1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// This webpage shows layout of YV12 and other YUV formats
6// http://www.fourcc.org/yuv.php
7// The actual conversion is best described here
8// http://en.wikipedia.org/wiki/YUV
9// An article on optimizing YUV conversion using tables instead of multiplies
10// http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
11//
12// YV12 is a full plane of Y and a half height, half width chroma planes
13// YV16 is a full plane of Y and a full height, half width chroma planes
14//
15// ARGB pixel format is output, which on little endian is stored as BGRA.
16// The alpha is set to 255, allowing the application to use RGBA or RGB32.
17
18#include "media/base/yuv_convert.h"
19
20#include "base/cpu.h"
21#include "base/logging.h"
22#include "base/memory/scoped_ptr.h"
23#include "base/third_party/dynamic_annotations/dynamic_annotations.h"
24#include "build/build_config.h"
25#include "media/base/simd/convert_rgb_to_yuv.h"
26#include "media/base/simd/convert_yuv_to_rgb.h"
27#include "media/base/simd/filter_yuv.h"
28#include "media/base/simd/yuv_to_rgb_table.h"
29
30#if defined(ARCH_CPU_X86_FAMILY)
31#if defined(COMPILER_MSVC)
32#include <intrin.h>
33#else
34#include <mmintrin.h>
35#endif
36#endif
37
38// Assembly functions are declared without namespace.
39extern "C" { void EmptyRegisterState_MMX(); }  // extern "C"
40
41namespace media {
42
43typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int);
44
45typedef void (*ConvertRGBToYUVProc)(const uint8*,
46                                    uint8*,
47                                    uint8*,
48                                    uint8*,
49                                    int,
50                                    int,
51                                    int,
52                                    int,
53                                    int);
54
55typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
56                                      const uint8*,
57                                      const uint8*,
58                                      uint8*,
59                                      int,
60                                      int,
61                                      int,
62                                      int,
63                                      int,
64                                      YUVType);
65
66typedef void (*ConvertYUVAToARGBProc)(const uint8*,
67                                      const uint8*,
68                                      const uint8*,
69                                      const uint8*,
70                                      uint8*,
71                                      int,
72                                      int,
73                                      int,
74                                      int,
75                                      int,
76                                      int,
77                                      YUVType);
78
79typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
80                                         const uint8*,
81                                         const uint8*,
82                                         uint8*,
83                                         ptrdiff_t,
84                                         const int16[1024][4]);
85
86typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
87                                         const uint8*,
88                                         const uint8*,
89                                         const uint8*,
90                                         uint8*,
91                                         ptrdiff_t,
92                                         const int16[1024][4]);
93
94typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
95                                       const uint8*,
96                                       const uint8*,
97                                       uint8*,
98                                       ptrdiff_t,
99                                       ptrdiff_t,
100                                       const int16[1024][4]);
101
102static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
103static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
104static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
105static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
106static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
107static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
108static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
109static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
110
111// Empty SIMD registers state after using them.
112void EmptyRegisterStateStub() {}
113#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
114void EmptyRegisterStateIntrinsic() { _mm_empty(); }
115#endif
116typedef void (*EmptyRegisterStateProc)();
117static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
118
119// Get the appropriate value to bitshift by for vertical indices.
120int GetVerticalShift(YUVType type) {
121  switch (type) {
122    case YV16:
123      return 0;
124    case YV12:
125    case YV12J:
126      return 1;
127  }
128  NOTREACHED();
129  return 0;
130}
131
132const int16 (&GetLookupTable(YUVType type))[1024][4] {
133  switch (type) {
134    case YV12:
135    case YV16:
136      return kCoefficientsRgbY;
137    case YV12J:
138      return kCoefficientsRgbY_JPEG;
139  }
140  NOTREACHED();
141  return kCoefficientsRgbY;
142}
143
144void InitializeCPUSpecificYUVConversions() {
145  CHECK(!g_filter_yuv_rows_proc_);
146  CHECK(!g_convert_yuv_to_rgb32_row_proc_);
147  CHECK(!g_scale_yuv_to_rgb32_row_proc_);
148  CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
149  CHECK(!g_convert_rgb32_to_yuv_proc_);
150  CHECK(!g_convert_rgb24_to_yuv_proc_);
151  CHECK(!g_convert_yuv_to_rgb32_proc_);
152  CHECK(!g_convert_yuva_to_argb_proc_);
153  CHECK(!g_empty_register_state_proc_);
154
155  g_filter_yuv_rows_proc_ = FilterYUVRows_C;
156  g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
157  g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
158  g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
159  g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
160  g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
161  g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
162  g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
163  g_empty_register_state_proc_ = EmptyRegisterStateStub;
164
165  // Assembly code confuses MemorySanitizer.
