1/*
2** Copyright 2010 The Android Open Source Project
3**
4** Licensed under the Apache License, Version 2.0 (the "License");
5** you may not use this file except in compliance with the License.
6** You may obtain a copy of the License at
7**
8**     http://www.apache.org/licenses/LICENSE-2.0
9**
10** Unless required by applicable law or agreed to in writing, software
11** distributed under the License is distributed on an "AS IS" BASIS,
12** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13** See the License for the specific language governing permissions and
14** limitations under the License.
15*/
16
17/*
18 * Micro-benchmarking of sleep/cpu speed/memcpy/memset/memory reads/strcmp.
19 */
20
21#include <stdio.h>
22#include <stdlib.h>
23#include <ctype.h>
24#include <math.h>
25#include <sched.h>
26#include <sys/resource.h>
27#include <time.h>
28#include <unistd.h>
29
30// The default size of data that will be manipulated in each iteration of
31// a memory benchmark. Can be modified with the --data_size option.
32#define DEFAULT_DATA_SIZE       1000000000
33
34// The amount of memory allocated for the cold benchmarks to use.
35#define DEFAULT_COLD_DATA_SIZE  128*1024*1024
36
37// The default size of the stride between each buffer for cold benchmarks.
38#define DEFAULT_COLD_STRIDE_SIZE  4096
39
40// Number of nanoseconds in a second.
41#define NS_PER_SEC              1000000000
42
43// The maximum number of arguments that a benchmark will accept.
44#define MAX_ARGS    2
45
46// Default memory alignment of malloc.
47#define DEFAULT_MALLOC_MEMORY_ALIGNMENT   8
48
49// Contains information about benchmark options.
50typedef struct {
51    bool print_average;
52    bool print_each_iter;
53
54    int dst_align;
55    int dst_or_mask;
56    int src_align;
57    int src_or_mask;
58
59    int cpu_to_lock;
60
61    int data_size;
62    int dst_str_size;
63    int cold_data_size;
64    int cold_stride_size;
65
66    int args[MAX_ARGS];
67    int num_args;
68} command_data_t;
69
70typedef void *(*void_func_t)();
71typedef void *(*memcpy_func_t)(void *, const void *, size_t);
72typedef void *(*memset_func_t)(void *, int, size_t);
73typedef int (*strcmp_func_t)(const char *, const char *);
74typedef char *(*str_func_t)(char *, const char *);
75typedef size_t (*strlen_func_t)(const char *);
76
77// Struct that contains a mapping of benchmark name to benchmark function.
78typedef struct {
79    const char *name;
80    int (*ptr)(const char *, const command_data_t &, void_func_t func);
81    void_func_t func;
82} function_t;
83
84// Get the current time in nanoseconds.
85uint64_t nanoTime() {
86  struct timespec t;
87
88  t.tv_sec = t.tv_nsec = 0;
89  clock_gettime(CLOCK_MONOTONIC, &t);
90  return static_cast<uint64_t>(t.tv_sec) * NS_PER_SEC + t.tv_nsec;
91}
92
93// Allocate memory with a specific alignment and return that pointer.
94// This function assumes an alignment value that is a power of 2.
95// If the alignment is 0, then use the pointer returned by malloc.
96uint8_t *getAlignedMemory(uint8_t *orig_ptr, int alignment, int or_mask) {
97  uint64_t ptr = reinterpret_cast<uint64_t>(orig_ptr);
98  if (alignment > 0) {
99      // When setting the alignment, set it to exactly the alignment chosen.
100      // The pointer returned will be guaranteed not to be aligned to anything
101      // more than that.
102      ptr += alignment - (ptr & (alignment - 1));
103      ptr |= alignment | or_mask;
104  }
105
106  return reinterpret_cast<uint8_t*>(ptr);
107}
108
109// Allocate memory with a specific alignment and return that pointer.
110// This function assumes an alignment value that is a power of 2.
111// If the alignment is 0, then use the pointer returned by malloc.
