1/*
2**
3** The author disclaims copyright to this source code.  In place of
4** a legal notice, here is a blessing:
5**
6**    May you do good and not evil.
7**    May you find forgiveness for yourself and forgive others.
8**    May you share freely, never taking more than you give.
9**
10*************************************************************************
11** This file contains code used by the compiler to add foreign key
12** support to compiled SQL statements.
13*/
14#include "sqliteInt.h"
15
16#ifndef SQLITE_OMIT_FOREIGN_KEY
17#ifndef SQLITE_OMIT_TRIGGER
18
19/*
20** Deferred and Immediate FKs
21** --------------------------
22**
23** Foreign keys in SQLite come in two flavours: deferred and immediate.
24** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
25** is returned and the current statement transaction rolled back. If a
26** deferred foreign key constraint is violated, no action is taken
27** immediately. However if the application attempts to commit the
28** transaction before fixing the constraint violation, the attempt fails.
29**
30** Deferred constraints are implemented using a simple counter associated
31** with the database handle. The counter is set to zero each time a
32** database transaction is opened. Each time a statement is executed
33** that causes a foreign key violation, the counter is incremented. Each
34** time a statement is executed that removes an existing violation from
35** the database, the counter is decremented. When the transaction is
36** committed, the commit fails if the current value of the counter is
37** greater than zero. This scheme has two big drawbacks:
38**
39**   * When a commit fails due to a deferred foreign key constraint,
40**     there is no way to tell which foreign constraint is not satisfied,
41**     or which row it is not satisfied for.
42**
43**   * If the database contains foreign key violations when the
44**     transaction is opened, this may cause the mechanism to malfunction.
45**
46** Despite these problems, this approach is adopted as it seems simpler
47** than the alternatives.
48**
49** INSERT operations:
50**
51**   I.1) For each FK for which the table is the child table, search
52**        the parent table for a match. If none is found increment the
53**        constraint counter.
54**
55**   I.2) For each FK for which the table is the parent table,
56**        search the child table for rows that correspond to the new
57**        row in the parent table. Decrement the counter for each row
58**        found (as the constraint is now satisfied).
59**
60** DELETE operations:
61**
62**   D.1) For each FK for which the table is the child table,
63**        search the parent table for a row that corresponds to the
64**        deleted row in the child table. If such a row is not found,
65**        decrement the counter.
66**
67**   D.2) For each FK for which the table is the parent table, search
68**        the child table for rows that correspond to the deleted row
69**        in the parent table. For each found increment the counter.
70**
71** UPDATE operations:
72**
73**   An UPDATE command requires that all 4 steps above are taken, but only
74**   for FK constraints for which the affected columns are actually
75**   modified (values must be compared at runtime).
76**
77** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
78** This simplifies the implementation a bit.
79**
80** For the purposes of immediate FK constraints, the OR REPLACE conflict
81** resolution is considered to delete rows before the new row is inserted.
82** If a delete caused by OR REPLACE violates an FK constraint, an exception
83** is thrown, even if the FK constraint would be satisfied after the new
84** row is inserted.
85**
86** Immediate constraints are usually handled similarly. The only difference
87** is that the counter used is stored as part of each individual statement
88** object (struct Vdbe). If, after the statement has run, its immediate
89** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
90** and the statement transaction is rolled back. An exception is an INSERT
91** statement that inserts a single row only (no triggers). In this case,
92** instead of using a counter, an exception is thrown immediately if the
93** INSERT violates a foreign key constraint. This is necessary as such
94** an INSERT does not open a statement transaction.
95**
96** TODO: How should dropping a table be handled? How should renaming a
97** table be handled?
98**
99**
100** Query API Notes
101** ---------------
102**
103** Before coding an UPDATE or DELETE row operation, the code-generator
104** for those two operations needs to know whether or not the operation
105** requires any FK processing and, if so, which columns of the original
106** row are required by the FK processing VDBE code (i.e. if FKs were
107** implemented using triggers, which of the old.* columns would be
108** accessed). No information is required by the code-generator before
109** coding an INSERT operation. The functions used by the UPDATE/DELETE
110** generation code to query for this information are:
111**
112**   sqlite3FkRequired() - Test to see if FK processing is required.
113**   sqlite3FkOldmask()  - Query for the set of required old.* columns.
114**
115**
116** Externally accessible module functions
117** --------------------------------------
118**
119**   sqlite3FkCheck()    - Check for foreign key violations.
120**   sqlite3FkActions()  - Code triggers for ON UPDATE/ON DELETE actions.
121**   sqlite3FkDelete()   - Delete an FKey structure.
122*/
123
124/*
125** VDBE Calling Convention
126** -----------------------
127**
128** Example:
129**
130**   For the following INSERT statement:
131**
132**     CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
133**     INSERT INTO t1 VALUES(1, 2, 3.1);
134**
135**   Register (x):        2    (type integer)
136**   Register (x+1):      1    (type integer)
137**   Register (x+2):      NULL (type NULL)
138**   Register (x+3):      3.1  (type real)
139*/
140
141/*
142** A foreign key constraint requires that the key columns in the parent
143** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
144** Given that pParent is the parent table for foreign key constraint pFKey,
145** search the schema a unique index on the parent key columns.
146**
147** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
148** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
149** is set to point to the unique index.
150**
151** If the parent key consists of a single column (the foreign key constraint
152** is not a composite foreign key), output variable *paiCol is set to NULL.
