1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5/** \mainpage V8 API Reference Guide
6 *
7 * V8 is Google's open source JavaScript engine.
8 *
9 * This set of documents provides reference material generated from the
10 * V8 header file, include/v8.h.
11 *
12 * For other documentation see http://code.google.com/apis/v8/
13 */
14
15#ifndef V8_H_
16#define V8_H_
17
18#include "v8stdint.h"
19
20// We reserve the V8_* prefix for macros defined in V8 public API and
21// assume there are no name conflicts with the embedder's code.
22
23#ifdef V8_OS_WIN
24
25// Setup for Windows DLL export/import. When building the V8 DLL the
26// BUILDING_V8_SHARED needs to be defined. When building a program which uses
27// the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
28// static library or building a program which uses the V8 static library neither
29// BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
30#if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
31#error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
32  build configuration to ensure that at most one of these is set
33#endif
34
35#ifdef BUILDING_V8_SHARED
36# define V8_EXPORT __declspec(dllexport)
37#elif USING_V8_SHARED
38# define V8_EXPORT __declspec(dllimport)
39#else
40# define V8_EXPORT
41#endif  // BUILDING_V8_SHARED
42
43#else  // V8_OS_WIN
44
45// Setup for Linux shared library export.
46#if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED)
47# ifdef BUILDING_V8_SHARED
48#  define V8_EXPORT __attribute__ ((visibility("default")))
49# else
50#  define V8_EXPORT
51# endif
52#else
53# define V8_EXPORT
54#endif
55
56#endif  // V8_OS_WIN
57
58/**
59 * The v8 JavaScript engine.
60 */
61namespace v8 {
62
63class AccessorSignature;
64class Array;
65class Boolean;
66class BooleanObject;
67class Context;
68class CpuProfiler;
69class Data;
70class Date;
71class DeclaredAccessorDescriptor;
72class External;
73class Function;
74class FunctionTemplate;
75class HeapProfiler;
76class ImplementationUtilities;
77class Int32;
78class Integer;
79class Isolate;
80class Number;
81class NumberObject;
82class Object;
83class ObjectOperationDescriptor;
84class ObjectTemplate;
85class Platform;
86class Primitive;
87class RawOperationDescriptor;
88class Script;
89class Signature;
90class StackFrame;
91class StackTrace;
92class String;
93class StringObject;
94class Symbol;
95class SymbolObject;
96class Private;
97class Uint32;
98class Utils;
99class Value;
100template <class T> class Handle;
101template <class T> class Local;
102template <class T> class Eternal;
103template<class T> class NonCopyablePersistentTraits;
104template<class T> class PersistentBase;
105template<class T,
106         class M = NonCopyablePersistentTraits<T> > class Persistent;
107template<class T> class UniquePersistent;
108template<class K, class V, class T> class PersistentValueMap;
109template<class V, class T> class PersistentValueVector;
110template<class T, class P> class WeakCallbackObject;
111class FunctionTemplate;
112class ObjectTemplate;
113class Data;
114template<typename T> class FunctionCallbackInfo;
115template<typename T> class PropertyCallbackInfo;
116class StackTrace;
117class StackFrame;
118class Isolate;
119class DeclaredAccessorDescriptor;
120class ObjectOperationDescriptor;
121class RawOperationDescriptor;
122class CallHandlerHelper;
123class EscapableHandleScope;
124template<typename T> class ReturnValue;
125
126namespace internal {
127class Arguments;
128class Heap;
129class HeapObject;
130class Isolate;
131class Object;
132template<typename T> class CustomArguments;
133class PropertyCallbackArguments;
134class FunctionCallbackArguments;
135class GlobalHandles;
136}
137
138
139/**
140 * General purpose unique identifier.
141 */
142class UniqueId {
143 public:
144  explicit UniqueId(intptr_t data)
145      : data_(data) {}
146
147  bool operator==(const UniqueId& other) const {
148    return data_ == other.data_;
149  }
150
151  bool operator!=(const UniqueId& other) const {
152    return data_ != other.data_;
153  }
154
155  bool operator<(const UniqueId& other) const {
156    return data_ < other.data_;
157  }
158
159 private:
160  intptr_t data_;
161};
162
163// --- Handles ---
164
165#define TYPE_CHECK(T, S)                                       \
166  while (false) {                                              \
167    *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);      \
168  }
169
170
171/**
172 * An object reference managed by the v8 garbage collector.
173 *
174 * All objects returned from v8 have to be tracked by the garbage
175 * collector so that it knows that the objects are still alive.  Also,
176 * because the garbage collector may move objects, it is unsafe to
177 * point directly to an object.  Instead, all objects are stored in
178 * handles which are known by the garbage collector and updated
179 * whenever an object moves.  Handles should always be passed by value
180 * (except in cases like out-parameters) and they should never be
181 * allocated on the heap.
182 *
183 * There are two types of handles: local and persistent handles.
184 * Local handles are light-weight and transient and typically used in
185 * local operations.  They are managed by HandleScopes.  Persistent
186 * handles can be used when storing objects across several independent
187 * operations and have to be explicitly deallocated when they're no
188 * longer used.
189 *
190 * It is safe to extract the object stored in the handle by
191 * dereferencing the handle (for instance, to extract the Object* from
192 * a Handle<Object>); the value will still be governed by a handle
193 * behind the scenes and the same rules apply to these values as to
194 * their handles.
195 */
196template <class T> class Handle {
197 public:
198  /**
199   * Creates an empty handle.
200   */
201  V8_INLINE Handle() : val_(0) {}
202
203  /**
204   * Creates a handle for the contents of the specified handle.  This
205   * constructor allows you to pass handles as arguments by value and
206   * to assign between handles.  However, if you try to assign between
207   * incompatible handles, for instance from a Handle<String> to a
208   * Handle<Number> it will cause a compile-time error.  Assigning
209   * between compatible handles, for instance assigning a
210   * Handle<String> to a variable declared as Handle<Value>, is legal
211   * because String is a subclass of Value.
212   */
213  template <class S> V8_INLINE Handle(Handle<S> that)
214      : val_(reinterpret_cast<T*>(*that)) {
215    /**
216     * This check fails when trying to convert between incompatible
217     * handles. For example, converting from a Handle<String> to a
218     * Handle<Number>.
219     */
220    TYPE_CHECK(T, S);
221  }
222
223  /**
224   * Returns true if the handle is empty.
225   */
226  V8_INLINE bool IsEmpty() const { return val_ == 0; }
227
228  /**
229   * Sets the handle to be empty. IsEmpty() will then return true.