112uint8_t *allocateAlignedMemory(size_t size, int alignment, int or_mask) {
113  uint64_t ptr = reinterpret_cast<uint64_t>(malloc(size + 3 * alignment));
114  if (!ptr)
115      return NULL;
116  return getAlignedMemory((uint8_t*)ptr, alignment, or_mask);
117}
118
119void initString(uint8_t *buf, size_t size) {
120    for (size_t i = 0; i < size - 1; i++) {
121        buf[i] = static_cast<char>(32 + (i % 96));
122    }
123    buf[size-1] = '\0';
124}
125
126static inline double computeAverage(uint64_t time_ns, size_t size, size_t copies) {
127    return ((size/1024.0) * copies) / ((double)time_ns/NS_PER_SEC);
128}
129
130static inline double computeRunningAvg(double avg, double running_avg, size_t cur_idx) {
131    return (running_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1));
132}
133
134static inline double computeRunningSquareAvg(double avg, double square_avg, size_t cur_idx) {
135    return (square_avg / (cur_idx + 1)) * cur_idx + (avg / (cur_idx + 1)) * avg;
136}
137
138static inline double computeStdDev(double square_avg, double running_avg) {
139    return sqrt(square_avg - running_avg * running_avg);
140}
141
142static inline void printIter(uint64_t time_ns, const char *name, size_t size, size_t copies, double avg) {
143    printf("%s %ux%u bytes took %.06f seconds (%f MB/s)\n",
144           name, copies, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
145}
146
147static inline void printSummary(uint64_t time_ns, const char *name, size_t size, size_t copies, double running_avg, double std_dev, double min, double max) {
148    printf("  %s %ux%u bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
149           name, copies, size, running_avg/1024.0, std_dev/1024.0, min/1024.0,
150           max/1024.0);
151}
152
153// For the cold benchmarks, a large buffer will be created which
154// contains many "size" buffers. This function will figure out the increment
155// needed between each buffer so that each one is aligned to "alignment".
156int getAlignmentIncrement(size_t size, int alignment) {
157    if (alignment == 0) {
158        alignment = DEFAULT_MALLOC_MEMORY_ALIGNMENT;
159    }
160    alignment *= 2;
161    return size + alignment - (size % alignment);
162}
163
164uint8_t *getColdBuffer(int num_buffers, size_t incr, int alignment, int or_mask) {
165    uint8_t *buffers = reinterpret_cast<uint8_t*>(malloc(num_buffers * incr + 3 * alignment));
166    if (!buffers) {
167        return NULL;
168    }
169    return getAlignedMemory(buffers, alignment, or_mask);
170}
171
172static inline double computeColdAverage(uint64_t time_ns, size_t size, size_t copies, size_t num_buffers) {
173    return ((size/1024.0) * copies * num_buffers) / ((double)time_ns/NS_PER_SEC);
174}
175
176static void inline printColdIter(uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers, double avg) {
177    printf("%s %ux%ux%u bytes took %.06f seconds (%f MB/s)\n",
178           name, copies, num_buffers, size, (double)time_ns/NS_PER_SEC, avg/1024.0);
179}
180
181static void inline printColdSummary(
182        uint64_t time_ns, const char *name, size_t size, size_t copies, size_t num_buffers,
183        double running_avg, double square_avg, double min, double max) {
184    printf("  %s %ux%ux%u bytes average %.2f MB/s std dev %.4f min %.2f MB/s max %.2f MB/s\n",
185           name, copies, num_buffers, size, running_avg/1024.0,
186           computeStdDev(running_avg, square_avg)/1024.0, min/1024.0, max/1024.0);
187}
188
189#define MAINLOOP(cmd_data, BENCH, COMPUTE_AVG, PRINT_ITER, PRINT_AVG) \
190    uint64_t time_ns;                                                 \
191    int iters = cmd_data.args[1];                                     \
192    bool print_average = cmd_data.print_average;                      \
193    bool print_each_iter = cmd_data.print_each_iter;                  \
194    double min = 0.0, max = 0.0, running_avg = 0.0, square_avg = 0.0; \
195    double avg;                                                       \
196    for (int i = 0; iters == -1 || i < iters; i++) {                  \
197        time_ns = nanoTime();                                         \
198        BENCH;                                                        \
199        time_ns = nanoTime() - time_ns;                               \
200        avg = COMPUTE_AVG;                                            \
201        if (print_average) {                                          \
202            running_avg = computeRunningAvg(avg, running_avg, i);     \
203            square_avg = computeRunningSquareAvg(avg, square_avg, i); \
204            if (min == 0.0 || avg < min) {                            \
205                min = avg;                                            \
206            }                                                         \
207            if (avg > max) {                                          \
208                max = avg;                                            \
209            }                                                         \
210        }                                                             \
211        if (print_each_iter) {                                        \
212            PRINT_ITER;                                               \
213        }                                                             \
214    }                                                                 \
215    if (print_average) {                                              \
216        PRINT_AVG;                                                    \
217    }
218
219#define MAINLOOP_DATA(name, cmd_data, size, BENCH)                    \
220    size_t copies = cmd_data.data_size/size;                          \
221    size_t j;                                                         \
222    MAINLOOP(cmd_data,                                                \
223             for (j = 0; j < copies; j++) {                           \
224                 BENCH;                                               \
225             },                                                       \
226             computeAverage(time_ns, size, copies),                   \
227             printIter(time_ns, name, size, copies, avg),             \
228             double std_dev = computeStdDev(square_avg, running_avg); \
229             printSummary(time_ns, name, size, copies, running_avg,   \
230                          std_dev, min, max));
231
232#define MAINLOOP_COLD(name, cmd_data, size, num_incrs, BENCH)                 \
233    size_t num_strides = num_buffers / num_incrs;                             \
234    if ((num_buffers % num_incrs) != 0) {                                     \
235        num_strides--;                                                        \
236    }                                                                         \
237    size_t copies = 1;                                                        \
238    num_buffers = num_incrs * num_strides;                                    \
239    if (num_buffers * size < static_cast<size_t>(cmd_data.data_size)) {       \
240        copies = cmd_data.data_size / (num_buffers * size);                   \
241    }                                                                         \
242    if (num_strides == 0) {                                                   \
243        printf("%s: Chosen options lead to no copies, aborting.\n", name);    \
244        return -1;                                                            \
245    }                                                                         \
246    size_t j, k;                                                              \
247    MAINLOOP(cmd_data,                                                        \
248             for (j = 0; j < copies; j++) {                                   \
249                 for (k = 0; k < num_incrs; k++) {                            \
250                     BENCH;                                                   \
251                }                                                             \
252            },                                                                \
253            computeColdAverage(time_ns, size, copies, num_buffers),           \
254            printColdIter(time_ns, name, size, copies, num_buffers, avg),     \
255            printColdSummary(time_ns, name, size, copies, num_buffers,        \
256                             running_avg, square_avg, min, max));
257
258// This version of the macro creates a single buffer of the given size and
259// alignment. The variable "buf" will be a pointer to the buffer and should
260// be used by the BENCH code.