166#if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER)
167  base::CPU cpu;
168  if (cpu.has_mmx()) {
169    g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_MMX;
170    g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_MMX;
171    g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_MMX;
172    g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
173    g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX;
174
175#if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
176    g_filter_yuv_rows_proc_ = FilterYUVRows_MMX;
177    g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
178#else
179    g_empty_register_state_proc_ = EmptyRegisterState_MMX;
180#endif
181  }
182
183  if (cpu.has_sse()) {
184    g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
185    g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
186    g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
187    g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
188  }
189
190  if (cpu.has_sse2()) {
191    g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
192    g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
193
194#if defined(ARCH_CPU_X86_64)
195    g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
196
197    // Technically this should be in the MMX section, but MSVC will optimize out
198    // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
199    // tests, if that decision can be made at compile time.  Since all X64 CPUs
200    // have SSE2, we can hack around this by making the selection here.
201    g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
202#endif
203  }
204
205  if (cpu.has_ssse3()) {
206    g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
207
208    // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
209    // See: crbug.com/100462
210  }
211#endif
212}
213
214// Empty SIMD registers state after using them.
215void EmptyRegisterState() { g_empty_register_state_proc_(); }
216
217// 16.16 fixed point arithmetic
218const int kFractionBits = 16;
219const int kFractionMax = 1 << kFractionBits;
220const int kFractionMask = ((1 << kFractionBits) - 1);
221
222// Scale a frame of YUV to 32 bit ARGB.
223void ScaleYUVToRGB32(const uint8* y_buf,
224                     const uint8* u_buf,
225                     const uint8* v_buf,
226                     uint8* rgb_buf,
227                     int source_width,
228                     int source_height,
229                     int width,
230                     int height,
231                     int y_pitch,
232                     int uv_pitch,
233                     int rgb_pitch,
234                     YUVType yuv_type,
235                     Rotate view_rotate,
236                     ScaleFilter filter) {
237  // Handle zero sized sources and destinations.
238  if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
239      (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
240      width == 0 || height == 0)
241    return;
242
243  // 4096 allows 3 buffers to fit in 12k.
244  // Helps performance on CPU with 16K L1 cache.
245  // Large enough for 3830x2160 and 30" displays which are 2560x1600.
246  const int kFilterBufferSize = 4096;
247  // Disable filtering if the screen is too big (to avoid buffer overflows).
248  // This should never happen to regular users: they don't have monitors
249  // wider than 4096 pixels.
250  // TODO(fbarchard): Allow rotated videos to filter.
251  if (source_width > kFilterBufferSize || view_rotate)
252    filter = FILTER_NONE;
253
254  unsigned int y_shift = GetVerticalShift(yuv_type);
255  // Diagram showing origin and direction of source sampling.
256  // ->0   4<-
257  // 7       3
258  //
259  // 6       5
260  // ->1   2<-
261  // Rotations that start at right side of image.
262  if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
263      (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
264    y_buf += source_width - 1;
265    u_buf += source_width / 2 - 1;
266    v_buf += source_width / 2 - 1;
267    source_width = -source_width;
268  }
269  // Rotations that start at bottom of image.
270  if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
271      (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
272    y_buf += (source_height - 1) * y_pitch;
273    u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
274    v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
275    source_height = -source_height;
276  }
277
278  int source_dx = source_width * kFractionMax / width;
279
280  if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
281    int tmp = height;
282    height = width;
283    width = tmp;
284    tmp = source_height;
285    source_height = source_width;
286    source_width = tmp;
287    int source_dy = source_height * kFractionMax / height;
288    source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
289    if (view_rotate == ROTATE_90) {
290      y_pitch = -1;
291      uv_pitch = -1;
292      source_height = -source_height;
293    } else {
294      y_pitch = 1;
295      uv_pitch = 1;
296    }
297  }
298
299  // Need padding because FilterRows() will write 1 to 16 extra pixels
300  // after the end for SSE2 version.
301  uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
302  uint8* ybuf =
303      reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
304  uint8* ubuf = ybuf + kFilterBufferSize;
305  uint8* vbuf = ubuf + kFilterBufferSize;
306
307  // TODO(fbarchard): Fixed point math is off by 1 on negatives.
