1/* ssl/t1_enc.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111/* ====================================================================
112 * Copyright 2005 Nokia. All rights reserved.
113 *
114 * The portions of the attached software ("Contribution") is developed by
115 * Nokia Corporation and is licensed pursuant to the OpenSSL open source
116 * license.
117 *
118 * The Contribution, originally written by Mika Kousa and Pasi Eronen of
119 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
120 * support (see RFC 4279) to OpenSSL.
121 *
122 * No patent licenses or other rights except those expressly stated in
123 * the OpenSSL open source license shall be deemed granted or received
124 * expressly, by implication, estoppel, or otherwise.
125 *
126 * No assurances are provided by Nokia that the Contribution does not
127 * infringe the patent or other intellectual property rights of any third
128 * party or that the license provides you with all the necessary rights
129 * to make use of the Contribution.
130 *
131 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
132 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
133 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
134 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
135 * OTHERWISE.
136 */
137
138#include <stdio.h>
139#include "ssl_locl.h"
140#ifndef OPENSSL_NO_COMP
141#include <openssl/comp.h>
142#endif
143#include <openssl/evp.h>
144#include <openssl/hmac.h>
145#include <openssl/md5.h>
146#include <openssl/rand.h>
147#ifdef KSSL_DEBUG
148#include <openssl/des.h>
149#endif
150
151/* seed1 through seed5 are virtually concatenated */
152static int tls1_P_hash(const EVP_MD *md, const unsigned char *sec,
153			int sec_len,
154			const void *seed1, int seed1_len,
155			const void *seed2, int seed2_len,
156			const void *seed3, int seed3_len,
157			const void *seed4, int seed4_len,
158			const void *seed5, int seed5_len,
159			unsigned char *out, int olen)
160	{
161	int chunk;
162	size_t j;
163	EVP_MD_CTX ctx, ctx_tmp;
164	EVP_PKEY *mac_key;
165	unsigned char A1[EVP_MAX_MD_SIZE];
166	size_t A1_len;
167	int ret = 0;
168
169	chunk=EVP_MD_size(md);
170	OPENSSL_assert(chunk >= 0);
171
172	EVP_MD_CTX_init(&ctx);
173	EVP_MD_CTX_init(&ctx_tmp);
174	EVP_MD_CTX_set_flags(&ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
175	EVP_MD_CTX_set_flags(&ctx_tmp, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
176	mac_key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, sec, sec_len);
177	if (!mac_key)
178		goto err;
179	if (!EVP_DigestSignInit(&ctx,NULL,md, NULL, mac_key))
180		goto err;
181	if (!EVP_DigestSignInit(&ctx_tmp,NULL,md, NULL, mac_key))
182		goto err;
183	if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len))
184		goto err;
185	if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len))
186		goto err;
187	if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len))
188		goto err;
189	if (seed4 && !EVP_DigestSignUpdate(&ctx,seed4,seed4_len))
190		goto err;
191	if (seed5 && !EVP_DigestSignUpdate(&ctx,seed5,seed5_len))
192		goto err;
193	if (!EVP_DigestSignFinal(&ctx,A1,&A1_len))
194		goto err;
195
196	for (;;)
197		{
198		/* Reinit mac contexts */
199		if (!EVP_DigestSignInit(&ctx,NULL,md, NULL, mac_key))
200			goto err;
201		if (!EVP_DigestSignInit(&ctx_tmp,NULL,md, NULL, mac_key))
202			goto err;
203		if (!EVP_DigestSignUpdate(&ctx,A1,A1_len))
204			goto err;
205		if (!EVP_DigestSignUpdate(&ctx_tmp,A1,A1_len))
206			goto err;
207		if (seed1 && !EVP_DigestSignUpdate(&ctx,seed1,seed1_len))
208			goto err;
209		if (seed2 && !EVP_DigestSignUpdate(&ctx,seed2,seed2_len))
210			goto err;
211		if (seed3 && !EVP_DigestSignUpdate(&ctx,seed3,seed3_len))
212			goto err;
213		if (seed4 && !EVP_DigestSignUpdate(&ctx,seed4,seed4_len))
214			goto err;
215		if (seed5 && !EVP_DigestSignUpdate(&ctx,seed5,seed5_len))
216			goto err;
217
218		if (olen > chunk)
219			{
220			if (!EVP_DigestSignFinal(&ctx,out,&j))
221				goto err;
222			out+=j;
223			olen-=j;
224			/* calc the next A1 value */
225			if (!EVP_DigestSignFinal(&ctx_tmp,A1,&A1_len))
226				goto err;
227			}
228		else	/* last one */
229			{
230			if (!EVP_DigestSignFinal(&ctx,A1,&A1_len))
231				goto err;
232			memcpy(out,A1,olen);
233			break;
234			}
235		}
236	ret = 1;
237err:
238	EVP_PKEY_free(mac_key);
239	EVP_MD_CTX_cleanup(&ctx);
240	EVP_MD_CTX_cleanup(&ctx_tmp);
241	OPENSSL_cleanse(A1,sizeof(A1));
242	return ret;
243	}
244
245/* seed1 through seed5 are virtually concatenated */
246static int tls1_PRF(long digest_mask,
247		     const void *seed1, int seed1_len,
248		     const void *seed2, int seed2_len,
249		     const void *seed3, int seed3_len,
250		     const void *seed4, int seed4_len,
251		     const void *seed5, int seed5_len,
252		     const unsigned char *sec, int slen,
253		     unsigned char *out1,
254		     unsigned char *out2, int olen)
255	{
256	int len,i,idx,count;
257	const unsigned char *S1;
258	long m;
259	const EVP_MD *md;
260	int ret = 0;
261
262	/* Count number of digests and partition sec evenly */
263	count=0;
264	for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) {
265		if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) count++;
266	}
267	len=slen/count;
268	if (count == 1)
269		slen = 0;
270	S1=sec;
271	memset(out1,0,olen);
272	for (idx=0;ssl_get_handshake_digest(idx,&m,&md);idx++) {
273		if ((m<<TLS1_PRF_DGST_SHIFT) & digest_mask) {
274			if (!md) {
275				SSLerr(SSL_F_TLS1_PRF,
276				SSL_R_UNSUPPORTED_DIGEST_TYPE);
277				goto err;
278			}
279			if (!tls1_P_hash(md ,S1,len+(slen&1),
280					seed1,seed1_len,seed2,seed2_len,seed3,seed3_len,seed4,seed4_len,seed5,seed5_len,
281					out2,olen))