153** Otherwise, it is set to point to an allocated array of size N, where
154** N is the number of columns in the parent key. The first element of the
155** array is the index of the child table column that is mapped by the FK
156** constraint to the parent table column stored in the left-most column
157** of index *ppIdx. The second element of the array is the index of the
158** child table column that corresponds to the second left-most column of
159** *ppIdx, and so on.
160**
161** If the required index cannot be found, either because:
162**
163**   1) The named parent key columns do not exist, or
164**
165**   2) The named parent key columns do exist, but are not subject to a
166**      UNIQUE or PRIMARY KEY constraint, or
167**
168**   3) No parent key columns were provided explicitly as part of the
169**      foreign key definition, and the parent table does not have a
170**      PRIMARY KEY, or
171**
172**   4) No parent key columns were provided explicitly as part of the
173**      foreign key definition, and the PRIMARY KEY of the parent table
174**      consists of a a different number of columns to the child key in
175**      the child table.
176**
177** then non-zero is returned, and a "foreign key mismatch" error loaded
178** into pParse. If an OOM error occurs, non-zero is returned and the
179** pParse->db->mallocFailed flag is set.
180*/
181static int locateFkeyIndex(
182  Parse *pParse,                  /* Parse context to store any error in */
183  Table *pParent,                 /* Parent table of FK constraint pFKey */
184  FKey *pFKey,                    /* Foreign key to find index for */
185  Index **ppIdx,                  /* OUT: Unique index on parent table */
186  int **paiCol                    /* OUT: Map of index columns in pFKey */
187){
188  Index *pIdx = 0;                    /* Value to return via *ppIdx */
189  int *aiCol = 0;                     /* Value to return via *paiCol */
190  int nCol = pFKey->nCol;             /* Number of columns in parent key */
191  char *zKey = pFKey->aCol[0].zCol;   /* Name of left-most parent key column */
192
193  /* The caller is responsible for zeroing output parameters. */
194  assert( ppIdx && *ppIdx==0 );
195  assert( !paiCol || *paiCol==0 );
196  assert( pParse );
197
198  /* If this is a non-composite (single column) foreign key, check if it
199  ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
200  ** and *paiCol set to zero and return early.
201  **
202  ** Otherwise, for a composite foreign key (more than one column), allocate
203  ** space for the aiCol array (returned via output parameter *paiCol).
204  ** Non-composite foreign keys do not require the aiCol array.
205  */
206  if( nCol==1 ){
207    /* The FK maps to the IPK if any of the following are true:
208    **
209    **   1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
210    **      mapped to the primary key of table pParent, or
211    **   2) The FK is explicitly mapped to a column declared as INTEGER
212    **      PRIMARY KEY.
213    */
214    if( pParent->iPKey>=0 ){
215      if( !zKey ) return 0;
216      if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
217    }
218  }else if( paiCol ){
219    assert( nCol>1 );
220    aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
221    if( !aiCol ) return 1;
222    *paiCol = aiCol;
223  }
224
225  for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
226    if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
227      /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
228      ** of columns. If each indexed column corresponds to a foreign key
229      ** column of pFKey, then this index is a winner.  */
230
231      if( zKey==0 ){
232        /* If zKey is NULL, then this foreign key is implicitly mapped to
233        ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
234        ** identified by the test (Index.autoIndex==2).  */
235        if( pIdx->autoIndex==2 ){
236          if( aiCol ){
237            int i;
238            for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
239          }
240          break;
241        }
242      }else{
243        /* If zKey is non-NULL, then this foreign key was declared to
244        ** map to an explicit list of columns in table pParent. Check if this
245        ** index matches those columns. Also, check that the index uses
246        ** the default collation sequences for each column. */
247        int i, j;
248        for(i=0; i<nCol; i++){
249          int iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
250          char *zDfltColl;                  /* Def. collation for column */
251          char *zIdxCol;                    /* Name of indexed column */
252
253          /* If the index uses a collation sequence that is different from
254          ** the default collation sequence for the column, this index is
255          ** unusable. Bail out early in this case.  */
256          zDfltColl = pParent->aCol[iCol].zColl;
257          if( !zDfltColl ){
258            zDfltColl = "BINARY";
259          }
260          if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
261
262          zIdxCol = pParent->aCol[iCol].zName;
263          for(j=0; j<nCol; j++){
264            if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
265              if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
266              break;
267            }
268          }
269          if( j==nCol ) break;
270        }
271        if( i==nCol ) break;      /* pIdx is usable */
272      }
273    }
274  }
275
276  if( !pIdx ){
277    if( !pParse->disableTriggers ){
278      sqlite3ErrorMsg(pParse, "foreign key mismatch");
279    }
280    sqlite3DbFree(pParse->db, aiCol);
281    return 1;
282  }
283
284  *ppIdx = pIdx;
285  return 0;
286}
287
288/*
289** This function is called when a row is inserted into or deleted from the
290** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
291** on the child table of pFKey, this function is invoked twice for each row
292** affected - once to "delete" the old row, and then again to "insert" the
293** new row.
294**
295** Each time it is called, this function generates VDBE code to locate the
296** row in the parent table that corresponds to the row being inserted into
297** or deleted from the child table. If the parent row can be found, no
298** special action is taken. Otherwise, if the parent row can *not* be
299** found in the parent table:
300**
301**   Operation | FK type   | Action taken
302**   --------------------------------------------------------------------------
303**   INSERT      immediate   Increment the "immediate constraint counter".
304**
305**   DELETE      immediate   Decrement the "immediate constraint counter".