261// INIT - Any specialized code needed to initialize the data. This will only
262//        be executed once.
263// BENCH - The actual code to benchmark and is timed.
264#define BENCH_ONE_BUF(name, cmd_data, INIT, BENCH)                            \
265    size_t size = cmd_data.args[0]; \
266    uint8_t *buf = allocateAlignedMemory(size, cmd_data.dst_align, cmd_data.dst_or_mask); \
267    if (!buf)                                                                 \
268        return -1;                                                            \
269    INIT;                                                                     \
270    MAINLOOP_DATA(name, cmd_data, size, BENCH);
271
272// This version of the macro creates two buffers of the given sizes and
273// alignments. The variables "buf1" and "buf2" will be pointers to the
274// buffers and should be used by the BENCH code.
275// INIT - Any specialized code needed to initialize the data. This will only
276//        be executed once.
277// BENCH - The actual code to benchmark and is timed.
278#define BENCH_TWO_BUFS(name, cmd_data, INIT, BENCH)                           \
279    size_t size = cmd_data.args[0];                                           \
280    uint8_t *buf1 = allocateAlignedMemory(size, cmd_data.src_align, cmd_data.src_or_mask); \
281    if (!buf1)                                                                \
282        return -1;                                                            \
283    size_t total_size = size;                                                 \
284    if (cmd_data.dst_str_size > 0)                                            \
285        total_size += cmd_data.dst_str_size;                                  \
286    uint8_t *buf2 = allocateAlignedMemory(total_size, cmd_data.dst_align, cmd_data.dst_or_mask); \
287    if (!buf2)                                                                \
288        return -1;                                                            \
289    INIT;                                                                     \
290    MAINLOOP_DATA(name, cmd_data, size, BENCH);
291
292// This version of the macro attempts to benchmark code when the data
293// being manipulated is not in the cache, thus the cache is cold. It does
294// this by creating a single large buffer that is designed to be larger than
295// the largest cache in the system. The variable "buf" will be one slice
296// of the buffer that the BENCH code should use that is of the correct size
297// and alignment. In order to avoid any algorithms that prefetch past the end
298// of their "buf" and into the next sequential buffer, the code strides
299// through the buffer. Specifically, as "buf" values are iterated in BENCH
300// code, the end of "buf" is guaranteed to be at least "stride_size" away
301// from the next "buf".
302// INIT - Any specialized code needed to initialize the data. This will only
303//        be executed once.
304// BENCH - The actual code to benchmark and is timed.
305#define COLD_ONE_BUF(name, cmd_data, INIT, BENCH)                             \
306    size_t size = cmd_data.args[0];                                           \
307    size_t incr = getAlignmentIncrement(size, cmd_data.dst_align);            \
308    size_t num_buffers = cmd_data.cold_data_size / incr;                      \
309    size_t buffer_size = num_buffers * incr;                                  \
310    uint8_t *buffer = getColdBuffer(num_buffers, incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
311    if (!buffer)                                                              \
312        return -1;                                                            \
313    size_t num_incrs = cmd_data.cold_stride_size / incr + 1;                  \
314    size_t stride_incr = incr * num_incrs;                                    \
315    uint8_t *buf;                                                             \
316    size_t l;                                                                 \
317    INIT;                                                                     \
318    MAINLOOP_COLD(name, cmd_data, size, num_incrs,                            \
319                  buf = buffer + k * incr;                                    \
320                  for (l = 0; l < num_strides; l++) {                         \
321                      BENCH;                                                  \
322                      buf += stride_incr;                                     \
323                  });
324
325// This version of the macro attempts to benchmark code when the data
326// being manipulated is not in the cache, thus the cache is cold. It does
327// this by creating two large buffers each of which is designed to be
328// larger than the largest cache in the system. Two variables "buf1" and
329// "buf2" will be the two buffers that BENCH code should use. In order
330// to avoid any algorithms that prefetch past the end of either "buf1"
331// or "buf2" and into the next sequential buffer, the code strides through
332// both buffers. Specifically, as "buf1" and "buf2" values are iterated in
333// BENCH code, the end of "buf1" and "buf2" is guaranteed to be at least
334// "stride_size" away from the next "buf1" and "buf2".
