History log of /external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
Revision Date Author Comments (<<< Hide modified files) (Show modified files >>>)
dce4a407a24b04eebc6a376f8e62b41aaa7b071f 29-May-2014 Stephen Hines <srhines@google.com> Update LLVM for 3.5 rebase (r209712).

Change-Id: I149556c940fb7dc92d075273c87ff584f400941f
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
36b56886974eae4f9c5ebc96befd3e7bfe5de338 24-Apr-2014 Stephen Hines <srhines@google.com> Update to LLVM 3.5a.

Change-Id: Ifadecab779f128e62e430c2b4f6ddd84953ed617
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
45c75443394b92a8ba8e2474a393039feb5b7d78 04-Jun-2013 Shuxin Yang <shuxin.llvm@gmail.com> Fix a defect in code-layout pass, improving Benchmarks/Olden/em3d/em3d by about 30%
(4.58s vs 3.2s on an oldish Mac Tower).

The corresponding src is excerpted bellow. The lopp accounts for about 90% of execution time.
--------------------
cat -n test-suite/MultiSource/Benchmarks/Olden/em3d/make_graph.c
90
91 for (k=0; k<j; k++)
92 if (other_node == cur_node->to_nodes[k]) break;

The defective layout is sketched bellow, where the two branches need to swap.
------------------------------------------------------------------------
L:
...
if (cond) goto out-of-loop
goto L

While this code sequence is defective, I don't understand why it incurs 1/3 of
execution time. CPU-event-profiling indicates the poor laoyout dose not increase
in br-misprediction; it dosen't increase stall cycle at all, and it dosen't
prevent the CPU detect the loop (i.e. Loop-Stream-Detector seems to be working fine
as well)...

The root cause of the problem is that the layout pass calls AnalyzeBranch()
with basic-block which is not updated to reflect its current layout.

rdar://13966341


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183174 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
33a47d66e9f9126017d051bfba35cb9be6609b3e 12-Apr-2013 Nadav Rotem <nrotem@apple.com> Don't disable block layout when forcing block alignment.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179355 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
07706e5506fb1bf494667e9fd16795b6c0b4d0fb 12-Apr-2013 Nadav Rotem <nrotem@apple.com> Add a flag to align all basic blocks in the function.

When debugging performance regressions we often ask ourselves if the regression
that we see is due to poor isel/sched/ra or due to some micro-architetural
problem. When comparing two code sequences one good way to rule out front-end
bottlenecks (and other the issues) is to force code alignment. This pass adds
a flag that forces the alignment of all of the basic blocks in the program.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@179353 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
975ee54731476ff6541fc42f6a8cd706f3d33f58 29-Mar-2013 Nadav Rotem <nrotem@apple.com> Fix a typo

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178346 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
69e42dbd006c0afb732067ece7327988b1e24c01 11-Jan-2013 Benjamin Kramer <benny.kra@googlemail.com> Split TargetLowering into a CodeGen and a SelectionDAG part.

This fixes some of the cycles between libCodeGen and libSelectionDAG. It's still
a complete mess but as long as the edges consist of virtual call it doesn't
cause breakage. BasicTTI did static calls and thus broke some build
configurations.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@172246 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
831737d329a727f53a1fb0572f7b7a8127208881 30-Dec-2012 Bill Wendling <isanbard@gmail.com> Remove the Function::getFnAttributes method in favor of using the AttributeSet
directly.

This is in preparation for removing the use of the 'Attribute' class as a
collection of attributes. That will shift to the AttributeSet class instead.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171253 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
034b94b17006f51722886b0f2283fb6fb19aca1f 19-Dec-2012 Bill Wendling <isanbard@gmail.com> Rename the 'Attributes' class to 'Attribute'. It's going to represent a single attribute in the future.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@170502 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
d04a8d4b33ff316ca4cf961e06c9e312eff8e64f 03-Dec-2012 Chandler Carruth <chandlerc@gmail.com> Use the new script to sort the includes of every file under lib.

Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
6765834754cbb3cb0f15b4b15e98c5e73fa50066 09-Oct-2012 Bill Wendling <isanbard@gmail.com> Create enums for the different attributes.

We use the enums to query whether an Attributes object has that attribute. The
opaque layer is responsible for knowing where that specific attribute is stored.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@165488 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
2c189061184925c6a8ecbb5a19e648b230a41c0e 26-Sep-2012 Bill Wendling <isanbard@gmail.com> Remove the `hasFnAttr' method from Function.

The hasFnAttr method has been replaced by querying the Attributes explicitly. No
intended functionality change.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@164725 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
74b4762234eaeff94058999758a83acc0b54cba6 14-Sep-2012 Duncan Sands <baldrick@free.fr> Remove silly dead store. Patch by Ettl Martin.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@163882 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
e6450dc2afc18531bf9b70180a9f67376d9f00c7 07-Aug-2012 Chandler Carruth <chandlerc@gmail.com> Add a much more conservative strategy for aligning branch targets.
Previously, MBP essentially aligned every branch target it could. This
bloats code quite a bit, especially non-looping code which has no real
reason to prefer aligned branch targets so heavily.

As Andy said in review, it's still a bit odd to do this without a real
cost model, but this at least has much more plausible heuristics.

Fixes PR13265.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161409 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
11236143173d1aedeace570ac1133d3d5dfb268e 31-Jul-2012 Manman Ren <mren@apple.com> Reverse order of the two branches at end of a basic block if it is profitable.

We branch to the successor with higher edge weight first.
Convert from
je LBB4_8 --> to outer loop
jmp LBB4_14 --> to inner loop
to
jne LBB4_14
jmp LBB4_8

PR12750
rdar: 11393714


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@161018 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
c04f816afd1ad9a1c3746f894556b6bea0cac8fc 26-Jun-2012 Chandler Carruth <chandlerc@gmail.com> Update a bunch of stale comments that dated from when this folled the
very first (and worst) placement algorithm. These should now more
accurately reflect the reality of the pass.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@159185 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
d9b0b025612992a0b724eeca8bdf10b1d7a5c355 02-Jun-2012 Benjamin Kramer <benny.kra@googlemail.com> Fix typos found by http://github.com/lyda/misspell-check

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157885 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
e773e8c3e53aadb6e861316e4db88d63a0226b2f 16-Apr-2012 Chandler Carruth <chandlerc@gmail.com> Add a somewhat hacky heuristic to do something different from whole-loop
rotation. When there is a loop backedge which is an unconditional
branch, we will end up with a branch somewhere no matter what. Try
placing this backedge in a fallthrough position above the loop header as
that will definitely remove at least one branch from the loop iteration,
where whole loop rotation may not.

I haven't seen any benchmarks where this is important but loop-blocks.ll
tests for it, and so this will be covered when I flip the default.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154812 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
16295fc20b68f9a9318cada4e4d96e964b1cdd7e 16-Apr-2012 Chandler Carruth <chandlerc@gmail.com> Tweak the loop rotation logic to check whether the loop is naturally
laid out in a form with a fallthrough into the header and a fallthrough
out of the bottom. In that case, leave the loop alone because any
rotation will introduce unnecessary branches. If either side looks like
it will require an explicit branch, then the rotation won't add any, do
it to ensure the branch occurs outside of the loop (if possible) and
maximize the benefit of the fallthrough in the bottom.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154806 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
70daea90afc167a010a1851defda01d7e0eb45eb 16-Apr-2012 Chandler Carruth <chandlerc@gmail.com> Rewrite how machine block placement handles loop rotation.

This is a complex change that resulted from a great deal of
experimentation with several different benchmarks. The one which proved
the most useful is included as a test case, but I don't know that it
captures all of the relevant changes, as I didn't have specific
regression tests for each, they were more the result of reasoning about
what the old algorithm would possibly do wrong. I'm also failing at the
moment to craft more targeted regression tests for these changes, if
anyone has ideas, it would be welcome.

The first big thing broken with the old algorithm is the idea that we
can take a basic block which has a loop-exiting successor and a looping
successor and use the looping successor as the layout top in order to
get that particular block to be the bottom of the loop after layout.
This happens to work in many cases, but not in all.