282				goto err;
283			S1+=len;
284			for (i=0; i<olen; i++)
285			{
286				out1[i]^=out2[i];
287			}
288		}
289	}
290	ret = 1;
291err:
292	return ret;
293}
294static int tls1_generate_key_block(SSL *s, unsigned char *km,
295	     unsigned char *tmp, int num)
296	{
297	int ret;
298	ret = tls1_PRF(ssl_get_algorithm2(s),
299		 TLS_MD_KEY_EXPANSION_CONST,TLS_MD_KEY_EXPANSION_CONST_SIZE,
300		 s->s3->server_random,SSL3_RANDOM_SIZE,
301		 s->s3->client_random,SSL3_RANDOM_SIZE,
302		 NULL,0,NULL,0,
303		 s->session->master_key,s->session->master_key_length,
304		 km,tmp,num);
305#ifdef KSSL_DEBUG
306	printf("tls1_generate_key_block() ==> %d byte master_key =\n\t",
307                s->session->master_key_length);
308	{
309        int i;
310        for (i=0; i < s->session->master_key_length; i++)
311                {
312                printf("%02X", s->session->master_key[i]);
313                }
314        printf("\n");  }
315#endif    /* KSSL_DEBUG */
316	return ret;
317	}
318
319/* tls1_aead_ctx_init allocates |*aead_ctx|, if needed and returns 1. It
320 * returns 0 on malloc error. */
321static int tls1_aead_ctx_init(SSL_AEAD_CTX **aead_ctx)
322	{
323	if (*aead_ctx != NULL)
324		EVP_AEAD_CTX_cleanup(&(*aead_ctx)->ctx);
325	else
326		{
327		*aead_ctx = (SSL_AEAD_CTX*) OPENSSL_malloc(sizeof(SSL_AEAD_CTX));
328		if (*aead_ctx == NULL)
329			{
330			SSLerr(SSL_F_TLS1_AEAD_CTX_INIT, ERR_R_MALLOC_FAILURE);
331			return 0;
332			}
333		}
334
335	return 1;
336	}
337
338static int tls1_change_cipher_state_aead(SSL *s, char is_read,
339	const unsigned char *key, unsigned key_len,
340	const unsigned char *iv, unsigned iv_len)
341	{
342	const EVP_AEAD *aead = s->s3->tmp.new_aead;
343	SSL_AEAD_CTX *aead_ctx;
344
345	if (is_read)
346		{
347		if (!tls1_aead_ctx_init(&s->aead_read_ctx))
348			return 0;
349		aead_ctx = s->aead_read_ctx;
350		}
351	else
352		{
353		if (!tls1_aead_ctx_init(&s->aead_write_ctx))
354			return 0;
355		aead_ctx = s->aead_write_ctx;
356		}
357
358	if (!EVP_AEAD_CTX_init(&aead_ctx->ctx, aead, key, key_len,
359			       EVP_AEAD_DEFAULT_TAG_LENGTH, NULL /* engine */))
360		return 0;
361	if (iv_len > sizeof(aead_ctx->fixed_nonce))
362		{
363		SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD, ERR_R_INTERNAL_ERROR);
364		return 0;
365		}
366	memcpy(aead_ctx->fixed_nonce, iv, iv_len);
367	aead_ctx->fixed_nonce_len = iv_len;
368	aead_ctx->variable_nonce_len = 8;  /* always the case, currently. */
369	aead_ctx->variable_nonce_included_in_record =
370		(s->s3->tmp.new_cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_VARIABLE_NONCE_INCLUDED_IN_RECORD) != 0;
371	if (aead_ctx->variable_nonce_len + aead_ctx->fixed_nonce_len != EVP_AEAD_nonce_length(aead))
372		{
373		SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_AEAD, ERR_R_INTERNAL_ERROR);
374		return 0;
375		}
376	aead_ctx->tag_len = EVP_AEAD_max_overhead(aead);
377
378	return 1;
379	}
380
381/* tls1_change_cipher_state_cipher performs the work needed to switch cipher
382 * states when using EVP_CIPHER. The argument |is_read| is true iff this
383 * function is being called due to reading, as opposed to writing, a
384 * ChangeCipherSpec message. In order to support export ciphersuites,
385 * use_client_keys indicates whether the key material provided is in the
386 * "client write" direction. */
387static int tls1_change_cipher_state_cipher(
388	SSL *s, char is_read, char use_client_keys,
389	const unsigned char *mac_secret, unsigned mac_secret_len,
390	const unsigned char *key, unsigned key_len,
391	const unsigned char *iv, unsigned iv_len)
392	{
393	const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc;
394	const char is_export = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher) != 0;
395	EVP_CIPHER_CTX *cipher_ctx;
396	EVP_MD_CTX *mac_ctx;
397	char is_aead_cipher;
398
399	unsigned char export_tmp1[EVP_MAX_KEY_LENGTH];
400	unsigned char export_tmp2[EVP_MAX_KEY_LENGTH];
401	unsigned char export_iv1[EVP_MAX_IV_LENGTH * 2];
402	unsigned char export_iv2[EVP_MAX_IV_LENGTH * 2];
403
404	if (is_read)
405		{
406		if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
407			s->mac_flags |= SSL_MAC_FLAG_READ_MAC_STREAM;
408		else
409			s->mac_flags &= ~SSL_MAC_FLAG_READ_MAC_STREAM;
410
411		if (s->enc_read_ctx != NULL)
412			EVP_CIPHER_CTX_cleanup(s->enc_read_ctx);
413		else if ((s->enc_read_ctx=OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
414			goto err;
415		else
416			/* make sure it's intialized in case we exit later with an error */
417			EVP_CIPHER_CTX_init(s->enc_read_ctx);
418
419		cipher_ctx = s->enc_read_ctx;
420		mac_ctx = ssl_replace_hash(&s->read_hash, NULL);
421
422		memcpy(s->s3->read_mac_secret, mac_secret, mac_secret_len);
423		s->s3->read_mac_secret_size = mac_secret_len;
424		}
425	else
426		{
427		if (s->s3->tmp.new_cipher->algorithm2 & TLS1_STREAM_MAC)
428			s->mac_flags |= SSL_MAC_FLAG_WRITE_MAC_STREAM;
429		else
430			s->mac_flags &= ~SSL_MAC_FLAG_WRITE_MAC_STREAM;
431
432		if (s->enc_write_ctx != NULL)
433			EVP_CIPHER_CTX_cleanup(s->enc_write_ctx);
434		else if ((s->enc_write_ctx=OPENSSL_malloc(sizeof(EVP_CIPHER_CTX))) == NULL)
435			goto err;
436		else
437			/* make sure it's intialized in case we exit later with an error */
438			EVP_CIPHER_CTX_init(s->enc_write_ctx);
439
440		cipher_ctx = s->enc_write_ctx;
441		mac_ctx = ssl_replace_hash(&s->write_hash, NULL);
442
443		memcpy(s->s3->write_mac_secret, mac_secret, mac_secret_len);
444		s->s3->write_mac_secret_size = mac_secret_len;
445		}
446
447	if (is_export)
448		{
449		/* In here I set both the read and write key/iv to the
450		 * same value since only the correct one will be used :-).
