1// Copyright 2013 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
6#define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
7
8#include <queue>
9#include <string>
10
11#include "base/base_export.h"
12#include "base/basictypes.h"
13#include "base/callback_forward.h"
14#include "base/location.h"
15#include "base/memory/ref_counted.h"
16#include "base/memory/scoped_ptr.h"
17#include "base/message_loop/incoming_task_queue.h"
18#include "base/message_loop/message_loop_proxy.h"
19#include "base/message_loop/message_loop_proxy_impl.h"
20#include "base/message_loop/message_pump.h"
21#include "base/message_loop/timer_slack.h"
22#include "base/observer_list.h"
23#include "base/pending_task.h"
24#include "base/sequenced_task_runner_helpers.h"
25#include "base/synchronization/lock.h"
26#include "base/time/time.h"
27#include "base/tracking_info.h"
28
29// TODO(sky): these includes should not be necessary. Nuke them.
30#if defined(OS_WIN)
31#include "base/message_loop/message_pump_win.h"
32#elif defined(OS_IOS)
33#include "base/message_loop/message_pump_io_ios.h"
34#elif defined(OS_POSIX)
35#include "base/message_loop/message_pump_libevent.h"
36#endif
37
38namespace base {
39
40class HistogramBase;
41class MessagePumpObserver;
42class RunLoop;
43class ThreadTaskRunnerHandle;
44class WaitableEvent;
45
46// A MessageLoop is used to process events for a particular thread.  There is
47// at most one MessageLoop instance per thread.
48//
49// Events include at a minimum Task instances submitted to PostTask and its
50// variants.  Depending on the type of message pump used by the MessageLoop
51// other events such as UI messages may be processed.  On Windows APC calls (as
52// time permits) and signals sent to a registered set of HANDLEs may also be
53// processed.
54//
55// NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
56// on the thread where the MessageLoop's Run method executes.
57//
58// NOTE: MessageLoop has task reentrancy protection.  This means that if a
59// task is being processed, a second task cannot start until the first task is
60// finished.  Reentrancy can happen when processing a task, and an inner
61// message pump is created.  That inner pump then processes native messages
62// which could implicitly start an inner task.  Inner message pumps are created
63// with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
64// (DoDragDrop), printer functions (StartDoc) and *many* others.
65//
66// Sample workaround when inner task processing is needed:
67//   HRESULT hr;
68//   {
69//     MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
70//     hr = DoDragDrop(...); // Implicitly runs a modal message loop.
71//   }
72//   // Process |hr| (the result returned by DoDragDrop()).
73//
74// Please be SURE your task is reentrant (nestable) and all global variables
75// are stable and accessible before calling SetNestableTasksAllowed(true).
76//
77class BASE_EXPORT MessageLoop : public MessagePump::Delegate {
78 public:
79  // A MessageLoop has a particular type, which indicates the set of
80  // asynchronous events it may process in addition to tasks and timers.
81  //
82  // TYPE_DEFAULT
83  //   This type of ML only supports tasks and timers.
84  //
85  // TYPE_UI
86  //   This type of ML also supports native UI events (e.g., Windows messages).
87  //   See also MessageLoopForUI.
88  //
89  // TYPE_IO
90  //   This type of ML also supports asynchronous IO.  See also
91  //   MessageLoopForIO.
92  //
93  // TYPE_JAVA
94  //   This type of ML is backed by a Java message handler which is responsible
95  //   for running the tasks added to the ML. This is only for use on Android.
96  //   TYPE_JAVA behaves in essence like TYPE_UI, except during construction
97  //   where it does not use the main thread specific pump factory.
98  //
99  // TYPE_CUSTOM
100  //   MessagePump was supplied to constructor.
101  //
102  enum Type {
103    TYPE_DEFAULT,
104    TYPE_UI,
105    TYPE_CUSTOM,
106    TYPE_IO,
107#if defined(OS_ANDROID)
108    TYPE_JAVA,
109#endif // defined(OS_ANDROID)
110  };
111
112  // Normally, it is not necessary to instantiate a MessageLoop.  Instead, it
113  // is typical to make use of the current thread's MessageLoop instance.
114  explicit MessageLoop(Type type = TYPE_DEFAULT);
115  // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
116  // be non-NULL.
