1// Ceres Solver - A fast non-linear least squares minimizer
2// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3// http://code.google.com/p/ceres-solver/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are met:
7//
8// * Redistributions of source code must retain the above copyright notice,
9//   this list of conditions and the following disclaimer.
10// * Redistributions in binary form must reproduce the above copyright notice,
11//   this list of conditions and the following disclaimer in the documentation
12//   and/or other materials provided with the distribution.
13// * Neither the name of Google Inc. nor the names of its contributors may be
14//   used to endorse or promote products derived from this software without
15//   specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27// POSSIBILITY OF SUCH DAMAGE.
28//
29// Author: sameeragarwal@google.com (Sameer Agarwal)
30//
31// TODO(sameeragarwal): row_block_counter can perhaps be replaced by
32// Chunk::start ?
33
34#ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
35#define CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
36
37// Eigen has an internal threshold switching between different matrix
38// multiplication algorithms. In particular for matrices larger than
39// EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD it uses a cache friendly
40// matrix matrix product algorithm that has a higher setup cost. For
41// matrix sizes close to this threshold, especially when the matrices
42// are thin and long, the default choice may not be optimal. This is
43// the case for us, as the default choice causes a 30% performance
44// regression when we moved from Eigen2 to Eigen3.
45
46#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 10
47
48// This include must come before any #ifndef check on Ceres compile options.
49#include "ceres/internal/port.h"
50
51#ifdef CERES_USE_OPENMP
52#include <omp.h>
53#endif
54
55#include <algorithm>
56#include <map>
57#include "ceres/block_random_access_matrix.h"
58#include "ceres/block_sparse_matrix.h"
59#include "ceres/block_structure.h"
60#include "ceres/internal/eigen.h"
61#include "ceres/internal/fixed_array.h"
62#include "ceres/internal/scoped_ptr.h"
63#include "ceres/map_util.h"
64#include "ceres/schur_eliminator.h"
65#include "ceres/small_blas.h"
66#include "ceres/stl_util.h"
67#include "Eigen/Dense"
68#include "glog/logging.h"
69
70namespace ceres {
71namespace internal {
72
73template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
74SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::~SchurEliminator() {
75  STLDeleteElements(&rhs_locks_);
76}
77
78template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
79void
80SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
81Init(int num_eliminate_blocks, const CompressedRowBlockStructure* bs) {
82  CHECK_GT(num_eliminate_blocks, 0)
83      << "SchurComplementSolver cannot be initialized with "
84      << "num_eliminate_blocks = 0.";
85
86  num_eliminate_blocks_ = num_eliminate_blocks;
87
88  const int num_col_blocks = bs->cols.size();
89  const int num_row_blocks = bs->rows.size();
90
91  buffer_size_ = 1;
92  chunks_.clear();
93  lhs_row_layout_.clear();
94
95  int lhs_num_rows = 0;
96  // Add a map object for each block in the reduced linear system
97  // and build the row/column block structure of the reduced linear
98  // system.
99  lhs_row_layout_.resize(num_col_blocks - num_eliminate_blocks_);
100  for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
101    lhs_row_layout_[i - num_eliminate_blocks_] = lhs_num_rows;
102    lhs_num_rows += bs->cols[i].size;
103  }
104
105  int r = 0;
106  // Iterate over the row blocks of A, and detect the chunks. The
107  // matrix should already have been ordered so that all rows
108  // containing the same y block are vertically contiguous. Along
109  // the way also compute the amount of space each chunk will need
110  // to perform the elimination.
111  while (r < num_row_blocks) {
112    const int chunk_block_id = bs->rows[r].cells.front().block_id;
113    if (chunk_block_id >= num_eliminate_blocks_) {
114      break;
115    }
116
117    chunks_.push_back(Chunk());
118    Chunk& chunk = chunks_.back();
119    chunk.size = 0;
120    chunk.start = r;
121    int buffer_size = 0;
122    const int e_block_size = bs->cols[chunk_block_id].size;
123
124    // Add to the chunk until the first block in the row is
125    // different than the one in the first row for the chunk.