230   */
231  V8_INLINE void Clear() { val_ = 0; }
232
233  V8_INLINE T* operator->() const { return val_; }
234
235  V8_INLINE T* operator*() const { return val_; }
236
237  /**
238   * Checks whether two handles are the same.
239   * Returns true if both are empty, or if the objects
240   * to which they refer are identical.
241   * The handles' references are not checked.
242   */
243  template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
244    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
245    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
246    if (a == 0) return b == 0;
247    if (b == 0) return false;
248    return *a == *b;
249  }
250
251  template <class S> V8_INLINE bool operator==(
252      const PersistentBase<S>& that) const {
253    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
254    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
255    if (a == 0) return b == 0;
256    if (b == 0) return false;
257    return *a == *b;
258  }
259
260  /**
261   * Checks whether two handles are different.
262   * Returns true if only one of the handles is empty, or if
263   * the objects to which they refer are different.
264   * The handles' references are not checked.
265   */
266  template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
267    return !operator==(that);
268  }
269
270  template <class S> V8_INLINE bool operator!=(
271      const Persistent<S>& that) const {
272    return !operator==(that);
273  }
274
275  template <class S> V8_INLINE static Handle<T> Cast(Handle<S> that) {
276#ifdef V8_ENABLE_CHECKS
277    // If we're going to perform the type check then we have to check
278    // that the handle isn't empty before doing the checked cast.
279    if (that.IsEmpty()) return Handle<T>();
280#endif
281    return Handle<T>(T::Cast(*that));
282  }
283
284  template <class S> V8_INLINE Handle<S> As() {
285    return Handle<S>::Cast(*this);
286  }
287
288  V8_INLINE static Handle<T> New(Isolate* isolate, Handle<T> that) {
289    return New(isolate, that.val_);
290  }
291  V8_INLINE static Handle<T> New(Isolate* isolate,
292                                 const PersistentBase<T>& that) {
293    return New(isolate, that.val_);
294  }
295
296 private:
297  friend class Utils;
298  template<class F, class M> friend class Persistent;
299  template<class F> friend class PersistentBase;
300  template<class F> friend class Handle;
301  template<class F> friend class Local;
302  template<class F> friend class FunctionCallbackInfo;
303  template<class F> friend class PropertyCallbackInfo;
304  template<class F> friend class internal::CustomArguments;
305  friend Handle<Primitive> Undefined(Isolate* isolate);
306  friend Handle<Primitive> Null(Isolate* isolate);
307  friend Handle<Boolean> True(Isolate* isolate);
308  friend Handle<Boolean> False(Isolate* isolate);
309  friend class Context;
310  friend class HandleScope;
311  friend class Object;
312  friend class Private;
313
314  /**
315   * Creates a new handle for the specified value.
316   */
317  V8_INLINE explicit Handle(T* val) : val_(val) {}
318
319  V8_INLINE static Handle<T> New(Isolate* isolate, T* that);
320
321  T* val_;
322};
323
324
325/**
326 * A light-weight stack-allocated object handle.  All operations
327 * that return objects from within v8 return them in local handles.  They
328 * are created within HandleScopes, and all local handles allocated within a
329 * handle scope are destroyed when the handle scope is destroyed.  Hence it
330 * is not necessary to explicitly deallocate local handles.
331 */
332template <class T> class Local : public Handle<T> {
333 public:
334  V8_INLINE Local();
335  template <class S> V8_INLINE Local(Local<S> that)
336      : Handle<T>(reinterpret_cast<T*>(*that)) {
337    /**
338     * This check fails when trying to convert between incompatible
339     * handles. For example, converting from a Handle<String> to a
340     * Handle<Number>.
341     */
342    TYPE_CHECK(T, S);
343  }
344
345
346  template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
347#ifdef V8_ENABLE_CHECKS
348    // If we're going to perform the type check then we have to check
349    // that the handle isn't empty before doing the checked cast.
350    if (that.IsEmpty()) return Local<T>();
351#endif
352    return Local<T>(T::Cast(*that));
353  }
354  template <class S> V8_INLINE Local(Handle<S> that)
355      : Handle<T>(reinterpret_cast<T*>(*that)) {
356    TYPE_CHECK(T, S);
357  }
358
359  template <class S> V8_INLINE Local<S> As() {
360    return Local<S>::Cast(*this);
361  }
362
363  /**
364   * Create a local handle for the content of another handle.
365   * The referee is kept alive by the local handle even when
366   * the original handle is destroyed/disposed.
367   */
368  V8_INLINE static Local<T> New(Isolate* isolate, Handle<T> that);
369  V8_INLINE static Local<T> New(Isolate* isolate,
370                                const PersistentBase<T>& that);
371
372 private:
373  friend class Utils;
374  template<class F> friend class Eternal;
375  template<class F> friend class PersistentBase;
376  template<class F, class M> friend class Persistent;
377  template<class F> friend class Handle;
378  template<class F> friend class Local;
379  template<class F> friend class FunctionCallbackInfo;
380  template<class F> friend class PropertyCallbackInfo;
381  friend class String;
382  friend class Object;
383  friend class Context;
384  template<class F> friend class internal::CustomArguments;
385  friend class HandleScope;
386  friend class EscapableHandleScope;
387  template<class F1, class F2, class F3> friend class PersistentValueMap;
388  template<class F1, class F2> friend class PersistentValueVector;
389
390  template <class S> V8_INLINE Local(S* that) : Handle<T>(that) { }
391  V8_INLINE static Local<T> New(Isolate* isolate, T* that);
392};
393
394
395// Eternal handles are set-once handles that live for the life of the isolate.
396template <class T> class Eternal {
397 public:
398  V8_INLINE Eternal() : index_(kInitialValue) { }
399  template<class S>
400  V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
401    Set(isolate, handle);
402  }
403  // Can only be safely called if already set.
404  V8_INLINE Local<T> Get(Isolate* isolate);
405  V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
406  template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
407
408 private:
409  static const int kInitialValue = -1;
410  int index_;
411};
412
413
414template<class T, class P>
415class WeakCallbackData {
416 public:
417  typedef void (*Callback)(const WeakCallbackData<T, P>& data);
418
419  V8_INLINE Isolate* GetIsolate() const { return isolate_; }
420  V8_INLINE Local<T> GetValue() const { return handle_; }
421  V8_INLINE P* GetParameter() const { return parameter_; }
422
423 private:
424  friend class internal::GlobalHandles;
425  WeakCallbackData(Isolate* isolate, Local<T> handle, P* parameter)
426    : isolate_(isolate), handle_(handle), parameter_(parameter) { }
427  Isolate* isolate_;
428  Local<T> handle_;
429  P* parameter_;
430};
431
432
433/**
434 * An object reference that is independent of any handle scope.  Where
435 * a Local handle only lives as long as the HandleScope in which it was
436 * allocated, a PersistentBase handle remains valid until it is explicitly
437 * disposed.