306**
307**   INSERT      deferred    Increment the "deferred constraint counter".
308**
309**   DELETE      deferred    Decrement the "deferred constraint counter".
310**
311** These operations are identified in the comment at the top of this file
312** (fkey.c) as "I.1" and "D.1".
313*/
314static void fkLookupParent(
315  Parse *pParse,        /* Parse context */
316  int iDb,              /* Index of database housing pTab */
317  Table *pTab,          /* Parent table of FK pFKey */
318  Index *pIdx,          /* Unique index on parent key columns in pTab */
319  FKey *pFKey,          /* Foreign key constraint */
320  int *aiCol,           /* Map from parent key columns to child table columns */
321  int regData,          /* Address of array containing child table row */
322  int nIncr,            /* Increment constraint counter by this */
323  int isIgnore          /* If true, pretend pTab contains all NULL values */
324){
325  int i;                                    /* Iterator variable */
326  Vdbe *v = sqlite3GetVdbe(pParse);         /* Vdbe to add code to */
327  int iCur = pParse->nTab - 1;              /* Cursor number to use */
328  int iOk = sqlite3VdbeMakeLabel(v);        /* jump here if parent key found */
329
330  /* If nIncr is less than zero, then check at runtime if there are any
331  ** outstanding constraints to resolve. If there are not, there is no need
332  ** to check if deleting this row resolves any outstanding violations.
333  **
334  ** Check if any of the key columns in the child table row are NULL. If
335  ** any are, then the constraint is considered satisfied. No need to
336  ** search for a matching row in the parent table.  */
337  if( nIncr<0 ){
338    sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
339  }
340  for(i=0; i<pFKey->nCol; i++){
341    int iReg = aiCol[i] + regData + 1;
342    sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
343  }
344
345  if( isIgnore==0 ){
346    if( pIdx==0 ){
347      /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
348      ** column of the parent table (table pTab).  */
349      int iMustBeInt;               /* Address of MustBeInt instruction */
350      int regTemp = sqlite3GetTempReg(pParse);
351
352      /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
353      ** apply the affinity of the parent key). If this fails, then there
354      ** is no matching parent key. Before using MustBeInt, make a copy of
355      ** the value. Otherwise, the value inserted into the child key column
356      ** will have INTEGER affinity applied to it, which may not be correct.  */
357      sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
358      iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
359
360      /* If the parent table is the same as the child table, and we are about
361      ** to increment the constraint-counter (i.e. this is an INSERT operation),
362      ** then check if the row being inserted matches itself. If so, do not
363      ** increment the constraint-counter.  */
364      if( pTab==pFKey->pFrom && nIncr==1 ){
365        sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
366      }
367
368      sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
369      sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
370      sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
371      sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
372      sqlite3VdbeJumpHere(v, iMustBeInt);
373      sqlite3ReleaseTempReg(pParse, regTemp);
374    }else{
375      int nCol = pFKey->nCol;
376      int regTemp = sqlite3GetTempRange(pParse, nCol);
377      int regRec = sqlite3GetTempReg(pParse);
378      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
379
380      sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
381      sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
382      for(i=0; i<nCol; i++){
383        sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
384      }
385
386      /* If the parent table is the same as the child table, and we are about
387      ** to increment the constraint-counter (i.e. this is an INSERT operation),
388      ** then check if the row being inserted matches itself. If so, do not
389      ** increment the constraint-counter.  */
390      if( pTab==pFKey->pFrom && nIncr==1 ){
391        int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
392        for(i=0; i<nCol; i++){
393          int iChild = aiCol[i]+1+regData;
394          int iParent = pIdx->aiColumn[i]+1+regData;
395          sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
396        }
397        sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
398      }
399
400      sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
401      sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v,pIdx), P4_TRANSIENT);
402      sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0);
403
404      sqlite3ReleaseTempReg(pParse, regRec);
405      sqlite3ReleaseTempRange(pParse, regTemp, nCol);
406    }
407  }
408
409  if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
410    /* Special case: If this is an INSERT statement that will insert exactly
411    ** one row into the table, raise a constraint immediately instead of
412    ** incrementing a counter. This is necessary as the VM code is being
413    ** generated for will not open a statement transaction.  */
414    assert( nIncr==1 );
415    sqlite3HaltConstraint(
416        pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
417    );
418  }else{
419    if( nIncr>0 && pFKey->isDeferred==0 ){
420      sqlite3ParseToplevel(pParse)->mayAbort = 1;
421    }
422    sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
423  }
424
425  sqlite3VdbeResolveLabel(v, iOk);
426  sqlite3VdbeAddOp1(v, OP_Close, iCur);
427}
428
429/*
430** This function is called to generate code executed when a row is deleted
431** from the parent table of foreign key constraint pFKey and, if pFKey is
432** deferred, when a row is inserted into the same table. When generating
433** code for an SQL UPDATE operation, this function may be called twice -
434** once to "delete" the old row and once to "insert" the new row.
435**
436** The code generated by this function scans through the rows in the child
437** table that correspond to the parent table row being deleted or inserted.
438** For each child row found, one of the following actions is taken:
439**
440**   Operation | FK type   | Action taken
441**   --------------------------------------------------------------------------
442**   DELETE      immediate   Increment the "immediate constraint counter".
443**                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
444**                           throw a "foreign key constraint failed" exception.
445**
446**   INSERT      immediate   Decrement the "immediate constraint counter".
