1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5
6// Windows Timer Primer
7//
8// A good article:  http://www.ddj.com/windows/184416651
9// A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
10//
11// The default windows timer, GetSystemTimeAsFileTime is not very precise.
12// It is only good to ~15.5ms.
13//
14// QueryPerformanceCounter is the logical choice for a high-precision timer.
15// However, it is known to be buggy on some hardware.  Specifically, it can
16// sometimes "jump".  On laptops, QPC can also be very expensive to call.
17// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
18// on laptops.  A unittest exists which will show the relative cost of various
19// timers on any system.
20//
21// The next logical choice is timeGetTime().  timeGetTime has a precision of
22// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
23// applications on the system.  By default, precision is only 15.5ms.
24// Unfortunately, we don't want to call timeBeginPeriod because we don't
25// want to affect other applications.  Further, on mobile platforms, use of
26// faster multimedia timers can hurt battery life.  See the intel
27// article about this here:
28// http://softwarecommunity.intel.com/articles/eng/1086.htm
29//
30// To work around all this, we're going to generally use timeGetTime().  We
31// will only increase the system-wide timer if we're not running on battery
32// power.  Using timeBeginPeriod(1) is a requirement in order to make our
33// message loop waits have the same resolution that our time measurements
34// do.  Otherwise, WaitForSingleObject(..., 1) will no less than 15ms when
35// there is nothing else to waken the Wait.
36
37#include "base/time/time.h"
38
39#pragma comment(lib, "winmm.lib")
40#include <windows.h>
41#include <mmsystem.h>
42
43#include "base/basictypes.h"
44#include "base/cpu.h"
45#include "base/lazy_instance.h"
46#include "base/logging.h"
47#include "base/synchronization/lock.h"
48
49using base::Time;
50using base::TimeDelta;
51using base::TimeTicks;
52
53namespace {
54
55// From MSDN, FILETIME "Contains a 64-bit value representing the number of
56// 100-nanosecond intervals since January 1, 1601 (UTC)."
57int64 FileTimeToMicroseconds(const FILETIME& ft) {
58  // Need to bit_cast to fix alignment, then divide by 10 to convert
59  // 100-nanoseconds to milliseconds. This only works on little-endian
60  // machines.
61  return bit_cast<int64, FILETIME>(ft) / 10;
62}
63
64void MicrosecondsToFileTime(int64 us, FILETIME* ft) {
65  DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not "
66      "representable in FILETIME";
67
68  // Multiply by 10 to convert milliseconds to 100-nanoseconds. Bit_cast will
69  // handle alignment problems. This only works on little-endian machines.
70  *ft = bit_cast<FILETIME, int64>(us * 10);
71}
72
73int64 CurrentWallclockMicroseconds() {
74  FILETIME ft;
75  ::GetSystemTimeAsFileTime(&ft);
76  return FileTimeToMicroseconds(ft);
77}
78
79// Time between resampling the un-granular clock for this API.  60 seconds.
80const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond;
81
82int64 initial_time = 0;
83TimeTicks initial_ticks;
84
85void InitializeClock() {
86  initial_ticks = TimeTicks::Now();
87  initial_time = CurrentWallclockMicroseconds();
88}
89
90}  // namespace
91
92// Time -----------------------------------------------------------------------
93
94// The internal representation of Time uses FILETIME, whose epoch is 1601-01-01
95// 00:00:00 UTC.  ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the
96// number of leap year days between 1601 and 1970: (1970-1601)/4 excluding
97// 1700, 1800, and 1900.
98// static
99const int64 Time::kTimeTToMicrosecondsOffset = GG_INT64_C(11644473600000000);
100
101bool Time::high_resolution_timer_enabled_ = false;
102int Time::high_resolution_timer_activated_ = 0;
103
104// static
105Time Time::Now() {
106  if (initial_time == 0)
107    InitializeClock();
108
109  // We implement time using the high-resolution timers so that we can get
110  // timeouts which are smaller than 10-15ms.  If we just used
111  // CurrentWallclockMicroseconds(), we'd have the less-granular timer.
112  //
113  // To make this work, we initialize the clock (initial_time) and the
114  // counter (initial_ctr).  To compute the initial time, we can check
115  // the number of ticks that have elapsed, and compute the delta.
116  //
117  // To avoid any drift, we periodically resync the counters to the system
118  // clock.
119  while (true) {
120    TimeTicks ticks = TimeTicks::Now();
121
122    // Calculate the time elapsed since we started our timer
123    TimeDelta elapsed = ticks - initial_ticks;
124
125    // Check if enough time has elapsed that we need to resync the clock.
126    if (elapsed.InMilliseconds() > kMaxMillisecondsToAvoidDrift) {
127      InitializeClock();
128      continue;
129    }
130
131    return Time(elapsed + Time(initial_time));
132  }
133}
134
135// static
136Time Time::NowFromSystemTime() {
137  // Force resync.