308
309  // We take a y-coordinate in [0,1] space in the source image space, and
310  // transform to a y-coordinate in [0,1] space in the destination image space.
311  // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
312  // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
313  // 0.75.  The formula is as follows (in fixed-point arithmetic):
314  //   y_dst = dst_height * ((y_src + 0.5) / src_height)
315  //   dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
316  // Implement this here as an accumulator + delta, to avoid expensive math
317  // in the loop.
318  int source_y_subpixel_accum =
319      ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
320  int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
321
322  // TODO(fbarchard): Split this into separate function for better efficiency.
323  for (int y = 0; y < height; ++y) {
324    uint8* dest_pixel = rgb_buf + y * rgb_pitch;
325    int source_y_subpixel = source_y_subpixel_accum;
326    source_y_subpixel_accum += source_y_subpixel_delta;
327    if (source_y_subpixel < 0)
328      source_y_subpixel = 0;
329    else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
330      source_y_subpixel = (source_height - 1) << kFractionBits;
331
332    const uint8* y_ptr = NULL;
333    const uint8* u_ptr = NULL;
334    const uint8* v_ptr = NULL;
335    // Apply vertical filtering if necessary.
336    // TODO(fbarchard): Remove memcpy when not necessary.
337    if (filter & media::FILTER_BILINEAR_V) {
338      int source_y = source_y_subpixel >> kFractionBits;
339      y_ptr = y_buf + source_y * y_pitch;
340      u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
341      v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
342
343      // Vertical scaler uses 16.8 fixed point.
344      int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
345      if (source_y_fraction != 0) {
346        g_filter_yuv_rows_proc_(
347            ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
348      } else {
349        memcpy(ybuf, y_ptr, source_width);
350      }
351      y_ptr = ybuf;
352      ybuf[source_width] = ybuf[source_width - 1];
353
354      int uv_source_width = (source_width + 1) / 2;
355      int source_uv_fraction;
356
357      // For formats with half-height UV planes, each even-numbered pixel row
358      // should not interpolate, since the next row to interpolate from should
359      // be a duplicate of the current row.
360      if (y_shift && (source_y & 0x1) == 0)
361        source_uv_fraction = 0;
362      else
363        source_uv_fraction = source_y_fraction;
364
365      if (source_uv_fraction != 0) {
366        g_filter_yuv_rows_proc_(
367            ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
368        g_filter_yuv_rows_proc_(
369            vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
370      } else {
371        memcpy(ubuf, u_ptr, uv_source_width);
372        memcpy(vbuf, v_ptr, uv_source_width);
373      }
374      u_ptr = ubuf;
375      v_ptr = vbuf;
376      ubuf[uv_source_width] = ubuf[uv_source_width - 1];
377      vbuf[uv_source_width] = vbuf[uv_source_width - 1];
378    } else {
379      // Offset by 1/2 pixel for center sampling.
380      int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
381      y_ptr = y_buf + source_y * y_pitch;
382      u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
383      v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
384    }
385    if (source_dx == kFractionMax) {  // Not scaled
386      g_convert_yuv_to_rgb32_row_proc_(
387          y_ptr, u_ptr, v_ptr, dest_pixel, width, kCoefficientsRgbY);
388    } else {
389      if (filter & FILTER_BILINEAR_H) {
390        g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr,
391                                              u_ptr,
392                                              v_ptr,
393                                              dest_pixel,
394                                              width,
395                                              source_dx,
396                                              kCoefficientsRgbY);
397      } else {
398        g_scale_yuv_to_rgb32_row_proc_(y_ptr,
399                                       u_ptr,
400                                       v_ptr,
401                                       dest_pixel,
402                                       width,
403                                       source_dx,
404                                       kCoefficientsRgbY);
405      }
406    }
407  }
408
409  g_empty_register_state_proc_();
410}
411
412// Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
413void ScaleYUVToRGB32WithRect(const uint8* y_buf,
414                             const uint8* u_buf,
415                             const uint8* v_buf,
416                             uint8* rgb_buf,
417                             int source_width,
418                             int source_height,
419                             int dest_width,
420                             int dest_height,
421                             int dest_rect_left,
422                             int dest_rect_top,
423                             int dest_rect_right,
424                             int dest_rect_bottom,
425                             int y_pitch,
426                             int uv_pitch,
427                             int rgb_pitch) {
428  // This routine doesn't currently support up-scaling.
