1// Copyright 2010 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6//     * Redistributions of source code must retain the above copyright
7//       notice, this list of conditions and the following disclaimer.
8//     * Redistributions in binary form must reproduce the above
9//       copyright notice, this list of conditions and the following
10//       disclaimer in the documentation and/or other materials provided
11//       with the distribution.
12//     * Neither the name of Google Inc. nor the names of its
13//       contributors may be used to endorse or promote products derived
14//       from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "config.h"
29
30#include <math.h>
31
32#include "bignum-dtoa.h"
33
34#include "bignum.h"
35#include "double.h"
36
37namespace WTF {
38
39namespace double_conversion {
40
41    static int NormalizedExponent(uint64_t significand, int exponent) {
42        ASSERT(significand != 0);
43        while ((significand & Double::kHiddenBit) == 0) {
44            significand = significand << 1;
45            exponent = exponent - 1;
46        }
47        return exponent;
48    }
49
50
51    // Forward declarations:
52    // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
53    static int EstimatePower(int exponent);
54    // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
55    // and denominator.
56    static void InitialScaledStartValues(double v,
57                                         int estimated_power,
58                                         bool need_boundary_deltas,
59                                         Bignum* numerator,
60                                         Bignum* denominator,
61                                         Bignum* delta_minus,
62                                         Bignum* delta_plus);
63    // Multiplies numerator/denominator so that its values lies in the range 1-10.
64    // Returns decimal_point s.t.
65    //  v = numerator'/denominator' * 10^(decimal_point-1)
66    //     where numerator' and denominator' are the values of numerator and
67    //     denominator after the call to this function.
68    static void FixupMultiply10(int estimated_power, bool is_even,
69                                int* decimal_point,
70                                Bignum* numerator, Bignum* denominator,
71                                Bignum* delta_minus, Bignum* delta_plus);
72    // Generates digits from the left to the right and stops when the generated
73    // digits yield the shortest decimal representation of v.
74    static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
75                                       Bignum* delta_minus, Bignum* delta_plus,
76                                       bool is_even,
77                                       Vector<char> buffer, int* length);
78    // Generates 'requested_digits' after the decimal point.
79    static void BignumToFixed(int requested_digits, int* decimal_point,
80                              Bignum* numerator, Bignum* denominator,
81                              Vector<char>(buffer), int* length);
82    // Generates 'count' digits of numerator/denominator.
83    // Once 'count' digits have been produced rounds the result depending on the
84    // remainder (remainders of exactly .5 round upwards). Might update the
85    // decimal_point when rounding up (for example for 0.9999).
86    static void GenerateCountedDigits(int count, int* decimal_point,
87                                      Bignum* numerator, Bignum* denominator,
88                                      Vector<char>(buffer), int* length);
89
90
91    void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
92                    Vector<char> buffer, int* length, int* decimal_point) {
93        ASSERT(v > 0);
94        ASSERT(!Double(v).IsSpecial());
95        uint64_t significand = Double(v).Significand();
96        bool is_even = (significand & 1) == 0;
97        int exponent = Double(v).Exponent();
98        int normalized_exponent = NormalizedExponent(significand, exponent);
99        // estimated_power might be too low by 1.
100        int estimated_power = EstimatePower(normalized_exponent);
101
102        // Shortcut for Fixed.
103        // The requested digits correspond to the digits after the point. If the
104        // number is much too small, then there is no need in trying to get any
105        // digits.
106        if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
107            buffer[0] = '\0';
108            *length = 0;
109            // Set decimal-point to -requested_digits. This is what Gay does.
110            // Note that it should not have any effect anyways since the string is
111            // empty.
112            *decimal_point = -requested_digits;
113            return;
114        }
115
116        Bignum numerator;
117        Bignum denominator;
118        Bignum delta_minus;
119        Bignum delta_plus;
120        // Make sure the bignum can grow large enough. The smallest double equals
121        // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
122        // The maximum double is 1.7976931348623157e308 which needs fewer than
123        // 308*4 binary digits.
124        ASSERT(Bignum::kMaxSignificantBits >= 324*4);
125        bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
126        InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
127                                 &numerator, &denominator,
128                                 &delta_minus, &delta_plus);
129        // We now have v = (numerator / denominator) * 10^estimated_power.
