1/*
2 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 *  Use of this source code is governed by a BSD-style license
5 *  that can be found in the LICENSE file in the root of the source
6 *  tree. An additional intellectual property rights grant can be found
7 *  in the file PATENTS.  All contributing project authors may
8 *  be found in the AUTHORS file in the root of the source tree.
9 */
10
11#include <assert.h>
12
13#include "./vpx_scale_rtcd.h"
14#include "./vpx_config.h"
15
16#include "vpx/vpx_integer.h"
17
18#include "vp9/common/vp9_blockd.h"
19#include "vp9/common/vp9_filter.h"
20#include "vp9/common/vp9_reconinter.h"
21#include "vp9/common/vp9_reconintra.h"
22
23static void build_mc_border(const uint8_t *src, int src_stride,
24                            uint8_t *dst, int dst_stride,
25                            int x, int y, int b_w, int b_h, int w, int h) {
26  // Get a pointer to the start of the real data for this row.
27  const uint8_t *ref_row = src - x - y * src_stride;
28
29  if (y >= h)
30    ref_row += (h - 1) * src_stride;
31  else if (y > 0)
32    ref_row += y * src_stride;
33
34  do {
35    int right = 0, copy;
36    int left = x < 0 ? -x : 0;
37
38    if (left > b_w)
39      left = b_w;
40
41    if (x + b_w > w)
42      right = x + b_w - w;
43
44    if (right > b_w)
45      right = b_w;
46
47    copy = b_w - left - right;
48
49    if (left)
50      memset(dst, ref_row[0], left);
51
52    if (copy)
53      memcpy(dst + left, ref_row + x + left, copy);
54
55    if (right)
56      memset(dst + left + copy, ref_row[w - 1], right);
57
58    dst += dst_stride;
59    ++y;
60
61    if (y > 0 && y < h)
62      ref_row += src_stride;
63  } while (--b_h);
64}
65
66static void inter_predictor(const uint8_t *src, int src_stride,
67                            uint8_t *dst, int dst_stride,
68                            const int subpel_x,
69                            const int subpel_y,
70                            const struct scale_factors *sf,
71                            int w, int h, int ref,
72                            const InterpKernel *kernel,
73                            int xs, int ys) {
74  sf->predict[subpel_x != 0][subpel_y != 0][ref](
75      src, src_stride, dst, dst_stride,
76      kernel[subpel_x], xs, kernel[subpel_y], ys, w, h);
77}
78
79void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
80                               uint8_t *dst, int dst_stride,
81                               const MV *src_mv,
82                               const struct scale_factors *sf,
83                               int w, int h, int ref,
84                               const InterpKernel *kernel,
85                               enum mv_precision precision,
86                               int x, int y) {
87  const int is_q4 = precision == MV_PRECISION_Q4;
88  const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
89                     is_q4 ? src_mv->col : src_mv->col * 2 };
90  MV32 mv = vp9_scale_mv(&mv_q4, x, y, sf);
91  const int subpel_x = mv.col & SUBPEL_MASK;
92  const int subpel_y = mv.row & SUBPEL_MASK;
93
94  src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
95
96  inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
97                  sf, w, h, ref, kernel, sf->x_step_q4, sf->y_step_q4);
98}
99
100static INLINE int round_mv_comp_q4(int value) {
101  return (value < 0 ? value - 2 : value + 2) / 4;
102}
103
104static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
105  MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
106                              mi->bmi[1].as_mv[idx].as_mv.row +
107                              mi->bmi[2].as_mv[idx].as_mv.row +
108                              mi->bmi[3].as_mv[idx].as_mv.row),
109             round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
110                              mi->bmi[1].as_mv[idx].as_mv.col +
111                              mi->bmi[2].as_mv[idx].as_mv.col +
112                              mi->bmi[3].as_mv[idx].as_mv.col) };
113  return res;
114}
115
116// TODO(jkoleszar): yet another mv clamping function :-(
117MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
118                             int bw, int bh, int ss_x, int ss_y) {
119  // If the MV points so far into the UMV border that no visible pixels
120  // are used for reconstruction, the subpel part of the MV can be
121  // discarded and the MV limited to 16 pixels with equivalent results.