335// INIT - Any specialized code needed to initialize the data. This will only
336//        be executed once.
337// BENCH - The actual code to benchmark and is timed.
338#define COLD_TWO_BUFS(name, cmd_data, INIT, BENCH)                            \
339    size_t size = cmd_data.args[0];                                           \
340    size_t buf1_incr = getAlignmentIncrement(size, cmd_data.src_align);       \
341    size_t total_size = size;                                                 \
342    if (cmd_data.dst_str_size > 0)                                            \
343        total_size += cmd_data.dst_str_size;                                  \
344    size_t buf2_incr = getAlignmentIncrement(total_size, cmd_data.dst_align); \
345    size_t max_incr = (buf1_incr > buf2_incr) ? buf1_incr : buf2_incr;        \
346    size_t num_buffers = cmd_data.cold_data_size / max_incr;                  \
347    size_t buffer1_size = num_buffers * buf1_incr;                            \
348    size_t buffer2_size = num_buffers * buf2_incr;                            \
349    uint8_t *buffer1 = getColdBuffer(num_buffers, buf1_incr, cmd_data.src_align, cmd_data.src_or_mask); \
350    if (!buffer1)                                                             \
351        return -1;                                                            \
352    uint8_t *buffer2 = getColdBuffer(num_buffers, buf2_incr, cmd_data.dst_align, cmd_data.dst_or_mask); \
353    if (!buffer2)                                                             \
354        return -1;                                                            \
355    size_t min_incr = (buf1_incr < buf2_incr) ? buf1_incr : buf2_incr;        \
356    size_t num_incrs = cmd_data.cold_stride_size / min_incr + 1;              \
357    size_t buf1_stride_incr = buf1_incr * num_incrs;                          \
358    size_t buf2_stride_incr = buf2_incr * num_incrs;                          \
359    size_t l;                                                                 \
360    uint8_t *buf1;                                                            \
361    uint8_t *buf2;                                                            \
362    INIT;                                                                     \
363    MAINLOOP_COLD(name, cmd_data, size, num_incrs,                            \
364                  buf1 = buffer1 + k * buf1_incr;                             \
365                  buf2 = buffer2 + k * buf2_incr;                             \
366                  for (l = 0; l < num_strides; l++) {                         \
367                      BENCH;                                                  \
368                      buf1 += buf1_stride_incr;                               \
369                      buf2 += buf2_stride_incr;                               \
370                  });
371
372int benchmarkSleep(const char *name, const command_data_t &cmd_data, void_func_t func) {
373    int delay = cmd_data.args[0];
374    MAINLOOP(cmd_data, sleep(delay),
375             (double)time_ns/NS_PER_SEC,
376             printf("sleep(%d) took %.06f seconds\n", delay, avg);,
377             printf("  sleep(%d) average %.06f seconds std dev %f min %.06f seconds max %0.6f seconds\n", \
378                    delay, running_avg, computeStdDev(square_avg, running_avg), \
379                    min, max));
380
381    return 0;
382}
383
384int benchmarkCpu(const char *name, const command_data_t &cmd_data, void_func_t func) {
385    // Use volatile so that the loop is not optimized away by the compiler.