130        FixupMultiply10(estimated_power, is_even, decimal_point,
131                        &numerator, &denominator,
132                        &delta_minus, &delta_plus);
133        // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
134        //  1 <= (numerator + delta_plus) / denominator < 10
135        switch (mode) {
136            case BIGNUM_DTOA_SHORTEST:
137                GenerateShortestDigits(&numerator, &denominator,
138                                       &delta_minus, &delta_plus,
139                                       is_even, buffer, length);
140                break;
141            case BIGNUM_DTOA_FIXED:
142                BignumToFixed(requested_digits, decimal_point,
143                              &numerator, &denominator,
144                              buffer, length);
145                break;
146            case BIGNUM_DTOA_PRECISION:
147                GenerateCountedDigits(requested_digits, decimal_point,
148                                      &numerator, &denominator,
149                                      buffer, length);
150                break;
151            default:
152                UNREACHABLE();
153        }
154        buffer[*length] = '\0';
155    }
156
157
158    // The procedure starts generating digits from the left to the right and stops
159    // when the generated digits yield the shortest decimal representation of v. A
160    // decimal representation of v is a number lying closer to v than to any other
161    // double, so it converts to v when read.
162    //
163    // This is true if d, the decimal representation, is between m- and m+, the
164    // upper and lower boundaries. d must be strictly between them if !is_even.
165    //           m- := (numerator - delta_minus) / denominator
166    //           m+ := (numerator + delta_plus) / denominator
167    //
168    // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
169    //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
170    //   will be produced. This should be the standard precondition.
171    static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
172                                       Bignum* delta_minus, Bignum* delta_plus,
173                                       bool is_even,
174                                       Vector<char> buffer, int* length) {
175        // Small optimization: if delta_minus and delta_plus are the same just reuse
176        // one of the two bignums.
177        if (Bignum::Equal(*delta_minus, *delta_plus)) {
178            delta_plus = delta_minus;
179        }
180        *length = 0;
181        while (true) {
182            uint16_t digit;
183            digit = numerator->DivideModuloIntBignum(*denominator);
184            ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
185            // digit = numerator / denominator (integer division).
186            // numerator = numerator % denominator.
187            buffer[(*length)++] = digit + '0';
188
189            // Can we stop already?
190            // If the remainder of the division is less than the distance to the lower
191            // boundary we can stop. In this case we simply round down (discarding the
192            // remainder).
193            // Similarly we test if we can round up (using the upper boundary).
194            bool in_delta_room_minus;
195            bool in_delta_room_plus;
196            if (is_even) {
197                in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
198            } else {
199                in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
200            }
201            if (is_even) {
202                in_delta_room_plus =
203                Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
204            } else {
205                in_delta_room_plus =
206                Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
207            }
208            if (!in_delta_room_minus && !in_delta_room_plus) {
209                // Prepare for next iteration.
210                numerator->Times10();
211                delta_minus->Times10();
212                // We optimized delta_plus to be equal to delta_minus (if they share the
213                // same value). So don't multiply delta_plus if they point to the same
214                // object.
215                if (delta_minus != delta_plus) {
216                    delta_plus->Times10();
217                }
218            } else if (in_delta_room_minus && in_delta_room_plus) {
219                // Let's see if 2*numerator < denominator.
220                // If yes, then the next digit would be < 5 and we can round down.
221                int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
222                if (compare < 0) {
223                    // Remaining digits are less than .5. -> Round down (== do nothing).
224                } else if (compare > 0) {
225                    // Remaining digits are more than .5 of denominator. -> Round up.
226                    // Note that the last digit could not be a '9' as otherwise the whole
227                    // loop would have stopped earlier.
228                    // We still have an assert here in case the preconditions were not
229                    // satisfied.
230                    ASSERT(buffer[(*length) - 1] != '9');
231                    buffer[(*length) - 1]++;
232                } else {
233                    // Halfway case.
234                    // TODO(floitsch): need a way to solve half-way cases.
235                    //   For now let's round towards even (since this is what Gay seems to
236                    //   do).
237
238                    if ((buffer[(*length) - 1] - '0') % 2 == 0) {
239                        // Round down => Do nothing.