The second big thing broken was that we didn't try to select the exit
which fell into the nearest enclosing loop (to which we exit at all). As
a consequence, even if the rotation worked perfectly, it would result in
one of two bad layouts. Either the bottom of the loop would get
fallthrough, skipping across a nearer enclosing loop and thereby making
it discontiguous, or it would be forced to take an explicit jump over
the nearest enclosing loop to earch its successor. The point of the
rotation is to get fallthrough, so we need it to fallthrough to the
nearest loop it can.

The fix to the first issue is to actually layout the loop from the loop
header, and then rotate the loop such that the correct exiting edge can
be a fallthrough edge. This is actually much easier than I anticipated
because we can handle all the hard parts of finding a viable rotation
before we do the layout. We just store that, and then rotate after
layout is finished. No inner loops get split across the post-rotation
backedge because we check for them when selecting the rotation.

That fix exposed a latent problem with our exitting block selection --
we should allow the backedge to point into the middle of some inner-loop
chain as there is no real penalty to it, the whole point is that it
*won't* be a fallthrough edge. This may have blocked the rotation at all
in some cases, I have no idea and no test case as I've never seen it in
practice, it was just noticed by inspection.

Finally, all of these fixes, and studying the loops they produce,
highlighted another problem: in rotating loops like this, we sometimes
fail to align the destination of these backwards jumping edges. Fix this
by actually walking the backwards edges rather than relying on loopinfo.

This fixes regressions on heapsort if block placement is enabled as well
as lots of other cases where the previous logic would introduce an
abundance of unnecessary branches into the execution.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154783 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
45fb79bc54159330979bf24e4bfbdbb64bee1e2c 10-Apr-2012 Chandler Carruth <chandlerc@gmail.com> Make a somewhat subtle change in the logic of block placement. Sometimes
the loop header has a non-loop predecessor which has been pre-fused into
its chain due to unanalyzable branches. In this case, rotating the
header into the body of the loop in order to place a loop exit at the
bottom of the loop is a Very Bad Idea as it makes the loop
non-contiguous.

I'm working on a good test case for this, but it's a bit annoynig to
craft. I should get one shortly, but I'm submitting this now so I can
begin the (lengthy) performance analysis process. An initial run of LNT
looks really, really good, but there is too much noise there for me to
trust it much.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154395 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
5e93a7672222853cdf5dd261c322e6f89d40be01 08-Apr-2012 Chandler Carruth <chandlerc@gmail.com> Remove an over zealous assert. The assert was trying to catch places
where a chain outside of the loop block-set ended up in the worklist for
scheduling as part of the contiguous loop. However, asserting the first
block in the chain is in the loop-set isn't a valid check -- we may be
forced to drag a chain into the worklist due to one block in the chain
being part of the loop even though the first block is *not* in the loop.
This occurs when we have been forced to form a chain early due to
un-analyzable branches.

No test case here as I have no idea how to even begin reducing one, and
it will be hopelessly fragile. We have to somehow end up with a loop
header of an inner loop which is a successor of a basic block with an
unanalyzable pair of branch instructions. Ow. Self-host triggers it so
it is unlikely it will regress.

This at least gets block placement back to passing selfhost and the test
suite. There are still a lot of slowdown that I don't like coming out of
block placement, although there are now also a lot of speedups. =[ I'm
seeing swings in both directions up to 10%. I'm going to try to find
time to dig into this and see if we can turn this on for 3.1 as it does
a really good job of cleaning up after some loops that degraded with the
inliner changes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154287 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
6313d941d29d77f62662c4bd13f12314e6b4b86e 08-Apr-2012 Chandler Carruth <chandlerc@gmail.com> Add a debug-only 'dump' method to the BlockChain structure to ease
debugging.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154286 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
1dd8c8560d45d36a8e507cd014352f1d313f9f9e 08-Feb-2012 Andrew Trick <atrick@apple.com> Codegen pass definition cleanup. No functionality.