447**
448**   DELETE      deferred    Increment the "deferred constraint counter".
449**                           Or, if the ON (UPDATE|DELETE) action is RESTRICT,
450**                           throw a "foreign key constraint failed" exception.
451**
452**   INSERT      deferred    Decrement the "deferred constraint counter".
453**
454** These operations are identified in the comment at the top of this file
455** (fkey.c) as "I.2" and "D.2".
456*/
457static void fkScanChildren(
458  Parse *pParse,                  /* Parse context */
459  SrcList *pSrc,                  /* SrcList containing the table to scan */
460  Table *pTab,
461  Index *pIdx,                    /* Foreign key index */
462  FKey *pFKey,                    /* Foreign key relationship */
463  int *aiCol,                     /* Map from pIdx cols to child table cols */
464  int regData,                    /* Referenced table data starts here */
465  int nIncr                       /* Amount to increment deferred counter by */
466){
467  sqlite3 *db = pParse->db;       /* Database handle */
468  int i;                          /* Iterator variable */
469  Expr *pWhere = 0;               /* WHERE clause to scan with */
470  NameContext sNameContext;       /* Context used to resolve WHERE clause */
471  WhereInfo *pWInfo;              /* Context used by sqlite3WhereXXX() */
472  int iFkIfZero = 0;              /* Address of OP_FkIfZero */
473  Vdbe *v = sqlite3GetVdbe(pParse);
474
475  assert( !pIdx || pIdx->pTable==pTab );
476
477  if( nIncr<0 ){
478    iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
479  }
480
481  /* Create an Expr object representing an SQL expression like:
482  **
483  **   <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
484  **
485  ** The collation sequence used for the comparison should be that of
486  ** the parent key columns. The affinity of the parent key column should
487  ** be applied to each child key value before the comparison takes place.
488  */
489  for(i=0; i<pFKey->nCol; i++){
490    Expr *pLeft;                  /* Value from parent table row */
491    Expr *pRight;                 /* Column ref to child table */
492    Expr *pEq;                    /* Expression (pLeft = pRight) */
493    int iCol;                     /* Index of column in child table */
494    const char *zCol;             /* Name of column in child table */
495
496    pLeft = sqlite3Expr(db, TK_REGISTER, 0);
497    if( pLeft ){
498      /* Set the collation sequence and affinity of the LHS of each TK_EQ
499      ** expression to the parent key column defaults.  */
500      if( pIdx ){
501        Column *pCol;
502        iCol = pIdx->aiColumn[i];
503        pCol = &pTab->aCol[iCol];
504        if( pTab->iPKey==iCol ) iCol = -1;
505        pLeft->iTable = regData+iCol+1;
506        pLeft->affinity = pCol->affinity;
507        pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
508      }else{
509        pLeft->iTable = regData;
510        pLeft->affinity = SQLITE_AFF_INTEGER;
511      }
512    }
513    iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
514    assert( iCol>=0 );
515    zCol = pFKey->pFrom->aCol[iCol].zName;
516    pRight = sqlite3Expr(db, TK_ID, zCol);
517    pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
518    pWhere = sqlite3ExprAnd(db, pWhere, pEq);
519  }
520
521  /* If the child table is the same as the parent table, and this scan
522  ** is taking place as part of a DELETE operation (operation D.2), omit the
523  ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
524  ** clause, where $rowid is the rowid of the row being deleted.  */
525  if( pTab==pFKey->pFrom && nIncr>0 ){
526    Expr *pEq;                    /* Expression (pLeft = pRight) */
527    Expr *pLeft;                  /* Value from parent table row */
528    Expr *pRight;                 /* Column ref to child table */
529    pLeft = sqlite3Expr(db, TK_REGISTER, 0);
530    pRight = sqlite3Expr(db, TK_COLUMN, 0);
531    if( pLeft && pRight ){
532      pLeft->iTable = regData;
533      pLeft->affinity = SQLITE_AFF_INTEGER;
534      pRight->iTable = pSrc->a[0].iCursor;
535      pRight->iColumn = -1;
536    }
537    pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
538    pWhere = sqlite3ExprAnd(db, pWhere, pEq);
539  }
540
541  /* Resolve the references in the WHERE clause. */
542  memset(&sNameContext, 0, sizeof(NameContext));
543  sNameContext.pSrcList = pSrc;
544  sNameContext.pParse = pParse;
545  sqlite3ResolveExprNames(&sNameContext, pWhere);
546
547  /* Create VDBE to loop through the entries in pSrc that match the WHERE
548  ** clause. If the constraint is not deferred, throw an exception for
549  ** each row found. Otherwise, for deferred constraints, increment the
550  ** deferred constraint counter by nIncr for each row selected.  */
551  pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
552  if( nIncr>0 && pFKey->isDeferred==0 ){
553    sqlite3ParseToplevel(pParse)->mayAbort = 1;
554  }
555  sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
556  if( pWInfo ){
557    sqlite3WhereEnd(pWInfo);
558  }
559
560  /* Clean up the WHERE clause constructed above. */
561  sqlite3ExprDelete(db, pWhere);
562  if( iFkIfZero ){
563    sqlite3VdbeJumpHere(v, iFkIfZero);
564  }
565}
566
567/*
568** This function returns a pointer to the head of a linked list of FK
569** constraints for which table pTab is the parent table. For example,
570** given the following schema:
571**
572**   CREATE TABLE t1(a PRIMARY KEY);
573**   CREATE TABLE t2(b REFERENCES t1(a);
574**
575** Calling this function with table "t1" as an argument returns a pointer
576** to the FKey structure representing the foreign key constraint on table
577** "t2". Calling this function with "t2" as the argument would return a
578** NULL pointer (as there are no FK constraints for which t2 is the parent
579** table).