451		 */
452		const unsigned char *label;
453		unsigned label_len;
454
455		if (use_client_keys)
456			{
457			label = (const unsigned char*) TLS_MD_CLIENT_WRITE_KEY_CONST;
458			label_len = TLS_MD_CLIENT_WRITE_KEY_CONST_SIZE;
459			}
460		else
461			{
462			label = (const unsigned char*) TLS_MD_SERVER_WRITE_KEY_CONST;
463			label_len = TLS_MD_SERVER_WRITE_KEY_CONST_SIZE;
464			}
465
466		if (!tls1_PRF(ssl_get_algorithm2(s),
467				label, label_len,
468				s->s3->client_random, SSL3_RANDOM_SIZE,
469				s->s3->server_random, SSL3_RANDOM_SIZE,
470				NULL, 0, NULL, 0,
471				key /* secret */, key_len /* secret length */,
472				export_tmp1 /* output */,
473				export_tmp2 /* scratch space */,
474				EVP_CIPHER_key_length(s->s3->tmp.new_sym_enc) /* output length */))
475			return 0;
476		key = export_tmp1;
477
478		if (iv_len > 0)
479			{
480			static const unsigned char empty[] = "";
481
482			if (!tls1_PRF(ssl_get_algorithm2(s),
483					TLS_MD_IV_BLOCK_CONST, TLS_MD_IV_BLOCK_CONST_SIZE,
484					s->s3->client_random, SSL3_RANDOM_SIZE,
485					s->s3->server_random, SSL3_RANDOM_SIZE,
486					NULL, 0, NULL, 0,
487					empty /* secret */ ,0 /* secret length */,
488					export_iv1 /* output */,
489					export_iv2 /* scratch space */,
490					iv_len * 2 /* output length */))
491				return 0;
492
493			if (use_client_keys)
494				iv = export_iv1;
495			else
496				iv = &export_iv1[iv_len];
497			}
498		}
499
500	/* is_aead_cipher indicates whether the EVP_CIPHER implements an AEAD
501	 * interface. This is different from the newer EVP_AEAD interface. */
502	is_aead_cipher = (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) != 0;
503
504	if (!is_aead_cipher)
505		{
506		EVP_PKEY *mac_key =
507			EVP_PKEY_new_mac_key(s->s3->tmp.new_mac_pkey_type,
508					     NULL, mac_secret, mac_secret_len);
509		if (!mac_key)
510			return 0;
511		EVP_DigestSignInit(mac_ctx, NULL, s->s3->tmp.new_hash, NULL, mac_key);
512		EVP_PKEY_free(mac_key);
513		}
514
515	if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE)
516		{
517		EVP_CipherInit_ex(cipher_ctx, cipher, NULL /* engine */, key,
518				  NULL /* iv */, !is_read);
519		EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_GCM_SET_IV_FIXED, iv_len, (void*) iv);
520		}
521	else
522		EVP_CipherInit_ex(cipher_ctx, cipher, NULL /* engine */, key, iv, !is_read);
523
524	/* Needed for "composite" AEADs, such as RC4-HMAC-MD5 */
525	if (is_aead_cipher && mac_secret_len > 0)
526		EVP_CIPHER_CTX_ctrl(cipher_ctx, EVP_CTRL_AEAD_SET_MAC_KEY,
527				    mac_secret_len, (void*) mac_secret);
528
529	if (is_export)
530		{
531		OPENSSL_cleanse(export_tmp1, sizeof(export_tmp1));
532		OPENSSL_cleanse(export_tmp2, sizeof(export_tmp1));
533		OPENSSL_cleanse(export_iv1, sizeof(export_iv1));
534		OPENSSL_cleanse(export_iv2, sizeof(export_iv2));
535		}
536
537	return 1;
538
539err:
540	SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE_CIPHER, ERR_R_MALLOC_FAILURE);
541	return 0;
542	}
543
544int tls1_change_cipher_state(SSL *s, int which)
545	{
546	/* is_read is true if we have just read a ChangeCipherSpec message -
547	 * i.e. we need to update the read cipherspec. Otherwise we have just
548	 * written one. */
549	const char is_read = (which & SSL3_CC_READ) != 0;
550	/* use_client_keys is true if we wish to use the keys for the "client
551	 * write" direction. This is the case if we're a client sending a
552	 * ChangeCipherSpec, or a server reading a client's ChangeCipherSpec. */
553	const char use_client_keys = which == SSL3_CHANGE_CIPHER_CLIENT_WRITE ||
554				     which == SSL3_CHANGE_CIPHER_SERVER_READ;
555	const unsigned char *client_write_mac_secret, *server_write_mac_secret, *mac_secret;
556	const unsigned char *client_write_key, *server_write_key, *key;
557	const unsigned char *client_write_iv, *server_write_iv, *iv;
558	const EVP_CIPHER *cipher = s->s3->tmp.new_sym_enc;
559	const EVP_AEAD *aead = s->s3->tmp.new_aead;
560	unsigned key_len, iv_len, mac_secret_len;
561	const unsigned char *key_data;
562	const char is_export = SSL_C_IS_EXPORT(s->s3->tmp.new_cipher) != 0;
563
564	/* Update compression contexts. */
565#ifndef OPENSSL_NO_COMP
566	const SSL_COMP *comp = s->s3->tmp.new_compression;
567
568	if (is_read)
569		{
570		if (s->expand != NULL)
571			{
572			COMP_CTX_free(s->expand);
573			s->expand = NULL;
574			}
575		if (comp != NULL)
576			{
577			s->expand=COMP_CTX_new(comp->method);
578			if (s->expand == NULL)
579				{
580				SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,SSL_R_COMPRESSION_LIBRARY_ERROR);
581				return 0;
582				}
583			if (s->s3->rrec.comp == NULL)
584				s->s3->rrec.comp =
585					(unsigned char *)OPENSSL_malloc(SSL3_RT_MAX_ENCRYPTED_LENGTH);
586			if (s->s3->rrec.comp == NULL)
587				goto err;
588			}
589		}
590	else
591		{
592		if (s->compress != NULL)
593			{
594			COMP_CTX_free(s->compress);
595			s->compress = NULL;
596			}
597		if (comp != NULL)
598			{
599			s->compress = COMP_CTX_new(comp->method);
600			if (s->compress == NULL)
601				{
602				SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,SSL_R_COMPRESSION_LIBRARY_ERROR);
603				return 0;
604				}
605			}
606		}
607#endif  /* OPENSSL_NO_COMP */
608
609	/* Reset sequence number to zero. */
610	memset(is_read ? s->s3->read_sequence : s->s3->write_sequence, 0, 8);
611
612	/* key_arg is used for SSLv2. We don't need it for TLS. */
613	s->session->key_arg_length = 0;
614
615	mac_secret_len = s->s3->tmp.new_mac_secret_size;
616
617	if (aead != NULL)
618		{
619		key_len = EVP_AEAD_key_length(aead);
620		iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->s3->tmp.new_cipher);
