1/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 * Copyright (C) 2002, 2005, 2006, 2007, 2008, 2010, 2012 Apple Inc. All rights reserved.
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose without fee is hereby granted, provided that this entire notice
10 * is included in all copies of any software which is or includes a copy
11 * or modification of this software and in all copies of the supporting
12 * documentation for such software.
13 *
14 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
15 * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
16 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
17 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
18 *
19 ***************************************************************/
20
21/* Please send bug reports to David M. Gay (dmg at acm dot org,
22 * with " at " changed at "@" and " dot " changed to ".").    */
23
24/* On a machine with IEEE extended-precision registers, it is
25 * necessary to specify double-precision (53-bit) rounding precision
26 * before invoking strtod or dtoa.  If the machine uses (the equivalent
27 * of) Intel 80x87 arithmetic, the call
28 *    _control87(PC_53, MCW_PC);
29 * does this with many compilers.  Whether this or another call is
30 * appropriate depends on the compiler; for this to work, it may be
31 * necessary to #include "float.h" or another system-dependent header
32 * file.
33 */
34
35#include "config.h"
36#include "dtoa.h"
37
38#include "wtf/CPU.h"
39#include "wtf/MathExtras.h"
40#include "wtf/ThreadingPrimitives.h"
41#include "wtf/Vector.h"
42
43#if COMPILER(MSVC)
44#pragma warning(disable: 4244)
45#pragma warning(disable: 4245)
46#pragma warning(disable: 4554)
47
48#if _MSC_VER == 1800
49// TODO(scottmg): VS2013 currently ICEs on a bunch of functions in this file.
50// Upstream bug fixed in next release. See http://crbug.com/288498.
51#pragma optimize("", off)
52#endif
53
54#endif
55
56namespace WTF {
57
58Mutex* s_dtoaP5Mutex;
59
60typedef union {
61    double d;
62    uint32_t L[2];
63} U;
64
65#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN)
66#define word0(x) (x)->L[0]
67#define word1(x) (x)->L[1]
68#else
69#define word0(x) (x)->L[1]
70#define word1(x) (x)->L[0]
71#endif
72#define dval(x) (x)->d
73
74#define Exp_shift  20
75#define Exp_shift1 20
76#define Exp_msk1    0x100000
77#define Exp_msk11   0x100000
78#define Exp_mask  0x7ff00000
79#define P 53
80#define Bias 1023
81#define Emin (-1022)
82#define Exp_1  0x3ff00000
83#define Exp_11 0x3ff00000
84#define Ebits 11
85#define Frac_mask  0xfffff
86#define Frac_mask1 0xfffff
87#define Ten_pmax 22
88#define Bletch 0x10
89#define Bndry_mask  0xfffff
90#define Bndry_mask1 0xfffff
91#define LSB 1
92#define Sign_bit 0x80000000
93#define Log2P 1
94#define Tiny0 0
95#define Tiny1 1
96#define Quick_max 14
97#define Int_max 14
98
99#define rounded_product(a, b) a *= b
100#define rounded_quotient(a, b) a /= b
101
102#define Big0 (Frac_mask1 | Exp_msk1 * (DBL_MAX_EXP + Bias - 1))
103#define Big1 0xffffffff
104
105#if CPU(X86_64)
106// FIXME: should we enable this on all 64-bit CPUs?
107// 64-bit emulation provided by the compiler is likely to be slower than dtoa own code on 32-bit hardware.
108#define USE_LONG_LONG
109#endif
110
111#ifndef USE_LONG_LONG
112/* The following definition of Storeinc is appropriate for MIPS processors.
113 * An alternative that might be better on some machines is
114 *  *p++ = high << 16 | low & 0xffff;
115 */
116static ALWAYS_INLINE uint32_t* storeInc(uint32_t* p, uint16_t high, uint16_t low)
117{
118    uint16_t* p16 = reinterpret_cast<uint16_t*>(p);
119#if CPU(BIG_ENDIAN)
120    p16[0] = high;
121    p16[1] = low;
122#else
123    p16[1] = high;
124    p16[0] = low;
125#endif
126    return p + 1;
127}
128#endif
129
130struct BigInt {
131    BigInt() : sign(0) { }
132    int sign;
133
134    void clear()
135    {
136        sign = 0;
137        m_words.clear();
138    }
139
140    size_t size() const
141    {
142        return m_words.size();
143    }
144
145    void resize(size_t s)
146    {
147        m_words.resize(s);
148    }
149
150    uint32_t* words()
151    {
152        return m_words.data();
153    }
154
155    const uint32_t* words() const
156    {
157        return m_words.data();
158    }
159
160    void append(uint32_t w)
161    {
162        m_words.append(w);
163    }
164
165    Vector<uint32_t, 16> m_words;
166};
167
168static void multadd(BigInt& b, int m, int a)    /* multiply by m and add a */
169{
170#ifdef USE_LONG_LONG
171    unsigned long long carry;
172#else
173    uint32_t carry;
174#endif
175
176    int wds = b.size();
177    uint32_t* x = b.words();
178    int i = 0;
179    carry = a;
180    do {
181#ifdef USE_LONG_LONG
182        unsigned long long y = *x * (unsigned long long)m + carry;
183        carry = y >> 32;