429  CHECK_LE(dest_width, source_width);
430  CHECK_LE(dest_height, source_height);
431
432  // Sanity-check the destination rectangle.
433  DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
434  DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
435  DCHECK(dest_rect_right > dest_rect_left);
436  DCHECK(dest_rect_bottom > dest_rect_top);
437
438  // Fixed-point value of vertical and horizontal scale down factor.
439  // Values are in the format 16.16.
440  int y_step = kFractionMax * source_height / dest_height;
441  int x_step = kFractionMax * source_width / dest_width;
442
443  // Determine the coordinates of the rectangle in 16.16 coords.
444  // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
445  // If we're down-scaling by more than a factor of two, we start with a 50%
446  // fraction to avoid degenerating to point-sampling - we should really just
447  // fix the fraction at 50% for all pixels in that case.
448  int source_left = dest_rect_left * x_step;
449  int source_right = (dest_rect_right - 1) * x_step;
450  if (x_step < kFractionMax * 2) {
451    source_left += ((x_step - kFractionMax) / 2);
452    source_right += ((x_step - kFractionMax) / 2);
453  } else {
454    source_left += kFractionMax / 2;
455    source_right += kFractionMax / 2;
456  }
457  int source_top = dest_rect_top * y_step;
458  if (y_step < kFractionMax * 2) {
459    source_top += ((y_step - kFractionMax) / 2);
460  } else {
461    source_top += kFractionMax / 2;
462  }
463
464  // Determine the parts of the Y, U and V buffers to interpolate.
465  int source_y_left = source_left >> kFractionBits;
466  int source_y_right =
467      std::min((source_right >> kFractionBits) + 2, source_width + 1);
468
469  int source_uv_left = source_y_left / 2;
470  int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
471                                 (source_width + 1) / 2);
472
473  int source_y_width = source_y_right - source_y_left;
474  int source_uv_width = source_uv_right - source_uv_left;
475
476  // Determine number of pixels in each output row.
477  int dest_rect_width = dest_rect_right - dest_rect_left;
478
479  // Intermediate buffer for vertical interpolation.
480  // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
481  // and is bigger than most users will generally need.
482  // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
483  // FilterYUVRowProcs have alignment requirements, and the SSE version can
484  // write up to 16 bytes past the end of the buffer.
485  const int kFilterBufferSize = 4096;
486  const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
487  uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
488  // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
489  if (RunningOnValgrind())
490    memset(yuv_temp, 0, sizeof(yuv_temp));
491  uint8* y_temp = reinterpret_cast<uint8*>(
492      reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
493  uint8* u_temp = y_temp + kFilterBufferSize;
494  uint8* v_temp = u_temp + kFilterBufferSize;
495
496  // Move to the top-left pixel of output.
497  rgb_buf += dest_rect_top * rgb_pitch;
498  rgb_buf += dest_rect_left * 4;
499
500  // For each destination row perform interpolation and color space
501  // conversion to produce the output.
502  for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
503    // Round the fixed-point y position to get the current row.
504    int source_row = source_top >> kFractionBits;
505    int source_uv_row = source_row / 2;
506    DCHECK(source_row < source_height);
507
508    // Locate the first row for each plane for interpolation.
509    const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
510    const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
511    const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
512    const uint8* y1_ptr = NULL;
513    const uint8* u1_ptr = NULL;
514    const uint8* v1_ptr = NULL;
515
516    // Locate the second row for interpolation, being careful not to overrun.
517    if (source_row + 1 >= source_height) {
518      y1_ptr = y0_ptr;
519    } else {
520      y1_ptr = y0_ptr + y_pitch;
521    }
522    if (source_uv_row + 1 >= (source_height + 1) / 2) {
523      u1_ptr = u0_ptr;
524      v1_ptr = v0_ptr;
525    } else {
526      u1_ptr = u0_ptr + uv_pitch;
527      v1_ptr = v0_ptr + uv_pitch;
528    }
529
530    if (!kAvoidUsingOptimizedFilter) {
531      // Vertical scaler uses 16.8 fixed point.
532      int fraction = (source_top & kFractionMask) >> 8;
533      g_filter_yuv_rows_proc_(
534          y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
535      g_filter_yuv_rows_proc_(
536          u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
537      g_filter_yuv_rows_proc_(
538          v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
539
540      // Perform horizontal interpolation and color space conversion.