240                    } else {
241                        ASSERT(buffer[(*length) - 1] != '9');
242                        buffer[(*length) - 1]++;
243                    }
244                }
245                return;
246            } else if (in_delta_room_minus) {
247                // Round down (== do nothing).
248                return;
249            } else {  // in_delta_room_plus
250                // Round up.
251                // Note again that the last digit could not be '9' since this would have
252                // stopped the loop earlier.
253                // We still have an ASSERT here, in case the preconditions were not
254                // satisfied.
255                ASSERT(buffer[(*length) -1] != '9');
256                buffer[(*length) - 1]++;
257                return;
258            }
259        }
260    }
261
262
263    // Let v = numerator / denominator < 10.
264    // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
265    // from left to right. Once 'count' digits have been produced we decide wether
266    // to round up or down. Remainders of exactly .5 round upwards. Numbers such
267    // as 9.999999 propagate a carry all the way, and change the
268    // exponent (decimal_point), when rounding upwards.
269    static void GenerateCountedDigits(int count, int* decimal_point,
270                                      Bignum* numerator, Bignum* denominator,
271                                      Vector<char>(buffer), int* length) {
272        ASSERT(count >= 0);
273        for (int i = 0; i < count - 1; ++i) {
274            uint16_t digit;
275            digit = numerator->DivideModuloIntBignum(*denominator);
276            ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
277            // digit = numerator / denominator (integer division).
278            // numerator = numerator % denominator.
279            buffer[i] = digit + '0';
280            // Prepare for next iteration.
281            numerator->Times10();
282        }
283        // Generate the last digit.
284        uint16_t digit;
285        digit = numerator->DivideModuloIntBignum(*denominator);
286        if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
287            digit++;
288        }
289        buffer[count - 1] = digit + '0';
290        // Correct bad digits (in case we had a sequence of '9's). Propagate the
291        // carry until we hat a non-'9' or til we reach the first digit.
292        for (int i = count - 1; i > 0; --i) {
293            if (buffer[i] != '0' + 10) break;
294            buffer[i] = '0';
295            buffer[i - 1]++;
296        }
297        if (buffer[0] == '0' + 10) {
298            // Propagate a carry past the top place.
299            buffer[0] = '1';
300            (*decimal_point)++;
301        }
302        *length = count;
303    }
304
305
306    // Generates 'requested_digits' after the decimal point. It might omit
307    // trailing '0's. If the input number is too small then no digits at all are
308    // generated (ex.: 2 fixed digits for 0.00001).
309    //
310    // Input verifies:  1 <= (numerator + delta) / denominator < 10.
311    static void BignumToFixed(int requested_digits, int* decimal_point,
312                              Bignum* numerator, Bignum* denominator,
313                              Vector<char>(buffer), int* length) {
314        // Note that we have to look at more than just the requested_digits, since
315        // a number could be rounded up. Example: v=0.5 with requested_digits=0.
316        // Even though the power of v equals 0 we can't just stop here.
317        if (-(*decimal_point) > requested_digits) {
318            // The number is definitively too small.
319            // Ex: 0.001 with requested_digits == 1.
320            // Set decimal-point to -requested_digits. This is what Gay does.
321            // Note that it should not have any effect anyways since the string is
322            // empty.
323            *decimal_point = -requested_digits;
324            *length = 0;
325            return;
326        } else if (-(*decimal_point) == requested_digits) {
327            // We only need to verify if the number rounds down or up.
328            // Ex: 0.04 and 0.06 with requested_digits == 1.
329            ASSERT(*decimal_point == -requested_digits);
330            // Initially the fraction lies in range (1, 10]. Multiply the denominator
331            // by 10 so that we can compare more easily.
332            denominator->Times10();
333            if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
334                // If the fraction is >= 0.5 then we have to include the rounded
335                // digit.
336                buffer[0] = '1';
337                *length = 1;
338                (*decimal_point)++;
339            } else {
340                // Note that we caught most of similar cases earlier.
341                *length = 0;
342            }
343            return;
344        } else {
345            // The requested digits correspond to the digits after the point.
346            // The variable 'needed_digits' includes the digits before the point.