126    while (r + chunk.size < num_row_blocks) {
127      const CompressedRow& row = bs->rows[r + chunk.size];
128      if (row.cells.front().block_id != chunk_block_id) {
129        break;
130      }
131
132      // Iterate over the blocks in the row, ignoring the first
133      // block since it is the one to be eliminated.
134      for (int c = 1; c < row.cells.size(); ++c) {
135        const Cell& cell = row.cells[c];
136        if (InsertIfNotPresent(
137                &(chunk.buffer_layout), cell.block_id, buffer_size)) {
138          buffer_size += e_block_size * bs->cols[cell.block_id].size;
139        }
140      }
141
142      buffer_size_ = max(buffer_size, buffer_size_);
143      ++chunk.size;
144    }
145
146    CHECK_GT(chunk.size, 0);
147    r += chunk.size;
148  }
149  const Chunk& chunk = chunks_.back();
150
151  uneliminated_row_begins_ = chunk.start + chunk.size;
152  if (num_threads_ > 1) {
153    random_shuffle(chunks_.begin(), chunks_.end());
154  }
155
156  buffer_.reset(new double[buffer_size_ * num_threads_]);
157
158  // chunk_outer_product_buffer_ only needs to store e_block_size *
159  // f_block_size, which is always less than buffer_size_, so we just
160  // allocate buffer_size_ per thread.
161  chunk_outer_product_buffer_.reset(new double[buffer_size_ * num_threads_]);
162
163  STLDeleteElements(&rhs_locks_);
164  rhs_locks_.resize(num_col_blocks - num_eliminate_blocks_);
165  for (int i = 0; i < num_col_blocks - num_eliminate_blocks_; ++i) {
166    rhs_locks_[i] = new Mutex;
167  }
168}
169
170template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
171void
172SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
173Eliminate(const BlockSparseMatrix* A,
174          const double* b,
175          const double* D,
176          BlockRandomAccessMatrix* lhs,
177          double* rhs) {
178  if (lhs->num_rows() > 0) {
179    lhs->SetZero();
180    VectorRef(rhs, lhs->num_rows()).setZero();
181  }
182
183  const CompressedRowBlockStructure* bs = A->block_structure();
184  const int num_col_blocks = bs->cols.size();
185
186  // Add the diagonal to the schur complement.
187  if (D != NULL) {
188#pragma omp parallel for num_threads(num_threads_) schedule(dynamic)
189    for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
190      const int block_id = i - num_eliminate_blocks_;
191      int r, c, row_stride, col_stride;
192      CellInfo* cell_info = lhs->GetCell(block_id, block_id,
193                                         &r, &c,
194                                         &row_stride, &col_stride);
195      if (cell_info != NULL) {
196        const int block_size = bs->cols[i].size;
197        typename EigenTypes<kFBlockSize>::ConstVectorRef
198            diag(D + bs->cols[i].position, block_size);
199
200        CeresMutexLock l(&cell_info->m);
201        MatrixRef m(cell_info->values, row_stride, col_stride);
202        m.block(r, c, block_size, block_size).diagonal()
203            += diag.array().square().matrix();
204      }
205    }
206  }
207
208  // Eliminate y blocks one chunk at a time.  For each chunk,x3
209  // compute the entries of the normal equations and the gradient
210  // vector block corresponding to the y block and then apply
211  // Gaussian elimination to them. The matrix ete stores the normal
212  // matrix corresponding to the block being eliminated and array
213  // buffer_ contains the non-zero blocks in the row corresponding
214  // to this y block in the normal equations. This computation is
215  // done in ChunkDiagonalBlockAndGradient. UpdateRhs then applies
216  // gaussian elimination to the rhs of the normal equations,
217  // updating the rhs of the reduced linear system by modifying rhs
218  // blocks for all the z blocks that share a row block/residual
219  // term with the y block. EliminateRowOuterProduct does the
220  // corresponding operation for the lhs of the reduced linear
221  // system.