184        *x++ = (uint32_t)y & 0xffffffffUL;
185#else
186        uint32_t xi = *x;
187        uint32_t y = (xi & 0xffff) * m + carry;
188        uint32_t z = (xi >> 16) * m + (y >> 16);
189        carry = z >> 16;
190        *x++ = (z << 16) + (y & 0xffff);
191#endif
192    } while (++i < wds);
193
194    if (carry)
195        b.append((uint32_t)carry);
196}
197
198static int hi0bits(uint32_t x)
199{
200    int k = 0;
201
202    if (!(x & 0xffff0000)) {
203        k = 16;
204        x <<= 16;
205    }
206    if (!(x & 0xff000000)) {
207        k += 8;
208        x <<= 8;
209    }
210    if (!(x & 0xf0000000)) {
211        k += 4;
212        x <<= 4;
213    }
214    if (!(x & 0xc0000000)) {
215        k += 2;
216        x <<= 2;
217    }
218    if (!(x & 0x80000000)) {
219        k++;
220        if (!(x & 0x40000000))
221            return 32;
222    }
223    return k;
224}
225
226static int lo0bits(uint32_t* y)
227{
228    int k;
229    uint32_t x = *y;
230
231    if (x & 7) {
232        if (x & 1)
233            return 0;
234        if (x & 2) {
235            *y = x >> 1;
236            return 1;
237        }
238        *y = x >> 2;
239        return 2;
240    }
241    k = 0;
242    if (!(x & 0xffff)) {
243        k = 16;
244        x >>= 16;
245    }
246    if (!(x & 0xff)) {
247        k += 8;
248        x >>= 8;
249    }
250    if (!(x & 0xf)) {
251        k += 4;
252        x >>= 4;
253    }
254    if (!(x & 0x3)) {
255        k += 2;
256        x >>= 2;
257    }
258    if (!(x & 1)) {
259        k++;
260        x >>= 1;
261        if (!x)
262            return 32;
263    }
264    *y = x;
265    return k;
266}
267
268static void i2b(BigInt& b, int i)
269{
270    b.sign = 0;
271    b.resize(1);
272    b.words()[0] = i;
273}
274
275static void mult(BigInt& aRef, const BigInt& bRef)
276{
277    const BigInt* a = &aRef;
278    const BigInt* b = &bRef;
279    BigInt c;
280    int wa, wb, wc;
281    const uint32_t* x = 0;
282    const uint32_t* xa;
283    const uint32_t* xb;
284    const uint32_t* xae;
285    const uint32_t* xbe;
286    uint32_t* xc;
287    uint32_t* xc0;
288    uint32_t y;
289#ifdef USE_LONG_LONG
290    unsigned long long carry, z;
291#else
292    uint32_t carry, z;
293#endif
294
295    if (a->size() < b->size()) {
296        const BigInt* tmp = a;
297        a = b;
298        b = tmp;
299    }
300
301    wa = a->size();
302    wb = b->size();
303    wc = wa + wb;
304    c.resize(wc);
305
306    for (xc = c.words(), xa = xc + wc; xc < xa; xc++)
307        *xc = 0;
308    xa = a->words();
309    xae = xa + wa;
310    xb = b->words();
311    xbe = xb + wb;
312    xc0 = c.words();
313#ifdef USE_LONG_LONG
314    for (; xb < xbe; xc0++) {
315        if ((y = *xb++)) {
316            x = xa;
317            xc = xc0;
318            carry = 0;
319            do {
320                z = *x++ * (unsigned long long)y + *xc + carry;
321                carry = z >> 32;
322                *xc++ = (uint32_t)z & 0xffffffffUL;
323            } while (x < xae);
324            *xc = (uint32_t)carry;
325        }
326    }
327#else
328    for (; xb < xbe; xb++, xc0++) {
329        if ((y = *xb & 0xffff)) {
330            x = xa;
331            xc = xc0;
332            carry = 0;
333            do {
334                z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
335                carry = z >> 16;
336                uint32_t z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
337                carry = z2 >> 16;
338                xc = storeInc(xc, z2, z);
339            } while (x < xae);
340            *xc = carry;
341        }
342        if ((y = *xb >> 16)) {
343            x = xa;
344            xc = xc0;
345            carry = 0;
346            uint32_t z2 = *xc;
347            do {
348                z = (*x & 0xffff) * y + (*xc >> 16) + carry;
349                carry = z >> 16;
350                xc = storeInc(xc, z, z2);
351                z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
352                carry = z2 >> 16;
353            } while (x < xae);
354            *xc = z2;
355        }
356    }
357#endif
358    for (xc0 = c.words(), xc = xc0 + wc; wc > 0 && !*--xc; --wc) { }
359    c.resize(wc);
360    aRef = c;
361}
362
363struct P5Node {
364    WTF_MAKE_NONCOPYABLE(P5Node); WTF_MAKE_FAST_ALLOCATED;
365public:
366    P5Node() { }
367    BigInt val;
368    P5Node* next;
369};
370
371static P5Node* p5s;
372static int p5sCount;
373
374static ALWAYS_INLINE void pow5mult(BigInt& b, int k)
375{
376    static int p05[3] = { 5, 25, 125 };
377
378    if (int i = k & 3)
379        multadd(b, p05[i - 1], 0);
380
381    if (!(k >>= 2))
382        return;
383
384    s_dtoaP5Mutex->lock();
385    P5Node* p5 = p5s;
386
387    if (!p5) {
388        /* first time */
389        p5 = new P5Node;
390        i2b(p5->val, 625);
391        p5->next = 0;
