1/*
2** 2007 October 14
3**
4** The author disclaims copyright to this source code.  In place of
5** a legal notice, here is a blessing:
6**
7**    May you do good and not evil.
8**    May you find forgiveness for yourself and forgive others.
9**    May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains the C functions that implement a memory
13** allocation subsystem for use by SQLite.
14**
15** This version of the memory allocation subsystem omits all
16** use of malloc(). The application gives SQLite a block of memory
17** before calling sqlite3_initialize() from which allocations
18** are made and returned by the xMalloc() and xRealloc()
19** implementations. Once sqlite3_initialize() has been called,
20** the amount of memory available to SQLite is fixed and cannot
21** be changed.
22**
23** This version of the memory allocation subsystem is included
24** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
25**
26** This memory allocator uses the following algorithm:
27**
28**   1.  All memory allocations sizes are rounded up to a power of 2.
29**
30**   2.  If two adjacent free blocks are the halves of a larger block,
31**       then the two blocks are coalesed into the single larger block.
32**
33**   3.  New memory is allocated from the first available free block.
34**
35** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
36** Concerning Dynamic Storage Allocation". Journal of the Association for
37** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
38**
39** Let n be the size of the largest allocation divided by the minimum
40** allocation size (after rounding all sizes up to a power of 2.)  Let M
41** be the maximum amount of memory ever outstanding at one time.  Let
42** N be the total amount of memory available for allocation.  Robson
43** proved that this memory allocator will never breakdown due to
44** fragmentation as long as the following constraint holds:
45**
46**      N >=  M*(1 + log2(n)/2) - n + 1
47**
48** The sqlite3_status() logic tracks the maximum values of n and M so
49** that an application can, at any time, verify this constraint.
50*/
51#include "sqliteInt.h"
52
53/*
54** This version of the memory allocator is used only when
55** SQLITE_ENABLE_MEMSYS5 is defined.
56*/
57#ifdef SQLITE_ENABLE_MEMSYS5
58
59/*
60** A minimum allocation is an instance of the following structure.
61** Larger allocations are an array of these structures where the
62** size of the array is a power of 2.
63**
64** The size of this object must be a power of two.  That fact is
65** verified in memsys5Init().
66*/
67typedef struct Mem5Link Mem5Link;
68struct Mem5Link {
69  int next;       /* Index of next free chunk */
70  int prev;       /* Index of previous free chunk */
71};
72
73/*
74** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
75** mem5.szAtom is always at least 8 and 32-bit integers are used,
76** it is not actually possible to reach this limit.
77*/
78#define LOGMAX 30
79
80/*
81** Masks used for mem5.aCtrl[] elements.
82*/
83#define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block */
84#define CTRL_FREE     0x20    /* True if not checked out */
85
86/*
87** All of the static variables used by this module are collected
88** into a single structure named "mem5".  This is to keep the
89** static variables organized and to reduce namespace pollution
90** when this module is combined with other in the amalgamation.
91*/
92static SQLITE_WSD struct Mem5Global {
93  /*
94  ** Memory available for allocation
95  */
96  int szAtom;      /* Smallest possible allocation in bytes */
97  int nBlock;      /* Number of szAtom sized blocks in zPool */
98  u8 *zPool;       /* Memory available to be allocated */
99
100  /*
101  ** Mutex to control access to the memory allocation subsystem.
102  */
103  sqlite3_mutex *mutex;
104
105  /*
106  ** Performance statistics
107  */
108  u64 nAlloc;         /* Total number of calls to malloc */
109  u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
110  u64 totalExcess;    /* Total internal fragmentation */
111  u32 currentOut;     /* Current checkout, including internal fragmentation */
112  u32 currentCount;   /* Current number of distinct checkouts */
113  u32 maxOut;         /* Maximum instantaneous currentOut */
114  u32 maxCount;       /* Maximum instantaneous currentCount */
115  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
116
117  /*
118  ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
119  ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
120  ** and so forth.
121  */
122  int aiFreelist[LOGMAX+1];
123
124  /*
125  ** Space for tracking which blocks are checked out and the size
126  ** of each block.  One byte per block.
127  */
128  u8 *aCtrl;
129
130} mem5;
131
132/*
133** Access the static variable through a macro for SQLITE_OMIT_WSD
134*/
135#define mem5 GLOBAL(struct Mem5Global, mem5)
136
137/*
138** Assuming mem5.zPool is divided up into an array of Mem5Link
139** structures, return a pointer to the idx-th such lik.
140*/
141#define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
142
143/*
144** Unlink the chunk at mem5.aPool[i] from list it is currently
145** on.  It should be found on mem5.aiFreelist[iLogsize].