117  explicit MessageLoop(scoped_ptr<base::MessagePump> pump);
118  virtual ~MessageLoop();
119
120  // Returns the MessageLoop object for the current thread, or null if none.
121  static MessageLoop* current();
122
123  static void EnableHistogrammer(bool enable_histogrammer);
124
125  typedef scoped_ptr<MessagePump> (MessagePumpFactory)();
126  // Uses the given base::MessagePumpForUIFactory to override the default
127  // MessagePump implementation for 'TYPE_UI'. Returns true if the factory
128  // was successfully registered.
129  static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory);
130
131  // Creates the default MessagePump based on |type|. Caller owns return
132  // value.
133  static scoped_ptr<MessagePump> CreateMessagePumpForType(Type type);
134  // A DestructionObserver is notified when the current MessageLoop is being
135  // destroyed.  These observers are notified prior to MessageLoop::current()
136  // being changed to return NULL.  This gives interested parties the chance to
137  // do final cleanup that depends on the MessageLoop.
138  //
139  // NOTE: Any tasks posted to the MessageLoop during this notification will
140  // not be run.  Instead, they will be deleted.
141  //
142  class BASE_EXPORT DestructionObserver {
143   public:
144    virtual void WillDestroyCurrentMessageLoop() = 0;
145
146   protected:
147    virtual ~DestructionObserver();
148  };
149
150  // Add a DestructionObserver, which will start receiving notifications
151  // immediately.
152  void AddDestructionObserver(DestructionObserver* destruction_observer);
153
154  // Remove a DestructionObserver.  It is safe to call this method while a
155  // DestructionObserver is receiving a notification callback.
156  void RemoveDestructionObserver(DestructionObserver* destruction_observer);
157
158  // The "PostTask" family of methods call the task's Run method asynchronously
159  // from within a message loop at some point in the future.
160  //
161  // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
162  // with normal UI or IO event processing.  With the PostDelayedTask variant,
163  // tasks are called after at least approximately 'delay_ms' have elapsed.
164  //
165  // The NonNestable variants work similarly except that they promise never to
166  // dispatch the task from a nested invocation of MessageLoop::Run.  Instead,
167  // such tasks get deferred until the top-most MessageLoop::Run is executing.
168  //
169  // The MessageLoop takes ownership of the Task, and deletes it after it has
170  // been Run().
171  //
172  // PostTask(from_here, task) is equivalent to
173  // PostDelayedTask(from_here, task, 0).
174  //
175  // NOTE: These methods may be called on any thread.  The Task will be invoked
176  // on the thread that executes MessageLoop::Run().
177  void PostTask(const tracked_objects::Location& from_here,
178                const Closure& task);
179
180  void PostDelayedTask(const tracked_objects::Location& from_here,
181                       const Closure& task,
182                       TimeDelta delay);
183
184  void PostNonNestableTask(const tracked_objects::Location& from_here,
185                           const Closure& task);
186
187  void PostNonNestableDelayedTask(const tracked_objects::Location& from_here,
188                                  const Closure& task,
189                                  TimeDelta delay);
190
191  // A variant on PostTask that deletes the given object.  This is useful
192  // if the object needs to live until the next run of the MessageLoop (for
193  // example, deleting a RenderProcessHost from within an IPC callback is not
194  // good).
195  //
196  // NOTE: This method may be called on any thread.  The object will be deleted
197  // on the thread that executes MessageLoop::Run().  If this is not the same
198  // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
199  // from RefCountedThreadSafe<T>!
200  template <class T>
201  void DeleteSoon(const tracked_objects::Location& from_here, const T* object) {
202    base::subtle::DeleteHelperInternal<T, void>::DeleteViaSequencedTaskRunner(
203        this, from_here, object);
204  }
205
206  // A variant on PostTask that releases the given reference counted object
207  // (by calling its Release method).  This is useful if the object needs to
208  // live until the next run of the MessageLoop, or if the object needs to be
209  // released on a particular thread.
210  //
211  // A common pattern is to manually increment the object's reference count
212  // (AddRef), clear the pointer, then issue a ReleaseSoon.  The reference count
213  // is incremented manually to ensure clearing the pointer does not trigger a
214  // delete and to account for the upcoming decrement (ReleaseSoon).  For
215  // example:
216  //
217  // scoped_refptr<Foo> foo = ...