347            int needed_digits = (*decimal_point) + requested_digits;
348            GenerateCountedDigits(needed_digits, decimal_point,
349                                  numerator, denominator,
350                                  buffer, length);
351        }
352    }
353
354
355    // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
356    // v = f * 2^exponent and 2^52 <= f < 2^53.
357    // v is hence a normalized double with the given exponent. The output is an
358    // approximation for the exponent of the decimal approimation .digits * 10^k.
359    //
360    // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
361    // Note: this property holds for v's upper boundary m+ too.
362    //    10^k <= m+ < 10^k+1.
363    //   (see explanation below).
364    //
365    // Examples:
366    //  EstimatePower(0)   => 16
367    //  EstimatePower(-52) => 0
368    //
369    // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
370    static int EstimatePower(int exponent) {
371        // This function estimates log10 of v where v = f*2^e (with e == exponent).
372        // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
373        // Note that f is bounded by its container size. Let p = 53 (the double's
374        // significand size). Then 2^(p-1) <= f < 2^p.
375        //
376        // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
377        // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
378        // The computed number undershoots by less than 0.631 (when we compute log3
379        // and not log10).
380        //
381        // Optimization: since we only need an approximated result this computation
382        // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
383        // not really measurable, though.
384        //
385        // Since we want to avoid overshooting we decrement by 1e10 so that
386        // floating-point imprecisions don't affect us.
387        //
388        // Explanation for v's boundary m+: the computation takes advantage of
389        // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
390        // (even for denormals where the delta can be much more important).
391
392        const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
393
394        // For doubles len(f) == 53 (don't forget the hidden bit).
395        const int kSignificandSize = 53;
396        double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
397        return static_cast<int>(estimate);
398    }
399
400
401    // See comments for InitialScaledStartValues.
402    static void InitialScaledStartValuesPositiveExponent(
403                                                         double v, int estimated_power, bool need_boundary_deltas,
404                                                         Bignum* numerator, Bignum* denominator,
405                                                         Bignum* delta_minus, Bignum* delta_plus) {
406        // A positive exponent implies a positive power.
407        ASSERT(estimated_power >= 0);
408        // Since the estimated_power is positive we simply multiply the denominator
409        // by 10^estimated_power.
410
411        // numerator = v.
412        numerator->AssignUInt64(Double(v).Significand());
413        numerator->ShiftLeft(Double(v).Exponent());
414        // denominator = 10^estimated_power.
415        denominator->AssignPowerUInt16(10, estimated_power);
416
417        if (need_boundary_deltas) {
418            // Introduce a common denominator so that the deltas to the boundaries are
419            // integers.
420            denominator->ShiftLeft(1);
421            numerator->ShiftLeft(1);
422            // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
423            // denominator (of 2) delta_plus equals 2^e.
424            delta_plus->AssignUInt16(1);
425            delta_plus->ShiftLeft(Double(v).Exponent());
426            // Same for delta_minus (with adjustments below if f == 2^p-1).
427            delta_minus->AssignUInt16(1);
428            delta_minus->ShiftLeft(Double(v).Exponent());
429
430            // If the significand (without the hidden bit) is 0, then the lower
431            // boundary is closer than just half a ulp (unit in the last place).
432            // There is only one exception: if the next lower number is a denormal then
433            // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
434            // have to test it in the other function where exponent < 0).
435            uint64_t v_bits = Double(v).AsUint64();
436            if ((v_bits & Double::kSignificandMask) == 0) {
437                // The lower boundary is closer at half the distance of "normal" numbers.
438                // Increase the common denominator and adapt all but the delta_minus.
439                denominator->ShiftLeft(1);  // *2
440                numerator->ShiftLeft(1);    // *2
441                delta_plus->ShiftLeft(1);   // *2
442            }
443        }
444    }
445
446
447    // See comments for InitialScaledStartValues
448    static void InitialScaledStartValuesNegativeExponentPositivePower(
449                                                                      double v, int estimated_power, bool need_boundary_deltas,
450                                                                      Bignum* numerator, Bignum* denominator,
451                                                                      Bignum* delta_minus, Bignum* delta_plus) {
452        uint64_t significand = Double(v).Significand();
453        int exponent = Double(v).Exponent();
454        // v = f * 2^e with e < 0, and with estimated_power >= 0.
455        // This means that e is close to 0 (have a look at how estimated_power is
456        // computed).