222#pragma omp parallel for num_threads(num_threads_) schedule(dynamic)
223  for (int i = 0; i < chunks_.size(); ++i) {
224#ifdef CERES_USE_OPENMP
225    int thread_id = omp_get_thread_num();
226#else
227    int thread_id = 0;
228#endif
229    double* buffer = buffer_.get() + thread_id * buffer_size_;
230    const Chunk& chunk = chunks_[i];
231    const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
232    const int e_block_size = bs->cols[e_block_id].size;
233
234    VectorRef(buffer, buffer_size_).setZero();
235
236    typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix
237        ete(e_block_size, e_block_size);
238
239    if (D != NULL) {
240      const typename EigenTypes<kEBlockSize>::ConstVectorRef
241          diag(D + bs->cols[e_block_id].position, e_block_size);
242      ete = diag.array().square().matrix().asDiagonal();
243    } else {
244      ete.setZero();
245    }
246
247    FixedArray<double, 8> g(e_block_size);
248    typename EigenTypes<kEBlockSize>::VectorRef gref(g.get(), e_block_size);
249    gref.setZero();
250
251    // We are going to be computing
252    //
253    //   S += F'F - F'E(E'E)^{-1}E'F
254    //
255    // for each Chunk. The computation is broken down into a number of
256    // function calls as below.
257
258    // Compute the outer product of the e_blocks with themselves (ete
259    // = E'E). Compute the product of the e_blocks with the
260    // corresonding f_blocks (buffer = E'F), the gradient of the terms
261    // in this chunk (g) and add the outer product of the f_blocks to
262    // Schur complement (S += F'F).
263    ChunkDiagonalBlockAndGradient(
264        chunk, A, b, chunk.start, &ete, g.get(), buffer, lhs);
265
266    // Normally one wouldn't compute the inverse explicitly, but
267    // e_block_size will typically be a small number like 3, in
268    // which case its much faster to compute the inverse once and
269    // use it to multiply other matrices/vectors instead of doing a
270    // Solve call over and over again.
271    typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix inverse_ete =
272        ete
273        .template selfadjointView<Eigen::Upper>()
274        .llt()
275        .solve(Matrix::Identity(e_block_size, e_block_size));
276
277    // For the current chunk compute and update the rhs of the reduced
278    // linear system.
279    //
280    //   rhs = F'b - F'E(E'E)^(-1) E'b
281
282    FixedArray<double, 8> inverse_ete_g(e_block_size);
283    MatrixVectorMultiply<kEBlockSize, kEBlockSize, 0>(
284        inverse_ete.data(),
285        e_block_size,
286        e_block_size,
287        g.get(),
288        inverse_ete_g.get());
289
290    UpdateRhs(chunk, A, b, chunk.start, inverse_ete_g.get(), rhs);
291
292    // S -= F'E(E'E)^{-1}E'F
293    ChunkOuterProduct(bs, inverse_ete, buffer, chunk.buffer_layout, lhs);
294  }
295
296  // For rows with no e_blocks, the schur complement update reduces to
297  // S += F'F.