386    volatile int cpu_foo;
387
388    MAINLOOP(cmd_data,
389             for (cpu_foo = 0; cpu_foo < 100000000; cpu_foo++),
390             (double)time_ns/NS_PER_SEC,
391             printf("cpu took %.06f seconds\n", avg),
392             printf("  cpu average %.06f seconds std dev %f min %0.6f seconds max %0.6f seconds\n", \
393                    running_avg, computeStdDev(square_avg, running_avg), min, max));
394
395    return 0;
396}
397
398int benchmarkMemset(const char *name, const command_data_t &cmd_data, void_func_t func) {
399    memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
400    BENCH_ONE_BUF(name, cmd_data, ;, memset_func(buf, i, size));
401
402    return 0;
403}
404
405int benchmarkMemsetCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
406    memset_func_t memset_func = reinterpret_cast<memset_func_t>(func);
407    COLD_ONE_BUF(name, cmd_data, ;, memset_func(buf, l, size));
408
409    return 0;
410}
411
412int benchmarkMemcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
413    memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
414
415    BENCH_TWO_BUFS(name, cmd_data,
416                   memset(buf1, 0xff, size); \
417                   memset(buf2, 0, size),
418                   memcpy_func(buf2, buf1, size));
419
420    return 0;
421}
422
423int benchmarkMemcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
424    memcpy_func_t memcpy_func = reinterpret_cast<memcpy_func_t>(func);
425
426    COLD_TWO_BUFS(name, cmd_data,
427                  memset(buffer1, 0xff, buffer1_size); \
428                  memset(buffer2, 0x0, buffer2_size),
429                  memcpy_func(buf2, buf1, size));
430
431    return 0;
432}
433
434int benchmarkMemread(const char *name, const command_data_t &cmd_data, void_func_t func) {
435    int size = cmd_data.args[0];
436
437    uint32_t *src = reinterpret_cast<uint32_t*>(malloc(size));
438    if (!src)
439        return -1;
440    memset(src, 0xff, size);
441
442    // Use volatile so the compiler does not optimize away the reads.
443    volatile int foo;
444    size_t k;
445    MAINLOOP_DATA(name, cmd_data, size,
446                  for (k = 0; k < size/sizeof(uint32_t); k++) foo = src[k]);
447
448    return 0;
449}
450
451int benchmarkStrcmp(const char *name, const command_data_t &cmd_data, void_func_t func) {
452    strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
453
454    int retval;
455    BENCH_TWO_BUFS(name, cmd_data,
456                   initString(buf1, size); \
457                   initString(buf2, size),
458                   retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
459                   if (retval != 0) printf("%s failed, return value %d\n", name, retval));
460
461    return 0;
462}
463
464int benchmarkStrcmpCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
465    strcmp_func_t strcmp_func = reinterpret_cast<strcmp_func_t>(func);
466
467    int retval;
468    COLD_TWO_BUFS(name, cmd_data,
469                  memset(buffer1, 'a', buffer1_size); \
470                  memset(buffer2, 'a', buffer2_size); \
471                  for (size_t i =0; i < num_buffers; i++) { \
472                      buffer1[size-1+buf1_incr*i] = '\0'; \
473                      buffer2[size-1+buf2_incr*i] = '\0'; \
474                  },
475                  retval = strcmp_func(reinterpret_cast<char*>(buf1), reinterpret_cast<char*>(buf2)); \
476                  if (retval != 0) printf("%s failed, return value %d\n", name, retval));
477
478    return 0;
479}
480
481int benchmarkStrlen(const char *name, const command_data_t &cmd_data, void_func_t func) {
482    size_t real_size;
483    strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
484    BENCH_ONE_BUF(name, cmd_data,
485                  initString(buf, size),
486                  real_size = strlen_func(reinterpret_cast<char*>(buf)); \
487                  if (real_size + 1 != size) { \
488                      printf("%s failed, expected %u, got %u\n", name, size, real_size); \
489                      return -1; \
490                  });
491
492    return 0;
493}
494
495int benchmarkStrlenCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
496    strlen_func_t strlen_func = reinterpret_cast<strlen_func_t>(func);
497    size_t real_size;
498    COLD_ONE_BUF(name, cmd_data,
499                 memset(buffer, 'a', buffer_size); \
500                 for (size_t i = 0; i < num_buffers; i++) { \
501                     buffer[size-1+incr*i] = '\0'; \
502                 },
503                 real_size = strlen_func(reinterpret_cast<char*>(buf)); \
504                 if (real_size + 1 != size) { \
505                     printf("%s failed, expected %u, got %u\n", name, size, real_size); \
506                     return -1; \
507                 });
508    return 0;
509}
510
511int benchmarkStrcat(const char *name, const command_data_t &cmd_data, void_func_t func) {
512    str_func_t str_func = reinterpret_cast<str_func_t>(func);
513
514    int dst_str_size = cmd_data.dst_str_size;
515    if (dst_str_size <= 0) {
516        printf("%s requires --dst_str_size to be set to a non-zero value.\n",