457
458        // numerator = significand
459        //  since v = significand * 2^exponent this is equivalent to
460        //  numerator = v * / 2^-exponent
461        numerator->AssignUInt64(significand);
462        // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
463        denominator->AssignPowerUInt16(10, estimated_power);
464        denominator->ShiftLeft(-exponent);
465
466        if (need_boundary_deltas) {
467            // Introduce a common denominator so that the deltas to the boundaries are
468            // integers.
469            denominator->ShiftLeft(1);
470            numerator->ShiftLeft(1);
471            // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
472            // denominator (of 2) delta_plus equals 2^e.
473            // Given that the denominator already includes v's exponent the distance
474            // to the boundaries is simply 1.
475            delta_plus->AssignUInt16(1);
476            // Same for delta_minus (with adjustments below if f == 2^p-1).
477            delta_minus->AssignUInt16(1);
478
479            // If the significand (without the hidden bit) is 0, then the lower
480            // boundary is closer than just one ulp (unit in the last place).
481            // There is only one exception: if the next lower number is a denormal
482            // then the distance is 1 ulp. Since the exponent is close to zero
483            // (otherwise estimated_power would have been negative) this cannot happen
484            // here either.
485            uint64_t v_bits = Double(v).AsUint64();
486            if ((v_bits & Double::kSignificandMask) == 0) {
487                // The lower boundary is closer at half the distance of "normal" numbers.
488                // Increase the denominator and adapt all but the delta_minus.
489                denominator->ShiftLeft(1);  // *2
490                numerator->ShiftLeft(1);    // *2
491                delta_plus->ShiftLeft(1);   // *2
492            }
493        }
494    }
495
496
497    // See comments for InitialScaledStartValues
498    static void InitialScaledStartValuesNegativeExponentNegativePower(
499                                                                      double v, int estimated_power, bool need_boundary_deltas,
500                                                                      Bignum* numerator, Bignum* denominator,
501                                                                      Bignum* delta_minus, Bignum* delta_plus) {
502        const uint64_t kMinimalNormalizedExponent =
503        UINT64_2PART_C(0x00100000, 00000000);
504        uint64_t significand = Double(v).Significand();
505        int exponent = Double(v).Exponent();
506        // Instead of multiplying the denominator with 10^estimated_power we
507        // multiply all values (numerator and deltas) by 10^-estimated_power.
508
509        // Use numerator as temporary container for power_ten.
510        Bignum* power_ten = numerator;
511        power_ten->AssignPowerUInt16(10, -estimated_power);
512
513        if (need_boundary_deltas) {
514            // Since power_ten == numerator we must make a copy of 10^estimated_power
515            // before we complete the computation of the numerator.
516            // delta_plus = delta_minus = 10^estimated_power
517            delta_plus->AssignBignum(*power_ten);
518            delta_minus->AssignBignum(*power_ten);
519        }
520
521        // numerator = significand * 2 * 10^-estimated_power
522        //  since v = significand * 2^exponent this is equivalent to
523        // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
524        // Remember: numerator has been abused as power_ten. So no need to assign it
525        //  to itself.
526        ASSERT(numerator == power_ten);
527        numerator->MultiplyByUInt64(significand);
528
529        // denominator = 2 * 2^-exponent with exponent < 0.
530        denominator->AssignUInt16(1);
531        denominator->ShiftLeft(-exponent);
532
533        if (need_boundary_deltas) {
534            // Introduce a common denominator so that the deltas to the boundaries are
535            // integers.
536            numerator->ShiftLeft(1);
537            denominator->ShiftLeft(1);
538            // With this shift the boundaries have their correct value, since
539            // delta_plus = 10^-estimated_power, and
540            // delta_minus = 10^-estimated_power.
541            // These assignments have been done earlier.
542
543            // The special case where the lower boundary is twice as close.
544            // This time we have to look out for the exception too.
545            uint64_t v_bits = Double(v).AsUint64();
546            if ((v_bits & Double::kSignificandMask) == 0 &&
547                // The only exception where a significand == 0 has its boundaries at
548                // "normal" distances:
549                (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
550                numerator->ShiftLeft(1);    // *2
551                denominator->ShiftLeft(1);  // *2
552                delta_plus->ShiftLeft(1);   // *2
553            }
554        }
555    }
556
557
558    // Let v = significand * 2^exponent.