298  NoEBlockRowsUpdate(A, b,  uneliminated_row_begins_, lhs, rhs);
299}
300
301template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
302void
303SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
304BackSubstitute(const BlockSparseMatrix* A,
305               const double* b,
306               const double* D,
307               const double* z,
308               double* y) {
309  const CompressedRowBlockStructure* bs = A->block_structure();
310#pragma omp parallel for num_threads(num_threads_) schedule(dynamic)
311  for (int i = 0; i < chunks_.size(); ++i) {
312    const Chunk& chunk = chunks_[i];
313    const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
314    const int e_block_size = bs->cols[e_block_id].size;
315
316    double* y_ptr = y +  bs->cols[e_block_id].position;
317    typename EigenTypes<kEBlockSize>::VectorRef y_block(y_ptr, e_block_size);
318
319    typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix
320        ete(e_block_size, e_block_size);
321    if (D != NULL) {
322      const typename EigenTypes<kEBlockSize>::ConstVectorRef
323          diag(D + bs->cols[e_block_id].position, e_block_size);
324      ete = diag.array().square().matrix().asDiagonal();
325    } else {
326      ete.setZero();
327    }
328
329    const double* values = A->values();
330    for (int j = 0; j < chunk.size; ++j) {
331      const CompressedRow& row = bs->rows[chunk.start + j];
332      const Cell& e_cell = row.cells.front();
333      DCHECK_EQ(e_block_id, e_cell.block_id);
334
335      FixedArray<double, 8> sj(row.block.size);
336
337      typename EigenTypes<kRowBlockSize>::VectorRef(sj.get(), row.block.size) =
338          typename EigenTypes<kRowBlockSize>::ConstVectorRef
339          (b + bs->rows[chunk.start + j].block.position, row.block.size);
340
341      for (int c = 1; c < row.cells.size(); ++c) {
342        const int f_block_id = row.cells[c].block_id;
343        const int f_block_size = bs->cols[f_block_id].size;
344        const int r_block = f_block_id - num_eliminate_blocks_;
345
346        MatrixVectorMultiply<kRowBlockSize, kFBlockSize, -1>(
347            values + row.cells[c].position, row.block.size, f_block_size,
348            z + lhs_row_layout_[r_block],
349            sj.get());
350      }
351
352      MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
353          values + e_cell.position, row.block.size, e_block_size,
354          sj.get(),
355          y_ptr);
356
357      MatrixTransposeMatrixMultiply
358          <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
359              values + e_cell.position, row.block.size, e_block_size,
360              values + e_cell.position, row.block.size, e_block_size,
361              ete.data(), 0, 0, e_block_size, e_block_size);
362    }
363
364    ete.llt().solveInPlace(y_block);
365  }
366}
367
368// Update the rhs of the reduced linear system. Compute
369//
370//   F'b - F'E(E'E)^(-1) E'b
371template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
372void
373SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
374UpdateRhs(const Chunk& chunk,
375          const BlockSparseMatrix* A,
376          const double* b,
377          int row_block_counter,
378          const double* inverse_ete_g,
379          double* rhs) {
380  const CompressedRowBlockStructure* bs = A->block_structure();
381  const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
382  const int e_block_size = bs->cols[e_block_id].size;
383
384  int b_pos = bs->rows[row_block_counter].block.position;
385  const double* values = A->values();
386  for (int j = 0; j < chunk.size; ++j) {
387    const CompressedRow& row = bs->rows[row_block_counter + j];
388    const Cell& e_cell = row.cells.front();
389
390    typename EigenTypes<kRowBlockSize>::Vector sj =
391        typename EigenTypes<kRowBlockSize>::ConstVectorRef
392        (b + b_pos, row.block.size);
393
394    MatrixVectorMultiply<kRowBlockSize, kEBlockSize, -1>(
395        values + e_cell.position, row.block.size, e_block_size,
396        inverse_ete_g, sj.data());
397
398    for (int c = 1; c < row.cells.size(); ++c) {
399      const int block_id = row.cells[c].block_id;
400      const int block_size = bs->cols[block_id].size;
401      const int block = block_id - num_eliminate_blocks_;
402      CeresMutexLock l(rhs_locks_[block]);
403      MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>(
404          values + row.cells[c].position,
405          row.block.size, block_size,
406          sj.data(), rhs + lhs_row_layout_[block]);
407    }
408    b_pos += row.block.size;
409  }
410}
411
412// Given a Chunk - set of rows with the same e_block, e.g. in the
413// following Chunk with two rows.