517               name);
518        return -1;
519    }
520    BENCH_TWO_BUFS(name, cmd_data,
521                   initString(buf1, size); \
522                   initString(buf2, dst_str_size),
523                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
524
525    return 0;
526}
527
528int benchmarkStrcatCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
529    str_func_t str_func = reinterpret_cast<str_func_t>(func);
530
531    int dst_str_size = cmd_data.dst_str_size;
532    if (dst_str_size <= 0) {
533        printf("%s requires --dst_str_size to be set to a non-zero value.\n",
534               name);
535        return -1;
536    }
537    COLD_TWO_BUFS(name, cmd_data,
538                  memset(buffer1, 'a', buffer1_size); \
539                  memset(buffer2, 'b', buffer2_size); \
540                  for (size_t i = 0; i < num_buffers; i++) { \
541                      buffer1[size-1+buf1_incr*i] = '\0'; \
542                      buffer2[dst_str_size-1+buf2_incr*i] = '\0'; \
543                  },
544                  str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)); buf2[dst_str_size-1] = '\0');
545
546    return 0;
547}
548
549
550int benchmarkStrcpy(const char *name, const command_data_t &cmd_data, void_func_t func) {
551    str_func_t str_func = reinterpret_cast<str_func_t>(func);
552
553    BENCH_TWO_BUFS(name, cmd_data,
554                   initString(buf1, size); \
555                   memset(buf2, 0, size),
556                   str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
557
558    return 0;
559}
560
561int benchmarkStrcpyCold(const char *name, const command_data_t &cmd_data, void_func_t func) {
562    str_func_t str_func = reinterpret_cast<str_func_t>(func);
563
564    COLD_TWO_BUFS(name, cmd_data,
565                  memset(buffer1, 'a', buffer1_size); \
566                  for (size_t i = 0; i < num_buffers; i++) { \
567                     buffer1[size-1+buf1_incr*i] = '\0'; \
568                  } \
569                  memset(buffer2, 0, buffer2_size),
570                  str_func(reinterpret_cast<char*>(buf2), reinterpret_cast<char*>(buf1)));
571
572    return 0;
573}
574
575// Create the mapping structure.
576function_t function_table[] = {
577    { "cpu", benchmarkCpu, NULL },
578    { "memcpy", benchmarkMemcpy, reinterpret_cast<void_func_t>(memcpy) },
579    { "memcpy_cold", benchmarkMemcpyCold, reinterpret_cast<void_func_t>(memcpy) },
580    { "memread", benchmarkMemread, NULL },
581    { "memset", benchmarkMemset, reinterpret_cast<void_func_t>(memset) },
582    { "memset_cold", benchmarkMemsetCold, reinterpret_cast<void_func_t>(memset) },
583    { "sleep", benchmarkSleep, NULL },
584    { "strcat", benchmarkStrcat, reinterpret_cast<void_func_t>(strcat) },
585    { "strcat_cold", benchmarkStrcatCold, reinterpret_cast<void_func_t>(strcat) },
586    { "strcmp", benchmarkStrcmp, reinterpret_cast<void_func_t>(strcmp) },
587    { "strcmp_cold", benchmarkStrcmpCold, reinterpret_cast<void_func_t>(strcmp) },
588    { "strcpy", benchmarkStrcpy, reinterpret_cast<void_func_t>(strcpy) },
589    { "strcpy_cold", benchmarkStrcpyCold, reinterpret_cast<void_func_t>(strcpy) },
590    { "strlen", benchmarkStrlen, reinterpret_cast<void_func_t>(strlen) },
591    { "strlen_cold", benchmarkStrlenCold, reinterpret_cast<void_func_t>(strlen) },
592};
593
594void usage() {
595    printf("Usage:\n");
596    printf("  micro_bench [--data_size DATA_BYTES] [--print_average]\n");
597    printf("              [--no_print_each_iter] [--lock_to_cpu CORE]\n");
598    printf("              [--src_align ALIGN] [--src_or_mask OR_MASK]\n");
599    printf("              [--dst_align ALIGN] [--dst_or_mask OR_MASK]\n");
600    printf("              [--dst_str_size SIZE] [--cold_data_size DATA_BYTES]\n");
601    printf("              [--cold_stride_size SIZE]\n");
602    printf("    --data_size DATA_BYTES\n");
603    printf("      For the data benchmarks (memcpy/memset/memread) the approximate\n");
604    printf("      size of data, in bytes, that will be manipulated in each iteration.\n");
605    printf("    --print_average\n");
606    printf("      Print the average and standard deviation of all iterations.\n");
607    printf("    --no_print_each_iter\n");
608    printf("      Do not print any values in each iteration.\n");
609    printf("    --lock_to_cpu CORE\n");
610    printf("      Lock to the specified CORE. The default is to use the last core found.\n");
611    printf("    --dst_align ALIGN\n");
612    printf("      If the command supports it, align the destination pointer to ALIGN.\n");
613    printf("      The default is to use the value returned by malloc.\n");
614    printf("    --dst_or_mask OR_MASK\n");
615    printf("      If the command supports it, or in the OR_MASK on to the destination pointer.\n");
616    printf("      The OR_MASK must be smaller than the dst_align value.\n");
617    printf("      The default value is 0.\n");
618
619    printf("    --src_align ALIGN\n");
620    printf("      If the command supports it, align the source pointer to ALIGN. The default is to use the\n");
621    printf("      value returned by malloc.\n");