580*/
581FKey *sqlite3FkReferences(Table *pTab){
582  int nName = sqlite3Strlen30(pTab->zName);
583  return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
584}
585
586/*
587** The second argument is a Trigger structure allocated by the
588** fkActionTrigger() routine. This function deletes the Trigger structure
589** and all of its sub-components.
590**
591** The Trigger structure or any of its sub-components may be allocated from
592** the lookaside buffer belonging to database handle dbMem.
593*/
594static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
595  if( p ){
596    TriggerStep *pStep = p->step_list;
597    sqlite3ExprDelete(dbMem, pStep->pWhere);
598    sqlite3ExprListDelete(dbMem, pStep->pExprList);
599    sqlite3SelectDelete(dbMem, pStep->pSelect);
600    sqlite3ExprDelete(dbMem, p->pWhen);
601    sqlite3DbFree(dbMem, p);
602  }
603}
604
605/*
606** This function is called to generate code that runs when table pTab is
607** being dropped from the database. The SrcList passed as the second argument
608** to this function contains a single entry guaranteed to resolve to
609** table pTab.
610**
611** Normally, no code is required. However, if either
612**
613**   (a) The table is the parent table of a FK constraint, or
614**   (b) The table is the child table of a deferred FK constraint and it is
615**       determined at runtime that there are outstanding deferred FK
616**       constraint violations in the database,
617**
618** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
619** the table from the database. Triggers are disabled while running this
620** DELETE, but foreign key actions are not.
621*/
622void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
623  sqlite3 *db = pParse->db;
624  if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
625    int iSkip = 0;
626    Vdbe *v = sqlite3GetVdbe(pParse);
627
628    assert( v );                  /* VDBE has already been allocated */
629    if( sqlite3FkReferences(pTab)==0 ){
630      /* Search for a deferred foreign key constraint for which this table
631      ** is the child table. If one cannot be found, return without
632      ** generating any VDBE code. If one can be found, then jump over
633      ** the entire DELETE if there are no outstanding deferred constraints
634      ** when this statement is run.  */
635      FKey *p;
636      for(p=pTab->pFKey; p; p=p->pNextFrom){
637        if( p->isDeferred ) break;
638      }
639      if( !p ) return;
640      iSkip = sqlite3VdbeMakeLabel(v);
641      sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
642    }
643
644    pParse->disableTriggers = 1;
645    sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
646    pParse->disableTriggers = 0;
647
648    /* If the DELETE has generated immediate foreign key constraint
649    ** violations, halt the VDBE and return an error at this point, before
650    ** any modifications to the schema are made. This is because statement
651    ** transactions are not able to rollback schema changes.  */
652    sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
653    sqlite3HaltConstraint(
654        pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
655    );
656
657    if( iSkip ){
658      sqlite3VdbeResolveLabel(v, iSkip);
659    }
660  }
661}
662
663/*
664** This function is called when inserting, deleting or updating a row of
665** table pTab to generate VDBE code to perform foreign key constraint
666** processing for the operation.
667**
668** For a DELETE operation, parameter regOld is passed the index of the
669** first register in an array of (pTab->nCol+1) registers containing the
670** rowid of the row being deleted, followed by each of the column values
671** of the row being deleted, from left to right. Parameter regNew is passed
672** zero in this case.
673**
674** For an INSERT operation, regOld is passed zero and regNew is passed the
675** first register of an array of (pTab->nCol+1) registers containing the new
676** row data.
677**
678** For an UPDATE operation, this function is called twice. Once before
679** the original record is deleted from the table using the calling convention
680** described for DELETE. Then again after the original record is deleted
681** but before the new record is inserted using the INSERT convention.
682*/
683void sqlite3FkCheck(
684  Parse *pParse,                  /* Parse context */
685  Table *pTab,                    /* Row is being deleted from this table */
686  int regOld,                     /* Previous row data is stored here */
687  int regNew                      /* New row data is stored here */
688){
689  sqlite3 *db = pParse->db;       /* Database handle */
690  FKey *pFKey;                    /* Used to iterate through FKs */
691  int iDb;                        /* Index of database containing pTab */
692  const char *zDb;                /* Name of database containing pTab */
693  int isIgnoreErrors = pParse->disableTriggers;
694
695  /* Exactly one of regOld and regNew should be non-zero. */
696  assert( (regOld==0)!=(regNew==0) );
697
698  /* If foreign-keys are disabled, this function is a no-op. */
699  if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
700
701  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
702  zDb = db->aDb[iDb].zName;
703
704  /* Loop through all the foreign key constraints for which pTab is the
705  ** child table (the table that the foreign key definition is part of).  */
706  for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
707    Table *pTo;                   /* Parent table of foreign key pFKey */
708    Index *pIdx = 0;              /* Index on key columns in pTo */
709    int *aiFree = 0;
710    int *aiCol;
711    int iCol;
712    int i;
713    int isIgnore = 0;
714
715    /* Find the parent table of this foreign key. Also find a unique index
716    ** on the parent key columns in the parent table. If either of these
717    ** schema items cannot be located, set an error in pParse and return
718    ** early.  */
719    if( pParse->disableTriggers ){
720      pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
721    }else{
722      pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
723    }
724    if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
725      if( !isIgnoreErrors || db->mallocFailed ) return;
726      continue;
727    }
728    assert( pFKey->nCol==1 || (aiFree && pIdx) );
729
730    if( aiFree ){
731      aiCol = aiFree;
732    }else{
733      iCol = pFKey->aCol[0].iFrom;
734      aiCol = &iCol;
735    }
736    for(i=0; i<pFKey->nCol; i++){
737      if( aiCol[i]==pTab->iPKey ){
738        aiCol[i] = -1;
739      }
740#ifndef SQLITE_OMIT_AUTHORIZATION
741      /* Request permission to read the parent key columns. If the
742      ** authorization callback returns SQLITE_IGNORE, behave as if any
743      ** values read from the parent table are NULL. */
744      if( db->xAuth ){
745        int rcauth;
746        char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
747        rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
748        isIgnore = (rcauth==SQLITE_IGNORE);
749      }
750#endif
751    }
752
753    /* Take a shared-cache advisory read-lock on the parent table. Allocate
754    ** a cursor to use to search the unique index on the parent key columns
755    ** in the parent table.  */
756    sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
757    pParse->nTab++;
758
759    if( regOld!=0 ){
760      /* A row is being removed from the child table. Search for the parent.