414//
415//                E                   F
416//      [ y11   0   0   0 |  z11     0    0   0    z51]
417//      [ y12   0   0   0 |  z12   z22    0   0      0]
418//
419// this function computes twp matrices. The diagonal block matrix
420//
421//   ete = y11 * y11' + y12 * y12'
422//
423// and the off diagonal blocks in the Guass Newton Hessian.
424//
425//   buffer = [y11'(z11 + z12), y12' * z22, y11' * z51]
426//
427// which are zero compressed versions of the block sparse matrices E'E
428// and E'F.
429//
430// and the gradient of the e_block, E'b.
431template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
432void
433SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
434ChunkDiagonalBlockAndGradient(
435    const Chunk& chunk,
436    const BlockSparseMatrix* A,
437    const double* b,
438    int row_block_counter,
439    typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* ete,
440    double* g,
441    double* buffer,
442    BlockRandomAccessMatrix* lhs) {
443  const CompressedRowBlockStructure* bs = A->block_structure();
444
445  int b_pos = bs->rows[row_block_counter].block.position;
446  const int e_block_size = ete->rows();
447
448  // Iterate over the rows in this chunk, for each row, compute the
449  // contribution of its F blocks to the Schur complement, the
450  // contribution of its E block to the matrix EE' (ete), and the
451  // corresponding block in the gradient vector.
452  const double* values = A->values();
453  for (int j = 0; j < chunk.size; ++j) {
454    const CompressedRow& row = bs->rows[row_block_counter + j];
455
456    if (row.cells.size() > 1) {
457      EBlockRowOuterProduct(A, row_block_counter + j, lhs);
458    }
459
460    // Extract the e_block, ETE += E_i' E_i
461    const Cell& e_cell = row.cells.front();
462    MatrixTransposeMatrixMultiply
463        <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
464            values + e_cell.position, row.block.size, e_block_size,
465            values + e_cell.position, row.block.size, e_block_size,
466            ete->data(), 0, 0, e_block_size, e_block_size);
467
468    // g += E_i' b_i
469    MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
470        values + e_cell.position, row.block.size, e_block_size,
471        b + b_pos,
472        g);
473
474
475    // buffer = E'F. This computation is done by iterating over the
476    // f_blocks for each row in the chunk.
477    for (int c = 1; c < row.cells.size(); ++c) {
478      const int f_block_id = row.cells[c].block_id;
479      const int f_block_size = bs->cols[f_block_id].size;
480      double* buffer_ptr =
481          buffer +  FindOrDie(chunk.buffer_layout, f_block_id);
482      MatrixTransposeMatrixMultiply
483          <kRowBlockSize, kEBlockSize, kRowBlockSize, kFBlockSize, 1>(
484          values + e_cell.position, row.block.size, e_block_size,
485          values + row.cells[c].position, row.block.size, f_block_size,
486          buffer_ptr, 0, 0, e_block_size, f_block_size);
487    }
488    b_pos += row.block.size;
489  }
490}
491
492// Compute the outer product F'E(E'E)^{-1}E'F and subtract it from the
493// Schur complement matrix, i.e
494//
495//  S -= F'E(E'E)^{-1}E'F.
496template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
497void
498SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
499ChunkOuterProduct(const CompressedRowBlockStructure* bs,
500                  const Matrix& inverse_ete,
501                  const double* buffer,
502                  const BufferLayoutType& buffer_layout,
503                  BlockRandomAccessMatrix* lhs) {
504  // This is the most computationally expensive part of this
505  // code. Profiling experiments reveal that the bottleneck is not the
506  // computation of the right-hand matrix product, but memory
507  // references to the left hand side.