146*/
147static void memsys5Unlink(int i, int iLogsize){
148  int next, prev;
149  assert( i>=0 && i<mem5.nBlock );
150  assert( iLogsize>=0 && iLogsize<=LOGMAX );
151  assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
152
153  next = MEM5LINK(i)->next;
154  prev = MEM5LINK(i)->prev;
155  if( prev<0 ){
156    mem5.aiFreelist[iLogsize] = next;
157  }else{
158    MEM5LINK(prev)->next = next;
159  }
160  if( next>=0 ){
161    MEM5LINK(next)->prev = prev;
162  }
163}
164
165/*
166** Link the chunk at mem5.aPool[i] so that is on the iLogsize
167** free list.
168*/
169static void memsys5Link(int i, int iLogsize){
170  int x;
171  assert( sqlite3_mutex_held(mem5.mutex) );
172  assert( i>=0 && i<mem5.nBlock );
173  assert( iLogsize>=0 && iLogsize<=LOGMAX );
174  assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
175
176  x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
177  MEM5LINK(i)->prev = -1;
178  if( x>=0 ){
179    assert( x<mem5.nBlock );
180    MEM5LINK(x)->prev = i;
181  }
182  mem5.aiFreelist[iLogsize] = i;
183}
184
185/*
186** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
187** will already be held (obtained by code in malloc.c) if
188** sqlite3GlobalConfig.bMemStat is true.
189*/
190static void memsys5Enter(void){
191  sqlite3_mutex_enter(mem5.mutex);
192}
193static void memsys5Leave(void){
194  sqlite3_mutex_leave(mem5.mutex);
195}
196
197/*
198** Return the size of an outstanding allocation, in bytes.  The
199** size returned omits the 8-byte header overhead.  This only
200** works for chunks that are currently checked out.
201*/
202static int memsys5Size(void *p){
203  int iSize = 0;
204  if( p ){
205    int i = ((u8 *)p-mem5.zPool)/mem5.szAtom;
206    assert( i>=0 && i<mem5.nBlock );
207    iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
208  }
209  return iSize;
210}
211
212/*
213** Find the first entry on the freelist iLogsize.  Unlink that
214** entry and return its index.
215*/
216static int memsys5UnlinkFirst(int iLogsize){
217  int i;
218  int iFirst;
219
220  assert( iLogsize>=0 && iLogsize<=LOGMAX );
221  i = iFirst = mem5.aiFreelist[iLogsize];
222  assert( iFirst>=0 );
223  while( i>0 ){
224    if( i<iFirst ) iFirst = i;
225    i = MEM5LINK(i)->next;
226  }
227  memsys5Unlink(iFirst, iLogsize);
228  return iFirst;
229}
230
231/*
232** Return a block of memory of at least nBytes in size.
233** Return NULL if unable.  Return NULL if nBytes==0.
234**
235** The caller guarantees that nByte positive.
236**
237** The caller has obtained a mutex prior to invoking this
238** routine so there is never any chance that two or more
239** threads can be in this routine at the same time.
240*/
241static void *memsys5MallocUnsafe(int nByte){
242  int i;           /* Index of a mem5.aPool[] slot */
243  int iBin;        /* Index into mem5.aiFreelist[] */
244  int iFullSz;     /* Size of allocation rounded up to power of 2 */
245  int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
246
247  /* nByte must be a positive */
248  assert( nByte>0 );
249
250  /* Keep track of the maximum allocation request.  Even unfulfilled
251  ** requests are counted */
252  if( (u32)nByte>mem5.maxRequest ){
253    mem5.maxRequest = nByte;
254  }
255
256  /* Abort if the requested allocation size is larger than the largest
257  ** power of two that we can represent using 32-bit signed integers.
258  */
259  if( nByte > 0x40000000 ){
260    return 0;
261  }
262
263  /* Round nByte up to the next valid power of two */
264  for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
265
266  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
267  ** block.  If not, then split a block of the next larger power of
268  ** two in order to create a new free block of size iLogsize.
269  */
270  for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
271  if( iBin>LOGMAX ){
272    testcase( sqlite3GlobalConfig.xLog!=0 );
273    sqlite3_log(SQLITE_NOMEM, "failed to allocate %u bytes", nByte);
274    return 0;
275  }
276  i = memsys5UnlinkFirst(iBin);
277  while( iBin>iLogsize ){
278    int newSize;
279
280    iBin--;
281    newSize = 1 << iBin;
282    mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
283    memsys5Link(i+newSize, iBin);
284  }
285  mem5.aCtrl[i] = iLogsize;
286
287  /* Update allocator performance statistics. */
288  mem5.nAlloc++;
289  mem5.totalAlloc += iFullSz;
290  mem5.totalExcess += iFullSz - nByte;
291  mem5.currentCount++;
292  mem5.currentOut += iFullSz;
293  if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
294  if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
295
296  /* Return a pointer to the allocated memory. */
297  return (void*)&mem5.zPool[i*mem5.szAtom];
298}
299
300/*
301** Free an outstanding memory allocation.