621		}
622	else
623		{
624		key_len = EVP_CIPHER_key_length(cipher);
625		if (is_export && key_len > SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher))
626			key_len = SSL_C_EXPORT_KEYLENGTH(s->s3->tmp.new_cipher);
627
628		if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE)
629			iv_len = EVP_GCM_TLS_FIXED_IV_LEN;
630		else
631			iv_len = EVP_CIPHER_iv_length(cipher);
632		}
633
634	key_data = s->s3->tmp.key_block;
635	client_write_mac_secret = key_data; key_data += mac_secret_len;
636	server_write_mac_secret = key_data; key_data += mac_secret_len;
637	client_write_key =        key_data; key_data += key_len;
638	server_write_key =        key_data; key_data += key_len;
639	client_write_iv  =        key_data; key_data += iv_len;
640	server_write_iv  =        key_data; key_data += iv_len;
641
642	if (use_client_keys)
643		{
644		mac_secret = client_write_mac_secret;
645		key = client_write_key;
646		iv = client_write_iv;
647		}
648	else
649		{
650		mac_secret = server_write_mac_secret;
651		key = server_write_key;
652		iv = server_write_iv;
653		}
654
655	if (key_data - s->s3->tmp.key_block != s->s3->tmp.key_block_length)
656		{
657		SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE,ERR_R_INTERNAL_ERROR);
658		return 0;
659		}
660
661	if (aead != NULL)
662		{
663		if (!tls1_change_cipher_state_aead(s, is_read,
664						   key, key_len, iv, iv_len))
665			return 0;
666		}
667	else
668		{
669		if (!tls1_change_cipher_state_cipher(s, is_read, use_client_keys,
670						     mac_secret, mac_secret_len,
671						     key, key_len,
672						     iv, iv_len))
673			return 0;
674		}
675
676	return 1;
677err:
678	SSLerr(SSL_F_TLS1_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
679	return 0;
680	}
681
682int tls1_setup_key_block(SSL *s)
683	{
684	unsigned char *p1,*p2=NULL;
685	const EVP_CIPHER *c = NULL;
686	const EVP_MD *hash = NULL;
687	const EVP_AEAD *aead = NULL;
688	int num;
689	SSL_COMP *comp;
690	int mac_type= NID_undef,mac_secret_size=0;
691	int ret=0;
692	unsigned key_len, iv_len;
693
694#ifdef KSSL_DEBUG
695	printf ("tls1_setup_key_block()\n");
696#endif	/* KSSL_DEBUG */
697
698	if (s->s3->tmp.key_block_length != 0)
699		return(1);
700
701	if (!ssl_cipher_get_comp(s->session, &comp))
702		goto cipher_unavailable_err;
703
704	if (s->session->cipher &&
705	    (s->session->cipher->algorithm2 & SSL_CIPHER_ALGORITHM2_AEAD))
706		{
707		if (!ssl_cipher_get_evp_aead(s->session, &aead))
708			goto cipher_unavailable_err;
709		key_len = EVP_AEAD_key_length(aead);
710		iv_len = SSL_CIPHER_AEAD_FIXED_NONCE_LEN(s->session->cipher);
711		}
712	else
713		{
714		if (!ssl_cipher_get_evp(s->session,&c,&hash,&mac_type,&mac_secret_size))
715			goto cipher_unavailable_err;
716		key_len = EVP_CIPHER_key_length(c);
717
718		if (EVP_CIPHER_mode(c) == EVP_CIPH_GCM_MODE)
719			iv_len = EVP_GCM_TLS_FIXED_IV_LEN;
720		else
721			iv_len = EVP_CIPHER_iv_length(c);
722		}
723
724	s->s3->tmp.new_aead=aead;
725	s->s3->tmp.new_sym_enc=c;
726	s->s3->tmp.new_hash=hash;
727	s->s3->tmp.new_mac_pkey_type = mac_type;
728	s->s3->tmp.new_mac_secret_size = mac_secret_size;
729
730	num=key_len+mac_secret_size+iv_len;
731	num*=2;
732
733	ssl3_cleanup_key_block(s);
734
735	if ((p1=(unsigned char *)OPENSSL_malloc(num)) == NULL)
736		{
737		SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK,ERR_R_MALLOC_FAILURE);
738		goto err;
739		}
740
741	s->s3->tmp.key_block_length=num;
742	s->s3->tmp.key_block=p1;
743
744	if ((p2=(unsigned char *)OPENSSL_malloc(num)) == NULL)
745		{
746		SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK,ERR_R_MALLOC_FAILURE);
747		goto err;
748		}
749
750#ifdef TLS_DEBUG
751printf("client random\n");
752{ int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->client_random[z],((z+1)%16)?' ':'\n'); }
753printf("server random\n");
754{ int z; for (z=0; z<SSL3_RANDOM_SIZE; z++) printf("%02X%c",s->s3->server_random[z],((z+1)%16)?' ':'\n'); }
755printf("pre-master\n");
756{ int z; for (z=0; z<s->session->master_key_length; z++) printf("%02X%c",s->session->master_key[z],((z+1)%16)?' ':'\n'); }
757#endif
758	if (!tls1_generate_key_block(s,p1,p2,num))
759		goto err;
760#ifdef TLS_DEBUG
761printf("\nkey block\n");
762{ int z; for (z=0; z<num; z++) printf("%02X%c",p1[z],((z+1)%16)?' ':'\n'); }
763#endif
764
765	if (!(s->options & SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS)
766		&& s->method->version <= TLS1_VERSION)
767		{
768		/* enable vulnerability countermeasure for CBC ciphers with
769		 * known-IV problem (http://www.openssl.org/~bodo/tls-cbc.txt)
770		 */
771		s->s3->need_empty_fragments = 1;
772
773		if (s->session->cipher != NULL)
774			{
775			if (s->session->cipher->algorithm_enc == SSL_eNULL)
776				s->s3->need_empty_fragments = 0;
777
778#ifndef OPENSSL_NO_RC4
779			if (s->session->cipher->algorithm_enc == SSL_RC4)
780				s->s3->need_empty_fragments = 0;
781#endif
782			}
783		}
784
785	ret = 1;
786err:
787	if (p2)
788		{
789		OPENSSL_cleanse(p2,num);
790		OPENSSL_free(p2);
791		}
792	return(ret);
793
794cipher_unavailable_err:
795	SSLerr(SSL_F_TLS1_SETUP_KEY_BLOCK,SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
796	return 0;
797	}
798
799/* tls1_enc encrypts/decrypts the record in |s->wrec| / |s->rrec|, respectively.
800 *
801 * Returns:
802 *   0: (in non-constant time) if the record is publically invalid (i.e. too
803 *       short etc).
804 *   1: if the record's padding is valid / the encryption was successful.
805 *   -1: if the record's padding/AEAD-authenticator is invalid or, if sending,
806 *       an internal error occured.