559    // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
560    // and denominator. The functions GenerateShortestDigits and
561    // GenerateCountedDigits will then convert this ratio to its decimal
562    // representation d, with the required accuracy.
563    // Then d * 10^estimated_power is the representation of v.
564    // (Note: the fraction and the estimated_power might get adjusted before
565    // generating the decimal representation.)
566    //
567    // The initial start values consist of:
568    //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
569    //  - a scaled (common) denominator.
570    //  optionally (used by GenerateShortestDigits to decide if it has the shortest
571    //  decimal converting back to v):
572    //  - v - m-: the distance to the lower boundary.
573    //  - m+ - v: the distance to the upper boundary.
574    //
575    // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
576    //
577    // Let ep == estimated_power, then the returned values will satisfy:
578    //  v / 10^ep = numerator / denominator.
579    //  v's boundarys m- and m+:
580    //    m- / 10^ep == v / 10^ep - delta_minus / denominator
581    //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
582    //  Or in other words:
583    //    m- == v - delta_minus * 10^ep / denominator;
584    //    m+ == v + delta_plus * 10^ep / denominator;
585    //
586    // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
587    //  or       10^k <= v < 10^(k+1)
588    //  we then have 0.1 <= numerator/denominator < 1
589    //           or    1 <= numerator/denominator < 10
590    //
591    // It is then easy to kickstart the digit-generation routine.
592    //
593    // The boundary-deltas are only filled if need_boundary_deltas is set.
594    static void InitialScaledStartValues(double v,
595                                         int estimated_power,
596                                         bool need_boundary_deltas,
597                                         Bignum* numerator,
598                                         Bignum* denominator,
599                                         Bignum* delta_minus,
600                                         Bignum* delta_plus) {
601        if (Double(v).Exponent() >= 0) {
602            InitialScaledStartValuesPositiveExponent(
603                                                     v, estimated_power, need_boundary_deltas,
604                                                     numerator, denominator, delta_minus, delta_plus);
605        } else if (estimated_power >= 0) {
606            InitialScaledStartValuesNegativeExponentPositivePower(
607                                                                  v, estimated_power, need_boundary_deltas,
608                                                                  numerator, denominator, delta_minus, delta_plus);
609        } else {
610            InitialScaledStartValuesNegativeExponentNegativePower(
611                                                                  v, estimated_power, need_boundary_deltas,
612                                                                  numerator, denominator, delta_minus, delta_plus);
613        }
614    }
615
616
617    // This routine multiplies numerator/denominator so that its values lies in the
618    // range 1-10. That is after a call to this function we have:
619    //    1 <= (numerator + delta_plus) /denominator < 10.
620    // Let numerator the input before modification and numerator' the argument
621    // after modification, then the output-parameter decimal_point is such that
622    //  numerator / denominator * 10^estimated_power ==
623    //    numerator' / denominator' * 10^(decimal_point - 1)
624    // In some cases estimated_power was too low, and this is already the case. We
625    // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
626    // estimated_power) but do not touch the numerator or denominator.
627    // Otherwise the routine multiplies the numerator and the deltas by 10.
628    static void FixupMultiply10(int estimated_power, bool is_even,
629                                int* decimal_point,
630                                Bignum* numerator, Bignum* denominator,
631                                Bignum* delta_minus, Bignum* delta_plus) {
632        bool in_range;
633        if (is_even) {
634            // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
635            // are rounded to the closest floating-point number with even significand.
636            in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
637        } else {
638            in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
639        }
640        if (in_range) {
641            // Since numerator + delta_plus >= denominator we already have
642            // 1 <= numerator/denominator < 10. Simply update the estimated_power.
643            *decimal_point = estimated_power + 1;
644        } else {
645            *decimal_point = estimated_power;
646            numerator->Times10();
647            if (Bignum::Equal(*delta_minus, *delta_plus)) {
648                delta_minus->Times10();
649                delta_plus->AssignBignum(*delta_minus);
650            } else {
651                delta_minus->Times10();
652                delta_plus->Times10();
653            }
654        }
655    }
656
657}  // namespace double_conversion
658
659} // namespace WTF
660