122  const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS;
123  const int spel_right = spel_left - SUBPEL_SHIFTS;
124  const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS;
125  const int spel_bottom = spel_top - SUBPEL_SHIFTS;
126  MV clamped_mv = {
127    src_mv->row * (1 << (1 - ss_y)),
128    src_mv->col * (1 << (1 - ss_x))
129  };
130  assert(ss_x <= 1);
131  assert(ss_y <= 1);
132
133  clamp_mv(&clamped_mv,
134           xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
135           xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
136           xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
137           xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
138
139  return clamped_mv;
140}
141
142static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
143                                   int bw, int bh,
144                                   int x, int y, int w, int h,
145                                   int mi_x, int mi_y) {
146  struct macroblockd_plane *const pd = &xd->plane[plane];
147  const MODE_INFO *mi = xd->mi[0];
148  const int is_compound = has_second_ref(&mi->mbmi);
149  const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
150  int ref;
151
152  for (ref = 0; ref < 1 + is_compound; ++ref) {
153    const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
154    struct buf_2d *const pre_buf = &pd->pre[ref];
155    struct buf_2d *const dst_buf = &pd->dst;
156    uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
157
158    // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
159    // same MV (the average of the 4 luma MVs) but we could do something
160    // smarter for non-4:2:0. Just punt for now, pending the changes to get
161    // rid of SPLITMV mode entirely.
162    const MV mv = mi->mbmi.sb_type < BLOCK_8X8
163               ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
164                             : mi_mv_pred_q4(mi, ref))
165               : mi->mbmi.mv[ref].as_mv;
166
167    // TODO(jkoleszar): This clamping is done in the incorrect place for the
168    // scaling case. It needs to be done on the scaled MV, not the pre-scaling
169    // MV. Note however that it performs the subsampling aware scaling so
170    // that the result is always q4.
171    // mv_precision precision is MV_PRECISION_Q4.
172    const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
173                                               pd->subsampling_x,
174                                               pd->subsampling_y);
175
176    uint8_t *pre;
177    MV32 scaled_mv;
178    int xs, ys, subpel_x, subpel_y;
179
180    if (vp9_is_scaled(sf)) {
181      pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf);
182      scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
183      xs = sf->x_step_q4;
184      ys = sf->y_step_q4;
185    } else {
186      pre = pre_buf->buf + (y * pre_buf->stride + x);
187      scaled_mv.row = mv_q4.row;
188      scaled_mv.col = mv_q4.col;
189      xs = ys = 16;
190    }
191    subpel_x = scaled_mv.col & SUBPEL_MASK;
192    subpel_y = scaled_mv.row & SUBPEL_MASK;
193    pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride
194           + (scaled_mv.col >> SUBPEL_BITS);
195
196    inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
197                    subpel_x, subpel_y, sf, w, h, ref, kernel, xs, ys);
198  }
199}
200
201static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
202                                              int mi_row, int mi_col,
203                                              int plane_from, int plane_to) {
204  int plane;
205  const int mi_x = mi_col * MI_SIZE;
206  const int mi_y = mi_row * MI_SIZE;
207  for (plane = plane_from; plane <= plane_to; ++plane) {
208    const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
209                                                        &xd->plane[plane]);
210    const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
211    const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
212    const int bw = 4 * num_4x4_w;
213    const int bh = 4 * num_4x4_h;
214
215    if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
216      int i = 0, x, y;
217      assert(bsize == BLOCK_8X8);
218      for (y = 0; y < num_4x4_h; ++y)
219        for (x = 0; x < num_4x4_w; ++x)
220           build_inter_predictors(xd, plane, i++, bw, bh,
221                                  4 * x, 4 * y, 4, 4, mi_x, mi_y);
222    } else {
223      build_inter_predictors(xd, plane, 0, bw, bh,
224                             0, 0, bw, bh, mi_x, mi_y);
225    }
226  }
227}
228
229void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
230                                    BLOCK_SIZE bsize) {
231  build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
232}
233void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
234                                     BLOCK_SIZE bsize) {
235  build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
236                                    MAX_MB_PLANE - 1);
237}
238void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
239                                   BLOCK_SIZE bsize) {
240  build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
241                                    MAX_MB_PLANE - 1);
242}
243
244// TODO(jingning): This function serves as a placeholder for decoder prediction
245// using on demand border extension. It should be moved to /decoder/ directory.