508  const int e_block_size = inverse_ete.rows();
509  BufferLayoutType::const_iterator it1 = buffer_layout.begin();
510
511#ifdef CERES_USE_OPENMP
512  int thread_id = omp_get_thread_num();
513#else
514  int thread_id = 0;
515#endif
516  double* b1_transpose_inverse_ete =
517      chunk_outer_product_buffer_.get() + thread_id * buffer_size_;
518
519  // S(i,j) -= bi' * ete^{-1} b_j
520  for (; it1 != buffer_layout.end(); ++it1) {
521    const int block1 = it1->first - num_eliminate_blocks_;
522    const int block1_size = bs->cols[it1->first].size;
523    MatrixTransposeMatrixMultiply
524        <kEBlockSize, kFBlockSize, kEBlockSize, kEBlockSize, 0>(
525        buffer + it1->second, e_block_size, block1_size,
526        inverse_ete.data(), e_block_size, e_block_size,
527        b1_transpose_inverse_ete, 0, 0, block1_size, e_block_size);
528
529    BufferLayoutType::const_iterator it2 = it1;
530    for (; it2 != buffer_layout.end(); ++it2) {
531      const int block2 = it2->first - num_eliminate_blocks_;
532
533      int r, c, row_stride, col_stride;
534      CellInfo* cell_info = lhs->GetCell(block1, block2,
535                                         &r, &c,
536                                         &row_stride, &col_stride);
537      if (cell_info != NULL) {
538        const int block2_size = bs->cols[it2->first].size;
539        CeresMutexLock l(&cell_info->m);
540        MatrixMatrixMultiply
541            <kFBlockSize, kEBlockSize, kEBlockSize, kFBlockSize, -1>(
542                b1_transpose_inverse_ete, block1_size, e_block_size,
543                buffer  + it2->second, e_block_size, block2_size,
544                cell_info->values, r, c, row_stride, col_stride);
545      }
546    }
547  }
548}
549
550// For rows with no e_blocks, the schur complement update reduces to S
551// += F'F. This function iterates over the rows of A with no e_block,
552// and calls NoEBlockRowOuterProduct on each row.
553template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
554void
555SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
556NoEBlockRowsUpdate(const BlockSparseMatrix* A,
557                   const double* b,
558                   int row_block_counter,
559                   BlockRandomAccessMatrix* lhs,
560                   double* rhs) {
561  const CompressedRowBlockStructure* bs = A->block_structure();
562  const double* values = A->values();
563  for (; row_block_counter < bs->rows.size(); ++row_block_counter) {
564    const CompressedRow& row = bs->rows[row_block_counter];
565    for (int c = 0; c < row.cells.size(); ++c) {
566      const int block_id = row.cells[c].block_id;
567      const int block_size = bs->cols[block_id].size;
568      const int block = block_id - num_eliminate_blocks_;
569      MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
570          values + row.cells[c].position, row.block.size, block_size,
571          b + row.block.position,
572          rhs + lhs_row_layout_[block]);
573    }
574    NoEBlockRowOuterProduct(A, row_block_counter, lhs);
575  }
576}
577
578
579// A row r of A, which has no e_blocks gets added to the Schur
580// Complement as S += r r'. This function is responsible for computing
581// the contribution of a single row r to the Schur complement. It is
582// very similar in structure to EBlockRowOuterProduct except for
583// one difference. It does not use any of the template
584// parameters. This is because the algorithm used for detecting the
585// static structure of the matrix A only pays attention to rows with
586// e_blocks. This is becase rows without e_blocks are rare and
587// typically arise from regularization terms in the original
588// optimization problem, and have a very different structure than the
589// rows with e_blocks. Including them in the static structure
590// detection will lead to most template parameters being set to
591// dynamic. Since the number of rows without e_blocks is small, the
592// lack of templating is not an issue.
