1/*-
2 * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include <fenv.h>
31#include <float.h>
32#include <math.h>
33
34#include "fpmath.h"
35
36/*
37 * A struct dd represents a floating-point number with twice the precision
38 * of a long double.  We maintain the invariant that "hi" stores the high-order
39 * bits of the result.
40 */
41struct dd {
42	long double hi;
43	long double lo;
44};
45
46/*
47 * Compute a+b exactly, returning the exact result in a struct dd.  We assume
48 * that both a and b are finite, but make no assumptions about their relative
49 * magnitudes.
50 */
51static inline struct dd
52dd_add(long double a, long double b)
53{
54	struct dd ret;
55	long double s;
56
57	ret.hi = a + b;
58	s = ret.hi - a;
59	ret.lo = (a - (ret.hi - s)) + (b - s);
60	return (ret);
61}
62
63/*
64 * Compute a+b, with a small tweak:  The least significant bit of the
65 * result is adjusted into a sticky bit summarizing all the bits that
66 * were lost to rounding.  This adjustment negates the effects of double
67 * rounding when the result is added to another number with a higher
68 * exponent.  For an explanation of round and sticky bits, see any reference
69 * on FPU design, e.g.,
70 *
71 *     J. Coonen.  An Implementation Guide to a Proposed Standard for
72 *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
73 */
74static inline long double
75add_adjusted(long double a, long double b)
76{
77	struct dd sum;
78	union IEEEl2bits u;
79
80	sum = dd_add(a, b);
81	if (sum.lo != 0) {
82		u.e = sum.hi;
83		if ((u.bits.manl & 1) == 0)
84			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
85	}
86	return (sum.hi);
87}
88
89/*
90 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
91 * that the result will be subnormal, and care is taken to ensure that
92 * double rounding does not occur.
93 */
94static inline long double
95add_and_denormalize(long double a, long double b, int scale)
96{
97	struct dd sum;
98	int bits_lost;
99	union IEEEl2bits u;
100
101	sum = dd_add(a, b);
102
103	/*
104	 * If we are losing at least two bits of accuracy to denormalization,
105	 * then the first lost bit becomes a round bit, and we adjust the
106	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
107	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
108	 * break any ties in the correct direction.
109	 *
110	 * If we are losing only one bit to denormalization, however, we must
111	 * break the ties manually.
112	 */
113	if (sum.lo != 0) {
114		u.e = sum.hi;
115		bits_lost = -u.bits.exp - scale + 1;
116		if ((bits_lost != 1) ^ (int)(u.bits.manl & 1))
117			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
118	}
119	return (ldexp(sum.hi, scale));
120}
121
122/*
123 * Compute a*b exactly, returning the exact result in a struct dd.  We assume
124 * that both a and b are normalized, so no underflow or overflow will occur.
125 * The current rounding mode must be round-to-nearest.
126 */
127static inline struct dd
128dd_mul(long double a, long double b)
129{
130#if LDBL_MANT_DIG == 64
131	static const long double split = 0x1p32L + 1.0;
132#elif LDBL_MANT_DIG == 113
133	static const long double split = 0x1p57L + 1.0;
134#endif
135	struct dd ret;
136	long double ha, hb, la, lb, p, q;
137
138	p = a * split;
139	ha = a - p;
140	ha += p;
141	la = a - ha;
142
143	p = b * split;
144	hb = b - p;
145	hb += p;
146	lb = b - hb;
147
148	p = ha * hb;
149	q = ha * lb + la * hb;
150
151	ret.hi = p + q;
152	ret.lo = p - ret.hi + q + la * lb;
153	return (ret);
154}
155
156/*
157 * Fused multiply-add: Compute x * y + z with a single rounding error.
158 *
159 * We use scaling to avoid overflow/underflow, along with the
160 * canonical precision-doubling technique adapted from:
161 *
162 *	Dekker, T.  A Floating-Point Technique for Extending the
163 *	Available Precision.  Numer. Math. 18, 224-242 (1971).
164 */
165long double
166fmal(long double x, long double y, long double z)
167{
168	long double xs, ys, zs, adj;
169	struct dd xy, r;
170	int oround;
171	int ex, ey, ez;
172	int spread;
173
174	/*
175	 * Handle special cases. The order of operations and the particular
176	 * return values here are crucial in handling special cases involving
177	 * infinities, NaNs, overflows, and signed zeroes correctly.
178	 */
179	if (x == 0.0 || y == 0.0)
180		return (x * y + z);
181	if (z == 0.0)
182		return (x * y);
183	if (!isfinite(x) || !isfinite(y))
184		return (x * y + z);
185	if (!isfinite(z))
186		return (z);
187
188	xs = frexpl(x, &ex);
189	ys = frexpl(y, &ey);
190	zs = frexpl(z, &ez);
191	oround = fegetround();
192	spread = ex + ey - ez;
193
194	/*
195	 * If x * y and z are many orders of magnitude apart, the scaling
196	 * will overflow, so we handle these cases specially.  Rounding
197	 * modes other than FE_TONEAREST are painful.
198	 */
199	if (spread < -LDBL_MANT_DIG) {
200		feraiseexcept(FE_INEXACT);
201		if (!isnormal(z))
202			feraiseexcept(FE_UNDERFLOW);
203		switch (oround) {
204		case FE_TONEAREST:
205			return (z);
206		case FE_TOWARDZERO:
207			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
208				return (z);
209			else
210				return (nextafterl(z, 0));
211		case FE_DOWNWARD:
212			if (x > 0.0 ^ y < 0.0)
213				return (z);
214			else
215				return (nextafterl(z, -INFINITY));
216		default:	/* FE_UPWARD */
217			if (x > 0.0 ^ y < 0.0)
218				return (nextafterl(z, INFINITY));
219			else
220				return (z);
221		}
222	}
223	if (spread <= LDBL_MANT_DIG * 2)
224		zs = ldexpl(zs, -spread);
225	else
226		zs = copysignl(LDBL_MIN, zs);
227
228	fesetround(FE_TONEAREST);
229	/* work around clang bug 8100 */
230	volatile long double vxs = xs;
231
232	/*
233	 * Basic approach for round-to-nearest:
234	 *
235	 *     (xy.hi, xy.lo) = x * y		(exact)
236	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
237	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
238	 *     result = r.hi + adj		(correctly rounded)
239	 */
240	xy = dd_mul(vxs, ys);
241	r = dd_add(xy.hi, zs);
242
243	spread = ex + ey;
244
245	if (r.hi == 0.0) {
246		/*
247		 * When the addends cancel to 0, ensure that the result has
248		 * the correct sign.
249		 */
250		fesetround(oround);
251		volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
252		return (xy.hi + vzs + ldexpl(xy.lo, spread));
253	}
254
255	if (oround != FE_TONEAREST) {
256		/*
257		 * There is no need to worry about double rounding in directed
258		 * rounding modes.
259		 */
260		fesetround(oround);
261		/* work around clang bug 8100 */
262		volatile long double vrlo = r.lo;
263		adj = vrlo + xy.lo;
264		return (ldexpl(r.hi + adj, spread));
265	}
266
267	adj = add_adjusted(r.lo, xy.lo);
268	if (spread + ilogbl(r.hi) > -16383)
269		return (ldexpl(r.hi + adj, spread));
270	else
271		return (add_and_denormalize(r.hi, adj, spread));
272}
273