Moving toward a uniform style of pass definition to allow easier target configuration.
Globally declare Pass ID.
Globally declare pass initializer.
Use INITIALIZE_PASS consistently.
Add a call to the initializer from CodeGen.cpp.
Remove redundant "createPass" functions and "getPassName" methods.

While cleaning up declarations, cleaned up comments (sorry for large diff).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@150100 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
d4895ded27179c47ef7327e3322b6a11a905eb9f 22-Dec-2011 Jakub Staszak <kubastaszak@gmail.com> Revert patch from 147090. There is not point to make code less readable if we
don't get any serious benefit there.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147101 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
73db975498bc0e117a0854ab2e0cecad51ad17bf 21-Dec-2011 Jakub Staszak <kubastaszak@gmail.com> - Change a few operator[] to lookup which is cheaper.
- Add some constantness.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@147090 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
feb468ab24a9e85b4d27faa6badfb57a2414610c 07-Dec-2011 Jakub Staszak <kubastaszak@gmail.com> Remove unneeded semicolon.
Skip two looking up at BlockChain.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146053 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
c9040b3b1308bf84a26522040ba9b4d2fff59634 07-Dec-2011 Jakub Staszak <jstaszak@apple.com> Remove unneeded type.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145995 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
e6d81ad6a572f2492885f36fc5571225e963d39d 07-Dec-2011 Jakub Staszak <jstaszak@apple.com> - Remove unneeded #includes.
- Remove unused types/fields.
- Add some constantness.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145993 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
51901d85f718a7e293f52a7908eab9fe1c0c94a0 27-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Prevent rotating the blocks of a loop (and thus getting a backedge to be
fallthrough) in cases where we might fail to rotate an exit to an outer
loop onto the end of the loop chain.

Having *some* rotation, but not performing this rotation, is the primary
fix of thep performance regression with -enable-block-placement for
Olden/em3d (a whopping 30% regression). Still working on reducing the
test case that actually exercises this and the new rotation strategy out
of this code, but I want to check if this regresses other test cases
first as that may indicate it isn't the correct fix.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145195 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
fac1305da162259d17baa6700ecb5d148b86ef08 27-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Take two on rotating the block ordering of loops. My previous attempt
was centered around the premise of laying out a loop in a chain, and
then rotating that chain. This is good for preserving contiguous layout,
but bad for actually making sane rotations. In order to keep it safe,
I had to essentially make it impossible to rotate deeply nested loops.
The information needed to correctly reason about a deeply nested loop is
actually available -- *before* we layout the loop. We know the inner
loops are already fused into chains, etc. We lose information the moment
we actually lay out the loop.

The solution was the other alternative for this algorithm I discussed
with Benjamin and some others: rather than rotating the loop
after-the-fact, try to pick a profitable starting block for the loop's
layout, and then use our existing layout logic. I was worried about the
complexity of this "pick" step, but it turns out such complexity is
needed to handle all the important cases I keep teasing out of benchmarks.

This is, I'm afraid, a bit of a work-in-progress. It is still
misbehaving on some likely important cases I'm investigating in Olden.
It also isn't really tested. I'm going to try to craft some interesting
nested-loop test cases, but it's likely to be extremely time consuming
and I don't want to go there until I'm sure I'm testing the correct
behavior. Sadly I can't come up with a way of getting simple, fine
grained test cases for this logic. We need complex loop structures to
even trigger much of it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145183 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
7096692fd9ab5753f17500a27d400d1544b6d3d8 27-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Fix an impressive type-o / spell-o Duncan noticed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145181 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
2eb5a744b18d429928751b06e205cbb88f668ae7 27-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Rework a bit of the implementation of loop block rotation to not rely so
heavily on AnalyzeBranch. That routine doesn't behave as we want given
that rotation occurs mid-way through re-ordering the function. Instead
merely check that there are not unanalyzable branching constructs
present, and then reason about the CFG via successor lists. This
actually simplifies my mental model for all of this as well.