622    printf("    --src_or_mask OR_MASK\n");
623    printf("      If the command supports it, or in the OR_MASK on to the source pointer.\n");
624    printf("      The OR_MASK must be smaller than the src_align value.\n");
625    printf("      The default value is 0.\n");
626    printf("    --dst_str_size SIZE\n");
627    printf("      If the command supports it, create a destination string of this length.\n");
628    printf("      The default is to not update the destination string.\n");
629    printf("    --cold_data_size DATA_SIZE\n");
630    printf("      For _cold benchmarks, use this as the total amount of memory to use.\n");
631    printf("      The default is 128MB, and the number should be larger than the cache on the chip.\n");
632    printf("      This value is specified in bytes.\n");
633    printf("    --cold_stride_size SIZE\n");
634    printf("      For _cold benchmarks, use this as the minimum stride between iterations.\n");
635    printf("      The default is 4096 bytes and the number should be larger than the amount of data\n");
636    printf("      pulled in to the cache by each run of the benchmark.\n");
637    printf("    ITERS\n");
638    printf("      The number of iterations to execute each benchmark. If not\n");
639    printf("      passed in then run forever.\n");
640    printf("  micro_bench cpu UNUSED [ITERS]\n");
641    printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memcpy NUM_BYTES [ITERS]\n");
642    printf("  micro_bench memread NUM_BYTES [ITERS]\n");
643    printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] memset NUM_BYTES [ITERS]\n");
644    printf("  micro_bench sleep TIME_TO_SLEEP [ITERS]\n");
645    printf("    TIME_TO_SLEEP\n");
646    printf("      The time in seconds to sleep.\n");
647    printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] [--dst_str_size SIZE] strcat NUM_BYTES [ITERS]\n");
648    printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask OR_MASK] strcmp NUM_BYTES [ITERS]\n");
649    printf("  micro_bench [--src_align ALIGN] [--src_or_mask OR_MASK] [--dst_align ALIGN] [--dst_or_mask] strcpy NUM_BYTES [ITERS]\n");
650    printf("  micro_bench [--dst_align ALIGN] [--dst_or_mask OR_MASK] strlen NUM_BYTES [ITERS]\n");
651    printf("\n");
652    printf("  In addition, memcpy/memcpy/memset/strcat/strcpy/strlen have _cold versions\n");
653    printf("  that will execute the function on a buffer not in the cache.\n");
654}
655
656function_t *processOptions(int argc, char **argv, command_data_t *cmd_data) {
657    function_t *command = NULL;
658
659    // Initialize the command_flags.
660    cmd_data->print_average = false;
661    cmd_data->print_each_iter = true;
662    cmd_data->dst_align = 0;
663    cmd_data->src_align = 0;
664    cmd_data->src_or_mask = 0;
665    cmd_data->dst_or_mask = 0;
666    cmd_data->num_args = 0;
667    cmd_data->cpu_to_lock = -1;
668    cmd_data->data_size = DEFAULT_DATA_SIZE;
669    cmd_data->dst_str_size = -1;
670    cmd_data->cold_data_size = DEFAULT_COLD_DATA_SIZE;
671    cmd_data->cold_stride_size = DEFAULT_COLD_STRIDE_SIZE;
672    for (int i = 0; i < MAX_ARGS; i++) {
673        cmd_data->args[i] = -1;
674    }
675
676    for (int i = 1; i < argc; i++) {
677        if (argv[i][0] == '-') {
678            int *save_value = NULL;
679            if (strcmp(argv[i], "--print_average") == 0) {
680                cmd_data->print_average = true;
681            } else if (strcmp(argv[i], "--no_print_each_iter") == 0) {
682                cmd_data->print_each_iter = false;
683            } else if (strcmp(argv[i], "--dst_align") == 0) {
684                save_value = &cmd_data->dst_align;
685            } else if (strcmp(argv[i], "--src_align") == 0) {
686                save_value = &cmd_data->src_align;
687            } else if (strcmp(argv[i], "--dst_or_mask") == 0) {
688                save_value = &cmd_data->dst_or_mask;
689            } else if (strcmp(argv[i], "--src_or_mask") == 0) {
690                save_value = &cmd_data->src_or_mask;
691            } else if (strcmp(argv[i], "--lock_to_cpu") == 0) {
692                save_value = &cmd_data->cpu_to_lock;
693            } else if (strcmp(argv[i], "--data_size") == 0) {
694                save_value = &cmd_data->data_size;
695            } else if (strcmp(argv[i], "--dst_str_size") == 0) {
696                save_value = &cmd_data->dst_str_size;
697            } else if (strcmp(argv[i], "--cold_data_size") == 0) {
698                save_value = &cmd_data->cold_data_size;
699            } else if (strcmp(argv[i], "--cold_stride_size") == 0) {
700                save_value = &cmd_data->cold_stride_size;
701            } else {
702                printf("Unknown option %s\n", argv[i]);
703                return NULL;
704            }
705            if (save_value) {
706                // Checking both characters without a strlen() call should be
707                // safe since as long as the argument exists, one character will
708                // be present (\0). And if the first character is '-', then
709                // there will always be a second character (\0 again).