218  // foo->AddRef();
219  // Foo* raw_foo = foo.get();
220  // foo = NULL;
221  // message_loop->ReleaseSoon(raw_foo);
222  //
223  // NOTE: This method may be called on any thread.  The object will be
224  // released (and thus possibly deleted) on the thread that executes
225  // MessageLoop::Run().  If this is not the same as the thread that calls
226  // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
227  // RefCountedThreadSafe<T>!
228  template <class T>
229  void ReleaseSoon(const tracked_objects::Location& from_here,
230                   const T* object) {
231    base::subtle::ReleaseHelperInternal<T, void>::ReleaseViaSequencedTaskRunner(
232        this, from_here, object);
233  }
234
235  // Deprecated: use RunLoop instead.
236  // Run the message loop.
237  void Run();
238
239  // Deprecated: use RunLoop instead.
240  // Process all pending tasks, windows messages, etc., but don't wait/sleep.
241  // Return as soon as all items that can be run are taken care of.
242  void RunUntilIdle();
243
244  // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdle().
245  void Quit() { QuitWhenIdle(); }
246
247  // Deprecated: use RunLoop instead.
248  //
249  // Signals the Run method to return when it becomes idle. It will continue to
250  // process pending messages and future messages as long as they are enqueued.
251  // Warning: if the MessageLoop remains busy, it may never quit. Only use this
252  // Quit method when looping procedures (such as web pages) have been shut
253  // down.
254  //
255  // This method may only be called on the same thread that called Run, and Run
256  // must still be on the call stack.
257  //
258  // Use QuitClosure variants if you need to Quit another thread's MessageLoop,
259  // but note that doing so is fairly dangerous if the target thread makes
260  // nested calls to MessageLoop::Run.  The problem being that you won't know
261  // which nested run loop you are quitting, so be careful!
262  void QuitWhenIdle();
263
264  // Deprecated: use RunLoop instead.
265  //
266  // This method is a variant of Quit, that does not wait for pending messages
267  // to be processed before returning from Run.
268  void QuitNow();
269
270  // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdleClosure().
271  static Closure QuitClosure() { return QuitWhenIdleClosure(); }
272
273  // Deprecated: use RunLoop instead.
274  // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
275  // arbitrary MessageLoop to QuitWhenIdle.
276  static Closure QuitWhenIdleClosure();
277
278  // Set the timer slack for this message loop.
279  void SetTimerSlack(TimerSlack timer_slack) {
280    pump_->SetTimerSlack(timer_slack);
281  }
282
283  // Returns true if this loop is |type|. This allows subclasses (especially
284  // those in tests) to specialize how they are identified.
285  virtual bool IsType(Type type) const;
286
287  // Returns the type passed to the constructor.
288  Type type() const { return type_; }
289
290  // Optional call to connect the thread name with this loop.
291  void set_thread_name(const std::string& thread_name) {
292    DCHECK(thread_name_.empty()) << "Should not rename this thread!";
293    thread_name_ = thread_name;
294  }
295  const std::string& thread_name() const { return thread_name_; }
296
297  // Gets the message loop proxy associated with this message loop.
298  scoped_refptr<MessageLoopProxy> message_loop_proxy() {
299    return message_loop_proxy_;
300  }
301
302  // Enables or disables the recursive task processing. This happens in the case
303  // of recursive message loops. Some unwanted message loop may occurs when
304  // using common controls or printer functions. By default, recursive task
305  // processing is disabled.
306  //
307  // Please utilize |ScopedNestableTaskAllower| instead of calling these methods
308  // directly.  In general nestable message loops are to be avoided.  They are
309  // dangerous and difficult to get right, so please use with extreme caution.
310  //
311  // The specific case where tasks get queued is:
312  // - The thread is running a message loop.
313  // - It receives a task #1 and execute it.
314  // - The task #1 implicitly start a message loop, like a MessageBox in the
315  //   unit test. This can also be StartDoc or GetSaveFileName.
316  // - The thread receives a task #2 before or while in this second message
317  //   loop.
318  // - With NestableTasksAllowed set to true, the task #2 will run right away.
319  //   Otherwise, it will get executed right after task #1 completes at "thread
320  //   message loop level".