The concrete result is that we now will rotate more loop chains. I've
added a test case from Olden highlighting the effect. There is still
a bit more to do here though in order to regain all of the performance
in Olden.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145179 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
2e38cf961d6d80c88290ca6b8d867e021f80b763 27-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Introduce a loop block rotation optimization to the new block placement
pass. This is designed to achieve one of the important optimizations
that the old code placement pass did, but more simply.

This is a somewhat rough and *very* conservative version of the
transform. We could get a lot fancier here if there are profitable cases
to do so. In particular, this only looks for a single pattern, it
insists that the loop backedge being rotated away is the last backedge
in the chain, and it doesn't provide any means of doing better in-loop
placement due to the rotation. However, it appears that it will handle
the important loops I am finding in the LLVM test suite.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145158 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
4aae4f90071f64854ec771496bd164149b0a1352 24-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Fix a silly use-after-free issue. A much earlier version of this code
need lots of fanciness around retaining a reference to a Chain's slot in
the BlockToChain map, but that's all gone now. We can just go directly
to allocating the new chain (which will update the mapping for us) and
using it.

Somewhat gross mechanically generated test case replicates the issue
Duncan spotted when actually testing this out.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145120 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
a2deea1dcf8363f46bda8935283c5c701b5a278d 24-Nov-2011 Chandler Carruth <chandlerc@gmail.com> When adding blocks to the list of those which no longer have any CFG
conflicts, we should only be adding the first block of the chain to the
list, lest we try to merge into the middle of that chain. Most of the
places we were doing this we already happened to be looking at the first
block, but there is no reason to assume that, and in some cases it was
clearly wrong.

I've added a couple of tests here. One already worked, but I like having
an explicit test for it. The other is reduced from a test case Duncan
reduced for me and used to crash. Now it is handled correctly.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145119 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
598894ff2547aaa0a32ded145063f3bfe042f620 23-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Relax an invariant that block placement was trying to assert a bit
further. This invariant just wasn't going to work in the face of
unanalyzable branches; we need to be resillient to the phenomenon of
chains poking into a loop and poking out of a loop. In fact, we already
were, we just needed to not assert on it.

This was found during a bootstrap with block placement turned on.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145100 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
47fb954f7437250eda152ed4165af5ac1c0ec366 23-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Fix a crash in block placement due to an inner loop that happened to be
reversed in the function's original ordering, and we happened to
encounter it while handling an outer unnatural CFG structure.

Thanks to the test case reduced from GCC's source by Benjamin Kramer.
This may also fix a crasher in gzip that Duncan reduced for me, but
I haven't yet gotten to testing that one.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145094 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
b0dadb9dd52aed7a82e24542be8adf881d91c929 20-Nov-2011 Chandler Carruth <chandlerc@gmail.com> The logic for breaking the CFG in the presence of hot successors didn't
properly account for the *global* probability of the edge being taken.
This manifested as a very large number of unconditional branches to
blocks being merged against the CFG even though they weren't
particularly hot within the CFG.

The fix is to check whether the edge being merged is both locally hot
relative to other successors for the source block, and globally hot
compared to other (unmerged) predecessors of the destination block.

This introduces a new crasher on GCC single-source, but it's currently
behind a flag, and Ben has offered to work on the reduction. =]

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145010 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
03300ecaee3ef853669582bcadec34170dbf515f 19-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Move the handling of unanalyzable branches out of the loop-driven chain
formation phase and into the initial walk of the basic blocks. We
essentially pre-merge all blocks where unanalyzable fallthrough exists,
as we won't be able to update the terminators effectively after any
reorderings. This is quite a bit more principled as there may be CFGs
where the second half of the unanalyzable pair has some analyzable
predecessor that gets placed first. Then it may get placed next,
implicitly breaking the unanalyzable branch even though we never even
looked at the part that isn't analyzable. I've included a test case that
triggers this (thanks Benjamin yet again!), and I'm hoping to synthesize
some more general ones as I dig into related issues.

Also, to make this new scheme work we have to be able to handle branches
into the middle of a chain, so add this check. We always fallback on the
incoming ordering.