438 *
439 * A persistent handle contains a reference to a storage cell within
440 * the v8 engine which holds an object value and which is updated by
441 * the garbage collector whenever the object is moved.  A new storage
442 * cell can be created using the constructor or PersistentBase::Reset and
443 * existing handles can be disposed using PersistentBase::Reset.
444 *
445 */
446template <class T> class PersistentBase {
447 public:
448  /**
449   * If non-empty, destroy the underlying storage cell
450   * IsEmpty() will return true after this call.
451   */
452  V8_INLINE void Reset();
453  /**
454   * If non-empty, destroy the underlying storage cell
455   * and create a new one with the contents of other if other is non empty
456   */
457  template <class S>
458  V8_INLINE void Reset(Isolate* isolate, const Handle<S>& other);
459
460  /**
461   * If non-empty, destroy the underlying storage cell
462   * and create a new one with the contents of other if other is non empty
463   */
464  template <class S>
465  V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
466
467  V8_INLINE bool IsEmpty() const { return val_ == 0; }
468
469  template <class S>
470  V8_INLINE bool operator==(const PersistentBase<S>& that) const {
471    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
472    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
473    if (a == 0) return b == 0;
474    if (b == 0) return false;
475    return *a == *b;
476  }
477
478  template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
479    internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
480    internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
481    if (a == 0) return b == 0;
482    if (b == 0) return false;
483    return *a == *b;
484  }
485
486  template <class S>
487  V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
488    return !operator==(that);
489  }
490
491  template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
492    return !operator==(that);
493  }
494
495  /**
496   *  Install a finalization callback on this object.
497   *  NOTE: There is no guarantee as to *when* or even *if* the callback is
498   *  invoked. The invocation is performed solely on a best effort basis.
499   *  As always, GC-based finalization should *not* be relied upon for any
500   *  critical form of resource management!
501   */
502  template<typename P>
503  V8_INLINE void SetWeak(
504      P* parameter,
505      typename WeakCallbackData<T, P>::Callback callback);
506
507  template<typename S, typename P>
508  V8_INLINE void SetWeak(
509      P* parameter,
510      typename WeakCallbackData<S, P>::Callback callback);
511
512  template<typename P>
513  V8_INLINE P* ClearWeak();
514
515  // TODO(dcarney): remove this.
516  V8_INLINE void ClearWeak() { ClearWeak<void>(); }
517
518  /**
519   * Marks the reference to this object independent. Garbage collector is free
520   * to ignore any object groups containing this object. Weak callback for an
521   * independent handle should not assume that it will be preceded by a global
522   * GC prologue callback or followed by a global GC epilogue callback.
523   */
524  V8_INLINE void MarkIndependent();
525
526  /**
527   * Marks the reference to this object partially dependent. Partially dependent
528   * handles only depend on other partially dependent handles and these
529   * dependencies are provided through object groups. It provides a way to build
530   * smaller object groups for young objects that represent only a subset of all
531   * external dependencies. This mark is automatically cleared after each
532   * garbage collection.
533   */
534  V8_INLINE void MarkPartiallyDependent();
535
536  V8_INLINE bool IsIndependent() const;
537
538  /** Checks if the handle holds the only reference to an object. */
539  V8_INLINE bool IsNearDeath() const;
540
541  /** Returns true if the handle's reference is weak.  */
542  V8_INLINE bool IsWeak() const;
543
544  /**
545   * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
546   * description in v8-profiler.h for details.
547   */
548  V8_INLINE void SetWrapperClassId(uint16_t class_id);
549
550  /**
551   * Returns the class ID previously assigned to this handle or 0 if no class ID
552   * was previously assigned.
553   */
554  V8_INLINE uint16_t WrapperClassId() const;
555
556 private:
557  friend class Isolate;
558  friend class Utils;
559  template<class F> friend class Handle;
560  template<class F> friend class Local;
561  template<class F1, class F2> friend class Persistent;
562  template<class F> friend class UniquePersistent;
563  template<class F> friend class PersistentBase;
564  template<class F> friend class ReturnValue;
565  template<class F1, class F2, class F3> friend class PersistentValueMap;
566  template<class F1, class F2> friend class PersistentValueVector;
567  friend class Object;
568
569  explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
570  PersistentBase(PersistentBase& other); // NOLINT
571  void operator=(PersistentBase&);
572  V8_INLINE static T* New(Isolate* isolate, T* that);
573
574  T* val_;
575};
576
577
578/**
579 * Default traits for Persistent. This class does not allow
580 * use of the copy constructor or assignment operator.
581 * At present kResetInDestructor is not set, but that will change in a future
582 * version.
583 */
584template<class T>
585class NonCopyablePersistentTraits {
586 public:
587  typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
588  static const bool kResetInDestructor = false;
589  template<class S, class M>
590  V8_INLINE static void Copy(const Persistent<S, M>& source,
591                             NonCopyablePersistent* dest) {
592    Uncompilable<Object>();
593  }
594  // TODO(dcarney): come up with a good compile error here.
595  template<class O> V8_INLINE static void Uncompilable() {
596    TYPE_CHECK(O, Primitive);
597  }
598};
599
600
601/**
602 * Helper class traits to allow copying and assignment of Persistent.
603 * This will clone the contents of storage cell, but not any of the flags, etc.
604 */
605template<class T>
606struct CopyablePersistentTraits {
607  typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
608  static const bool kResetInDestructor = true;
609  template<class S, class M>
610  static V8_INLINE void Copy(const Persistent<S, M>& source,
611                             CopyablePersistent* dest) {
612    // do nothing, just allow copy
613  }
614};
615
616
617/**
618 * A PersistentBase which allows copy and assignment.
619 *
620 * Copy, assignment and destructor bevavior is controlled by the traits
621 * class M.
622 *
623 * Note: Persistent class hierarchy is subject to future changes.
624 */
625template <class T, class M> class Persistent : public PersistentBase<T> {
626 public:
627  /**
628   * A Persistent with no storage cell.
629   */
630  V8_INLINE Persistent() : PersistentBase<T>(0) { }
631  /**
632   * Construct a Persistent from a Handle.
633   * When the Handle is non-empty, a new storage cell is created
634   * pointing to the same object, and no flags are set.