321  void SetNestableTasksAllowed(bool allowed);
322  bool NestableTasksAllowed() const;
323
324  // Enables nestable tasks on |loop| while in scope.
325  class ScopedNestableTaskAllower {
326   public:
327    explicit ScopedNestableTaskAllower(MessageLoop* loop)
328        : loop_(loop),
329          old_state_(loop_->NestableTasksAllowed()) {
330      loop_->SetNestableTasksAllowed(true);
331    }
332    ~ScopedNestableTaskAllower() {
333      loop_->SetNestableTasksAllowed(old_state_);
334    }
335
336   private:
337    MessageLoop* loop_;
338    bool old_state_;
339  };
340
341  // Returns true if we are currently running a nested message loop.
342  bool IsNested();
343
344  // A TaskObserver is an object that receives task notifications from the
345  // MessageLoop.
346  //
347  // NOTE: A TaskObserver implementation should be extremely fast!
348  class BASE_EXPORT TaskObserver {
349   public:
350    TaskObserver();
351
352    // This method is called before processing a task.
353    virtual void WillProcessTask(const PendingTask& pending_task) = 0;
354
355    // This method is called after processing a task.
356    virtual void DidProcessTask(const PendingTask& pending_task) = 0;
357
358   protected:
359    virtual ~TaskObserver();
360  };
361
362  // These functions can only be called on the same thread that |this| is
363  // running on.
364  void AddTaskObserver(TaskObserver* task_observer);
365  void RemoveTaskObserver(TaskObserver* task_observer);
366
367  // When we go into high resolution timer mode, we will stay in hi-res mode
368  // for at least 1s.
369  static const int kHighResolutionTimerModeLeaseTimeMs = 1000;
370
371#if defined(OS_WIN)
372  void set_os_modal_loop(bool os_modal_loop) {
373    os_modal_loop_ = os_modal_loop;
374  }
375
376  bool os_modal_loop() const {
377    return os_modal_loop_;
378  }
379#endif  // OS_WIN
380
381  // Can only be called from the thread that owns the MessageLoop.
382  bool is_running() const;
383
384  // Returns true if the message loop has high resolution timers enabled.
385  // Provided for testing.
386  bool IsHighResolutionTimerEnabledForTesting();
387
388  // Returns true if the message loop is "idle". Provided for testing.
389  bool IsIdleForTesting();
390
391  //----------------------------------------------------------------------------
392 protected:
393  scoped_ptr<MessagePump> pump_;
394
395 private:
396  friend class internal::IncomingTaskQueue;
397  friend class RunLoop;
398
399  // Configures various members for the two constructors.
400  void Init();
401
402  // Invokes the actual run loop using the message pump.
403  void RunHandler();
404
405  // Called to process any delayed non-nestable tasks.
406  bool ProcessNextDelayedNonNestableTask();
407
408  // Runs the specified PendingTask.
409  void RunTask(const PendingTask& pending_task);
410
411  // Calls RunTask or queues the pending_task on the deferred task list if it
412  // cannot be run right now.  Returns true if the task was run.
413  bool DeferOrRunPendingTask(const PendingTask& pending_task);
414
415  // Adds the pending task to delayed_work_queue_.
416  void AddToDelayedWorkQueue(const PendingTask& pending_task);
417
418  // Delete tasks that haven't run yet without running them.  Used in the
419  // destructor to make sure all the task's destructors get called.  Returns
420  // true if some work was done.
421  bool DeletePendingTasks();
422
423  // Creates a process-wide unique ID to represent this task in trace events.
424  // This will be mangled with a Process ID hash to reduce the likelyhood of
425  // colliding with MessageLoop pointers on other processes.
426  uint64 GetTaskTraceID(const PendingTask& task);
427
428  // Loads tasks from the incoming queue to |work_queue_| if the latter is
429  // empty.
430  void ReloadWorkQueue();
431
432  // Wakes up the message pump. Can be called on any thread. The caller is
433  // responsible for synchronizing ScheduleWork() calls.
434  void ScheduleWork(bool was_empty);
435
436  // Start recording histogram info about events and action IF it was enabled
437  // and IF the statistics recorder can accept a registration of our histogram.
438  void StartHistogrammer();
439
440  // Add occurrence of event to our histogram, so that we can see what is being
441  // done in a specific MessageLoop instance (i.e., specific thread).