302*/
303static void memsys5FreeUnsafe(void *pOld){
304  u32 size, iLogsize;
305  int iBlock;
306
307  /* Set iBlock to the index of the block pointed to by pOld in
308  ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
309  */
310  iBlock = ((u8 *)pOld-mem5.zPool)/mem5.szAtom;
311
312  /* Check that the pointer pOld points to a valid, non-free block. */
313  assert( iBlock>=0 && iBlock<mem5.nBlock );
314  assert( ((u8 *)pOld-mem5.zPool)%mem5.szAtom==0 );
315  assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
316
317  iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
318  size = 1<<iLogsize;
319  assert( iBlock+size-1<(u32)mem5.nBlock );
320
321  mem5.aCtrl[iBlock] |= CTRL_FREE;
322  mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
323  assert( mem5.currentCount>0 );
324  assert( mem5.currentOut>=(size*mem5.szAtom) );
325  mem5.currentCount--;
326  mem5.currentOut -= size*mem5.szAtom;
327  assert( mem5.currentOut>0 || mem5.currentCount==0 );
328  assert( mem5.currentCount>0 || mem5.currentOut==0 );
329
330  mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
331  while( ALWAYS(iLogsize<LOGMAX) ){
332    int iBuddy;
333    if( (iBlock>>iLogsize) & 1 ){
334      iBuddy = iBlock - size;
335    }else{
336      iBuddy = iBlock + size;
337    }
338    assert( iBuddy>=0 );
339    if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
340    if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
341    memsys5Unlink(iBuddy, iLogsize);
342    iLogsize++;
343    if( iBuddy<iBlock ){
344      mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
345      mem5.aCtrl[iBlock] = 0;
346      iBlock = iBuddy;
347    }else{
348      mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
349      mem5.aCtrl[iBuddy] = 0;
350    }
351    size *= 2;
352  }
353  memsys5Link(iBlock, iLogsize);
354}
355
356/*
357** Allocate nBytes of memory
358*/
359static void *memsys5Malloc(int nBytes){
360  sqlite3_int64 *p = 0;
361  if( nBytes>0 ){
362    memsys5Enter();
363    p = memsys5MallocUnsafe(nBytes);
364    memsys5Leave();
365  }
366  return (void*)p;
367}
368
369/*
370** Free memory.
371**
372** The outer layer memory allocator prevents this routine from
373** being called with pPrior==0.
374*/
375static void memsys5Free(void *pPrior){
376  assert( pPrior!=0 );
377  memsys5Enter();
378  memsys5FreeUnsafe(pPrior);
379  memsys5Leave();
380}
381
382/*
383** Change the size of an existing memory allocation.
384**
385** The outer layer memory allocator prevents this routine from
386** being called with pPrior==0.
387**
388** nBytes is always a value obtained from a prior call to
389** memsys5Round().  Hence nBytes is always a non-negative power
390** of two.  If nBytes==0 that means that an oversize allocation
391** (an allocation larger than 0x40000000) was requested and this
392** routine should return 0 without freeing pPrior.
393*/
394static void *memsys5Realloc(void *pPrior, int nBytes){
395  int nOld;
396  void *p;
397  assert( pPrior!=0 );
398  assert( (nBytes&(nBytes-1))==0 );  /* EV: R-46199-30249 */
399  assert( nBytes>=0 );
400  if( nBytes==0 ){
401    return 0;
402  }
403  nOld = memsys5Size(pPrior);
404  if( nBytes<=nOld ){
405    return pPrior;
406  }
407  memsys5Enter();
408  p = memsys5MallocUnsafe(nBytes);
409  if( p ){
410    memcpy(p, pPrior, nOld);
411    memsys5FreeUnsafe(pPrior);
412  }
413  memsys5Leave();
414  return p;
415}
416
417/*
418** Round up a request size to the next valid allocation size.  If
419** the allocation is too large to be handled by this allocation system,
420** return 0.
421**
422** All allocations must be a power of two and must be expressed by a
423** 32-bit signed integer.  Hence the largest allocation is 0x40000000
424** or 1073741824 bytes.
425*/
426static int memsys5Roundup(int n){
427  int iFullSz;
428  if( n > 0x40000000 ) return 0;
429  for(iFullSz=mem5.szAtom; iFullSz<n; iFullSz *= 2);
430  return iFullSz;
431}
432
433/*
434** Return the ceiling of the logarithm base 2 of iValue.
