 sanity_check_snapshots_array(); 2576} 2577 2578static void ms_pre_clo_init(void) 2579{ 2580 VG_(details_name) ("Massif"); 2581 VG_(details_version) (NULL); 2582 VG_(details_description) ("a heap profiler"); 2583 VG_(details_copyright_author)( 2584 "Copyright (C) 2003-2012, and GNU GPL'd, by Nicholas Nethercote"); 2585 VG_(details_bug_reports_to) (VG_BUGS_TO); 2586 2587 VG_(details_avg_translation_sizeB) ( 330 ); 2588 2589 // Basic functions. 2590 VG_(basic_tool_funcs) (ms_post_clo_init, 2591 ms_instrument, 2592 ms_fini); 2593 2594 // Needs. 2595 VG_(needs_libc_freeres)(); 2596 VG_(needs_command_line_options)(ms_process_cmd_line_option, 2597 ms_print_usage, 2598 ms_print_debug_usage); 2599 VG_(needs_client_requests) (ms_handle_client_request); 2600 VG_(needs_sanity_checks) (ms_cheap_sanity_check, 2601 ms_expensive_sanity_check); 2602 VG_(needs_malloc_replacement) (ms_malloc, 2603 ms___builtin_new, 2604 ms___builtin_vec_new, 2605 ms_memalign, 2606 ms_calloc, 2607 ms_free, 2608 ms___builtin_delete, 2609 ms___builtin_vec_delete, 2610 ms_realloc, 2611 ms_malloc_usable_size, 2612 0 ); 2613 2614 // HP_Chunks. 2615 malloc_list = VG_(HT_construct)( "Massif's malloc list" ); 2616 2617 // Dummy node at top of the context structure. 2618 alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL); 2619 2620 // Initialise alloc_fns and ignore_fns. 2621 init_alloc_fns(); 2622 init_ignore_fns(); 2623 2624 // Initialise args_for_massif. 2625 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1", 2626 VG_(free), sizeof(HChar*)); 2627} 2628 2629VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init) 2630 2631//--------------------------------------------------------------------// 2632//--- end ---// 2633//--------------------------------------------------------------------// 2634