807 */
808int tls1_enc(SSL *s, int send)
809	{
810	SSL3_RECORD *rec;
811	EVP_CIPHER_CTX *ds;
812	unsigned long l;
813	int bs,i,j,k,pad=0,ret,mac_size=0;
814	const EVP_CIPHER *enc;
815	const SSL_AEAD_CTX *aead;
816
817	if (send)
818		rec = &s->s3->wrec;
819	else
820		rec = &s->s3->rrec;
821
822	if (send)
823		aead = s->aead_write_ctx;
824	else
825		aead = s->aead_read_ctx;
826
827	if (aead)
828		{
829		unsigned char ad[13], *seq, *in, *out, nonce[16];
830		unsigned nonce_used;
831		ssize_t n;
832
833		seq = send ? s->s3->write_sequence : s->s3->read_sequence;
834
835		if (s->version == DTLS1_VERSION || s->version == DTLS1_BAD_VER)
836			{
837			unsigned char dtlsseq[9], *p = dtlsseq;
838
839			s2n(send ? s->d1->w_epoch : s->d1->r_epoch, p);
840			memcpy(p, &seq[2], 6);
841			memcpy(ad, dtlsseq, 8);
842			}
843		else
844			{
845			memcpy(ad, seq, 8);
846			for (i=7; i>=0; i--)	/* increment */
847				{
848				++seq[i];
849				if (seq[i] != 0)
850					break;
851				}
852			}
853
854		ad[8]  = rec->type;
855		ad[9]  = (unsigned char)(s->version>>8);
856		ad[10] = (unsigned char)(s->version);
857
858		if (aead->fixed_nonce_len + aead->variable_nonce_len > sizeof(nonce) ||
859		    aead->variable_nonce_len > 8)
860			return -1;  /* internal error - should never happen. */
861
862		memcpy(nonce, aead->fixed_nonce, aead->fixed_nonce_len);
863		nonce_used = aead->fixed_nonce_len;
864
865		if (send)
866			{
867			size_t len = rec->length;
868			size_t eivlen = 0;
869			in = rec->input;
870			out = rec->data;
871
872			/* When sending we use the sequence number as the
873			 * variable part of the nonce. */
874			if (aead->variable_nonce_len > 8)
875				return -1;
876			memcpy(nonce + nonce_used, ad, aead->variable_nonce_len);
877			nonce_used += aead->variable_nonce_len;
878
879			/* in do_ssl3_write, rec->input is moved forward by
880			 * variable_nonce_len in order to leave space for the
881			 * variable nonce. Thus we can copy the sequence number
882			 * bytes into place without overwriting any of the
883			 * plaintext. */
884			if (aead->variable_nonce_included_in_record)
885				{
886				memcpy(out, ad, aead->variable_nonce_len);
887				len -= aead->variable_nonce_len;
888				eivlen = aead->variable_nonce_len;
889				}
890
891			ad[11] = len >> 8;
892			ad[12] = len & 0xff;
893
894			n = EVP_AEAD_CTX_seal(&aead->ctx,
895					      out + eivlen, len + aead->tag_len,
896					      nonce, nonce_used,
897					      in + eivlen, len,
898					      ad, sizeof(ad));
899			if (n >= 0 && aead->variable_nonce_included_in_record)
900				n += aead->variable_nonce_len;
901			}
902		else
903			{
904			/* receive */
905			size_t len = rec->length;
906
907			if (rec->data != rec->input)
908				return -1;  /* internal error - should never happen. */
909			out = in = rec->input;
910
911			if (len < aead->variable_nonce_len)
912				return 0;
913			memcpy(nonce + nonce_used,
914			       aead->variable_nonce_included_in_record ? in : ad,
915			       aead->variable_nonce_len);
916			nonce_used += aead->variable_nonce_len;
917
918			if (aead->variable_nonce_included_in_record)
919				{
920				in += aead->variable_nonce_len;
921				len -= aead->variable_nonce_len;
922				out += aead->variable_nonce_len;
923				}
924
925			if (len < aead->tag_len)
926				return 0;
927			len -= aead->tag_len;
928
929			ad[11] = len >> 8;
930			ad[12] = len & 0xff;
931
932			n = EVP_AEAD_CTX_open(&aead->ctx, out, len, nonce, nonce_used,
933					      in, len + aead->tag_len, ad, sizeof(ad));
934
935			rec->data = rec->input = out;
936			}
937
938		if (n == -1)
939			return -1;
940		rec->length = n;
941		return 1;
942		}
943
944	if (send)
945		{
946		if (EVP_MD_CTX_md(s->write_hash))
947			{
948			int n=EVP_MD_CTX_size(s->write_hash);
949			OPENSSL_assert(n >= 0);
950			}
951		ds=s->enc_write_ctx;
952		rec= &(s->s3->wrec);
953		if (s->enc_write_ctx == NULL)
954			enc=NULL;
955		else
956			{
957			int ivlen;
958			enc=EVP_CIPHER_CTX_cipher(s->enc_write_ctx);
959			/* For TLSv1.1 and later explicit IV */
960			if (s->version >= TLS1_1_VERSION
961				&& EVP_CIPHER_mode(enc) == EVP_CIPH_CBC_MODE)
962				ivlen = EVP_CIPHER_iv_length(enc);
963			else
964				ivlen = 0;
965			if (ivlen > 1)
966				{
967				if ( rec->data != rec->input)
968					/* we can't write into the input stream:
969					 * Can this ever happen?? (steve)
970					 */
971					fprintf(stderr,
972						"%s:%d: rec->data != rec->input\n",
973						__FILE__, __LINE__);
974				else if (RAND_bytes(rec->input, ivlen) <= 0)
975					return -1;
976				}
977			}
978		}
979	else
980		{
981		if (EVP_MD_CTX_md(s->read_hash))
982			{
983			int n=EVP_MD_CTX_size(s->read_hash);
984			OPENSSL_assert(n >= 0);
985			}
986		ds=s->enc_read_ctx;
987		rec= &(s->s3->rrec);
988		if (s->enc_read_ctx == NULL)
989			enc=NULL;
990		else
991			enc=EVP_CIPHER_CTX_cipher(s->enc_read_ctx);
992		}
993
994#ifdef KSSL_DEBUG
995	printf("tls1_enc(%d)\n", send);
996#endif    /* KSSL_DEBUG */
997
998	if ((s->session == NULL) || (ds == NULL) || (enc == NULL))
999		{
1000		memmove(rec->data,rec->input,rec->length);
1001		rec->input=rec->data;
1002		ret = 1;
1003		}
1004	else
1005		{
1006		l=rec->length;
1007		bs=EVP_CIPHER_block_size(ds->cipher);
1008
1009		if (EVP_CIPHER_flags(ds->cipher)&EVP_CIPH_FLAG_AEAD_CIPHER)
1010			{
1011			unsigned char buf[13],*seq;
1012
1013			seq = send?s->s3->write_sequence:s->s3->read_sequence;
1014
1015			if (s->version == DTLS1_VERSION || s->version == DTLS1_BAD_VER)
1016				{
1017				unsigned char dtlsseq[9],*p=dtlsseq;
1018
1019				s2n(send?s->d1->w_epoch:s->d1->r_epoch,p);
1020				memcpy(p,&seq[2],6);
1021				memcpy(buf,dtlsseq,8);
1022				}
1023			else
1024				{
1025				memcpy(buf,seq,8);
1026				for (i=7; i>=0; i--)	/* increment */
1027					{