761      ** If the parent does not exist, removing the child row resolves an
762      ** outstanding foreign key constraint violation. */
763      fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
764    }
765    if( regNew!=0 ){
766      /* A row is being added to the child table. If a parent row cannot
767      ** be found, adding the child row has violated the FK constraint. */
768      fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
769    }
770
771    sqlite3DbFree(db, aiFree);
772  }
773
774  /* Loop through all the foreign key constraints that refer to this table */
775  for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
776    Index *pIdx = 0;              /* Foreign key index for pFKey */
777    SrcList *pSrc;
778    int *aiCol = 0;
779
780    if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
781      assert( regOld==0 && regNew!=0 );
782      /* Inserting a single row into a parent table cannot cause an immediate
783      ** foreign key violation. So do nothing in this case.  */
784      continue;
785    }
786
787    if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
788      if( !isIgnoreErrors || db->mallocFailed ) return;
789      continue;
790    }
791    assert( aiCol || pFKey->nCol==1 );
792
793    /* Create a SrcList structure containing a single table (the table
794    ** the foreign key that refers to this table is attached to). This
795    ** is required for the sqlite3WhereXXX() interface.  */
796    pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
797    if( pSrc ){
798      struct SrcList_item *pItem = pSrc->a;
799      pItem->pTab = pFKey->pFrom;
800      pItem->zName = pFKey->pFrom->zName;
801      pItem->pTab->nRef++;
802      pItem->iCursor = pParse->nTab++;
803
804      if( regNew!=0 ){
805        fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
806      }
807      if( regOld!=0 ){
808        /* If there is a RESTRICT action configured for the current operation
809        ** on the parent table of this FK, then throw an exception
810        ** immediately if the FK constraint is violated, even if this is a
811        ** deferred trigger. That's what RESTRICT means. To defer checking
812        ** the constraint, the FK should specify NO ACTION (represented
813        ** using OE_None). NO ACTION is the default.  */
814        fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
815      }
816      pItem->zName = 0;
817      sqlite3SrcListDelete(db, pSrc);
818    }
819    sqlite3DbFree(db, aiCol);
820  }
821}
822
823#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
824
825/*
826** This function is called before generating code to update or delete a
827** row contained in table pTab.
828*/
829u32 sqlite3FkOldmask(
830  Parse *pParse,                  /* Parse context */
831  Table *pTab                     /* Table being modified */
832){
833  u32 mask = 0;
834  if( pParse->db->flags&SQLITE_ForeignKeys ){
835    FKey *p;
836    int i;
837    for(p=pTab->pFKey; p; p=p->pNextFrom){
838      for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
839    }
840    for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
841      Index *pIdx = 0;
842      locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
843      if( pIdx ){
844        for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
845      }
846    }
847  }
848  return mask;
849}
850
851/*
852** This function is called before generating code to update or delete a
853** row contained in table pTab. If the operation is a DELETE, then
854** parameter aChange is passed a NULL value. For an UPDATE, aChange points
855** to an array of size N, where N is the number of columns in table pTab.
856** If the i'th column is not modified by the UPDATE, then the corresponding
857** entry in the aChange[] array is set to -1. If the column is modified,
858** the value is 0 or greater. Parameter chngRowid is set to true if the
859** UPDATE statement modifies the rowid fields of the table.
860**
861** If any foreign key processing will be required, this function returns
862** true. If there is no foreign key related processing, this function
863** returns false.