392        p5s = p5;
393        p5sCount = 1;
394    }
395
396    int p5sCountLocal = p5sCount;
397    s_dtoaP5Mutex->unlock();
398    int p5sUsed = 0;
399
400    for (;;) {
401        if (k & 1)
402            mult(b, p5->val);
403
404        if (!(k >>= 1))
405            break;
406
407        if (++p5sUsed == p5sCountLocal) {
408            s_dtoaP5Mutex->lock();
409            if (p5sUsed == p5sCount) {
410                ASSERT(!p5->next);
411                p5->next = new P5Node;
412                p5->next->next = 0;
413                p5->next->val = p5->val;
414                mult(p5->next->val, p5->next->val);
415                ++p5sCount;
416            }
417
418            p5sCountLocal = p5sCount;
419            s_dtoaP5Mutex->unlock();
420        }
421        p5 = p5->next;
422    }
423}
424
425static ALWAYS_INLINE void lshift(BigInt& b, int k)
426{
427    int n = k >> 5;
428
429    int origSize = b.size();
430    int n1 = n + origSize + 1;
431
432    if (k &= 0x1f)
433        b.resize(b.size() + n + 1);
434    else
435        b.resize(b.size() + n);
436
437    const uint32_t* srcStart = b.words();
438    uint32_t* dstStart = b.words();
439    const uint32_t* src = srcStart + origSize - 1;
440    uint32_t* dst = dstStart + n1 - 1;
441    if (k) {
442        uint32_t hiSubword = 0;
443        int s = 32 - k;
444        for (; src >= srcStart; --src) {
445            *dst-- = hiSubword | *src >> s;
446            hiSubword = *src << k;
447        }
448        *dst = hiSubword;
449        ASSERT(dst == dstStart + n);
450
451        b.resize(origSize + n + !!b.words()[n1 - 1]);
452    }
453    else {
454        do {
455            *--dst = *src--;
456        } while (src >= srcStart);
457    }
458    for (dst = dstStart + n; dst != dstStart; )
459        *--dst = 0;
460
461    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
462}
463
464static int cmp(const BigInt& a, const BigInt& b)
465{
466    const uint32_t *xa, *xa0, *xb, *xb0;
467    int i, j;
468
469    i = a.size();
470    j = b.size();
471    ASSERT(i <= 1 || a.words()[i - 1]);
472    ASSERT(j <= 1 || b.words()[j - 1]);
473    if (i -= j)
474        return i;
475    xa0 = a.words();
476    xa = xa0 + j;
477    xb0 = b.words();
478    xb = xb0 + j;
479    for (;;) {
480        if (*--xa != *--xb)
481            return *xa < *xb ? -1 : 1;
482        if (xa <= xa0)
483            break;
484    }
485    return 0;
486}
487
488static ALWAYS_INLINE void diff(BigInt& c, const BigInt& aRef, const BigInt& bRef)
489{
490    const BigInt* a = &aRef;
491    const BigInt* b = &bRef;
492    int i, wa, wb;
493    uint32_t* xc;
494
495    i = cmp(*a, *b);
496    if (!i) {
497        c.sign = 0;
498        c.resize(1);
499        c.words()[0] = 0;
500        return;
501    }
502    if (i < 0) {
503        const BigInt* tmp = a;
504        a = b;
505        b = tmp;
506        i = 1;
507    } else
508        i = 0;
509
510    wa = a->size();
511    const uint32_t* xa = a->words();
512    const uint32_t* xae = xa + wa;
513    wb = b->size();
514    const uint32_t* xb = b->words();
515    const uint32_t* xbe = xb + wb;
516
517    c.resize(wa);
518    c.sign = i;
519    xc = c.words();
520#ifdef USE_LONG_LONG
521    unsigned long long borrow = 0;
522    do {
523        unsigned long long y = (unsigned long long)*xa++ - *xb++ - borrow;
524        borrow = y >> 32 & (uint32_t)1;
525        *xc++ = (uint32_t)y & 0xffffffffUL;
526    } while (xb < xbe);
527    while (xa < xae) {
528        unsigned long long y = *xa++ - borrow;
529        borrow = y >> 32 & (uint32_t)1;
530        *xc++ = (uint32_t)y & 0xffffffffUL;
531    }
532#else
533    uint32_t borrow = 0;
534    do {
535        uint32_t y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
536        borrow = (y & 0x10000) >> 16;
537        uint32_t z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
538        borrow = (z & 0x10000) >> 16;
539        xc = storeInc(xc, z, y);
540    } while (xb < xbe);
541    while (xa < xae) {
542        uint32_t y = (*xa & 0xffff) - borrow;
543        borrow = (y & 0x10000) >> 16;
544        uint32_t z = (*xa++ >> 16) - borrow;
545        borrow = (z & 0x10000) >> 16;
546        xc = storeInc(xc, z, y);
547    }
548#endif
549    while (!*--xc)
550        wa--;
551    c.resize(wa);
552}
553
554static ALWAYS_INLINE void d2b(BigInt& b, U* d, int* e, int* bits)
555{
556    int de, k;
557    uint32_t* x;
558    uint32_t y, z;
559    int i;
560#define d0 word0(d)
561#define d1 word1(d)
562
563    b.sign = 0;
564    b.resize(1);
565    x = b.words();
566
567    z = d0 & Frac_mask;
568    d0 &= 0x7fffffff;    /* clear sign bit, which we ignore */
569    if ((de = (int)(d0 >> Exp_shift)))
570        z |= Exp_msk1;
571    if ((y = d1)) {
572        if ((k = lo0bits(&y))) {
573            x[0] = y | (z << (32 - k));