442  // If message_histogram_ is NULL, this is a no-op.
443  void HistogramEvent(int event);
444
445  // MessagePump::Delegate methods:
446  virtual bool DoWork() OVERRIDE;
447  virtual bool DoDelayedWork(TimeTicks* next_delayed_work_time) OVERRIDE;
448  virtual bool DoIdleWork() OVERRIDE;
449  virtual void GetQueueingInformation(size_t* queue_size,
450                                      TimeDelta* queueing_delay) OVERRIDE;
451
452  const Type type_;
453
454  // A list of tasks that need to be processed by this instance.  Note that
455  // this queue is only accessed (push/pop) by our current thread.
456  TaskQueue work_queue_;
457
458  // Contains delayed tasks, sorted by their 'delayed_run_time' property.
459  DelayedTaskQueue delayed_work_queue_;
460
461  // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
462  TimeTicks recent_time_;
463
464  // A queue of non-nestable tasks that we had to defer because when it came
465  // time to execute them we were in a nested message loop.  They will execute
466  // once we're out of nested message loops.
467  TaskQueue deferred_non_nestable_work_queue_;
468
469  ObserverList<DestructionObserver> destruction_observers_;
470
471  // A recursion block that prevents accidentally running additional tasks when
472  // insider a (accidentally induced?) nested message pump.
473  bool nestable_tasks_allowed_;
474
475#if defined(OS_WIN)
476  // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
477  // which enter a modal message loop.
478  bool os_modal_loop_;
479#endif
480
481  std::string thread_name_;
482  // A profiling histogram showing the counts of various messages and events.
483  HistogramBase* message_histogram_;
484
485  RunLoop* run_loop_;
486
487  ObserverList<TaskObserver> task_observers_;
488
489  scoped_refptr<internal::IncomingTaskQueue> incoming_task_queue_;
490
491  // The message loop proxy associated with this message loop.
492  scoped_refptr<internal::MessageLoopProxyImpl> message_loop_proxy_;
493  scoped_ptr<ThreadTaskRunnerHandle> thread_task_runner_handle_;
494
495  template <class T, class R> friend class base::subtle::DeleteHelperInternal;
496  template <class T, class R> friend class base::subtle::ReleaseHelperInternal;
497
498  void DeleteSoonInternal(const tracked_objects::Location& from_here,
499                          void(*deleter)(const void*),
500                          const void* object);
501  void ReleaseSoonInternal(const tracked_objects::Location& from_here,
502                           void(*releaser)(const void*),
503                           const void* object);
504
505  DISALLOW_COPY_AND_ASSIGN(MessageLoop);
506};
507
508#if !defined(OS_NACL)
509
510//-----------------------------------------------------------------------------
511// MessageLoopForUI extends MessageLoop with methods that are particular to a
512// MessageLoop instantiated with TYPE_UI.
513//
514// This class is typically used like so:
515//   MessageLoopForUI::current()->...call some method...
516//
517class BASE_EXPORT MessageLoopForUI : public MessageLoop {
518 public:
519  MessageLoopForUI() : MessageLoop(TYPE_UI) {
520  }
521
522  // Returns the MessageLoopForUI of the current thread.
523  static MessageLoopForUI* current() {
524    MessageLoop* loop = MessageLoop::current();
525    DCHECK(loop);
526    DCHECK_EQ(MessageLoop::TYPE_UI, loop->type());
527    return static_cast<MessageLoopForUI*>(loop);
528  }
529
530  static bool IsCurrent() {
531    MessageLoop* loop = MessageLoop::current();
532    return loop && loop->type() == MessageLoop::TYPE_UI;
533  }
534
535#if defined(OS_IOS)
536  // On iOS, the main message loop cannot be Run().  Instead call Attach(),
537  // which connects this MessageLoop to the UI thread's CFRunLoop and allows
538  // PostTask() to work.
539  void Attach();
540#endif
541
542#if defined(OS_ANDROID)
543  // On Android, the UI message loop is handled by Java side. So Run() should
544  // never be called. Instead use Start(), which will forward all the native UI
545  // events to the Java message loop.
546  void Start();
547#endif
548
549#if defined(OS_WIN)
550  typedef MessagePumpObserver Observer;
551
552  // Please see message_pump_win for definitions of these methods.