138  InitializeClock();
139  return Time(initial_time);
140}
141
142// static
143Time Time::FromFileTime(FILETIME ft) {
144  if (bit_cast<int64, FILETIME>(ft) == 0)
145    return Time();
146  if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
147      ft.dwLowDateTime == std::numeric_limits<DWORD>::max())
148    return Max();
149  return Time(FileTimeToMicroseconds(ft));
150}
151
152FILETIME Time::ToFileTime() const {
153  if (is_null())
154    return bit_cast<FILETIME, int64>(0);
155  if (is_max()) {
156    FILETIME result;
157    result.dwHighDateTime = std::numeric_limits<DWORD>::max();
158    result.dwLowDateTime = std::numeric_limits<DWORD>::max();
159    return result;
160  }
161  FILETIME utc_ft;
162  MicrosecondsToFileTime(us_, &utc_ft);
163  return utc_ft;
164}
165
166// static
167void Time::EnableHighResolutionTimer(bool enable) {
168  // Test for single-threaded access.
169  static PlatformThreadId my_thread = PlatformThread::CurrentId();
170  DCHECK(PlatformThread::CurrentId() == my_thread);
171
172  if (high_resolution_timer_enabled_ == enable)
173    return;
174
175  high_resolution_timer_enabled_ = enable;
176}
177
178// static
179bool Time::ActivateHighResolutionTimer(bool activating) {
180  if (!high_resolution_timer_enabled_ && activating)
181    return false;
182
183  // Using anything other than 1ms makes timers granular
184  // to that interval.
185  const int kMinTimerIntervalMs = 1;
186  MMRESULT result;
187  if (activating) {
188    result = timeBeginPeriod(kMinTimerIntervalMs);
189    high_resolution_timer_activated_++;
190  } else {
191    result = timeEndPeriod(kMinTimerIntervalMs);
192    high_resolution_timer_activated_--;
193  }
194  return result == TIMERR_NOERROR;
195}
196
197// static
198bool Time::IsHighResolutionTimerInUse() {
199  // Note:  we should track the high_resolution_timer_activated_ value
200  // under a lock if we want it to be accurate in a system with multiple
201  // message loops.  We don't do that - because we don't want to take the
202  // expense of a lock for this.  We *only* track this value so that unit
203  // tests can see if the high resolution timer is on or off.
204  return high_resolution_timer_enabled_ &&
205      high_resolution_timer_activated_ > 0;
206}
207
208// static
209Time Time::FromExploded(bool is_local, const Exploded& exploded) {
210  // Create the system struct representing our exploded time. It will either be
211  // in local time or UTC.
212  SYSTEMTIME st;
213  st.wYear = exploded.year;
214  st.wMonth = exploded.month;
215  st.wDayOfWeek = exploded.day_of_week;
216  st.wDay = exploded.day_of_month;
217  st.wHour = exploded.hour;
218  st.wMinute = exploded.minute;
219  st.wSecond = exploded.second;
220  st.wMilliseconds = exploded.millisecond;
221
222  FILETIME ft;
223  bool success = true;
224  // Ensure that it's in UTC.
225  if (is_local) {
226    SYSTEMTIME utc_st;
227    success = TzSpecificLocalTimeToSystemTime(NULL, &st, &utc_st) &&
228              SystemTimeToFileTime(&utc_st, &ft);
229  } else {
230    success = !!SystemTimeToFileTime(&st, &ft);
231  }
232
233  if (!success) {
234    NOTREACHED() << "Unable to convert time";
235    return Time(0);
236  }
237  return Time(FileTimeToMicroseconds(ft));
238}
239
240void Time::Explode(bool is_local, Exploded* exploded) const {
241  if (us_ < 0LL) {
242    // We are not able to convert it to FILETIME.
243    ZeroMemory(exploded, sizeof(*exploded));
244    return;
245  }
246
247  // FILETIME in UTC.
248  FILETIME utc_ft;
249  MicrosecondsToFileTime(us_, &utc_ft);
250
251  // FILETIME in local time if necessary.
252  bool success = true;
253  // FILETIME in SYSTEMTIME (exploded).
254  SYSTEMTIME st;
255  if (is_local) {
256    SYSTEMTIME utc_st;
257    // We don't use FileTimeToLocalFileTime here, since it uses the current
258    // settings for the time zone and daylight saving time. Therefore, if it is
259    // daylight saving time, it will take daylight saving time into account,
260    // even if the time you are converting is in standard time.