246static void dec_build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
247                                       int bw, int bh,
248                                       int x, int y, int w, int h,
249                                       int mi_x, int mi_y) {
250  struct macroblockd_plane *const pd = &xd->plane[plane];
251  const MODE_INFO *mi = xd->mi[0];
252  const int is_compound = has_second_ref(&mi->mbmi);
253  const InterpKernel *kernel = vp9_get_interp_kernel(mi->mbmi.interp_filter);
254  int ref;
255
256  for (ref = 0; ref < 1 + is_compound; ++ref) {
257    const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
258    struct buf_2d *const pre_buf = &pd->pre[ref];
259    struct buf_2d *const dst_buf = &pd->dst;
260    uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
261
262    // TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
263    // same MV (the average of the 4 luma MVs) but we could do something
264    // smarter for non-4:2:0. Just punt for now, pending the changes to get
265    // rid of SPLITMV mode entirely.
266    const MV mv = mi->mbmi.sb_type < BLOCK_8X8
267               ? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
268                             : mi_mv_pred_q4(mi, ref))
269               : mi->mbmi.mv[ref].as_mv;
270
271    // TODO(jkoleszar): This clamping is done in the incorrect place for the
272    // scaling case. It needs to be done on the scaled MV, not the pre-scaling
273    // MV. Note however that it performs the subsampling aware scaling so
274    // that the result is always q4.
275    // mv_precision precision is MV_PRECISION_Q4.
276    const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
277                                               pd->subsampling_x,
278                                               pd->subsampling_y);
279
280    MV32 scaled_mv;
281    int xs, ys, x0, y0, x0_16, y0_16, frame_width, frame_height, buf_stride,
282        subpel_x, subpel_y;
283    uint8_t *ref_frame, *buf_ptr;
284    const YV12_BUFFER_CONFIG *ref_buf = xd->block_refs[ref]->buf;
285
286    // Get reference frame pointer, width and height.
287    if (plane == 0) {
288      frame_width = ref_buf->y_crop_width;
289      frame_height = ref_buf->y_crop_height;
290      ref_frame = ref_buf->y_buffer;
291    } else {
292      frame_width = ref_buf->uv_crop_width;
293      frame_height = ref_buf->uv_crop_height;
294      ref_frame = plane == 1 ? ref_buf->u_buffer : ref_buf->v_buffer;
295    }
296
297    if (vp9_is_scaled(sf)) {
298      // Co-ordinate of containing block to pixel precision.
299      int x_start = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x));
300      int y_start = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y));
301
302      // Co-ordinate of the block to 1/16th pixel precision.
303      x0_16 = (x_start + x) << SUBPEL_BITS;
304      y0_16 = (y_start + y) << SUBPEL_BITS;
305
306      // Co-ordinate of current block in reference frame
307      // to 1/16th pixel precision.
308      x0_16 = sf->scale_value_x(x0_16, sf);
309      y0_16 = sf->scale_value_y(y0_16, sf);
310
311      // Map the top left corner of the block into the reference frame.
312      x0 = sf->scale_value_x(x_start + x, sf);
313      y0 = sf->scale_value_y(y_start + y, sf);
314
315      // Scale the MV and incorporate the sub-pixel offset of the block
316      // in the reference frame.
317      scaled_mv = vp9_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
318      xs = sf->x_step_q4;
319      ys = sf->y_step_q4;
320    } else {
321      // Co-ordinate of containing block to pixel precision.
322      x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
323      y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
324
325      // Co-ordinate of the block to 1/16th pixel precision.
326      x0_16 = x0 << SUBPEL_BITS;
327      y0_16 = y0 << SUBPEL_BITS;
328
329      scaled_mv.row = mv_q4.row;
330      scaled_mv.col = mv_q4.col;
331      xs = ys = 16;
332    }
333    subpel_x = scaled_mv.col & SUBPEL_MASK;
334    subpel_y = scaled_mv.row & SUBPEL_MASK;
335
336    // Calculate the top left corner of the best matching block in the reference frame.
337    x0 += scaled_mv.col >> SUBPEL_BITS;
338    y0 += scaled_mv.row >> SUBPEL_BITS;
339    x0_16 += scaled_mv.col;
340    y0_16 += scaled_mv.row;
341
342    // Get reference block pointer.