574            z >>= k;
575        } else
576            x[0] = y;
577        if (z) {
578            b.resize(2);
579            x[1] = z;
580        }
581
582        i = b.size();
583    } else {
584        k = lo0bits(&z);
585        x[0] = z;
586        i = 1;
587        b.resize(1);
588        k += 32;
589    }
590    if (de) {
591        *e = de - Bias - (P - 1) + k;
592        *bits = P - k;
593    } else {
594        *e = 0 - Bias - (P - 1) + 1 + k;
595        *bits = (32 * i) - hi0bits(x[i - 1]);
596    }
597}
598#undef d0
599#undef d1
600
601static const double tens[] = {
602    1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
603    1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
604    1e20, 1e21, 1e22
605};
606
607static const double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
608
609#define Scale_Bit 0x10
610#define n_bigtens 5
611
612static ALWAYS_INLINE int quorem(BigInt& b, BigInt& S)
613{
614    size_t n;
615    uint32_t* bx;
616    uint32_t* bxe;
617    uint32_t q;
618    uint32_t* sx;
619    uint32_t* sxe;
620#ifdef USE_LONG_LONG
621    unsigned long long borrow, carry, y, ys;
622#else
623    uint32_t borrow, carry, y, ys;
624    uint32_t si, z, zs;
625#endif
626    ASSERT(b.size() <= 1 || b.words()[b.size() - 1]);
627    ASSERT(S.size() <= 1 || S.words()[S.size() - 1]);
628
629    n = S.size();
630    ASSERT_WITH_MESSAGE(b.size() <= n, "oversize b in quorem");
631    if (b.size() < n)
632        return 0;
633    sx = S.words();
634    sxe = sx + --n;
635    bx = b.words();
636    bxe = bx + n;
637    q = *bxe / (*sxe + 1);    /* ensure q <= true quotient */
638    ASSERT_WITH_MESSAGE(q <= 9, "oversized quotient in quorem");
639    if (q) {
640        borrow = 0;
641        carry = 0;
642        do {
643#ifdef USE_LONG_LONG
644            ys = *sx++ * (unsigned long long)q + carry;
645            carry = ys >> 32;
646            y = *bx - (ys & 0xffffffffUL) - borrow;
647            borrow = y >> 32 & (uint32_t)1;
648            *bx++ = (uint32_t)y & 0xffffffffUL;
649#else
650            si = *sx++;
651            ys = (si & 0xffff) * q + carry;
652            zs = (si >> 16) * q + (ys >> 16);
653            carry = zs >> 16;
654            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
655            borrow = (y & 0x10000) >> 16;
656            z = (*bx >> 16) - (zs & 0xffff) - borrow;
657            borrow = (z & 0x10000) >> 16;
658            bx = storeInc(bx, z, y);
659#endif
660        } while (sx <= sxe);
661        if (!*bxe) {
662            bx = b.words();
663            while (--bxe > bx && !*bxe)
664                --n;
665            b.resize(n);
666        }
667    }
668    if (cmp(b, S) >= 0) {
669        q++;
670        borrow = 0;
671        carry = 0;
672        bx = b.words();
673        sx = S.words();
674        do {
675#ifdef USE_LONG_LONG
676            ys = *sx++ + carry;
677            carry = ys >> 32;
678            y = *bx - (ys & 0xffffffffUL) - borrow;
679            borrow = y >> 32 & (uint32_t)1;
680            *bx++ = (uint32_t)y & 0xffffffffUL;
681#else
682            si = *sx++;
683            ys = (si & 0xffff) + carry;
684            zs = (si >> 16) + (ys >> 16);
685            carry = zs >> 16;
686            y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
687            borrow = (y & 0x10000) >> 16;
688            z = (*bx >> 16) - (zs & 0xffff) - borrow;
689            borrow = (z & 0x10000) >> 16;
690            bx = storeInc(bx, z, y);
691#endif
692        } while (sx <= sxe);
693        bx = b.words();
694        bxe = bx + n;
695        if (!*bxe) {
696            while (--bxe > bx && !*bxe)
697                --n;
698            b.resize(n);
699        }
700    }
701    return q;
702}
703
704/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
705 *
706 * Inspired by "How to Print Floating-Point Numbers Accurately" by
707 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
708 *
709 * Modifications:
710 *    1. Rather than iterating, we use a simple numeric overestimate
711 *       to determine k = floor(log10(d)).  We scale relevant
712 *       quantities using O(log2(k)) rather than O(k) multiplications.
713 *    2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
714 *       try to generate digits strictly left to right.  Instead, we
715 *       compute with fewer bits and propagate the carry if necessary
716 *       when rounding the final digit up.  This is often faster.
717 *    3. Under the assumption that input will be rounded nearest,
718 *       mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
719 *       That is, we allow equality in stopping tests when the
720 *       round-nearest rule will give the same floating-point value
721 *       as would satisfaction of the stopping test with strict
722 *       inequality.