Finally, this starts to really underscore a known limitation of the
current implementation -- we don't consider broken predecessors when
merging successors. This can caused major missed opportunities, and is
something I'm planning on looking at next (modulo more bug reports).

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144994 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
3273c8937b8c3ebdd1cfc0c67054ce5571f0afc9 15-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Rather than trying to use the loop block sequence *or* the function
block sequence when recovering from unanalyzable control flow
constructs, *always* use the function sequence. I'm not sure why I ever
went down the path of trying to use the loop sequence, it is
fundamentally not the correct sequence to use. We're trying to preserve
the incoming layout in the cases of unreasonable control flow, and that
is only encoded at the function level. We already have a filter to
select *exactly* the sub-set of blocks within the function that we're
trying to form into a chain.

The resulting code layout is also significantly better because of this.
In several places we were ending up with completely unreasonable control
flow constructs due to the ordering chosen by the loop structure for its
internal storage. This change removes a completely wasteful vector of
basic blocks, saving memory allocation in the common case even though it
costs us CPU in the fairly rare case of unnatural loops. Finally, it
fixes the latest crasher reduced out of GCC's single source. Thanks
again to Benjamin Kramer for the reduction, my bugpoint skills failed at
it.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144627 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
f5e47ac596c698f1659c86bdad3a60056e68439c 14-Nov-2011 Chandler Carruth <chandlerc@gmail.com> It helps to deallocate memory as well as allocate it. =] This actually
cleans up all the chains allocated during the processing of each
function so that for very large inputs we don't just grow memory usage
without bound.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144533 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
bc83fcd9bd95f8eff83cd5ad77b0aa5312d8a6a5 14-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Remove an over-eager assert that was firing on one of the ARM regression
tests when I forcibly enabled block placement.

It is apparantly possible for an unanalyzable block to fallthrough to
a non-loop block. I don't actually beleive this is correct, I believe
that 'canFallThrough' is returning true needlessly for the code
construct, and I've left a bit of a FIXME on the verification code to
try to track down why this is coming up.

Anyways, removing the assert doesn't degrade the correctness of the algorithm.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144532 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
fa97658b1c71f747cfe0f3e1f1bcbd86d7fa9f75 14-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Begin chipping away at one of the biggest quadratic-ish behaviors in
this pass. We're leaving already merged blocks on the worklist, and
scanning them again and again only to determine each time through that
indeed they aren't viable. We can instead remove them once we're going
to have to scan the worklist. This is the easy way to implement removing
them. If this remains on the profile (as I somewhat suspect it will), we
can get a lot more clever here, as the worklist's order is essentially
irrelevant. We can use swapping and fold the two loops to reduce
overhead even when there are many blocks on the worklist but only a few
of them are removed.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144531 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
340d596509129de8c3fa9dbe4184a2b148b78757 14-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Under the hood, MBPI is doing a linear scan of every successor every
time it is queried to compute the probability of a single successor.
This makes computing the probability of every successor of a block in
sequence... really really slow. ;] This switches to a linear walk of the
successors rather than a quadratic one. One of several quadratic
behaviors slowing this pass down.

I'm not really thrilled with moving the sum code into the public
interface of MBPI, but I don't (at the moment) have ideas for a better
interface. My direction I'm thinking in for a better interface is to
have MBPI actually retain much more state and make *all* of these
queries cheap. That's a lot of work, and would require invasive changes.
Until then, this seems like the least bad (ie, least quadratic)
solution. Suggestions welcome.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144530 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
b5856c83ff4fd796c3eabccca2ed3b06173aeb51 14-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Teach machine block placement to cope with unnatural loops. These don't
get loop info structures associated with them, and so we need some way
to make forward progress selecting and placing basic blocks. The
technique used here is pretty brutal -- it just scans the list of blocks
looking for the first unplaced candidate. It keeps placing blocks like
this until the CFG becomes tractable.

The cost is somewhat unfortunate, it requires allocating a vector of all
basic block pointers eagerly. I have some ideas about how to simplify
and optimize this, but I'm trying to get the logic correct first.