1028					++seq[i];
1029					if (seq[i] != 0) break;
1030					}
1031				}
1032
1033			buf[8]=rec->type;
1034			buf[9]=(unsigned char)(s->version>>8);
1035			buf[10]=(unsigned char)(s->version);
1036			buf[11]=rec->length>>8;
1037			buf[12]=rec->length&0xff;
1038			pad=EVP_CIPHER_CTX_ctrl(ds,EVP_CTRL_AEAD_TLS1_AAD,13,buf);
1039			if (send)
1040				{
1041				l+=pad;
1042				rec->length+=pad;
1043				}
1044			}
1045		else if ((bs != 1) && send)
1046			{
1047			i=bs-((int)l%bs);
1048
1049			/* Add weird padding of upto 256 bytes */
1050
1051			/* we need to add 'i' padding bytes of value j */
1052			j=i-1;
1053			if (s->options & SSL_OP_TLS_BLOCK_PADDING_BUG)
1054				{
1055				if (s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG)
1056					j++;
1057				}
1058			for (k=(int)l; k<(int)(l+i); k++)
1059				rec->input[k]=j;
1060			l+=i;
1061			rec->length+=i;
1062			}
1063
1064#ifdef KSSL_DEBUG
1065		{
1066		unsigned long ui;
1067		printf("EVP_Cipher(ds=%p,rec->data=%p,rec->input=%p,l=%ld) ==>\n",
1068			ds,rec->data,rec->input,l);
1069		printf("\tEVP_CIPHER_CTX: %d buf_len, %d key_len [%d %d], %d iv_len\n",
1070			ds->buf_len, ds->cipher->key_len,
1071			DES_KEY_SZ, DES_SCHEDULE_SZ,
1072			ds->cipher->iv_len);
1073		printf("\t\tIV: ");
1074		for (i=0; i<ds->cipher->iv_len; i++) printf("%02X", ds->iv[i]);
1075		printf("\n");
1076		printf("\trec->input=");
1077		for (ui=0; ui<l; ui++) printf(" %02x", rec->input[ui]);
1078		printf("\n");
1079		}
1080#endif	/* KSSL_DEBUG */
1081
1082		if (!send)
1083			{
1084			if (l == 0 || l%bs != 0)
1085				return 0;
1086			}
1087
1088		i = EVP_Cipher(ds,rec->data,rec->input,l);
1089		if ((EVP_CIPHER_flags(ds->cipher)&EVP_CIPH_FLAG_CUSTOM_CIPHER)
1090						?(i<0)
1091						:(i==0))
1092			return -1;	/* AEAD can fail to verify MAC */
1093		if (EVP_CIPHER_mode(enc) == EVP_CIPH_GCM_MODE && !send)
1094			{
1095			rec->data += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1096			rec->input += EVP_GCM_TLS_EXPLICIT_IV_LEN;
1097			rec->length -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
1098			}
1099
1100#ifdef KSSL_DEBUG
1101		{
1102		unsigned long i;
1103		printf("\trec->data=");
1104		for (i=0; i<l; i++)
1105			printf(" %02x", rec->data[i]);  printf("\n");
1106		}
1107#endif	/* KSSL_DEBUG */
1108
1109		ret = 1;
1110		if (EVP_MD_CTX_md(s->read_hash) != NULL)
1111			mac_size = EVP_MD_CTX_size(s->read_hash);
1112		if ((bs != 1) && !send)
1113			ret = tls1_cbc_remove_padding(s, rec, bs, mac_size);
1114		if (pad && !send)
1115			rec->length -= pad;
1116		}
1117	return ret;
1118	}
1119
1120int tls1_cert_verify_mac(SSL *s, int md_nid, unsigned char *out)
1121	{
1122	unsigned int ret;
1123	EVP_MD_CTX ctx, *d=NULL;
1124	int i;
1125
1126	if (s->s3->handshake_buffer)
1127		if (!ssl3_digest_cached_records(s))
1128			return 0;
1129
1130	for (i=0;i<SSL_MAX_DIGEST;i++)
1131		{
1132		  if (s->s3->handshake_dgst[i]&&EVP_MD_CTX_type(s->s3->handshake_dgst[i])==md_nid)
1133		  	{
1134		  	d=s->s3->handshake_dgst[i];
1135			break;
1136			}
1137		}
1138	if (!d) {
1139		SSLerr(SSL_F_TLS1_CERT_VERIFY_MAC,SSL_R_NO_REQUIRED_DIGEST);
1140		return 0;
1141	}
1142
1143	EVP_MD_CTX_init(&ctx);
1144	EVP_MD_CTX_copy_ex(&ctx,d);
1145	EVP_DigestFinal_ex(&ctx,out,&ret);
1146	EVP_MD_CTX_cleanup(&ctx);
1147	return((int)ret);
1148	}
1149
1150/* tls1_handshake_digest calculates the current handshake hash and writes it to
1151 * |out|, which has space for |out_len| bytes. It returns the number of bytes
1152 * written or -1 in the event of an error. This function works on a copy of the
1153 * underlying digests so can be called multiple times and prior to the final
1154 * update etc. */
1155int tls1_handshake_digest(SSL *s, unsigned char *out, size_t out_len)
1156	{
1157	const EVP_MD *md;
1158	EVP_MD_CTX ctx;
1159	int i, err = 0, len = 0;
1160	long mask;
1161
1162	EVP_MD_CTX_init(&ctx);
1163
1164	for (i = 0; ssl_get_handshake_digest(i, &mask, &md); i++)
1165		{
1166		int hash_size;
1167		unsigned int digest_len;
1168		EVP_MD_CTX *hdgst = s->s3->handshake_dgst[i];
1169
1170		if ((mask & ssl_get_algorithm2(s)) == 0)
1171			continue;
1172
1173		hash_size = EVP_MD_size(md);
1174		if (!hdgst || hash_size < 0 || (size_t)hash_size > out_len)
1175			{
1176			err = 1;
1177			break;
1178			}
1179
1180		if (!EVP_MD_CTX_copy_ex(&ctx, hdgst) ||
1181		    !EVP_DigestFinal_ex(&ctx, out, &digest_len) ||
1182		    digest_len != (unsigned int)hash_size) /* internal error */
1183			{
1184			err = 1;
1185			break;
1186			}
1187		out += digest_len;
1188		out_len -= digest_len;
1189		len += digest_len;
1190		}
1191
1192	EVP_MD_CTX_cleanup(&ctx);
1193
1194	if (err != 0)
1195		return -1;
1196	return len;
1197	}
1198
1199int tls1_final_finish_mac(SSL *s,
1200	     const char *str, int slen, unsigned char *out)
1201	{
1202	unsigned char buf[2*EVP_MAX_MD_SIZE];
1203	unsigned char buf2[12];
1204	int err=0;
1205	int digests_len;
1206
1207	if (s->s3->handshake_buffer)
1208		if (!ssl3_digest_cached_records(s))
1209			return 0;
1210
1211	digests_len = tls1_handshake_digest(s, buf, sizeof(buf));
1212	if (digests_len < 0)
1213		{
1214		err = 1;
1215		digests_len = 0;
1216		}
1217
1218	if (!tls1_PRF(ssl_get_algorithm2(s),
1219			str,slen, buf, digests_len, NULL,0, NULL,0, NULL,0,
1220			s->session->master_key,s->session->master_key_length,
1221			out,buf2,sizeof buf2))
1222		err = 1;
1223
1224	if (err)
1225		return 0;
1226	else
1227		return sizeof buf2;
1228	}
1229
1230int tls1_mac(SSL *ssl, unsigned char *md, int send)
1231	{
1232	SSL3_RECORD *rec;
1233	unsigned char *seq;
1234	EVP_MD_CTX *hash;
1235	size_t md_size, orig_len;
1236	int i;
1237	EVP_MD_CTX hmac, *mac_ctx;
1238	unsigned char header[13];
1239	int stream_mac = (send?(ssl->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM):(ssl->mac_flags&SSL_MAC_FLAG_READ_MAC_STREAM));