864*/
865int sqlite3FkRequired(
866  Parse *pParse,                  /* Parse context */
867  Table *pTab,                    /* Table being modified */
868  int *aChange,                   /* Non-NULL for UPDATE operations */
869  int chngRowid                   /* True for UPDATE that affects rowid */
870){
871  if( pParse->db->flags&SQLITE_ForeignKeys ){
872    if( !aChange ){
873      /* A DELETE operation. Foreign key processing is required if the
874      ** table in question is either the child or parent table for any
875      ** foreign key constraint.  */
876      return (sqlite3FkReferences(pTab) || pTab->pFKey);
877    }else{
878      /* This is an UPDATE. Foreign key processing is only required if the
879      ** operation modifies one or more child or parent key columns. */
880      int i;
881      FKey *p;
882
883      /* Check if any child key columns are being modified. */
884      for(p=pTab->pFKey; p; p=p->pNextFrom){
885        for(i=0; i<p->nCol; i++){
886          int iChildKey = p->aCol[i].iFrom;
887          if( aChange[iChildKey]>=0 ) return 1;
888          if( iChildKey==pTab->iPKey && chngRowid ) return 1;
889        }
890      }
891
892      /* Check if any parent key columns are being modified. */
893      for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
894        for(i=0; i<p->nCol; i++){
895          char *zKey = p->aCol[i].zCol;
896          int iKey;
897          for(iKey=0; iKey<pTab->nCol; iKey++){
898            Column *pCol = &pTab->aCol[iKey];
899            if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){
900              if( aChange[iKey]>=0 ) return 1;
901              if( iKey==pTab->iPKey && chngRowid ) return 1;
902            }
903          }
904        }
905      }
906    }
907  }
908  return 0;
909}
910
911/*
912** This function is called when an UPDATE or DELETE operation is being
913** compiled on table pTab, which is the parent table of foreign-key pFKey.
914** If the current operation is an UPDATE, then the pChanges parameter is
915** passed a pointer to the list of columns being modified. If it is a
916** DELETE, pChanges is passed a NULL pointer.
917**
918** It returns a pointer to a Trigger structure containing a trigger
919** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
920** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
921** returned (these actions require no special handling by the triggers
922** sub-system, code for them is created by fkScanChildren()).
923**
924** For example, if pFKey is the foreign key and pTab is table "p" in
925** the following schema:
926**
927**   CREATE TABLE p(pk PRIMARY KEY);
928**   CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
929**
930** then the returned trigger structure is equivalent to:
931**
932**   CREATE TRIGGER ... DELETE ON p BEGIN
933**     DELETE FROM c WHERE ck = old.pk;
934**   END;
935**
936** The returned pointer is cached as part of the foreign key object. It
937** is eventually freed along with the rest of the foreign key object by
938** sqlite3FkDelete().
939*/
940static Trigger *fkActionTrigger(
941  Parse *pParse,                  /* Parse context */
942  Table *pTab,                    /* Table being updated or deleted from */
943  FKey *pFKey,                    /* Foreign key to get action for */
944  ExprList *pChanges              /* Change-list for UPDATE, NULL for DELETE */
945){
946  sqlite3 *db = pParse->db;       /* Database handle */
947  int action;                     /* One of OE_None, OE_Cascade etc. */
948  Trigger *pTrigger;              /* Trigger definition to return */
949  int iAction = (pChanges!=0);    /* 1 for UPDATE, 0 for DELETE */
950
951  action = pFKey->aAction[iAction];
952  pTrigger = pFKey->apTrigger[iAction];
953
954  if( action!=OE_None && !pTrigger ){
955    u8 enableLookaside;           /* Copy of db->lookaside.bEnabled */
956    char const *zFrom;            /* Name of child table */
957    int nFrom;                    /* Length in bytes of zFrom */
958    Index *pIdx = 0;              /* Parent key index for this FK */
959    int *aiCol = 0;               /* child table cols -> parent key cols */
960    TriggerStep *pStep = 0;        /* First (only) step of trigger program */
961    Expr *pWhere = 0;             /* WHERE clause of trigger step */
962    ExprList *pList = 0;          /* Changes list if ON UPDATE CASCADE */
963    Select *pSelect = 0;          /* If RESTRICT, "SELECT RAISE(...)" */
964    int i;                        /* Iterator variable */
965    Expr *pWhen = 0;              /* WHEN clause for the trigger */
966
967    if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
968    assert( aiCol || pFKey->nCol==1 );
969
970    for(i=0; i<pFKey->nCol; i++){
971      Token tOld = { "old", 3 };  /* Literal "old" token */
972      Token tNew = { "new", 3 };  /* Literal "new" token */
973      Token tFromCol;             /* Name of column in child table */
974      Token tToCol;               /* Name of column in parent table */
975      int iFromCol;               /* Idx of column in child table */
976      Expr *pEq;                  /* tFromCol = OLD.tToCol */
977
978      iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
979      assert( iFromCol>=0 );
980      tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
981      tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
982
983      tToCol.n = sqlite3Strlen30(tToCol.z);
984      tFromCol.n = sqlite3Strlen30(tFromCol.z);
985
986      /* Create the expression "OLD.zToCol = zFromCol". It is important
987      ** that the "OLD.zToCol" term is on the LHS of the = operator, so
988      ** that the affinity and collation sequence associated with the
989      ** parent table are used for the comparison. */
990      pEq = sqlite3PExpr(pParse, TK_EQ,
991          sqlite3PExpr(pParse, TK_DOT,
992            sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
993            sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
994          , 0),
995          sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
996      , 0);
997      pWhere = sqlite3ExprAnd(db, pWhere, pEq);
998
999      /* For ON UPDATE, construct the next term of the WHEN clause.