Thanks to Benjamin Kramer for the reduced test case out of GCC. Sadly
there are other bugs that GCC is tickling that I'm reducing and working
on now.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144516 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
c0f05b3c3fe191b09e04a5f3d16be9f4f8cc036e 13-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Cleanup some 80-columns violations and poor formatting. These snuck by
when I was reading through the code for style.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144513 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
10252db69bdddb445e53892b388fbe5921114b86 13-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Enhance the assertion mechanisms in place to make it easier to catch
when we fail to place all the blocks of a loop. Currently this is
happening for unnatural loops, and this logic helps more immediately
point to the problem.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144504 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
6527ecc9189058b762c699521462956995f59dd8 13-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Teach MBP to force-merge layout successors for blocks with unanalyzable
branches that also may involve fallthrough. In the case of blocks with
no fallthrough, we can still re-order the blocks profitably. For example
instruction decoding will in some cases continue past an indirect jump,
making laying out its most likely successor there profitable.

Note, no test case. I don't know how to write a test case that exercises
this logic, but it matches the described desired semantics in
discussions with Jakob and others. If anyone has a nice example of IR
that will trigger this, that would be lovely.

Also note, there are still assertion failures in real world code with
this. I'm digging into those next, now that I know this isn't the cause.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144499 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
f3fc0050abc1698504cbaede7766c4180c076928 13-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Hoist another gross nested loop into a helper method.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144498 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
729bec89bd8c4368a741359fb882967ce01a6909 13-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Add a missing doxygen comment for a helper method.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144497 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
9fd4e056e433b286f0e6576046ef2242365bfc38 13-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Hoist a nested loop into its own method.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144496 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
df234353fb396e84e7a3a1cdd94f73681e65bd88 13-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Rewrite #3 of machine block placement. This is based somewhat on the
second algorithm, but only loosely. It is more heavily based on the last
discussion I had with Andy. It continues to walk from the inner-most
loop outward, but there is a key difference. With this algorithm we
ensure that as we visit each loop, the entire loop is merged into
a single chain. At the end, the entire function is treated as a "loop",
and merged into a single chain. This chain forms the desired sequence of
blocks within the function. Switching to a single algorithm removes my
biggest problem with the previous approaches -- they had different
behavior depending on which system triggered the layout. Now there is
exactly one algorithm and one basis for the decision making.

The other key difference is how the chain is formed. This is based
heavily on the idea Andy mentioned of keeping a worklist of blocks that
are viable layout successors based on the CFG. Having this set allows us
to consistently select the best layout successor for each block. It is
expensive though.

The code here remains very rough. There is a lot that needs to be done
to clean up the code, and to make the runtime cost of this pass much
lower. Very much WIP, but this was a giant chunk of code and I'd rather
folks see it sooner than later. Everything remains behind a flag of
course.

I've added a couple of tests to exercise the issues that this iteration
was motivated by: loop structure preservation. I've also fixed one test
that was exhibiting the broken behavior of the previous version.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@144495 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
37efc9fe42a4867c81526cac7fca9fe0ea04a484 02-Nov-2011 Chandler Carruth <chandlerc@gmail.com> Begin collecting some of the statistics for block placement discussed on
the mailing list. Suggestions for other statistics to collect would be
awesome. =]

Currently these are implemented as a separate pass guarded by a separate
flag. I'm not thrilled by that, but I wanted to be able to collect the
statistics for the old code placement as well as the new in order to
have a point of comparison. I'm planning on folding them into the single
pass if / when there is only one pass of interest.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@143537 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
e4617c04c863b2fb342d08408d45ba3bf50b97a0 24-Oct-2011 Chandler Carruth <chandlerc@gmail.com> Sink an otherwise unused variable's initializer into the asserts that
used it. Fixes an unused variable warning from GCC on release builds.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142799 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
66d847c8ffff5199248fccc10cb27f80c5cf9ebe 23-Oct-2011 Chandler Carruth <chandlerc@gmail.com> Now that we have comparison on probabilities, add some static functions
to get important constant branch probabilities and use them for finding
the best branch out of a set of possibilities.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142762 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
4f780536953cdd3d92c21111301763ddd57ab720 23-Oct-2011 Chandler Carruth <chandlerc@gmail.com> Remove a commented out line of code that snuck by my auditing.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142761 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
3071363bcdfd75e81326b4033970d8bee5b1b376 23-Oct-2011 Chandler Carruth <chandlerc@gmail.com> Completely re-write the algorithm behind MachineBlockPlacement based on
discussions with Andy. Fundamentally, the previous algorithm is both
counter productive on several fronts and prioritizing things which
aren't necessarily the most important: static branch prediction.