343    buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
344    buf_stride = pre_buf->stride;
345
346    // Do border extension if there is motion or the
347    // width/height is not a multiple of 8 pixels.
348    if (scaled_mv.col || scaled_mv.row ||
349        (frame_width & 0x7) || (frame_height & 0x7)) {
350      // Get reference block bottom right coordinate.
351      int x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
352      int y1 = ((y0_16 + (h - 1) * ys) >> SUBPEL_BITS) + 1;
353      int x_pad = 0, y_pad = 0;
354
355      if (subpel_x || (sf->x_step_q4 & SUBPEL_MASK)) {
356        x0 -= VP9_INTERP_EXTEND - 1;
357        x1 += VP9_INTERP_EXTEND;
358        x_pad = 1;
359      }
360
361      if (subpel_y || (sf->y_step_q4 & SUBPEL_MASK)) {
362        y0 -= VP9_INTERP_EXTEND - 1;
363        y1 += VP9_INTERP_EXTEND;
364        y_pad = 1;
365      }
366
367      // Skip border extension if block is inside the frame.
368      if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width ||
369          y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
370        uint8_t *buf_ptr1 = ref_frame + y0 * pre_buf->stride + x0;
371        // Extend the border.
372        build_mc_border(buf_ptr1, pre_buf->stride, xd->mc_buf, x1 - x0 + 1,
373                        x0, y0, x1 - x0 + 1, y1 - y0 + 1, frame_width,
374                        frame_height);
375        buf_stride = x1 - x0 + 1;
376        buf_ptr = xd->mc_buf + y_pad * 3 * buf_stride + x_pad * 3;
377      }
378    }
379
380    inter_predictor(buf_ptr, buf_stride, dst, dst_buf->stride, subpel_x,
381                    subpel_y, sf, w, h, ref, kernel, xs, ys);
382  }
383}
384
385void vp9_dec_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
386                                       BLOCK_SIZE bsize) {
387  int plane;
388  const int mi_x = mi_col * MI_SIZE;
389  const int mi_y = mi_row * MI_SIZE;
390  for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
391    const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
392                                                        &xd->plane[plane]);
393    const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
394    const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
395    const int bw = 4 * num_4x4_w;
396    const int bh = 4 * num_4x4_h;
397
398    if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8) {
399      int i = 0, x, y;
400      assert(bsize == BLOCK_8X8);
401      for (y = 0; y < num_4x4_h; ++y)
402        for (x = 0; x < num_4x4_w; ++x)
403          dec_build_inter_predictors(xd, plane, i++, bw, bh,
404                                     4 * x, 4 * y, 4, 4, mi_x, mi_y);
405    } else {
406      dec_build_inter_predictors(xd, plane, 0, bw, bh,
407                                 0, 0, bw, bh, mi_x, mi_y);
408    }
409  }
410}
411
412void vp9_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
413                          const YV12_BUFFER_CONFIG *src,
414                          int mi_row, int mi_col) {
415  uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
416                               src->alpha_buffer};
417  const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
418                          src->alpha_stride};
419  int i;
420
421  for (i = 0; i < MAX_MB_PLANE; ++i) {
422    struct macroblockd_plane *const pd = &planes[i];
423    setup_pred_plane(&pd->dst, buffers[i], strides[i], mi_row, mi_col, NULL,
424                     pd->subsampling_x, pd->subsampling_y);
425  }
426}
427
428void vp9_setup_pre_planes(MACROBLOCKD *xd, int idx,
429                          const YV12_BUFFER_CONFIG *src,
430                          int mi_row, int mi_col,
431                          const struct scale_factors *sf) {
432  if (src != NULL) {
433    int i;
434    uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer,
435                                 src->alpha_buffer};
436    const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride,
437                            src->alpha_stride};
438
439    for (i = 0; i < MAX_MB_PLANE; ++i) {
440      struct macroblockd_plane *const pd = &xd->plane[i];
441      setup_pred_plane(&pd->pre[idx], buffers[i], strides[i], mi_row, mi_col,
442                       sf, pd->subsampling_x, pd->subsampling_y);
443    }
444  }
445}
446