1000      ** The final WHEN clause will be like this:
1001      **
1002      **    WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1003      */
1004      if( pChanges ){
1005        pEq = sqlite3PExpr(pParse, TK_IS,
1006            sqlite3PExpr(pParse, TK_DOT,
1007              sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1008              sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1009              0),
1010            sqlite3PExpr(pParse, TK_DOT,
1011              sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1012              sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1013              0),
1014            0);
1015        pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1016      }
1017
1018      if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1019        Expr *pNew;
1020        if( action==OE_Cascade ){
1021          pNew = sqlite3PExpr(pParse, TK_DOT,
1022            sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1023            sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1024          , 0);
1025        }else if( action==OE_SetDflt ){
1026          Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1027          if( pDflt ){
1028            pNew = sqlite3ExprDup(db, pDflt, 0);
1029          }else{
1030            pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1031          }
1032        }else{
1033          pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1034        }
1035        pList = sqlite3ExprListAppend(pParse, pList, pNew);
1036        sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1037      }
1038    }
1039    sqlite3DbFree(db, aiCol);
1040
1041    zFrom = pFKey->pFrom->zName;
1042    nFrom = sqlite3Strlen30(zFrom);
1043
1044    if( action==OE_Restrict ){
1045      Token tFrom;
1046      Expr *pRaise;
1047
1048      tFrom.z = zFrom;
1049      tFrom.n = nFrom;
1050      pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
1051      if( pRaise ){
1052        pRaise->affinity = OE_Abort;
1053      }
1054      pSelect = sqlite3SelectNew(pParse,
1055          sqlite3ExprListAppend(pParse, 0, pRaise),
1056          sqlite3SrcListAppend(db, 0, &tFrom, 0),
1057          pWhere,
1058          0, 0, 0, 0, 0, 0
1059      );
1060      pWhere = 0;
1061    }
1062
1063    /* Disable lookaside memory allocation */
1064    enableLookaside = db->lookaside.bEnabled;
1065    db->lookaside.bEnabled = 0;
1066
1067    pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1068        sizeof(Trigger) +         /* struct Trigger */
1069        sizeof(TriggerStep) +     /* Single step in trigger program */
1070        nFrom + 1                 /* Space for pStep->target.z */
1071    );
1072    if( pTrigger ){
1073      pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1074      pStep->target.z = (char *)&pStep[1];
1075      pStep->target.n = nFrom;
1076      memcpy((char *)pStep->target.z, zFrom, nFrom);
1077
1078      pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1079      pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1080      pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1081      if( pWhen ){
1082        pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1083        pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1084      }
1085    }
1086
1087    /* Re-enable the lookaside buffer, if it was disabled earlier. */
1088    db->lookaside.bEnabled = enableLookaside;
1089
1090    sqlite3ExprDelete(db, pWhere);
1091    sqlite3ExprDelete(db, pWhen);
1092    sqlite3ExprListDelete(db, pList);
1093    sqlite3SelectDelete(db, pSelect);
1094    if( db->mallocFailed==1 ){
1095      fkTriggerDelete(db, pTrigger);
1096      return 0;
1097    }
1098
1099    switch( action ){
1100      case OE_Restrict:
1101        pStep->op = TK_SELECT;
1102        break;
1103      case OE_Cascade:
1104        if( !pChanges ){
1105          pStep->op = TK_DELETE;
1106          break;
1107        }
1108      default:
1109        pStep->op = TK_UPDATE;
1110    }
1111    pStep->pTrig = pTrigger;
1112    pTrigger->pSchema = pTab->pSchema;
1113    pTrigger->pTabSchema = pTab->pSchema;
1114    pFKey->apTrigger[iAction] = pTrigger;
1115    pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1116  }
1117
1118  return pTrigger;
1119}
1120
1121/*
1122** This function is called when deleting or updating a row to implement
1123** any required CASCADE, SET NULL or SET DEFAULT actions.
1124*/
1125void sqlite3FkActions(
1126  Parse *pParse,                  /* Parse context */
1127  Table *pTab,                    /* Table being updated or deleted from */
1128  ExprList *pChanges,             /* Change-list for UPDATE, NULL for DELETE */
1129  int regOld                      /* Address of array containing old row */
1130){
1131  /* If foreign-key support is enabled, iterate through all FKs that
1132  ** refer to table pTab. If there is an action associated with the FK
1133  ** for this operation (either update or delete), invoke the associated
1134  ** trigger sub-program.  */
1135  if( pParse->db->flags&SQLITE_ForeignKeys ){
1136    FKey *pFKey;                  /* Iterator variable */
1137    for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1138      Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1139      if( pAction ){
1140        sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
1141      }
1142    }
1143  }
1144}
1145
1146#endif /* ifndef SQLITE_OMIT_TRIGGER */
1147
1148/*
1149** Free all memory associated with foreign key definitions attached to
1150** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1151** hash table.
1152*/
1153void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1154  FKey *pFKey;                    /* Iterator variable */
1155  FKey *pNext;                    /* Copy of pFKey->pNextFrom */
1156
1157  assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1158  for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1159
1160    /* Remove the FK from the fkeyHash hash table. */
1161    if( !db || db->pnBytesFreed==0 ){
1162      if( pFKey->pPrevTo ){
1163        pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1164      }else{
1165        void *p = (void *)pFKey->pNextTo;
1166        const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1167        sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), p);
1168      }
1169      if( pFKey->pNextTo ){
1170        pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1171      }
1172    }
1173
1174    /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1175    ** classified as either immediate or deferred.
1176    */
1177    assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1178
1179    /* Delete any triggers created to implement actions for this FK. */
1180#ifndef SQLITE_OMIT_TRIGGER
1181    fkTriggerDelete(db, pFKey->apTrigger[0]);
1182    fkTriggerDelete(db, pFKey->apTrigger[1]);
1183#endif
1184
1185    pNext = pFKey->pNextFrom;
1186    sqlite3DbFree(db, pFKey);
1187  }
1188}
1189#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */
1190