723 *    4. We remove common factors of powers of 2 from relevant
724 *       quantities.
725 *    5. When converting floating-point integers less than 1e16,
726 *       we use floating-point arithmetic rather than resorting
727 *       to multiple-precision integers.
728 *    6. When asked to produce fewer than 15 digits, we first try
729 *       to get by with floating-point arithmetic; we resort to
730 *       multiple-precision integer arithmetic only if we cannot
731 *       guarantee that the floating-point calculation has given
732 *       the correctly rounded result.  For k requested digits and
733 *       "uniformly" distributed input, the probability is
734 *       something like 10^(k-15) that we must resort to the int32_t
735 *       calculation.
736 *
737 * Note: 'leftright' translates to 'generate shortest possible string'.
738 */
739template<bool roundingNone, bool roundingSignificantFigures, bool roundingDecimalPlaces, bool leftright>
740void dtoa(DtoaBuffer result, double dd, int ndigits, bool& signOut, int& exponentOut, unsigned& precisionOut)
741{
742    // Exactly one rounding mode must be specified.
743    ASSERT(roundingNone + roundingSignificantFigures + roundingDecimalPlaces == 1);
744    // roundingNone only allowed (only sensible?) with leftright set.
745    ASSERT(!roundingNone || leftright);
746
747    ASSERT(std::isfinite(dd));
748
749    int bbits, b2, b5, be, dig, i, ieps, ilim = 0, ilim0, ilim1 = 0,
750        j, j1, k, k0, k_check, m2, m5, s2, s5,
751        spec_case;
752    int32_t L;
753    int denorm;
754    uint32_t x;
755    BigInt b, delta, mlo, mhi, S;
756    U d2, eps, u;
757    double ds;
758    char* s;
759    char* s0;
760
761    u.d = dd;
762
763    /* Infinity or NaN */
764    ASSERT((word0(&u) & Exp_mask) != Exp_mask);
765
766    // JavaScript toString conversion treats -0 as 0.
767    if (!dval(&u)) {
768        signOut = false;
769        exponentOut = 0;
770        precisionOut = 1;
771        result[0] = '0';
772        result[1] = '\0';
773        return;
774    }
775
776    if (word0(&u) & Sign_bit) {
777        signOut = true;
778        word0(&u) &= ~Sign_bit; // clear sign bit
779    } else
780        signOut = false;
781
782    d2b(b, &u, &be, &bbits);
783    if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask >> Exp_shift1)))) {
784        dval(&d2) = dval(&u);
785        word0(&d2) &= Frac_mask1;
786        word0(&d2) |= Exp_11;
787
788        /* log(x)    ~=~ log(1.5) + (x-1.5)/1.5
789         * log10(x)     =  log(x) / log(10)
790         *        ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
791         * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
792         *
793         * This suggests computing an approximation k to log10(d) by
794         *
795         * k = (i - Bias)*0.301029995663981
796         *    + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
797         *
798         * We want k to be too large rather than too small.
799         * The error in the first-order Taylor series approximation
800         * is in our favor, so we just round up the constant enough
801         * to compensate for any error in the multiplication of
802         * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
803         * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
804         * adding 1e-13 to the constant term more than suffices.
805         * Hence we adjust the constant term to 0.1760912590558.
806         * (We could get a more accurate k by invoking log10,
807         *  but this is probably not worthwhile.)
808         */
809
810        i -= Bias;
811        denorm = 0;
812    } else {
813        /* d is denormalized */
814
815        i = bbits + be + (Bias + (P - 1) - 1);
816        x = (i > 32) ? (word0(&u) << (64 - i)) | (word1(&u) >> (i - 32))
817                : word1(&u) << (32 - i);
818        dval(&d2) = x;
819        word0(&d2) -= 31 * Exp_msk1; /* adjust exponent */
820        i -= (Bias + (P - 1) - 1) + 1;
821        denorm = 1;
822    }
823    ds = (dval(&d2) - 1.5) * 0.289529654602168 + 0.1760912590558 + (i * 0.301029995663981);
824    k = (int)ds;
825    if (ds < 0. && ds != k)
826        k--;    /* want k = floor(ds) */
827    k_check = 1;
828    if (k >= 0 && k <= Ten_pmax) {
829        if (dval(&u) < tens[k])
830            k--;
831        k_check = 0;
832    }
833    j = bbits - i - 1;
834    if (j >= 0) {
835        b2 = 0;
836        s2 = j;
837    } else {
838        b2 = -j;
839        s2 = 0;
840    }
841    if (k >= 0) {
842        b5 = 0;
843        s5 = k;
844        s2 += k;
845    } else {
846        b2 -= k;
847        b5 = -k;
848        s5 = 0;
849    }
850
851    if (roundingNone) {
852        ilim = ilim1 = -1;
853        i = 18;
854        ndigits = 0;
855    }
856    if (roundingSignificantFigures) {
857        if (ndigits <= 0)
858            ndigits = 1;
859        ilim = ilim1 = i = ndigits;
860    }
861    if (roundingDecimalPlaces) {
862        i = ndigits + k + 1;
863        ilim = i;
864        ilim1 = i - 1;
865        if (i <= 0)
866            i = 1;
867    }
868
869    s = s0 = result;
870
871    if (ilim >= 0 && ilim <= Quick_max) {
872        /* Try to get by with floating-point arithmetic. */
873
874        i = 0;
875        dval(&d2) = dval(&u);
876        k0 = k;
877        ilim0 = ilim;
878        ieps = 2; /* conservative */