261    success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
262              SystemTimeToTzSpecificLocalTime(NULL, &utc_st, &st);
263  } else {
264    success = !!FileTimeToSystemTime(&utc_ft, &st);
265  }
266
267  if (!success) {
268    NOTREACHED() << "Unable to convert time, don't know why";
269    ZeroMemory(exploded, sizeof(*exploded));
270    return;
271  }
272
273  exploded->year = st.wYear;
274  exploded->month = st.wMonth;
275  exploded->day_of_week = st.wDayOfWeek;
276  exploded->day_of_month = st.wDay;
277  exploded->hour = st.wHour;
278  exploded->minute = st.wMinute;
279  exploded->second = st.wSecond;
280  exploded->millisecond = st.wMilliseconds;
281}
282
283// TimeTicks ------------------------------------------------------------------
284namespace {
285
286// We define a wrapper to adapt between the __stdcall and __cdecl call of the
287// mock function, and to avoid a static constructor.  Assigning an import to a
288// function pointer directly would require setup code to fetch from the IAT.
289DWORD timeGetTimeWrapper() {
290  return timeGetTime();
291}
292
293DWORD (*tick_function)(void) = &timeGetTimeWrapper;
294
295// Accumulation of time lost due to rollover (in milliseconds).
296int64 rollover_ms = 0;
297
298// The last timeGetTime value we saw, to detect rollover.
299DWORD last_seen_now = 0;
300
301// Lock protecting rollover_ms and last_seen_now.
302// Note: this is a global object, and we usually avoid these. However, the time
303// code is low-level, and we don't want to use Singletons here (it would be too
304// easy to use a Singleton without even knowing it, and that may lead to many
305// gotchas). Its impact on startup time should be negligible due to low-level
306// nature of time code.
307base::Lock rollover_lock;
308
309// We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
310// because it returns the number of milliseconds since Windows has started,
311// which will roll over the 32-bit value every ~49 days.  We try to track
312// rollover ourselves, which works if TimeTicks::Now() is called at least every
313// 49 days.
314TimeDelta RolloverProtectedNow() {
315  base::AutoLock locked(rollover_lock);
316  // We should hold the lock while calling tick_function to make sure that
317  // we keep last_seen_now stay correctly in sync.
318  DWORD now = tick_function();
319  if (now < last_seen_now)
320    rollover_ms += 0x100000000I64;  // ~49.7 days.
321  last_seen_now = now;
322  return TimeDelta::FromMilliseconds(now + rollover_ms);
323}
324
325bool IsBuggyAthlon(const base::CPU& cpu) {
326  // On Athlon X2 CPUs (e.g. model 15) QueryPerformanceCounter is
327  // unreliable.  Fallback to low-res clock.
328  return cpu.vendor_name() == "AuthenticAMD" && cpu.family() == 15;
329}
330
331// Overview of time counters:
332// (1) CPU cycle counter. (Retrieved via RDTSC)
333// The CPU counter provides the highest resolution time stamp and is the least
334// expensive to retrieve. However, the CPU counter is unreliable and should not
335// be used in production. Its biggest issue is that it is per processor and it
336// is not synchronized between processors. Also, on some computers, the counters
337// will change frequency due to thermal and power changes, and stop in some
338// states.
339//
340// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
341// resolution (100 nanoseconds) time stamp but is comparatively more expensive
342// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
343// (with some help from ACPI).
344// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
345// in the worst case, it gets the counter from the rollover interrupt on the
346// programmable interrupt timer. In best cases, the HAL may conclude that the
347// RDTSC counter runs at a constant frequency, then it uses that instead. On
348// multiprocessor machines, it will try to verify the values returned from
349// RDTSC on each processor are consistent with each other, and apply a handful
350// of workarounds for known buggy hardware. In other words, QPC is supposed to
351// give consistent result on a multiprocessor computer, but it is unreliable in
352// reality due to bugs in BIOS or HAL on some, especially old computers.
353// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
354// it should be used with caution.
355//
356// (3) System time. The system time provides a low-resolution (typically 10ms
357// to 55 milliseconds) time stamp but is comparatively less expensive to
358// retrieve and more reliable.
359class HighResNowSingleton {
360 public:
361  HighResNowSingleton()
362    : ticks_per_second_(0),
363      skew_(0) {
364    InitializeClock();
365
366    base::CPU cpu;
367    if (IsBuggyAthlon(cpu))
368      DisableHighResClock();
369  }
370
371  bool IsUsingHighResClock() {
372    return ticks_per_second_ != 0.0;
373  }
374
375  void DisableHighResClock() {
376    ticks_per_second_ = 0.0;
377  }
378
379  TimeDelta Now() {
380    if (IsUsingHighResClock())
381      return TimeDelta::FromMicroseconds(UnreliableNow());
382
383    // Just fallback to the slower clock.
