1/* 2 * Copyright (C) 2010 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17#include <sys/stat.h> 18#include <string.h> 19#include <stdio.h> 20 21#ifdef HAVE_ANDROID_OS 22#include <linux/capability.h> 23#else 24#include <private/android_filesystem_capability.h> 25#endif 26 27#define XATTR_SELINUX_SUFFIX "selinux" 28#define XATTR_CAPS_SUFFIX "capability" 29 30#include "ext4_utils.h" 31#include "ext4.h" 32#include "make_ext4fs.h" 33#include "allocate.h" 34#include "contents.h" 35#include "extent.h" 36#include "indirect.h" 37#include "xattr.h" 38 39#ifdef USE_MINGW 40#define S_IFLNK 0 /* used by make_link, not needed under mingw */ 41#endif 42 43static u32 dentry_size(u32 entries, struct dentry *dentries) 44{ 45 u32 len = 24; 46 unsigned int i; 47 unsigned int dentry_len; 48 49 for (i = 0; i < entries; i++) { 50 dentry_len = 8 + ALIGN(strlen(dentries[i].filename), 4); 51 if (len % info.block_size + dentry_len > info.block_size) 52 len += info.block_size - (len % info.block_size); 53 len += dentry_len; 54 } 55 56 return len; 57} 58 59static struct ext4_dir_entry_2 *add_dentry(u8 *data, u32 *offset, 60 struct ext4_dir_entry_2 *prev, u32 inode, const char *name, 61 u8 file_type) 62{ 63 u8 name_len = strlen(name); 64 u16 rec_len = 8 + ALIGN(name_len, 4); 65 struct ext4_dir_entry_2 *dentry; 66 67 u32 start_block = *offset / info.block_size; 68 u32 end_block = (*offset + rec_len - 1) / info.block_size; 69 if (start_block != end_block) { 70 /* Adding this dentry will cross a block boundary, so pad the previous 71 dentry to the block boundary */ 72 if (!prev) 73 critical_error("no prev"); 74 prev->rec_len += end_block * info.block_size - *offset; 75 *offset = end_block * info.block_size; 76 } 77 78 dentry = (struct ext4_dir_entry_2 *)(data + *offset); 79 dentry->inode = inode; 80 dentry->rec_len = rec_len; 81 dentry->name_len = name_len; 82 dentry->file_type = file_type; 83 memcpy(dentry->name, name, name_len); 84 85 *offset += rec_len; 86 return dentry; 87} 88 89/* Creates a directory structure for an array of directory entries, dentries, 90 and stores the location of the structure in an inode. The new inode's 91 .. link is set to dir_inode_num. Stores the location of the inode number 92 of each directory entry into dentries[i].inode, to be filled in later 93 when the inode for the entry is allocated. Returns the inode number of the 94 new directory */ 95u32 make_directory(u32 dir_inode_num, u32 entries, struct dentry *dentries, 96 u32 dirs) 97{ 98 struct ext4_inode *inode; 99 u32 blocks; 100 u32 len; 101 u32 offset = 0; 102 u32 inode_num; 103 u8 *data; 104 unsigned int i; 105 struct ext4_dir_entry_2 *dentry; 106 107 blocks = DIV_ROUND_UP(dentry_size(entries, dentries), info.block_size); 108 len = blocks * info.block_size; 109 110 if (dir_inode_num) { 111 inode_num = allocate_inode(info); 112 } else { 113 dir_inode_num = EXT4_ROOT_INO; 114 inode_num = EXT4_ROOT_INO; 115 } 116 117 if (inode_num == EXT4_ALLOCATE_FAILED) { 118 error("failed to allocate inode\n"); 119 return EXT4_ALLOCATE_FAILED; 120 } 121 122 add_directory(inode_num); 123 124 inode = get_inode(inode_num); 125 if (inode == NULL) { 126 error("failed to get inode %u", inode_num); 127 return EXT4_ALLOCATE_FAILED; 128 } 129 130 data = inode_allocate_data_extents(inode, len, len); 131 if (data == NULL) { 132 error("failed to allocate %u extents", len); 133 return EXT4_ALLOCATE_FAILED; 134 } 135 136 inode->i_mode = S_IFDIR; 