879        if (k > 0) {
880            ds = tens[k & 0xf];
881            j = k >> 4;
882            if (j & Bletch) {
883                /* prevent overflows */
884                j &= Bletch - 1;
885                dval(&u) /= bigtens[n_bigtens - 1];
886                ieps++;
887            }
888            for (; j; j >>= 1, i++) {
889                if (j & 1) {
890                    ieps++;
891                    ds *= bigtens[i];
892                }
893            }
894            dval(&u) /= ds;
895        } else if ((j1 = -k)) {
896            dval(&u) *= tens[j1 & 0xf];
897            for (j = j1 >> 4; j; j >>= 1, i++) {
898                if (j & 1) {
899                    ieps++;
900                    dval(&u) *= bigtens[i];
901                }
902            }
903        }
904        if (k_check && dval(&u) < 1. && ilim > 0) {
905            if (ilim1 <= 0)
906                goto fastFailed;
907            ilim = ilim1;
908            k--;
909            dval(&u) *= 10.;
910            ieps++;
911        }
912        dval(&eps) = (ieps * dval(&u)) + 7.;
913        word0(&eps) -= (P - 1) * Exp_msk1;
914        if (!ilim) {
915            S.clear();
916            mhi.clear();
917            dval(&u) -= 5.;
918            if (dval(&u) > dval(&eps))
919                goto oneDigit;
920            if (dval(&u) < -dval(&eps))
921                goto noDigits;
922            goto fastFailed;
923        }
924        if (leftright) {
925            /* Use Steele & White method of only
926             * generating digits needed.
927             */
928            dval(&eps) = (0.5 / tens[ilim - 1]) - dval(&eps);
929            for (i = 0;;) {
930                L = (long int)dval(&u);
931                dval(&u) -= L;
932                *s++ = '0' + (int)L;
933                if (dval(&u) < dval(&eps))
934                    goto ret;
935                if (1. - dval(&u) < dval(&eps))
936                    goto bumpUp;
937                if (++i >= ilim)
938                    break;
939                dval(&eps) *= 10.;
940                dval(&u) *= 10.;
941            }
942        } else {
943            /* Generate ilim digits, then fix them up. */
944            dval(&eps) *= tens[ilim - 1];
945            for (i = 1;; i++, dval(&u) *= 10.) {
946                L = (int32_t)(dval(&u));
947                if (!(dval(&u) -= L))
948                    ilim = i;
949                *s++ = '0' + (int)L;
950                if (i == ilim) {
951                    if (dval(&u) > 0.5 + dval(&eps))
952                        goto bumpUp;
953                    if (dval(&u) < 0.5 - dval(&eps)) {
954                        while (*--s == '0') { }
955                        s++;
956                        goto ret;
957                    }
958                    break;
959                }
960            }
961        }
962fastFailed:
963        s = s0;
964        dval(&u) = dval(&d2);
965        k = k0;
966        ilim = ilim0;
967    }
968
969    /* Do we have a "small" integer? */
970
971    if (be >= 0 && k <= Int_max) {
972        /* Yes. */
973        ds = tens[k];
974        if (ndigits < 0 && ilim <= 0) {
975            S.clear();
976            mhi.clear();
977            if (ilim < 0 || dval(&u) <= 5 * ds)
978                goto noDigits;
979            goto oneDigit;
980        }
981        for (i = 1;; i++, dval(&u) *= 10.) {
982            L = (int32_t)(dval(&u) / ds);
983            dval(&u) -= L * ds;
984            *s++ = '0' + (int)L;
985            if (!dval(&u)) {
986                break;
987            }
988            if (i == ilim) {
989                dval(&u) += dval(&u);
990                if (dval(&u) > ds || (dval(&u) == ds && (L & 1))) {
991bumpUp:
992                    while (*--s == '9')
993                        if (s == s0) {
994                            k++;
995                            *s = '0';
996                            break;
997                        }
998                    ++*s++;
999                }
1000                break;
1001            }
1002        }
1003        goto ret;
1004    }
1005
1006    m2 = b2;
1007    m5 = b5;
1008    mhi.clear();
1009    mlo.clear();
1010    if (leftright) {
1011        i = denorm ? be + (Bias + (P - 1) - 1 + 1) : 1 + P - bbits;
1012        b2 += i;
1013        s2 += i;
1014        i2b(mhi, 1);
1015    }
1016    if (m2 > 0 && s2 > 0) {
1017        i = m2 < s2 ? m2 : s2;
1018        b2 -= i;
1019        m2 -= i;
1020        s2 -= i;
1021    }
1022    if (b5 > 0) {
1023        if (leftright) {
1024            if (m5 > 0) {
1025                pow5mult(mhi, m5);
1026                mult(b, mhi);
1027            }
1028            if ((j = b5 - m5))
1029                pow5mult(b, j);
1030        } else
1031            pow5mult(b, b5);
1032    }
1033    i2b(S, 1);
1034    if (s5 > 0)
1035        pow5mult(S, s5);
1036
1037    /* Check for special case that d is a normalized power of 2. */
1038
1039    spec_case = 0;
1040    if ((roundingNone || leftright) && (!word1(&u) && !(word0(&u) & Bndry_mask) && word0(&u) & (Exp_mask & ~Exp_msk1))) {
1041        /* The special case */
1042        b2 += Log2P;
1043        s2 += Log2P;
1044        spec_case = 1;
1045    }
1046
1047    /* Arrange for convenient computation of quotients:
1048     * shift left if necessary so divisor has 4 leading 0 bits.