635   */
636  template <class S> V8_INLINE Persistent(Isolate* isolate, Handle<S> that)
637      : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
638    TYPE_CHECK(T, S);
639  }
640  /**
641   * Construct a Persistent from a Persistent.
642   * When the Persistent is non-empty, a new storage cell is created
643   * pointing to the same object, and no flags are set.
644   */
645  template <class S, class M2>
646  V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
647    : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
648    TYPE_CHECK(T, S);
649  }
650  /**
651   * The copy constructors and assignment operator create a Persistent
652   * exactly as the Persistent constructor, but the Copy function from the
653   * traits class is called, allowing the setting of flags based on the
654   * copied Persistent.
655   */
656  V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
657    Copy(that);
658  }
659  template <class S, class M2>
660  V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
661    Copy(that);
662  }
663  V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
664    Copy(that);
665    return *this;
666  }
667  template <class S, class M2>
668  V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
669    Copy(that);
670    return *this;
671  }
672  /**
673   * The destructor will dispose the Persistent based on the
674   * kResetInDestructor flags in the traits class.  Since not calling dispose
675   * can result in a memory leak, it is recommended to always set this flag.
676   */
677  V8_INLINE ~Persistent() {
678    if (M::kResetInDestructor) this->Reset();
679  }
680
681  // TODO(dcarney): this is pretty useless, fix or remove
682  template <class S>
683  V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
684#ifdef V8_ENABLE_CHECKS
685    // If we're going to perform the type check then we have to check
686    // that the handle isn't empty before doing the checked cast.
687    if (!that.IsEmpty()) T::Cast(*that);
688#endif
689    return reinterpret_cast<Persistent<T>&>(that);
690  }
691
692  // TODO(dcarney): this is pretty useless, fix or remove
693  template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
694    return Persistent<S>::Cast(*this);
695  }
696
697  // This will be removed.
698  V8_INLINE T* ClearAndLeak();
699
700 private:
701  friend class Isolate;
702  friend class Utils;
703  template<class F> friend class Handle;
704  template<class F> friend class Local;
705  template<class F1, class F2> friend class Persistent;
706  template<class F> friend class ReturnValue;
707
708  template <class S> V8_INLINE Persistent(S* that) : PersistentBase<T>(that) { }
709  V8_INLINE T* operator*() const { return this->val_; }
710  template<class S, class M2>
711  V8_INLINE void Copy(const Persistent<S, M2>& that);
712};
713
714
715/**
716 * A PersistentBase which has move semantics.
717 *
718 * Note: Persistent class hierarchy is subject to future changes.
719 */
720template<class T>
721class UniquePersistent : public PersistentBase<T> {
722  struct RValue {
723    V8_INLINE explicit RValue(UniquePersistent* obj) : object(obj) {}
724    UniquePersistent* object;
725  };
726
727 public:
728  /**
729   * A UniquePersistent with no storage cell.
730   */
731  V8_INLINE UniquePersistent() : PersistentBase<T>(0) { }
732  /**
733   * Construct a UniquePersistent from a Handle.
734   * When the Handle is non-empty, a new storage cell is created
735   * pointing to the same object, and no flags are set.
736   */
737  template <class S>
738  V8_INLINE UniquePersistent(Isolate* isolate, Handle<S> that)
739      : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
740    TYPE_CHECK(T, S);
741  }
742  /**
743   * Construct a UniquePersistent from a PersistentBase.
744   * When the Persistent is non-empty, a new storage cell is created
745   * pointing to the same object, and no flags are set.
746   */
747  template <class S>
748  V8_INLINE UniquePersistent(Isolate* isolate, const PersistentBase<S>& that)
749    : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
750    TYPE_CHECK(T, S);
751  }
752  /**
753   * Move constructor.
754   */
755  V8_INLINE UniquePersistent(RValue rvalue)
756    : PersistentBase<T>(rvalue.object->val_) {
757    rvalue.object->val_ = 0;
758  }
759  V8_INLINE ~UniquePersistent() { this->Reset(); }
760  /**
761   * Move via assignment.
762   */
763  template<class S>
764  V8_INLINE UniquePersistent& operator=(UniquePersistent<S> rhs) {
765    TYPE_CHECK(T, S);
766    this->Reset();
767    this->val_ = rhs.val_;
768    rhs.val_ = 0;
769    return *this;
770  }
771  /**
772   * Cast operator for moves.
773   */
774  V8_INLINE operator RValue() { return RValue(this); }
775  /**
776   * Pass allows returning uniques from functions, etc.
777   */
778  UniquePersistent Pass() { return UniquePersistent(RValue(this)); }
779
780 private:
781  UniquePersistent(UniquePersistent&);
782  void operator=(UniquePersistent&);
783};
784
785
786 /**
787 * A stack-allocated class that governs a number of local handles.
788 * After a handle scope has been created, all local handles will be
789 * allocated within that handle scope until either the handle scope is
790 * deleted or another handle scope is created.  If there is already a
791 * handle scope and a new one is created, all allocations will take
792 * place in the new handle scope until it is deleted.  After that,
793 * new handles will again be allocated in the original handle scope.
794 *
795 * After the handle scope of a local handle has been deleted the
796 * garbage collector will no longer track the object stored in the
797 * handle and may deallocate it.  The behavior of accessing a handle
798 * for which the handle scope has been deleted is undefined.
799 */
800class V8_EXPORT HandleScope {
801 public:
802  HandleScope(Isolate* isolate);
803
804  ~HandleScope();
805
806  /**
807   * Counts the number of allocated handles.
808   */
809  static int NumberOfHandles(Isolate* isolate);
810
811  V8_INLINE Isolate* GetIsolate() const {
812    return reinterpret_cast<Isolate*>(isolate_);
813  }
814
815 protected:
816  V8_INLINE HandleScope() {}
817
818  void Initialize(Isolate* isolate);
819
820  static internal::Object** CreateHandle(internal::Isolate* isolate,
821                                         internal::Object* value);
822
823 private:
824  // Uses heap_object to obtain the current Isolate.
825  static internal::Object** CreateHandle(internal::HeapObject* heap_object,
826                                         internal::Object* value);
827
828  // Make it hard to create heap-allocated or illegal handle scopes by
829  // disallowing certain operations.
830  HandleScope(const HandleScope&);
831  void operator=(const HandleScope&);
832  void* operator new(size_t size);
833  void operator delete(void*, size_t);
834
835  internal::Isolate* isolate_;
836  internal::Object** prev_next_;
837  internal::Object** prev_limit_;
838
839  // Local::New uses CreateHandle with an Isolate* parameter.