593template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
594void
595SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
596NoEBlockRowOuterProduct(const BlockSparseMatrix* A,
597                     int row_block_index,
598                     BlockRandomAccessMatrix* lhs) {
599  const CompressedRowBlockStructure* bs = A->block_structure();
600  const CompressedRow& row = bs->rows[row_block_index];
601  const double* values = A->values();
602  for (int i = 0; i < row.cells.size(); ++i) {
603    const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
604    DCHECK_GE(block1, 0);
605
606    const int block1_size = bs->cols[row.cells[i].block_id].size;
607    int r, c, row_stride, col_stride;
608    CellInfo* cell_info = lhs->GetCell(block1, block1,
609                                       &r, &c,
610                                       &row_stride, &col_stride);
611    if (cell_info != NULL) {
612      CeresMutexLock l(&cell_info->m);
613      // This multiply currently ignores the fact that this is a
614      // symmetric outer product.
615      MatrixTransposeMatrixMultiply
616          <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
617              values + row.cells[i].position, row.block.size, block1_size,
618              values + row.cells[i].position, row.block.size, block1_size,
619              cell_info->values, r, c, row_stride, col_stride);
620    }
621
622    for (int j = i + 1; j < row.cells.size(); ++j) {
623      const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
624      DCHECK_GE(block2, 0);
625      DCHECK_LT(block1, block2);
626      int r, c, row_stride, col_stride;
627      CellInfo* cell_info = lhs->GetCell(block1, block2,
628                                         &r, &c,
629                                         &row_stride, &col_stride);
630      if (cell_info != NULL) {
631        const int block2_size = bs->cols[row.cells[j].block_id].size;
632        CeresMutexLock l(&cell_info->m);
633        MatrixTransposeMatrixMultiply
634            <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
635                values + row.cells[i].position, row.block.size, block1_size,
636                values + row.cells[j].position, row.block.size, block2_size,
637                cell_info->values, r, c, row_stride, col_stride);
638      }
639    }
640  }
641}
642
643// For a row with an e_block, compute the contribition S += F'F. This
644// function has the same structure as NoEBlockRowOuterProduct, except
645// that this function uses the template parameters.
646template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
647void
648SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
649EBlockRowOuterProduct(const BlockSparseMatrix* A,
650                      int row_block_index,
651                      BlockRandomAccessMatrix* lhs) {
652  const CompressedRowBlockStructure* bs = A->block_structure();
653  const CompressedRow& row = bs->rows[row_block_index];
654  const double* values = A->values();
655  for (int i = 1; i < row.cells.size(); ++i) {
656    const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
657    DCHECK_GE(block1, 0);
658
659    const int block1_size = bs->cols[row.cells[i].block_id].size;
660    int r, c, row_stride, col_stride;
661    CellInfo* cell_info = lhs->GetCell(block1, block1,
662                                       &r, &c,
663                                       &row_stride, &col_stride);
664    if (cell_info != NULL) {
665      CeresMutexLock l(&cell_info->m);
666      // block += b1.transpose() * b1;
667      MatrixTransposeMatrixMultiply
668          <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
669          values + row.cells[i].position, row.block.size, block1_size,
670          values + row.cells[i].position, row.block.size, block1_size,
671          cell_info->values, r, c, row_stride, col_stride);
672    }
673
674    for (int j = i + 1; j < row.cells.size(); ++j) {
675      const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
676      DCHECK_GE(block2, 0);
677      DCHECK_LT(block1, block2);
678      const int block2_size = bs->cols[row.cells[j].block_id].size;
679      int r, c, row_stride, col_stride;
680      CellInfo* cell_info = lhs->GetCell(block1, block2,
681                                         &r, &c,
682                                         &row_stride, &col_stride);
683      if (cell_info != NULL) {
684        // block += b1.transpose() * b2;
685        CeresMutexLock l(&cell_info->m);
686        MatrixTransposeMatrixMultiply
687            <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
688                values + row.cells[i].position, row.block.size, block1_size,
689                values + row.cells[j].position, row.block.size, block2_size,
690                cell_info->values, r, c, row_stride, col_stride);
691      }
692    }
693  }
694}
695
696}  // namespace internal
697}  // namespace ceres
698
699#endif  // CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
700