710                if (i == argc - 1 || (argv[i + 1][0] == '-' && !isdigit(argv[i + 1][1]))) {
711                    printf("The option %s requires one argument.\n",
712                           argv[i]);
713                    return NULL;
714                }
715                *save_value = (int)strtol(argv[++i], NULL, 0);
716            }
717        } else if (!command) {
718            for (size_t j = 0; j < sizeof(function_table)/sizeof(function_t); j++) {
719                if (strcmp(argv[i], function_table[j].name) == 0) {
720                    command = &function_table[j];
721                    break;
722                }
723            }
724            if (!command) {
725                printf("Uknown command %s\n", argv[i]);
726                return NULL;
727            }
728        } else if (cmd_data->num_args > MAX_ARGS) {
729            printf("More than %d number arguments passed in.\n", MAX_ARGS);
730            return NULL;
731        } else {
732            cmd_data->args[cmd_data->num_args++] = atoi(argv[i]);
733        }
734    }
735
736    // Check the arguments passed in make sense.
737    if (cmd_data->num_args != 1 && cmd_data->num_args != 2) {
738        printf("Not enough arguments passed in.\n");
739        return NULL;
740    } else if (cmd_data->dst_align < 0) {
741        printf("The --dst_align option must be greater than or equal to 0.\n");
742        return NULL;
743    } else if (cmd_data->src_align < 0) {
744        printf("The --src_align option must be greater than or equal to 0.\n");
745        return NULL;
746    } else if (cmd_data->data_size <= 0) {
747        printf("The --data_size option must be a positive number.\n");
748        return NULL;
749    } else if ((cmd_data->dst_align & (cmd_data->dst_align - 1))) {
750        printf("The --dst_align option must be a power of 2.\n");
751        return NULL;
752    } else if ((cmd_data->src_align & (cmd_data->src_align - 1))) {
753        printf("The --src_align option must be a power of 2.\n");
754        return NULL;
755    } else if (!cmd_data->src_align && cmd_data->src_or_mask) {
756        printf("The --src_or_mask option requires that --src_align be set.\n");
757        return NULL;
758    } else if (!cmd_data->dst_align && cmd_data->dst_or_mask) {
759        printf("The --dst_or_mask option requires that --dst_align be set.\n");
760        return NULL;
761    } else if (cmd_data->src_or_mask > cmd_data->src_align) {
762        printf("The value of --src_or_mask cannot be larger that --src_align.\n");
763        return NULL;
764    } else if (cmd_data->dst_or_mask > cmd_data->dst_align) {
765        printf("The value of --src_or_mask cannot be larger that --src_align.\n");
766        return NULL;
767    }
768
769    return command;
770}
771
772bool raisePriorityAndLock(int cpu_to_lock) {
773    cpu_set_t cpuset;
774
775    if (setpriority(PRIO_PROCESS, 0, -20)) {
776        perror("Unable to raise priority of process.\n");
777        return false;
778    }
779
780    CPU_ZERO(&cpuset);
781    if (sched_getaffinity(0, sizeof(cpuset), &cpuset) != 0) {
782        perror("sched_getaffinity failed");
783        return false;
784    }
785
786    if (cpu_to_lock < 0) {
787        // Lock to the last active core we find.
788        for (int i = 0; i < CPU_SETSIZE; i++) {
789            if (CPU_ISSET(i, &cpuset)) {
790                cpu_to_lock = i;
791            }
792        }
793    } else if (!CPU_ISSET(cpu_to_lock, &cpuset)) {
794        printf("Cpu %d does not exist.\n", cpu_to_lock);
795        return false;
796    }
797
798    if (cpu_to_lock < 0) {
799        printf("Cannot find any valid cpu to lock.\n");
800        return false;
801    }
802
803    CPU_ZERO(&cpuset);
804    CPU_SET(cpu_to_lock, &cpuset);
805    if (sched_setaffinity(0, sizeof(cpuset), &cpuset) != 0) {
806        perror("sched_setaffinity failed");
807        return false;
808    }
809
810    return true;
811}
812
813int main(int argc, char **argv) {
814    command_data_t cmd_data;
815
816    function_t *command = processOptions(argc, argv, &cmd_data);
817    if (!command) {
818      usage();
819      return -1;
820    }
821
822    if (!raisePriorityAndLock(cmd_data.cpu_to_lock)) {
823      return -1;
824    }
825
826    printf("%s\n", command->name);
827    return (*command->ptr)(command->name, cmd_data, command->func);
828}
829