840  template<class F> friend class Local;
841
842  // Object::GetInternalField and Context::GetEmbedderData use CreateHandle with
843  // a HeapObject* in their shortcuts.
844  friend class Object;
845  friend class Context;
846};
847
848
849/**
850 * A HandleScope which first allocates a handle in the current scope
851 * which will be later filled with the escape value.
852 */
853class V8_EXPORT EscapableHandleScope : public HandleScope {
854 public:
855  EscapableHandleScope(Isolate* isolate);
856  V8_INLINE ~EscapableHandleScope() {}
857
858  /**
859   * Pushes the value into the previous scope and returns a handle to it.
860   * Cannot be called twice.
861   */
862  template <class T>
863  V8_INLINE Local<T> Escape(Local<T> value) {
864    internal::Object** slot =
865        Escape(reinterpret_cast<internal::Object**>(*value));
866    return Local<T>(reinterpret_cast<T*>(slot));
867  }
868
869 private:
870  internal::Object** Escape(internal::Object** escape_value);
871
872  // Make it hard to create heap-allocated or illegal handle scopes by
873  // disallowing certain operations.
874  EscapableHandleScope(const EscapableHandleScope&);
875  void operator=(const EscapableHandleScope&);
876  void* operator new(size_t size);
877  void operator delete(void*, size_t);
878
879  internal::Object** escape_slot_;
880};
881
882
883/**
884 * A simple Maybe type, representing an object which may or may not have a
885 * value.
886 */
887template<class T>
888struct Maybe {
889  Maybe() : has_value(false) {}
890  explicit Maybe(T t) : has_value(true), value(t) {}
891  Maybe(bool has, T t) : has_value(has), value(t) {}
892
893  bool has_value;
894  T value;
895};
896
897
898// --- Special objects ---
899
900
901/**
902 * The superclass of values and API object templates.
903 */
904class V8_EXPORT Data {
905 private:
906  Data();
907};
908
909
910/**
911 * The origin, within a file, of a script.
912 */
913class ScriptOrigin {
914 public:
915  V8_INLINE ScriptOrigin(
916      Handle<Value> resource_name,
917      Handle<Integer> resource_line_offset = Handle<Integer>(),
918      Handle<Integer> resource_column_offset = Handle<Integer>(),
919      Handle<Boolean> resource_is_shared_cross_origin = Handle<Boolean>())
920      : resource_name_(resource_name),
921        resource_line_offset_(resource_line_offset),
922        resource_column_offset_(resource_column_offset),
923        resource_is_shared_cross_origin_(resource_is_shared_cross_origin) { }
924  V8_INLINE Handle<Value> ResourceName() const;
925  V8_INLINE Handle<Integer> ResourceLineOffset() const;
926  V8_INLINE Handle<Integer> ResourceColumnOffset() const;
927  V8_INLINE Handle<Boolean> ResourceIsSharedCrossOrigin() const;
928 private:
929  Handle<Value> resource_name_;
930  Handle<Integer> resource_line_offset_;
931  Handle<Integer> resource_column_offset_;
932  Handle<Boolean> resource_is_shared_cross_origin_;
933};
934
935
936/**
937 * A compiled JavaScript script, not yet tied to a Context.
938 */
939class V8_EXPORT UnboundScript {
940 public:
941  /**
942   * Binds the script to the currently entered context.
943   */
944  Local<Script> BindToCurrentContext();
945
946  int GetId();
947  Handle<Value> GetScriptName();
948
949  /**
950   * Returns zero based line number of the code_pos location in the script.
951   * -1 will be returned if no information available.
952   */
953  int GetLineNumber(int code_pos);
954
955  static const int kNoScriptId = 0;
956};
957
958
959/**
960 * A compiled JavaScript script, tied to a Context which was active when the
961 * script was compiled.
962 */
963class V8_EXPORT Script {
964 public:
965  /**
966   * A shorthand for ScriptCompiler::Compile().
967   */
968  static Local<Script> Compile(Handle<String> source,
969                               ScriptOrigin* origin = NULL);
970
971  // To be decprecated, use the Compile above.
972  static Local<Script> Compile(Handle<String> source,
973                               Handle<String> file_name);
974
975  /**
976   * Runs the script returning the resulting value. It will be run in the
977   * context in which it was created (ScriptCompiler::CompileBound or
978   * UnboundScript::BindToGlobalContext()).
979   */
980  Local<Value> Run();
981
982  /**
983   * Returns the corresponding context-unbound script.
984   */
985  Local<UnboundScript> GetUnboundScript();
986
987  V8_DEPRECATED("Use GetUnboundScript()->GetId()",
988                int GetId()) {
989    return GetUnboundScript()->GetId();
990  }
991};
992
993
994/**
995 * For compiling scripts.
996 */
997class V8_EXPORT ScriptCompiler {
998 public:
999  /**
1000   * Compilation data that the embedder can cache and pass back to speed up
1001   * future compilations. The data is produced if the CompilerOptions passed to
1002   * the compilation functions in ScriptCompiler contains produce_data_to_cache
1003   * = true. The data to cache can then can be retrieved from
1004   * UnboundScript.
1005   */
1006  struct V8_EXPORT CachedData {
1007    enum BufferPolicy {
1008      BufferNotOwned,
1009      BufferOwned
1010    };
1011
1012    CachedData() : data(NULL), length(0), buffer_policy(BufferNotOwned) {}
1013
1014    // If buffer_policy is BufferNotOwned, the caller keeps the ownership of
1015    // data and guarantees that it stays alive until the CachedData object is
1016    // destroyed. If the policy is BufferOwned, the given data will be deleted
1017    // (with delete[]) when the CachedData object is destroyed.
1018    CachedData(const uint8_t* data, int length,
1019               BufferPolicy buffer_policy = BufferNotOwned);
1020    ~CachedData();
1021    // TODO(marja): Async compilation; add constructors which take a callback
1022    // which will be called when V8 no longer needs the data.
1023    const uint8_t* data;
1024    int length;
1025    BufferPolicy buffer_policy;
1026
1027   private:
1028    // Prevent copying. Not implemented.
1029    CachedData(const CachedData&);
1030    CachedData& operator=(const CachedData&);
1031  };
1032
1033  /**
1034   * Source code which can be then compiled to a UnboundScript or Script.
1035   */
1036  class Source {
1037   public:
1038    // Source takes ownership of CachedData.