The new algorithm uses the existing loop CFG structure information to
walk through the CFG itself to layout blocks. It coalesces adjacent
blocks within the loop where the CFG allows based on the most likely
path taken. Finally, it topologically orders the block chains that have
been formed. This allows it to choose a (mostly) topologically valid
ordering which still priorizes fallthrough within the structural
constraints.

As a final twist in the algorithm, it does violate the CFG when it
discovers a "hot" edge, that is an edge that is more than 4x hotter than
the competing edges in the CFG. These are forcibly merged into
a fallthrough chain.

Future transformations that need te be added are rotation of loop exit
conditions to be fallthrough, and better isolation of cold block chains.
I'm also planning on adding statistics to model how well the algorithm
does at laying out blocks based on the probabilities it receives.

The old tests mostly still pass, and I have some new tests to add, but
the nested loops are still behaving very strangely. This almost seems
like working-as-intended as it rotated the exit branch to be
fallthrough, but I'm not convinced this is actually the best layout. It
is well supported by the probabilities for loops we currently get, but
those are pretty broken for nested loops, so this may change later.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142743 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
4a85cc982a977ddeb0249eb9304326deabe3a7a5 21-Oct-2011 Chandler Carruth <chandlerc@gmail.com> Add loop aligning to MachineBlockPlacement based on review discussion so
it's a bit more plausible to use this instead of CodePlacementOpt. The
code for this was shamelessly stolen from CodePlacementOpt, and then
trimmed down a bit. There doesn't seem to be much utility in returning
true/false from this pass as we may or may not have rewritten all of the
blocks. Also, the statistic of counting how many loops were aligned
doesn't seem terribly important so I removed it. If folks would like it
to be included, I'm happy to add it back.

This was probably the most egregious of the missing features, and now
I'm going to start gathering some performance numbers and looking at
specific loop structures that have different layout between the two.

Test is updated to include both basic loop alignment and nested loop
alignment.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142645 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp
db35087d21f09fdde81cab7e12fc0bcd8b7d00e9 21-Oct-2011 Chandler Carruth <chandlerc@gmail.com> Implement a block placement pass based on the branch probability and
block frequency analyses. This differs substantially from the existing
block-placement pass in LLVM:

1) It operates on the Machine-IR in the CodeGen layer. This exposes much
more (and more precise) information and opportunities. Also, the
results are more stable due to fewer transforms ocurring after the
pass runs.
2) It uses the generalized probability and frequency analyses. These can
model static heuristics, code annotation derived heuristics as well
as eventual profile loading. By basing the optimization on the
analysis interface it can work from any (or a combination) of these
inputs.
3) It uses a more aggressive algorithm, both building chains from tho
bottom up to maximize benefit, and using an SCC-based walk to layout
chains of blocks in a profitable ordering without O(N^2) iterations
which the old pass involves.

The pass is currently gated behind a flag, and not enabled by default
because it still needs to grow some important features. Most notably, it
needs to support loop aligning and careful layout of loop structures
much as done by hand currently in CodePlacementOpt. Once it supports
these, and has sufficient testing and quality tuning, it should replace
both of these passes.

Thanks to Nick Lewycky and Richard Smith for help authoring & debugging
this, and to Jakob, Andy, Eric, Jim, and probably a few others I'm
forgetting for reviewing and answering all my questions. Writing
a backend pass is *sooo* much better now than it used to be. =D

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@142641 91177308-0d34-0410-b5e6-96231b3b80d8
/external/llvm/lib/CodeGen/MachineBlockPlacement.cpp