1049     *
1050     * Perhaps we should just compute leading 28 bits of S once
1051     * and for all and pass them and a shift to quorem, so it
1052     * can do shifts and ors to compute the numerator for q.
1053     */
1054    if ((i = ((s5 ? 32 - hi0bits(S.words()[S.size() - 1]) : 1) + s2) & 0x1f))
1055        i = 32 - i;
1056    if (i > 4) {
1057        i -= 4;
1058        b2 += i;
1059        m2 += i;
1060        s2 += i;
1061    } else if (i < 4) {
1062        i += 28;
1063        b2 += i;
1064        m2 += i;
1065        s2 += i;
1066    }
1067    if (b2 > 0)
1068        lshift(b, b2);
1069    if (s2 > 0)
1070        lshift(S, s2);
1071    if (k_check) {
1072        if (cmp(b, S) < 0) {
1073            k--;
1074            multadd(b, 10, 0);    /* we botched the k estimate */
1075            if (leftright)
1076                multadd(mhi, 10, 0);
1077            ilim = ilim1;
1078        }
1079    }
1080    if (ilim <= 0 && roundingDecimalPlaces) {
1081        if (ilim < 0)
1082            goto noDigits;
1083        multadd(S, 5, 0);
1084        // For IEEE-754 unbiased rounding this check should be <=, such that 0.5 would flush to zero.
1085        if (cmp(b, S) < 0)
1086            goto noDigits;
1087        goto oneDigit;
1088    }
1089    if (leftright) {
1090        if (m2 > 0)
1091            lshift(mhi, m2);
1092
1093        /* Compute mlo -- check for special case
1094         * that d is a normalized power of 2.
1095         */
1096
1097        mlo = mhi;
1098        if (spec_case)
1099            lshift(mhi, Log2P);
1100
1101        for (i = 1;;i++) {
1102            dig = quorem(b, S) + '0';
1103            /* Do we yet have the shortest decimal string
1104             * that will round to d?
1105             */
1106            j = cmp(b, mlo);
1107            diff(delta, S, mhi);
1108            j1 = delta.sign ? 1 : cmp(b, delta);
1109#ifdef DTOA_ROUND_BIASED
1110            if (j < 0 || !j) {
1111#else
1112            // FIXME: ECMA-262 specifies that equidistant results round away from
1113            // zero, which probably means we shouldn't be on the unbiased code path
1114            // (the (word1(&u) & 1) clause is looking highly suspicious). I haven't
1115            // yet understood this code well enough to make the call, but we should
1116            // probably be enabling DTOA_ROUND_BIASED. I think the interesting corner
1117            // case to understand is probably "Math.pow(0.5, 24).toString()".
1118            // I believe this value is interesting because I think it is precisely
1119            // representable in binary floating point, and its decimal representation
1120            // has a single digit that Steele & White reduction can remove, with the
1121            // value 5 (thus equidistant from the next numbers above and below).
1122            // We produce the correct answer using either codepath, and I don't as
1123            // yet understand why. :-)
1124            if (!j1 && !(word1(&u) & 1)) {
1125                if (dig == '9')
1126                    goto round9up;
1127                if (j > 0)
1128                    dig++;
1129                *s++ = dig;
1130                goto ret;
1131            }
1132            if (j < 0 || (!j && !(word1(&u) & 1))) {
1133#endif
1134                if ((b.words()[0] || b.size() > 1) && (j1 > 0)) {
1135                    lshift(b, 1);
1136                    j1 = cmp(b, S);
1137                    // For IEEE-754 round-to-even, this check should be (j1 > 0 || (!j1 && (dig & 1))),
1138                    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
1139                    // be rounded away from zero.
1140                    if (j1 >= 0) {
1141                        if (dig == '9')
1142                            goto round9up;
1143                        dig++;
1144                    }
1145                }
1146                *s++ = dig;
1147                goto ret;
1148            }
1149            if (j1 > 0) {
1150                if (dig == '9') { /* possible if i == 1 */
1151round9up:
1152                    *s++ = '9';
1153                    goto roundoff;
1154                }
1155                *s++ = dig + 1;
1156                goto ret;
1157            }
1158            *s++ = dig;
1159            if (i == ilim)
1160                break;
1161            multadd(b, 10, 0);
1162            multadd(mlo, 10, 0);
1163            multadd(mhi, 10, 0);
1164        }
1165    } else {
1166        for (i = 1;; i++) {
1167            *s++ = dig = quorem(b, S) + '0';
1168            if (!b.words()[0] && b.size() <= 1)
1169                goto ret;
1170            if (i >= ilim)
1171                break;
1172            multadd(b, 10, 0);
1173        }
1174    }
1175
1176    /* Round off last digit */
1177
1178    lshift(b, 1);
1179    j = cmp(b, S);
1180    // For IEEE-754 round-to-even, this check should be (j > 0 || (!j && (dig & 1))),
1181    // but ECMA-262 specifies that equidistant values (e.g. (.5).toFixed()) should
1182    // be rounded away from zero.