541      // TODO(hclam): Use the MMX version after more testing.
542      LinearScaleYUVToRGB32RowWithRange_C(y_temp,
543                                          u_temp,
544                                          v_temp,
545                                          rgb_buf,
546                                          dest_rect_width,
547                                          source_left,
548                                          x_step,
549                                          kCoefficientsRgbY);
550    } else {
551      // If the frame is too large then we linear scale a single row.
552      LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
553                                          u0_ptr,
554                                          v0_ptr,
555                                          rgb_buf,
556                                          dest_rect_width,
557                                          source_left,
558                                          x_step,
559                                          kCoefficientsRgbY);
560    }
561
562    // Advance vertically in the source and destination image.
563    source_top += y_step;
564    rgb_buf += rgb_pitch;
565  }
566
567  g_empty_register_state_proc_();
568}
569
570void ConvertRGB32ToYUV(const uint8* rgbframe,
571                       uint8* yplane,
572                       uint8* uplane,
573                       uint8* vplane,
574                       int width,
575                       int height,
576                       int rgbstride,
577                       int ystride,
578                       int uvstride) {
579  g_convert_rgb32_to_yuv_proc_(rgbframe,
580                               yplane,
581                               uplane,
582                               vplane,
583                               width,
584                               height,
585                               rgbstride,
586                               ystride,
587                               uvstride);
588}
589
590void ConvertRGB24ToYUV(const uint8* rgbframe,
591                       uint8* yplane,
592                       uint8* uplane,
593                       uint8* vplane,
594                       int width,
595                       int height,
596                       int rgbstride,
597                       int ystride,
598                       int uvstride) {
599  g_convert_rgb24_to_yuv_proc_(rgbframe,
600                               yplane,
601                               uplane,
602                               vplane,
603                               width,
604                               height,
605                               rgbstride,
606                               ystride,
607                               uvstride);
608}
609
610void ConvertYUY2ToYUV(const uint8* src,
611                      uint8* yplane,
612                      uint8* uplane,
613                      uint8* vplane,
614                      int width,
615                      int height) {
616  for (int i = 0; i < height / 2; ++i) {
617    for (int j = 0; j < (width / 2); ++j) {
618      yplane[0] = src[0];
619      *uplane = src[1];
620      yplane[1] = src[2];
621      *vplane = src[3];
622      src += 4;
623      yplane += 2;
624      uplane++;
625      vplane++;
626    }
627    for (int j = 0; j < (width / 2); ++j) {
628      yplane[0] = src[0];
629      yplane[1] = src[2];
630      src += 4;
631      yplane += 2;
632    }
633  }
634}
635
636void ConvertNV21ToYUV(const uint8* src,
637                      uint8* yplane,
638                      uint8* uplane,
639                      uint8* vplane,
640                      int width,
641                      int height) {
642  int y_plane_size = width * height;
643  memcpy(yplane, src, y_plane_size);
644
645  src += y_plane_size;
646  int u_plane_size = y_plane_size >> 2;
647  for (int i = 0; i < u_plane_size; ++i) {
648    *vplane++ = *src++;
649    *uplane++ = *src++;
650  }
651}
652
653void ConvertYUVToRGB32(const uint8* yplane,
654                       const uint8* uplane,
655                       const uint8* vplane,
656                       uint8* rgbframe,
657                       int width,
658                       int height,
659                       int ystride,
660                       int uvstride,
661                       int rgbstride,
662                       YUVType yuv_type) {
663  g_convert_yuv_to_rgb32_proc_(yplane,
664                               uplane,
665                               vplane,
666                               rgbframe,
667                               width,
668                               height,
669                               ystride,
670                               uvstride,
671                               rgbstride,
672                               yuv_type);
673}
674
675void ConvertYUVAToARGB(const uint8* yplane,
676                       const uint8* uplane,
677                       const uint8* vplane,
678                       const uint8* aplane,
679                       uint8* rgbframe,
680                       int width,
681                       int height,
682                       int ystride,
683                       int uvstride,
684                       int astride,
685                       int rgbstride,
686                       YUVType yuv_type) {
687  g_convert_yuva_to_argb_proc_(yplane,
688                               uplane,
689                               vplane,
690                               aplane,
691                               rgbframe,
692                               width,
693                               height,
694                               ystride,
695                               uvstride,
696                               astride,
697                               rgbstride,
698                               yuv_type);
699}
700
701}  // namespace media
702