1039    V8_INLINE Source(Local<String> source_string, const ScriptOrigin& origin,
1040           CachedData* cached_data = NULL);
1041    V8_INLINE Source(Local<String> source_string,
1042                     CachedData* cached_data = NULL);
1043    V8_INLINE ~Source();
1044
1045    // Ownership of the CachedData or its buffers is *not* transferred to the
1046    // caller. The CachedData object is alive as long as the Source object is
1047    // alive.
1048    V8_INLINE const CachedData* GetCachedData() const;
1049
1050   private:
1051    friend class ScriptCompiler;
1052    // Prevent copying. Not implemented.
1053    Source(const Source&);
1054    Source& operator=(const Source&);
1055
1056    Local<String> source_string;
1057
1058    // Origin information
1059    Handle<Value> resource_name;
1060    Handle<Integer> resource_line_offset;
1061    Handle<Integer> resource_column_offset;
1062    Handle<Boolean> resource_is_shared_cross_origin;
1063
1064    // Cached data from previous compilation (if any), or generated during
1065    // compilation (if the generate_cached_data flag is passed to
1066    // ScriptCompiler).
1067    CachedData* cached_data;
1068  };
1069
1070  enum CompileOptions {
1071    kNoCompileOptions,
1072    kProduceDataToCache = 1 << 0
1073  };
1074
1075  /**
1076   * Compiles the specified script (context-independent).
1077   *
1078   * \param source Script source code.
1079   * \return Compiled script object (context independent; for running it must be
1080   *   bound to a context).
1081   */
1082  static Local<UnboundScript> CompileUnbound(
1083      Isolate* isolate, Source* source,
1084      CompileOptions options = kNoCompileOptions);
1085
1086  /**
1087   * Compiles the specified script (bound to current context).
1088   *
1089   * \param source Script source code.
1090   * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1091   *   using pre_data speeds compilation if it's done multiple times.
1092   *   Owned by caller, no references are kept when this function returns.
1093   * \return Compiled script object, bound to the context that was active
1094   *   when this function was called. When run it will always use this
1095   *   context.
1096   */
1097  static Local<Script> Compile(
1098      Isolate* isolate, Source* source,
1099      CompileOptions options = kNoCompileOptions);
1100};
1101
1102
1103/**
1104 * An error message.
1105 */
1106class V8_EXPORT Message {
1107 public:
1108  Local<String> Get() const;
1109  Local<String> GetSourceLine() const;
1110
1111  /**
1112   * Returns the resource name for the script from where the function causing
1113   * the error originates.
1114   */
1115  Handle<Value> GetScriptResourceName() const;
1116
1117  /**
1118   * Exception stack trace. By default stack traces are not captured for
1119   * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1120   * to change this option.
1121   */
1122  Handle<StackTrace> GetStackTrace() const;
1123
1124  /**
1125   * Returns the number, 1-based, of the line where the error occurred.
1126   */
1127  int GetLineNumber() const;
1128
1129  /**
1130   * Returns the index within the script of the first character where
1131   * the error occurred.
1132   */
1133  int GetStartPosition() const;
1134
1135  /**
1136   * Returns the index within the script of the last character where
1137   * the error occurred.
1138   */
1139  int GetEndPosition() const;
1140
1141  /**
1142   * Returns the index within the line of the first character where
1143   * the error occurred.
1144   */
1145  int GetStartColumn() const;
1146
1147  /**
1148   * Returns the index within the line of the last character where
1149   * the error occurred.
1150   */
1151  int GetEndColumn() const;
1152
1153  /**
1154   * Passes on the value set by the embedder when it fed the script from which
1155   * this Message was generated to V8.
1156   */
1157  bool IsSharedCrossOrigin() const;
1158
1159  // TODO(1245381): Print to a string instead of on a FILE.
1160  static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1161
1162  static const int kNoLineNumberInfo = 0;
1163  static const int kNoColumnInfo = 0;
1164  static const int kNoScriptIdInfo = 0;
1165};
1166
1167
1168/**
1169 * Representation of a JavaScript stack trace. The information collected is a
1170 * snapshot of the execution stack and the information remains valid after
1171 * execution continues.
1172 */
1173class V8_EXPORT StackTrace {
1174 public:
1175  /**
1176   * Flags that determine what information is placed captured for each
1177   * StackFrame when grabbing the current stack trace.
1178   */
1179  enum StackTraceOptions {
1180    kLineNumber = 1,
1181    kColumnOffset = 1 << 1 | kLineNumber,
1182    kScriptName = 1 << 2,
1183    kFunctionName = 1 << 3,
1184    kIsEval = 1 << 4,
1185    kIsConstructor = 1 << 5,
1186    kScriptNameOrSourceURL = 1 << 6,
1187    kScriptId = 1 << 7,
1188    kExposeFramesAcrossSecurityOrigins = 1 << 8,
1189    kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1190    kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1191  };
1192
1193  /**
1194   * Returns a StackFrame at a particular index.
1195   */
1196  Local<StackFrame> GetFrame(uint32_t index) const;
1197
1198  /**
1199   * Returns the number of StackFrames.
1200   */
1201  int GetFrameCount() const;
1202
1203  /**
1204   * Returns StackTrace as a v8::Array that contains StackFrame objects.
1205   */
1206  Local<Array> AsArray();
1207
1208  /**
1209   * Grab a snapshot of the current JavaScript execution stack.
1210   *
1211   * \param frame_limit The maximum number of stack frames we want to capture.
1212   * \param options Enumerates the set of things we will capture for each
1213   *   StackFrame.
1214   */
1215  static Local<StackTrace> CurrentStackTrace(
1216      Isolate* isolate,
1217      int frame_limit,
1218      StackTraceOptions options = kOverview);
1219};
1220
1221
1222/**
1223 * A single JavaScript stack frame.
1224 */
1225class V8_EXPORT StackFrame {
1226 public:
1227  /**
1228   * Returns the number, 1-based, of the line for the associate function call.
1229   * This method will return Message::kNoLineNumberInfo if it is unable to
1230   * retrieve the line number, or if kLineNumber was not passed as an option
1231   * when capturing the StackTrace.
1232   */
1233  int GetLineNumber() const;
1234
1235  /**
1236   * Returns the 1-based column offset on the line for the associated function
1237   * call.
1238   * This method will return Message::kNoColumnInfo if it is unable to retrieve
1239   * the column number, or if kColumnOffset was not passed as an option when
1240   * capturing the StackTrace.
1241   */
1242  int GetColumn() const;
1243
1244  /**
1245   * Returns the id of the script for the function for this StackFrame.
1246   * This method will return Message::kNoScriptIdInfo if it is unable to
1247   * retrieve the script id, or if kScriptId was not passed as an option when
1248   * capturing the StackTrace.
