1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2013 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30
31#include <limits>
32#include <vector>
33
34#include "ceres/block_random_access_diagonal_matrix.h"
35#include "ceres/internal/eigen.h"
36#include "glog/logging.h"
37#include "gtest/gtest.h"
38
39namespace ceres {
40namespace internal {
41
42TEST(BlockRandomAccessDiagonalMatrix, GetCell) {
43  vector<int> blocks;
44  blocks.push_back(3);
45  blocks.push_back(4);
46  blocks.push_back(5);
47  const int num_rows = 3 + 4 + 5;
48  const int num_nonzeros =  3 * 3 + 4 * 4 + 5 * 5;
49
50  BlockRandomAccessDiagonalMatrix m(blocks);
51  EXPECT_EQ(m.num_rows(), num_rows);
52  EXPECT_EQ(m.num_cols(), num_rows);
53
54  for (int i = 0; i < blocks.size(); ++i) {
55    const int row_block_id = i;
56    int col_block_id;
57    int row;
58    int col;
59    int row_stride;
60    int col_stride;
61
62    for (int j = 0; j < blocks.size(); ++j) {
63      col_block_id = j;
64      CellInfo* cell =  m.GetCell(row_block_id, col_block_id,
65                                  &row, &col,
66                                  &row_stride, &col_stride);
67      // Off diagonal entries are not present.
68      if (i != j) {
69        EXPECT_TRUE(cell == NULL);
70        continue;
71      }
72
73      EXPECT_TRUE(cell != NULL);
74      EXPECT_EQ(row, 0);
75      EXPECT_EQ(col, 0);
76      EXPECT_EQ(row_stride, blocks[row_block_id]);
77      EXPECT_EQ(col_stride, blocks[col_block_id]);
78
79      // Write into the block
80      MatrixRef(cell->values, row_stride, col_stride).block(
81          row, col, blocks[row_block_id], blocks[col_block_id]) =
82          (row_block_id + 1) * (col_block_id +1) *
83          Matrix::Ones(blocks[row_block_id], blocks[col_block_id]);
84    }
85  }
86
87  const TripletSparseMatrix* tsm = m.matrix();
88  EXPECT_EQ(tsm->num_nonzeros(), num_nonzeros);
89  EXPECT_EQ(tsm->max_num_nonzeros(), num_nonzeros);
90
91  Matrix dense;
92  tsm->ToDenseMatrix(&dense);
93
94  double kTolerance = 1e-14;
95
96  // (0,0)
97  EXPECT_NEAR((dense.block(0, 0, 3, 3) - Matrix::Ones(3, 3)).norm(),
98              0.0,
99              kTolerance);
100
101  // (1,1)
102  EXPECT_NEAR((dense.block(3, 3, 4, 4) - 2 * 2 * Matrix::Ones(4, 4)).norm(),
103              0.0,
104              kTolerance);
105
106  // (1,1)
107  EXPECT_NEAR((dense.block(7, 7, 5, 5) - 3 * 3 * Matrix::Ones(5, 5)).norm(),
108              0.0,
109              kTolerance);
110
111  // There is nothing else in the matrix besides these four blocks.
112  EXPECT_NEAR(dense.norm(), sqrt(9.0 + 16. * 16. + 81.0 * 25.), kTolerance);
113}
114
115}  // namespace internal
116}  // namespace ceres
117