1240	int t;
1241
1242	if (send)
1243		{
1244		rec= &(ssl->s3->wrec);
1245		seq= &(ssl->s3->write_sequence[0]);
1246		hash=ssl->write_hash;
1247		}
1248	else
1249		{
1250		rec= &(ssl->s3->rrec);
1251		seq= &(ssl->s3->read_sequence[0]);
1252		hash=ssl->read_hash;
1253		}
1254
1255	t=EVP_MD_CTX_size(hash);
1256	OPENSSL_assert(t >= 0);
1257	md_size=t;
1258
1259	/* I should fix this up TLS TLS TLS TLS TLS XXXXXXXX */
1260	if (stream_mac)
1261		{
1262			mac_ctx = hash;
1263		}
1264		else
1265		{
1266			EVP_MD_CTX_copy(&hmac,hash);
1267			mac_ctx = &hmac;
1268		}
1269
1270	if (ssl->version == DTLS1_VERSION || ssl->version == DTLS1_BAD_VER)
1271		{
1272		unsigned char dtlsseq[8],*p=dtlsseq;
1273
1274		s2n(send?ssl->d1->w_epoch:ssl->d1->r_epoch, p);
1275		memcpy (p,&seq[2],6);
1276
1277		memcpy(header, dtlsseq, 8);
1278		}
1279	else
1280		memcpy(header, seq, 8);
1281
1282	/* kludge: tls1_cbc_remove_padding passes padding length in rec->type */
1283	orig_len = rec->length+md_size+((unsigned int)rec->type>>8);
1284	rec->type &= 0xff;
1285
1286	header[8]=rec->type;
1287	header[9]=(unsigned char)(ssl->version>>8);
1288	header[10]=(unsigned char)(ssl->version);
1289	header[11]=(rec->length)>>8;
1290	header[12]=(rec->length)&0xff;
1291
1292	if (!send &&
1293	    EVP_CIPHER_CTX_mode(ssl->enc_read_ctx) == EVP_CIPH_CBC_MODE &&
1294	    ssl3_cbc_record_digest_supported(mac_ctx))
1295		{
1296		/* This is a CBC-encrypted record. We must avoid leaking any
1297		 * timing-side channel information about how many blocks of
1298		 * data we are hashing because that gives an attacker a
1299		 * timing-oracle. */
1300		ssl3_cbc_digest_record(
1301			mac_ctx,
1302			md, &md_size,
1303			header, rec->input,
1304			rec->length + md_size, orig_len,
1305			ssl->s3->read_mac_secret,
1306			ssl->s3->read_mac_secret_size,
1307			0 /* not SSLv3 */);
1308		}
1309	else
1310		{
1311		EVP_DigestSignUpdate(mac_ctx,header,sizeof(header));
1312		EVP_DigestSignUpdate(mac_ctx,rec->input,rec->length);
1313		t=EVP_DigestSignFinal(mac_ctx,md,&md_size);
1314		OPENSSL_assert(t > 0);
1315#ifdef OPENSSL_FIPS
1316		if (!send && FIPS_mode())
1317			tls_fips_digest_extra(
1318	    				ssl->enc_read_ctx,
1319					mac_ctx, rec->input,
1320					rec->length, orig_len);
1321#endif
1322		}
1323
1324	if (!stream_mac)
1325		EVP_MD_CTX_cleanup(&hmac);
1326#ifdef TLS_DEBUG
1327printf("sec=");
1328{unsigned int z; for (z=0; z<md_size; z++) printf("%02X ",mac_sec[z]); printf("\n"); }
1329printf("seq=");
1330{int z; for (z=0; z<8; z++) printf("%02X ",seq[z]); printf("\n"); }
1331printf("buf=");
1332{int z; for (z=0; z<5; z++) printf("%02X ",buf[z]); printf("\n"); }
1333printf("rec=");
1334{unsigned int z; for (z=0; z<rec->length; z++) printf("%02X ",buf[z]); printf("\n"); }
1335#endif
1336
1337	if (ssl->version != DTLS1_VERSION && ssl->version != DTLS1_BAD_VER)
1338		{
1339		for (i=7; i>=0; i--)
1340			{
1341			++seq[i];
1342			if (seq[i] != 0) break;
1343			}
1344		}
1345
1346#ifdef TLS_DEBUG
1347{unsigned int z; for (z=0; z<md_size; z++) printf("%02X ",md[z]); printf("\n"); }
1348#endif
1349	return(md_size);
1350	}
1351
1352int tls1_generate_master_secret(SSL *s, unsigned char *out, unsigned char *p,
1353	     int len)
1354	{
1355	unsigned char buff[SSL_MAX_MASTER_KEY_LENGTH];
1356	const void *co = NULL, *so = NULL;
1357	int col = 0, sol = 0;
1358
1359
1360#ifdef KSSL_DEBUG
1361	printf ("tls1_generate_master_secret(%p,%p, %p, %d)\n", s,out, p,len);
1362#endif	/* KSSL_DEBUG */
1363
1364#ifdef TLSEXT_TYPE_opaque_prf_input
1365	if (s->s3->client_opaque_prf_input != NULL && s->s3->server_opaque_prf_input != NULL &&
1366	    s->s3->client_opaque_prf_input_len > 0 &&
1367	    s->s3->client_opaque_prf_input_len == s->s3->server_opaque_prf_input_len)
1368		{
1369		co = s->s3->client_opaque_prf_input;
1370		col = s->s3->server_opaque_prf_input_len;
1371		so = s->s3->server_opaque_prf_input;
1372		sol = s->s3->client_opaque_prf_input_len; /* must be same as col (see draft-rescorla-tls-opaque-prf-input-00.txt, section 3.1) */
1373		}
1374#endif
1375
1376	tls1_PRF(ssl_get_algorithm2(s),
1377		TLS_MD_MASTER_SECRET_CONST,TLS_MD_MASTER_SECRET_CONST_SIZE,
1378		s->s3->client_random,SSL3_RANDOM_SIZE,
1379		co, col,
1380		s->s3->server_random,SSL3_RANDOM_SIZE,
1381		so, sol,
1382		p,len,
1383		s->session->master_key,buff,sizeof buff);
1384#ifdef SSL_DEBUG
1385	fprintf(stderr, "Premaster Secret:\n");
1386	BIO_dump_fp(stderr, (char *)p, len);
1387	fprintf(stderr, "Client Random:\n");
1388	BIO_dump_fp(stderr, (char *)s->s3->client_random, SSL3_RANDOM_SIZE);
1389	fprintf(stderr, "Server Random:\n");
1390	BIO_dump_fp(stderr, (char *)s->s3->server_random, SSL3_RANDOM_SIZE);
1391	fprintf(stderr, "Master Secret:\n");
1392	BIO_dump_fp(stderr, (char *)s->session->master_key, SSL3_MASTER_SECRET_SIZE);
1393#endif
1394
1395#ifdef KSSL_DEBUG
1396	printf ("tls1_generate_master_secret() complete\n");
1397#endif	/* KSSL_DEBUG */
1398	return(SSL3_MASTER_SECRET_SIZE);
1399	}
1400
1401int tls1_export_keying_material(SSL *s, unsigned char *out, size_t olen,
1402	 const char *label, size_t llen, const unsigned char *context,
1403	 size_t contextlen, int use_context)
1404	{
1405	unsigned char *buff;
1406	unsigned char *val = NULL;
1407	size_t vallen, currentvalpos;
1408	int rv;
1409
1410#ifdef KSSL_DEBUG
1411	printf ("tls1_export_keying_material(%p,%p,%d,%s,%d,%p,%d)\n", s, out, olen, label, llen, p, plen);
1412#endif	/* KSSL_DEBUG */
1413
1414	buff = OPENSSL_malloc(olen);
1415	if (buff == NULL) goto err2;
1416
1417	/* construct PRF arguments
1418	 * we construct the PRF argument ourself rather than passing separate
1419	 * values into the TLS PRF to ensure that the concatenation of values
1420	 * does not create a prohibited label.