1249   */
1250  int GetScriptId() const;
1251
1252  /**
1253   * Returns the name of the resource that contains the script for the
1254   * function for this StackFrame.
1255   */
1256  Local<String> GetScriptName() const;
1257
1258  /**
1259   * Returns the name of the resource that contains the script for the
1260   * function for this StackFrame or sourceURL value if the script name
1261   * is undefined and its source ends with //# sourceURL=... string or
1262   * deprecated //@ sourceURL=... string.
1263   */
1264  Local<String> GetScriptNameOrSourceURL() const;
1265
1266  /**
1267   * Returns the name of the function associated with this stack frame.
1268   */
1269  Local<String> GetFunctionName() const;
1270
1271  /**
1272   * Returns whether or not the associated function is compiled via a call to
1273   * eval().
1274   */
1275  bool IsEval() const;
1276
1277  /**
1278   * Returns whether or not the associated function is called as a
1279   * constructor via "new".
1280   */
1281  bool IsConstructor() const;
1282};
1283
1284
1285/**
1286 * A JSON Parser.
1287 */
1288class V8_EXPORT JSON {
1289 public:
1290  /**
1291   * Tries to parse the string |json_string| and returns it as value if
1292   * successful.
1293   *
1294   * \param json_string The string to parse.
1295   * \return The corresponding value if successfully parsed.
1296   */
1297  static Local<Value> Parse(Local<String> json_string);
1298};
1299
1300
1301// --- Value ---
1302
1303
1304/**
1305 * The superclass of all JavaScript values and objects.
1306 */
1307class V8_EXPORT Value : public Data {
1308 public:
1309  /**
1310   * Returns true if this value is the undefined value.  See ECMA-262
1311   * 4.3.10.
1312   */
1313  V8_INLINE bool IsUndefined() const;
1314
1315  /**
1316   * Returns true if this value is the null value.  See ECMA-262
1317   * 4.3.11.
1318   */
1319  V8_INLINE bool IsNull() const;
1320
1321   /**
1322   * Returns true if this value is true.
1323   */
1324  bool IsTrue() const;
1325
1326  /**
1327   * Returns true if this value is false.
1328   */
1329  bool IsFalse() const;
1330
1331  /**
1332   * Returns true if this value is an instance of the String type.
1333   * See ECMA-262 8.4.
1334   */
1335  V8_INLINE bool IsString() const;
1336
1337  /**
1338   * Returns true if this value is a symbol.
1339   * This is an experimental feature.
1340   */
1341  bool IsSymbol() const;
1342
1343  /**
1344   * Returns true if this value is a function.
1345   */
1346  bool IsFunction() const;
1347
1348  /**
1349   * Returns true if this value is an array.
1350   */
1351  bool IsArray() const;
1352
1353  /**
1354   * Returns true if this value is an object.
1355   */
1356  bool IsObject() const;
1357
1358  /**
1359   * Returns true if this value is boolean.
1360   */
1361  bool IsBoolean() const;
1362
1363  /**
1364   * Returns true if this value is a number.
1365   */
1366  bool IsNumber() const;
1367
1368  /**
1369   * Returns true if this value is external.
1370   */
1371  bool IsExternal() const;
1372
1373  /**
1374   * Returns true if this value is a 32-bit signed integer.
1375   */
1376  bool IsInt32() const;
1377
1378  /**
1379   * Returns true if this value is a 32-bit unsigned integer.
1380   */
1381  bool IsUint32() const;
1382
1383  /**
1384   * Returns true if this value is a Date.
1385   */
1386  bool IsDate() const;
1387
1388  /**
1389   * Returns true if this value is a Boolean object.
1390   */
1391  bool IsBooleanObject() const;
1392
1393  /**
1394   * Returns true if this value is a Number object.
1395   */
1396  bool IsNumberObject() const;
1397
1398  /**
1399   * Returns true if this value is a String object.
1400   */
1401  bool IsStringObject() const;
1402
1403  /**
1404   * Returns true if this value is a Symbol object.
1405   * This is an experimental feature.
1406   */
1407  bool IsSymbolObject() const;
1408
1409  /**
1410   * Returns true if this value is a NativeError.
1411   */
1412  bool IsNativeError() const;
1413
1414  /**
1415   * Returns true if this value is a RegExp.
1416   */
1417  bool IsRegExp() const;
1418
1419  /**
1420   * Returns true if this value is a Promise.
1421   * This is an experimental feature.
1422   */
1423  bool IsPromise() const;
1424
1425  /**
1426   * Returns true if this value is an ArrayBuffer.
1427   * This is an experimental feature.
1428   */
1429  bool IsArrayBuffer() const;
1430
1431  /**
1432   * Returns true if this value is an ArrayBufferView.
1433   * This is an experimental feature.
1434   */
1435  bool IsArrayBufferView() const;
1436
1437  /**
1438   * Returns true if this value is one of TypedArrays.
1439   * This is an experimental feature.
1440   */
1441  bool IsTypedArray() const;
1442
1443  /**
1444   * Returns true if this value is an Uint8Array.
1445   * This is an experimental feature.
1446   */
1447  bool IsUint8Array() const;
1448
1449  /**
1450   * Returns true if this value is an Uint8ClampedArray.
1451   * This is an experimental feature.
1452   */
1453  bool IsUint8ClampedArray() const;
1454
1455  /**
1456   * Returns true if this value is an Int8Array.
1457   * This is an experimental feature.
1458   */
1459  bool IsInt8Array() const;
1460
1461  /**
1462   * Returns true if this value is an Uint16Array.
1463   * This is an experimental feature.
1464   */
1465  bool IsUint16Array() const;
1466
1467  /**
1468   * Returns true if this value is an Int16Array.
1469   * This is an experimental feature.
1470   */
1471  bool IsInt16Array() const;
1472
1473  /**
1474   * Returns true if this value is an Uint32Array.
1475   * This is an experimental feature.
1476   */
1477  bool IsUint32Array() const;
1478
1479  /**
1480   * Returns true if this value is an Int32Array.
1481   * This is an experimental feature.
1482   */
1483  bool IsInt32Array() const;
1484
1485  /**
1486   * Returns true if this value is a Float32Array.
1487   * This is an experimental feature.
1488   */
1489  bool IsFloat32Array() const;
1490
1491  /**
1492   * Returns true if this value is a Float64Array.
1493   * This is an experimental feature.
1494   */
1495  bool IsFloat64Array() const;
1496
1497  /**
1498   * Returns true if this value is a DataView.
1499   * This is an experimental feature.