1183    if (j >= 0) {
1184roundoff:
1185        while (*--s == '9')
1186            if (s == s0) {
1187                k++;
1188                *s++ = '1';
1189                goto ret;
1190            }
1191        ++*s++;
1192    } else {
1193        while (*--s == '0') { }
1194        s++;
1195    }
1196    goto ret;
1197noDigits:
1198    exponentOut = 0;
1199    precisionOut = 1;
1200    result[0] = '0';
1201    result[1] = '\0';
1202    return;
1203oneDigit:
1204    *s++ = '1';
1205    k++;
1206    goto ret;
1207ret:
1208    ASSERT(s > result);
1209    *s = 0;
1210    exponentOut = k;
1211    precisionOut = s - result;
1212}
1213
1214void dtoa(DtoaBuffer result, double dd, bool& sign, int& exponent, unsigned& precision)
1215{
1216    // flags are roundingNone, leftright.
1217    dtoa<true, false, false, true>(result, dd, 0, sign, exponent, precision);
1218}
1219
1220void dtoaRoundSF(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
1221{
1222    // flag is roundingSignificantFigures.
1223    dtoa<false, true, false, false>(result, dd, ndigits, sign, exponent, precision);
1224}
1225
1226void dtoaRoundDP(DtoaBuffer result, double dd, int ndigits, bool& sign, int& exponent, unsigned& precision)
1227{
1228    // flag is roundingDecimalPlaces.
1229    dtoa<false, false, true, false>(result, dd, ndigits, sign, exponent, precision);
1230}
1231
1232const char* numberToString(double d, NumberToStringBuffer buffer)
1233{
1234    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
1235    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
1236    converter.ToShortest(d, &builder);
1237    return builder.Finalize();
1238}
1239
1240static inline const char* formatStringTruncatingTrailingZerosIfNeeded(NumberToStringBuffer buffer, double_conversion::StringBuilder& builder)
1241{
1242    size_t length = builder.position();
1243    size_t decimalPointPosition = 0;
1244    for (; decimalPointPosition < length; ++decimalPointPosition) {
1245        if (buffer[decimalPointPosition] == '.')
1246            break;
1247    }
1248
1249    // No decimal seperator found, early exit.
1250    if (decimalPointPosition == length)
1251        return builder.Finalize();
1252
1253    size_t truncatedLength = length - 1;
1254    for (; truncatedLength > decimalPointPosition; --truncatedLength) {
1255        if (buffer[truncatedLength] != '0')
1256            break;
1257    }
1258
1259    // No trailing zeros found to strip.
1260    if (truncatedLength == length - 1)
1261        return builder.Finalize();
1262
1263    // If we removed all trailing zeros, remove the decimal point as well.
1264    if (truncatedLength == decimalPointPosition) {
1265        ASSERT(truncatedLength > 0);
1266        --truncatedLength;
1267    }
1268
1269    // Truncate the StringBuilder, and return the final result.
1270    builder.SetPosition(truncatedLength + 1);
1271    return builder.Finalize();
1272}
1273
1274const char* numberToFixedPrecisionString(double d, unsigned significantFigures, NumberToStringBuffer buffer, bool truncateTrailingZeros)
1275{
1276    // Mimic String::format("%.[precision]g", ...), but use dtoas rounding facilities.
1277    // "g": Signed value printed in f or e format, whichever is more compact for the given value and precision.
1278    // The e format is used only when the exponent of the value is less than –4 or greater than or equal to the
1279    // precision argument. Trailing zeros are truncated, and the decimal point appears only if one or more digits follow it.
1280    // "precision": The precision specifies the maximum number of significant digits printed.
1281    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
1282    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
1283    converter.ToPrecision(d, significantFigures, &builder);
1284    if (!truncateTrailingZeros)
1285        return builder.Finalize();
1286    return formatStringTruncatingTrailingZerosIfNeeded(buffer, builder);
1287}
1288
1289const char* numberToFixedWidthString(double d, unsigned decimalPlaces, NumberToStringBuffer buffer)
1290{
1291    // Mimic String::format("%.[precision]f", ...), but use dtoas rounding facilities.
1292    // "f": Signed value having the form [ – ]dddd.dddd, where dddd is one or more decimal digits.
1293    // The number of digits before the decimal point depends on the magnitude of the number, and
1294    // the number of digits after the decimal point depends on the requested precision.
1295    // "precision": The precision value specifies the number of digits after the decimal point.
1296    // If a decimal point appears, at least one digit appears before it.
1297    // The value is rounded to the appropriate number of digits.
1298    double_conversion::StringBuilder builder(buffer, NumberToStringBufferLength);
1299    const double_conversion::DoubleToStringConverter& converter = double_conversion::DoubleToStringConverter::EcmaScriptConverter();
1300    converter.ToFixed(d, decimalPlaces, &builder);
1301    return builder.Finalize();
1302}
1303
1304namespace Internal {
1305
1306double parseDoubleFromLongString(const UChar* string, size_t length, size_t& parsedLength)
1307{
1308    Vector<LChar> conversionBuffer(length);
1309    for (size_t i = 0; i < length; ++i)
1310        conversionBuffer[i] = isASCII(string[i]) ? string[i] : 0;
1311    return parseDouble(conversionBuffer.data(), length, parsedLength);
1312}
1313
1314} // namespace Internal
1315
1316} // namespace WTF
1317