1421	 */
1422	vallen = llen + SSL3_RANDOM_SIZE * 2;
1423	if (use_context)
1424		{
1425		vallen += 2 + contextlen;
1426		}
1427
1428	val = OPENSSL_malloc(vallen);
1429	if (val == NULL) goto err2;
1430	currentvalpos = 0;
1431	memcpy(val + currentvalpos, (unsigned char *) label, llen);
1432	currentvalpos += llen;
1433	memcpy(val + currentvalpos, s->s3->client_random, SSL3_RANDOM_SIZE);
1434	currentvalpos += SSL3_RANDOM_SIZE;
1435	memcpy(val + currentvalpos, s->s3->server_random, SSL3_RANDOM_SIZE);
1436	currentvalpos += SSL3_RANDOM_SIZE;
1437
1438	if (use_context)
1439		{
1440		val[currentvalpos] = (contextlen >> 8) & 0xff;
1441		currentvalpos++;
1442		val[currentvalpos] = contextlen & 0xff;
1443		currentvalpos++;
1444		if ((contextlen > 0) || (context != NULL))
1445			{
1446			memcpy(val + currentvalpos, context, contextlen);
1447			}
1448		}
1449
1450	/* disallow prohibited labels
1451	 * note that SSL3_RANDOM_SIZE > max(prohibited label len) =
1452	 * 15, so size of val > max(prohibited label len) = 15 and the
1453	 * comparisons won't have buffer overflow
1454	 */
1455	if (memcmp(val, TLS_MD_CLIENT_FINISH_CONST,
1456		 TLS_MD_CLIENT_FINISH_CONST_SIZE) == 0) goto err1;
1457	if (memcmp(val, TLS_MD_SERVER_FINISH_CONST,
1458		 TLS_MD_SERVER_FINISH_CONST_SIZE) == 0) goto err1;
1459	if (memcmp(val, TLS_MD_MASTER_SECRET_CONST,
1460		 TLS_MD_MASTER_SECRET_CONST_SIZE) == 0) goto err1;
1461	if (memcmp(val, TLS_MD_KEY_EXPANSION_CONST,
1462		 TLS_MD_KEY_EXPANSION_CONST_SIZE) == 0) goto err1;
1463
1464	rv = tls1_PRF(s->s3->tmp.new_cipher->algorithm2,
1465		      val, vallen,
1466		      NULL, 0,
1467		      NULL, 0,
1468		      NULL, 0,
1469		      NULL, 0,
1470		      s->session->master_key,s->session->master_key_length,
1471		      out,buff,olen);
1472
1473#ifdef KSSL_DEBUG
1474	printf ("tls1_export_keying_material() complete\n");
1475#endif	/* KSSL_DEBUG */
1476	goto ret;
1477err1:
1478	SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, SSL_R_TLS_ILLEGAL_EXPORTER_LABEL);
1479	rv = 0;
1480	goto ret;
1481err2:
1482	SSLerr(SSL_F_TLS1_EXPORT_KEYING_MATERIAL, ERR_R_MALLOC_FAILURE);
1483	rv = 0;
1484ret:
1485	if (buff != NULL) OPENSSL_free(buff);
1486	if (val != NULL) OPENSSL_free(val);
1487	return(rv);
1488	}
1489
1490int tls1_alert_code(int code)
1491	{
1492	switch (code)
1493		{
1494	case SSL_AD_CLOSE_NOTIFY:	return(SSL3_AD_CLOSE_NOTIFY);
1495	case SSL_AD_UNEXPECTED_MESSAGE:	return(SSL3_AD_UNEXPECTED_MESSAGE);
1496	case SSL_AD_BAD_RECORD_MAC:	return(SSL3_AD_BAD_RECORD_MAC);
1497	case SSL_AD_DECRYPTION_FAILED:	return(TLS1_AD_DECRYPTION_FAILED);
1498	case SSL_AD_RECORD_OVERFLOW:	return(TLS1_AD_RECORD_OVERFLOW);
1499	case SSL_AD_DECOMPRESSION_FAILURE:return(SSL3_AD_DECOMPRESSION_FAILURE);
1500	case SSL_AD_HANDSHAKE_FAILURE:	return(SSL3_AD_HANDSHAKE_FAILURE);
1501	case SSL_AD_NO_CERTIFICATE:	return(-1);
1502	case SSL_AD_BAD_CERTIFICATE:	return(SSL3_AD_BAD_CERTIFICATE);
1503	case SSL_AD_UNSUPPORTED_CERTIFICATE:return(SSL3_AD_UNSUPPORTED_CERTIFICATE);
1504	case SSL_AD_CERTIFICATE_REVOKED:return(SSL3_AD_CERTIFICATE_REVOKED);
1505	case SSL_AD_CERTIFICATE_EXPIRED:return(SSL3_AD_CERTIFICATE_EXPIRED);
1506	case SSL_AD_CERTIFICATE_UNKNOWN:return(SSL3_AD_CERTIFICATE_UNKNOWN);
1507	case SSL_AD_ILLEGAL_PARAMETER:	return(SSL3_AD_ILLEGAL_PARAMETER);
1508	case SSL_AD_UNKNOWN_CA:		return(TLS1_AD_UNKNOWN_CA);
1509	case SSL_AD_ACCESS_DENIED:	return(TLS1_AD_ACCESS_DENIED);
1510	case SSL_AD_DECODE_ERROR:	return(TLS1_AD_DECODE_ERROR);
1511	case SSL_AD_DECRYPT_ERROR:	return(TLS1_AD_DECRYPT_ERROR);
1512	case SSL_AD_EXPORT_RESTRICTION:	return(TLS1_AD_EXPORT_RESTRICTION);
1513	case SSL_AD_PROTOCOL_VERSION:	return(TLS1_AD_PROTOCOL_VERSION);
1514	case SSL_AD_INSUFFICIENT_SECURITY:return(TLS1_AD_INSUFFICIENT_SECURITY);
1515	case SSL_AD_INTERNAL_ERROR:	return(TLS1_AD_INTERNAL_ERROR);
1516	case SSL_AD_USER_CANCELLED:	return(TLS1_AD_USER_CANCELLED);
1517	case SSL_AD_NO_RENEGOTIATION:	return(TLS1_AD_NO_RENEGOTIATION);
1518	case SSL_AD_UNSUPPORTED_EXTENSION: return(TLS1_AD_UNSUPPORTED_EXTENSION);
1519	case SSL_AD_CERTIFICATE_UNOBTAINABLE: return(TLS1_AD_CERTIFICATE_UNOBTAINABLE);
1520	case SSL_AD_UNRECOGNIZED_NAME:	return(TLS1_AD_UNRECOGNIZED_NAME);
1521	case SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE: return(TLS1_AD_BAD_CERTIFICATE_STATUS_RESPONSE);
1522	case SSL_AD_BAD_CERTIFICATE_HASH_VALUE: return(TLS1_AD_BAD_CERTIFICATE_HASH_VALUE);
1523	case SSL_AD_UNKNOWN_PSK_IDENTITY:return(TLS1_AD_UNKNOWN_PSK_IDENTITY);
1524	case SSL_AD_INAPPROPRIATE_FALLBACK:return(TLS1_AD_INAPPROPRIATE_FALLBACK);
1525#if 0 /* not appropriate for TLS, not used for DTLS */
1526	case DTLS1_AD_MISSING_HANDSHAKE_MESSAGE: return
1527					  (DTLS1_AD_MISSING_HANDSHAKE_MESSAGE);
1528#endif
1529	default:			return(-1);
1530		}
1531	}
1532