384    return RolloverProtectedNow();
385  }
386
387  int64 GetQPCDriftMicroseconds() {
388    if (!IsUsingHighResClock())
389      return 0;
390    return abs((UnreliableNow() - ReliableNow()) - skew_);
391  }
392
393  int64 QPCValueToMicroseconds(LONGLONG qpc_value) {
394    if (!ticks_per_second_)
395      return 0;
396
397    // Intentionally calculate microseconds in a round about manner to avoid
398    // overflow and precision issues. Think twice before simplifying!
399    int64 whole_seconds = qpc_value / ticks_per_second_;
400    int64 leftover_ticks = qpc_value % ticks_per_second_;
401    int64 microseconds = (whole_seconds * Time::kMicrosecondsPerSecond) +
402                         ((leftover_ticks * Time::kMicrosecondsPerSecond) /
403                          ticks_per_second_);
404    return microseconds;
405  }
406
407 private:
408  // Synchronize the QPC clock with GetSystemTimeAsFileTime.
409  void InitializeClock() {
410    LARGE_INTEGER ticks_per_sec = {0};
411    if (!QueryPerformanceFrequency(&ticks_per_sec))
412      return;  // Broken, we don't guarantee this function works.
413    ticks_per_second_ = ticks_per_sec.QuadPart;
414
415    skew_ = UnreliableNow() - ReliableNow();
416  }
417
418  // Get the number of microseconds since boot in an unreliable fashion.
419  int64 UnreliableNow() {
420    LARGE_INTEGER now;
421    QueryPerformanceCounter(&now);
422    return QPCValueToMicroseconds(now.QuadPart);
423  }
424
425  // Get the number of microseconds since boot in a reliable fashion.
426  int64 ReliableNow() {
427    return RolloverProtectedNow().InMicroseconds();
428  }
429
430  int64 ticks_per_second_;  // 0 indicates QPF failed and we're broken.
431  int64 skew_;  // Skew between lo-res and hi-res clocks (for debugging).
432};
433
434static base::LazyInstance<HighResNowSingleton>::Leaky
435    leaky_high_res_now_singleton = LAZY_INSTANCE_INITIALIZER;
436
437HighResNowSingleton* GetHighResNowSingleton() {
438  return leaky_high_res_now_singleton.Pointer();
439}
440
441TimeDelta HighResNowWrapper() {
442  return GetHighResNowSingleton()->Now();
443}
444
445typedef TimeDelta (*NowFunction)(void);
446NowFunction now_function = RolloverProtectedNow;
447
448bool CPUReliablySupportsHighResTime() {
449  base::CPU cpu;
450  if (!cpu.has_non_stop_time_stamp_counter())
451    return false;
452
453  if (IsBuggyAthlon(cpu))
454    return false;
455
456  return true;
457}
458
459}  // namespace
460
461// static
462TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
463    TickFunctionType ticker) {
464  base::AutoLock locked(rollover_lock);
465  TickFunctionType old = tick_function;
466  tick_function = ticker;
467  rollover_ms = 0;
468  last_seen_now = 0;
469  return old;
470}
471
472// static
473bool TimeTicks::SetNowIsHighResNowIfSupported() {
474  if (!CPUReliablySupportsHighResTime()) {
475    return false;
476  }
477
478  now_function = HighResNowWrapper;
479  return true;
480}
481
482// static
483TimeTicks TimeTicks::Now() {
484  return TimeTicks() + now_function();
485}
486
487// static
488TimeTicks TimeTicks::HighResNow() {
489  return TimeTicks() + HighResNowWrapper();
490}
491
492// static
493bool TimeTicks::IsHighResNowFastAndReliable() {
494  return CPUReliablySupportsHighResTime();
495}
496
497// static
498TimeTicks TimeTicks::ThreadNow() {
499  NOTREACHED();
500  return TimeTicks();
501}
502
503// static
504TimeTicks TimeTicks::NowFromSystemTraceTime() {
505  return HighResNow();
506}
507
508// static
509int64 TimeTicks::GetQPCDriftMicroseconds() {
510  return GetHighResNowSingleton()->GetQPCDriftMicroseconds();
511}
512
513// static
514TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
515  return TimeTicks(GetHighResNowSingleton()->QPCValueToMicroseconds(qpc_value));
516}
517
518// static
519bool TimeTicks::IsHighResClockWorking() {
520  return GetHighResNowSingleton()->IsUsingHighResClock();
521}
522
523TimeTicks TimeTicks::UnprotectedNow() {
524  if (now_function == HighResNowWrapper) {
525    return Now();
526  } else {
527    return TimeTicks() + TimeDelta::FromMilliseconds(timeGetTime());
528  }
529}
530
531// TimeDelta ------------------------------------------------------------------
532
533// static
534TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
535  return TimeDelta(GetHighResNowSingleton()->QPCValueToMicroseconds(qpc_value));
536}
537