435**
436** Examples:   memsys5Log(1) -> 0
437**             memsys5Log(2) -> 1
438**             memsys5Log(4) -> 2
439**             memsys5Log(5) -> 3
440**             memsys5Log(8) -> 3
441**             memsys5Log(9) -> 4
442*/
443static int memsys5Log(int iValue){
444  int iLog;
445  for(iLog=0; (iLog<(int)((sizeof(int)*8)-1)) && (1<<iLog)<iValue; iLog++);
446  return iLog;
447}
448
449/*
450** Initialize the memory allocator.
451**
452** This routine is not threadsafe.  The caller must be holding a mutex
453** to prevent multiple threads from entering at the same time.
454*/
455static int memsys5Init(void *NotUsed){
456  int ii;            /* Loop counter */
457  int nByte;         /* Number of bytes of memory available to this allocator */
458  u8 *zByte;         /* Memory usable by this allocator */
459  int nMinLog;       /* Log base 2 of minimum allocation size in bytes */
460  int iOffset;       /* An offset into mem5.aCtrl[] */
461
462  UNUSED_PARAMETER(NotUsed);
463
464  /* For the purposes of this routine, disable the mutex */
465  mem5.mutex = 0;
466
467  /* The size of a Mem5Link object must be a power of two.  Verify that
468  ** this is case.
469  */
470  assert( (sizeof(Mem5Link)&(sizeof(Mem5Link)-1))==0 );
471
472  nByte = sqlite3GlobalConfig.nHeap;
473  zByte = (u8*)sqlite3GlobalConfig.pHeap;
474  assert( zByte!=0 );  /* sqlite3_config() does not allow otherwise */
475
476  /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
477  nMinLog = memsys5Log(sqlite3GlobalConfig.mnReq);
478  mem5.szAtom = (1<<nMinLog);
479  while( (int)sizeof(Mem5Link)>mem5.szAtom ){
480    mem5.szAtom = mem5.szAtom << 1;
481  }
482
483  mem5.nBlock = (nByte / (mem5.szAtom+sizeof(u8)));
484  mem5.zPool = zByte;
485  mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.szAtom];
486
487  for(ii=0; ii<=LOGMAX; ii++){
488    mem5.aiFreelist[ii] = -1;
489  }
490
491  iOffset = 0;
492  for(ii=LOGMAX; ii>=0; ii--){
493    int nAlloc = (1<<ii);
494    if( (iOffset+nAlloc)<=mem5.nBlock ){
495      mem5.aCtrl[iOffset] = ii | CTRL_FREE;
496      memsys5Link(iOffset, ii);
497      iOffset += nAlloc;
498    }
499    assert((iOffset+nAlloc)>mem5.nBlock);
500  }
501
502  /* If a mutex is required for normal operation, allocate one */
503  if( sqlite3GlobalConfig.bMemstat==0 ){
504    mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
505  }
506
507  return SQLITE_OK;
508}
509
510/*
511** Deinitialize this module.
512*/
513static void memsys5Shutdown(void *NotUsed){
514  UNUSED_PARAMETER(NotUsed);
515  mem5.mutex = 0;
516  return;
517}
518
519#ifdef SQLITE_TEST
520/*
521** Open the file indicated and write a log of all unfreed memory
522** allocations into that log.
523*/
524void sqlite3Memsys5Dump(const char *zFilename){
525  FILE *out;
526  int i, j, n;
527  int nMinLog;
528
529  if( zFilename==0 || zFilename[0]==0 ){
530    out = stdout;
531  }else{
532    out = fopen(zFilename, "w");
533    if( out==0 ){
534      fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
535                      zFilename);
536      return;
537    }
538  }
539  memsys5Enter();
540  nMinLog = memsys5Log(mem5.szAtom);
541  for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
542    for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
543    fprintf(out, "freelist items of size %d: %d\n", mem5.szAtom << i, n);
544  }
545  fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
546  fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
547  fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
548  fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
549  fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
550  fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
551  fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
552  fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
553  memsys5Leave();
554  if( out==stdout ){
555    fflush(stdout);
556  }else{
557    fclose(out);
558  }
559}
560#endif
561
562/*
563** This routine is the only routine in this file with external
564** linkage. It returns a pointer to a static sqlite3_mem_methods
565** struct populated with the memsys5 methods.
566*/
567const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
568  static const sqlite3_mem_methods memsys5Methods = {
569     memsys5Malloc,
570     memsys5Free,
571     memsys5Realloc,
572     memsys5Size,
573     memsys5Roundup,
574     memsys5Init,
575     memsys5Shutdown,
576     0
577  };
578  return &memsys5Methods;
579}
580
581#endif /* SQLITE_ENABLE_MEMSYS5 */
582