553  void AddObserver(Observer* observer);
554  void RemoveObserver(Observer* observer);
555#endif
556
557#if defined(USE_OZONE) || (defined(OS_CHROMEOS) && !defined(USE_GLIB))
558  // Please see MessagePumpLibevent for definition.
559  bool WatchFileDescriptor(
560      int fd,
561      bool persistent,
562      MessagePumpLibevent::Mode mode,
563      MessagePumpLibevent::FileDescriptorWatcher* controller,
564      MessagePumpLibevent::Watcher* delegate);
565#endif
566};
567
568// Do not add any member variables to MessageLoopForUI!  This is important b/c
569// MessageLoopForUI is often allocated via MessageLoop(TYPE_UI).  Any extra
570// data that you need should be stored on the MessageLoop's pump_ instance.
571COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI),
572               MessageLoopForUI_should_not_have_extra_member_variables);
573
574#endif  // !defined(OS_NACL)
575
576//-----------------------------------------------------------------------------
577// MessageLoopForIO extends MessageLoop with methods that are particular to a
578// MessageLoop instantiated with TYPE_IO.
579//
580// This class is typically used like so:
581//   MessageLoopForIO::current()->...call some method...
582//
583class BASE_EXPORT MessageLoopForIO : public MessageLoop {
584 public:
585  MessageLoopForIO() : MessageLoop(TYPE_IO) {
586  }
587
588  // Returns the MessageLoopForIO of the current thread.
589  static MessageLoopForIO* current() {
590    MessageLoop* loop = MessageLoop::current();
591    DCHECK_EQ(MessageLoop::TYPE_IO, loop->type());
592    return static_cast<MessageLoopForIO*>(loop);
593  }
594
595  static bool IsCurrent() {
596    MessageLoop* loop = MessageLoop::current();
597    return loop && loop->type() == MessageLoop::TYPE_IO;
598  }
599
600#if !defined(OS_NACL)
601
602#if defined(OS_WIN)
603  typedef MessagePumpForIO::IOHandler IOHandler;
604  typedef MessagePumpForIO::IOContext IOContext;
605  typedef MessagePumpForIO::IOObserver IOObserver;
606#elif defined(OS_IOS)
607  typedef MessagePumpIOSForIO::Watcher Watcher;
608  typedef MessagePumpIOSForIO::FileDescriptorWatcher
609      FileDescriptorWatcher;
610  typedef MessagePumpIOSForIO::IOObserver IOObserver;
611
612  enum Mode {
613    WATCH_READ = MessagePumpIOSForIO::WATCH_READ,
614    WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE,
615    WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE
616  };
617#elif defined(OS_POSIX)
618  typedef MessagePumpLibevent::Watcher Watcher;
619  typedef MessagePumpLibevent::FileDescriptorWatcher
620      FileDescriptorWatcher;
621  typedef MessagePumpLibevent::IOObserver IOObserver;
622
623  enum Mode {
624    WATCH_READ = MessagePumpLibevent::WATCH_READ,
625    WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE,
626    WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE
627  };
628#endif
629
630  void AddIOObserver(IOObserver* io_observer);
631  void RemoveIOObserver(IOObserver* io_observer);
632
633#if defined(OS_WIN)
634  // Please see MessagePumpWin for definitions of these methods.
635  void RegisterIOHandler(HANDLE file, IOHandler* handler);
636  bool RegisterJobObject(HANDLE job, IOHandler* handler);
637  bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
638#elif defined(OS_POSIX)
639  // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
640  bool WatchFileDescriptor(int fd,
641                           bool persistent,
642                           Mode mode,
643                           FileDescriptorWatcher *controller,
644                           Watcher *delegate);
645#endif  // defined(OS_IOS) || defined(OS_POSIX)
646#endif  // !defined(OS_NACL)
647};
648
649// Do not add any member variables to MessageLoopForIO!  This is important b/c
650// MessageLoopForIO is often allocated via MessageLoop(TYPE_IO).  Any extra
651// data that you need should be stored on the MessageLoop's pump_ instance.
652COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO),
653               MessageLoopForIO_should_not_have_extra_member_variables);
654
655}  // namespace base
656
657#endif  // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
658