137 inode->i_links_count = dirs + 2; 138 inode->i_flags |= aux_info.default_i_flags; 139 140 dentry = NULL; 141 142 dentry = add_dentry(data, &offset, NULL, inode_num, ".", EXT4_FT_DIR); 143 if (!dentry) { 144 error("failed to add . directory"); 145 return EXT4_ALLOCATE_FAILED; 146 } 147 148 dentry = add_dentry(data, &offset, dentry, dir_inode_num, "..", EXT4_FT_DIR); 149 if (!dentry) { 150 error("failed to add .. directory"); 151 return EXT4_ALLOCATE_FAILED; 152 } 153 154 for (i = 0; i < entries; i++) { 155 dentry = add_dentry(data, &offset, dentry, 0, 156 dentries[i].filename, dentries[i].file_type); 157 if (offset > len || (offset == len && i != entries - 1)) 158 critical_error("internal error: dentry for %s ends at %d, past %d\n", 159 dentries[i].filename, offset, len); 160 dentries[i].inode = &dentry->inode; 161 if (!dentry) { 162 error("failed to add directory"); 163 return EXT4_ALLOCATE_FAILED; 164 } 165 } 166 167 /* pad the last dentry out to the end of the block */ 168 dentry->rec_len += len - offset; 169 170 return inode_num; 171} 172 173/* Creates a file on disk. Returns the inode number of the new file */ 174u32 make_file(const char *filename, u64 len) 175{ 176 struct ext4_inode *inode; 177 u32 inode_num; 178 179 inode_num = allocate_inode(info); 180 if (inode_num == EXT4_ALLOCATE_FAILED) { 181 error("failed to allocate inode\n"); 182 return EXT4_ALLOCATE_FAILED; 183 } 184 185 inode = get_inode(inode_num); 186 if (inode == NULL) { 187 error("failed to get inode %u", inode_num); 188 return EXT4_ALLOCATE_FAILED; 189 } 190 191 if (len > 0) 192 inode_allocate_file_extents(inode, len, filename); 193 194 inode->i_mode = S_IFREG; 195 inode->i_links_count = 1; 196 inode->i_flags |= aux_info.default_i_flags; 197 198 return inode_num; 199} 200 201/* Creates a file on disk. Returns the inode number of the new file */ 202u32 make_link(const char *link) 203{ 204 struct ext4_inode *inode; 205 u32 inode_num; 206 u32 len = strlen(link); 207 208 inode_num = allocate_inode(info); 209 if (inode_num == EXT4_ALLOCATE_FAILED) { 210 error("failed to allocate inode\n"); 211 return EXT4_ALLOCATE_FAILED; 212 } 213 214 inode = get_inode(inode_num); 215 if (inode == NULL) { 216 error("failed to get inode %u", inode_num); 217 return EXT4_ALLOCATE_FAILED; 218 } 219 220 inode->i_mode = S_IFLNK; 221 inode->i_links_count = 1; 222 inode->i_flags |= aux_info.default_i_flags; 223 inode->i_size_lo = len; 224 225 if (len + 1 <= sizeof(inode->i_block)) { 226 /* Fast symlink */ 227 memcpy((char*)inode->i_block, link, len); 228 } else { 229 u8 *data = inode_allocate_data_indirect(inode, info.block_size, info.block_size); 230 memcpy(data, link, len); 231 inode->i_blocks_lo = info.block_size / 512; 232 } 233 234 return inode_num; 235} 236 237int inode_set_permissions(u32 inode_num, u16 mode, u16 uid, u16 gid, u32 mtime) 238{ 239 struct ext4_inode *inode = get_inode(inode_num); 240 241 if (!inode) 242 return -1; 243 244 inode->i_mode |= mode; 245 inode->i_uid = uid; 246 inode->i_gid = gid; 247 inode->i_mtime = mtime; 248 inode->i_atime = mtime; 249 inode->i_ctime = mtime; 250 251 return 0; 252} 253 254/* 255 * Returns the amount of free space available in the specified 256 * xattr region 257 */ 258static size_t xattr_free_space(struct ext4_xattr_entry *entry, char *end) 259{ 260 while(!IS_LAST_ENTRY(entry) && (((char *) entry) < end)) { 261 end -= EXT4_XATTR_SIZE(le32_to_cpu(entry->e_value_size)); 262 entry = EXT4_XATTR_NEXT(entry); 263 } 264 265 if (((char *) entry) > end) { 266 error("unexpected read beyond end of xattr space"); 267 return 0; 268 } 269 270 return end - ((char *) entry); 271} 272 273/* 274 * Returns a pointer to the free space immediately after the 275 * last xattr element 276 */ 277static struct ext4_xattr_entry* xattr_get_last(struct ext4_xattr_entry *entry) 278{ 279 for (; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { 280 // skip entry 281 } 282 return entry; 283} 284 285/* 286 * assert that the elements in the ext4 xattr section are in sorted order 287 * 288 * The ext4 filesystem requires extended attributes to be sorted when 289 * they're not stored in the inode. The kernel ext4 code uses the following 290 * sorting algorithm: 291 * 292 * 1) First sort extended attributes by their name_index. For example, 293 * EXT4_XATTR_INDEX_USER (1) comes before EXT4_XATTR_INDEX_SECURITY (6). 294 * 2) If the name_indexes are equal, then sorting is based on the length 295 * of the name. For example, XATTR_SELINUX_SUFFIX ("selinux") comes before 296 * XATTR_CAPS_SUFFIX ("capability") because "selinux" is shorter than "capability" 297 * 3) If the name_index and name_length are equal, then memcmp() is used to determine 298 * which name comes first. For example, "selinux" would come before "yelinux". 299 * 300 * This method is intended to implement the sorting function defined in 301 * the Linux kernel file fs/ext4/xattr.c function ext4_xattr_find_entry(). 302 */ 303static void xattr_assert_sane(struct ext4_xattr_entry *entry) 304{ 305 for( ; !IS_LAST_ENTRY(entry); entry = EXT4_XATTR_NEXT(entry)) { 306 struct ext4_xattr_entry *next = EXT4_XATTR_NEXT(entry); 307 if (IS_LAST_ENTRY(next)) { 308 return; 309 } 310 311 int cmp = next->e_name_index - entry->e_name_index; 312 if (cmp == 0) 313 cmp = next->e_name_len - entry->e_name_len; 314 if (cmp == 0) 315 cmp = memcmp(next->e_name, entry->e_name, next->e_name_len); 316 if (cmp < 0) { 317 error("BUG: extended attributes are not sorted\n"); 318 return; 319 } 320 if (cmp == 0) { 321 error("BUG: duplicate extended attributes detected\n"); 322 return; 323 } 324 } 325} 326 327#define NAME_HASH_SHIFT 5 328#define VALUE_HASH_SHIFT 16 329 330static void ext4_xattr_hash_entry(struct ext4_xattr_header *header, 331 struct ext4_xattr_entry *entry) 332{ 333 __u32 hash = 0; 334 char *name = entry->e_name; 335 int n; 336 337 for (n = 0; n < entry->e_name_len; n++) { 338 hash = (hash << NAME_HASH_SHIFT) ^ 339 (hash >> (8*sizeof(hash) - NAME_HASH_SHIFT)) ^ 340 *name++; 341 } 342 343 if (entry->e_value_block == 0 && entry->e_value_size != 0) { 344 __le32 *value = (__le32 *)((char *)header + 345 le16_to_cpu(entry->e_value_offs)); 346 for (n = (le32_to_cpu(entry->e_value_size) + 347 EXT4_XATTR_ROUND) >> EXT4_XATTR_PAD_BITS; n; n--) { 348 hash = (hash << VALUE_HASH_SHIFT) ^ 349 (hash >> (8*sizeof(hash) - VALUE_HASH_SHIFT)) ^ 350 le32_to_cpu(*value++); 351 } 352 } 353 entry->e_hash = cpu_to_le32(hash); 354} 355 356#undef NAME_HASH_SHIFT 357#undef VALUE_HASH_SHIFT 358 359static struct ext4_xattr_entry* xattr_addto_range( 360 void *block_start, 361 void *block_end, 362 struct ext4_xattr_entry *first, 363 int name_index, 364 const char *name, 365 const void *value, 366 size_t value_len) 367{ 368 size_t name_len = strlen(name); 369 if (name_len > 255) 370 return NULL; 371 372 size_t available_size = xattr_free_space(first, block_end); 373 size_t needed_size = EXT4_XATTR_LEN(name_len) + EXT4_XATTR_SIZE(value_len); 374 375 if (needed_size > available_size) 376 return NULL; 377 378 struct ext4_xattr_entry *new_entry = xattr_get_last(first); 379 memset(new_entry, 0, EXT4_XATTR_LEN(name_len)); 380 381 new_entry->e_name_len = name_len; 382 new_entry->e_name_index = name_index; 383 memcpy(new_entry->e_name, name, name_len); 384 new_entry->e_value_block = 0; 385 new_entry->e_value_size = cpu_to_le32(value_len); 386 387 char *val = (char *) new_entry + available_size - EXT4_XATTR_SIZE(value_len); 388 size_t e_value_offs = val - (char *) block_start; 389 390 new_entry->e_value_offs = cpu_to_le16(e_value_offs); 391 memset(val, 0, EXT4_XATTR_SIZE(value_len)); 392 memcpy(val, value, value_len); 393 394 xattr_assert_sane(first); 395 return new_entry; 396} 397 398static int xattr_addto_inode(struct ext4_inode *inode, int name_index, 399 const char *name, const void *value, size_t value_len) 400{ 401 struct ext4_xattr_ibody_header *hdr = (struct ext4_xattr_ibody_header *) (inode + 1); 402 struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (hdr + 1); 403 char *block_end = ((char *) inode) + info.inode_size; 404 405 struct ext4_xattr_entry *result = 406 xattr_addto_range(first, block_end, first, name_index, name, value, value_len); 407 408 if (result == NULL) 409 return -1; 410 411 hdr->h_magic = cpu_to_le32(EXT4_XATTR_MAGIC); 412 inode->i_extra_isize = cpu_to_le16(sizeof(struct ext4_inode) - EXT4_GOOD_OLD_INODE_SIZE); 413 414 return 0; 415} 416 417static int xattr_addto_block(struct ext4_inode *inode, int name_index, 418 const char *name, const void *value, size_t value_len) 419{ 420 struct ext4_xattr_header *header = get_xattr_block_for_inode(inode); 421 if (!header) 422 return -1; 423 424 struct ext4_xattr_entry *first = (struct ext4_xattr_entry *) (header + 1); 425 char *block_end = ((char *) header) + info.block_size; 426 427 struct ext4_xattr_entry *result = 428 xattr_addto_range(header, block_end, first, name_index, name, value, value_len); 429 430 if (result == NULL) 431 return -1; 432 433 ext4_xattr_hash_entry(header, result); 434 return 0; 435} 436 437 438static int xattr_add(u32 inode_num, int name_index, const char *name, 439 const void *value, size_t value_len) 440{ 441 if (!value) 442 return 0; 443 444 struct ext4_inode *inode = get_inode(inode_num); 445 446 if (!inode) 447 return -1; 448 449 int result = xattr_addto_inode(inode, name_index, name, value, value_len); 450 if (result != 0) { 451 result = xattr_addto_block(inode, name_index, name, value, value_len); 452 } 453 return result; 454} 455 456int inode_set_selinux(u32 inode_num, const char *secon) 457{ 458 if (!secon) 459 return 0; 460 461 return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY, 462 XATTR_SELINUX_SUFFIX, secon, strlen(secon) + 1); 463} 464 465int inode_set_capabilities(u32 inode_num, uint64_t capabilities) { 466 if (capabilities == 0) 467 return 0; 468 469 struct vfs_cap_data cap_data; 470 memset(&cap_data, 0, sizeof(cap_data)); 471 472 cap_data.magic_etc = VFS_CAP_REVISION | VFS_CAP_FLAGS_EFFECTIVE; 473 cap_data.data[0].permitted = (uint32_t) (capabilities & 0xffffffff); 474 cap_data.data[0].inheritable = 0; 475 cap_data.data[1].permitted = (uint32_t) (capabilities >> 32); 476 cap_data.data[1].inheritable = 0; 477 478 return xattr_add(inode_num, EXT4_XATTR_INDEX_SECURITY, 479 XATTR_CAPS_SUFFIX, &cap_data, sizeof(cap_data)); 480} 481 482