1500   */
1501  bool IsDataView() const;
1502
1503  Local<Boolean> ToBoolean() const;
1504  Local<Number> ToNumber() const;
1505  Local<String> ToString() const;
1506  Local<String> ToDetailString() const;
1507  Local<Object> ToObject() const;
1508  Local<Integer> ToInteger() const;
1509  Local<Uint32> ToUint32() const;
1510  Local<Int32> ToInt32() const;
1511
1512  /**
1513   * Attempts to convert a string to an array index.
1514   * Returns an empty handle if the conversion fails.
1515   */
1516  Local<Uint32> ToArrayIndex() const;
1517
1518  bool BooleanValue() const;
1519  double NumberValue() const;
1520  int64_t IntegerValue() const;
1521  uint32_t Uint32Value() const;
1522  int32_t Int32Value() const;
1523
1524  /** JS == */
1525  bool Equals(Handle<Value> that) const;
1526  bool StrictEquals(Handle<Value> that) const;
1527  bool SameValue(Handle<Value> that) const;
1528
1529  template <class T> V8_INLINE static Value* Cast(T* value);
1530
1531 private:
1532  V8_INLINE bool QuickIsUndefined() const;
1533  V8_INLINE bool QuickIsNull() const;
1534  V8_INLINE bool QuickIsString() const;
1535  bool FullIsUndefined() const;
1536  bool FullIsNull() const;
1537  bool FullIsString() const;
1538};
1539
1540
1541/**
1542 * The superclass of primitive values.  See ECMA-262 4.3.2.
1543 */
1544class V8_EXPORT Primitive : public Value { };
1545
1546
1547/**
1548 * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
1549 * or false value.
1550 */
1551class V8_EXPORT Boolean : public Primitive {
1552 public:
1553  bool Value() const;
1554  V8_INLINE static Handle<Boolean> New(Isolate* isolate, bool value);
1555};
1556
1557
1558/**
1559 * A JavaScript string value (ECMA-262, 4.3.17).
1560 */
1561class V8_EXPORT String : public Primitive {
1562 public:
1563  enum Encoding {
1564    UNKNOWN_ENCODING = 0x1,
1565    TWO_BYTE_ENCODING = 0x0,
1566    ASCII_ENCODING = 0x4,
1567    ONE_BYTE_ENCODING = 0x4
1568  };
1569  /**
1570   * Returns the number of characters in this string.
1571   */
1572  int Length() const;
1573
1574  /**
1575   * Returns the number of bytes in the UTF-8 encoded
1576   * representation of this string.
1577   */
1578  int Utf8Length() const;
1579
1580  /**
1581   * Returns whether this string is known to contain only one byte data.
1582   * Does not read the string.
1583   * False negatives are possible.
1584   */
1585  bool IsOneByte() const;
1586
1587  /**
1588   * Returns whether this string contain only one byte data.
1589   * Will read the entire string in some cases.
1590   */
1591  bool ContainsOnlyOneByte() const;
1592
1593  /**
1594   * Write the contents of the string to an external buffer.
1595   * If no arguments are given, expects the buffer to be large
1596   * enough to hold the entire string and NULL terminator. Copies
1597   * the contents of the string and the NULL terminator into the
1598   * buffer.
1599   *
1600   * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
1601   * before the end of the buffer.
1602   *
1603   * Copies up to length characters into the output buffer.
1604   * Only null-terminates if there is enough space in the buffer.
1605   *
1606   * \param buffer The buffer into which the string will be copied.
1607   * \param start The starting position within the string at which
1608   * copying begins.
1609   * \param length The number of characters to copy from the string.  For
1610   *    WriteUtf8 the number of bytes in the buffer.
1611   * \param nchars_ref The number of characters written, can be NULL.
1612   * \param options Various options that might affect performance of this or
1613   *    subsequent operations.
1614   * \return The number of characters copied to the buffer excluding the null
1615   *    terminator.  For WriteUtf8: The number of bytes copied to the buffer
1616   *    including the null terminator (if written).
1617   */
1618  enum WriteOptions {
1619    NO_OPTIONS = 0,
1620    HINT_MANY_WRITES_EXPECTED = 1,
1621    NO_NULL_TERMINATION = 2,
1622    PRESERVE_ASCII_NULL = 4,
1623    // Used by WriteUtf8 to replace orphan surrogate code units with the
1624    // unicode replacement character. Needs to be set to guarantee valid UTF-8
1625    // output.
1626    REPLACE_INVALID_UTF8 = 8
1627  };
1628
1629  // 16-bit character codes.
1630  int Write(uint16_t* buffer,
1631            int start = 0,
1632            int length = -1,
1633            int options = NO_OPTIONS) const;
1634  // One byte characters.
1635  int WriteOneByte(uint8_t* buffer,
1636                   int start = 0,
1637                   int length = -1,
1638                   int options = NO_OPTIONS) const;
1639  // UTF-8 encoded characters.
1640  int WriteUtf8(char* buffer,
1641                int length = -1,
1642                int* nchars_ref = NULL,
1643                int options = NO_OPTIONS) const;
1644
1645  /**
1646   * A zero length string.
1647   */
1648  V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
1649
1650  /**
1651   * Returns true if the string is external
1652   */
1653  bool IsExternal() const;
1654
1655  /**
1656   * Returns true if the string is both external and ASCII
1657   */
1658  bool IsExternalAscii() const;
1659
1660  class V8_EXPORT ExternalStringResourceBase {  // NOLINT
1661   public:
1662    virtual ~ExternalStringResourceBase() {}
1663
1664   protected:
1665    ExternalStringResourceBase() {}
1666
1667    /**
1668     * Internally V8 will call this Dispose method when the external string
1669     * resource is no longer needed. The default implementation will use the
1670     * delete operator. This method can be overridden in subclasses to
1671     * control how allocated external string resources are disposed.
1672     */
1673    virtual void Dispose() { delete this; }
1674
1675   private:
1676    // Disallow copying and assigning.
1677    ExternalStringResourceBase(const ExternalStringResourceBase&);
1678    void operator=(const ExternalStringResourceBase&);
1679
1680    friend class v8::internal::Heap;
1681  };
1682
1683  /**
1684   * An ExternalStringResource is a wrapper around a two-byte string
1685   * buffer that resides outside V8's heap. Implement an
1686   * ExternalStringResource to manage the life cycle of the underlying
1687   * buffer.  Note that the string data must be immutable.
1688   */
1689  class V8_EXPORT ExternalStringResource
1690      : public ExternalStringResourceBase {
1691   public:
1692    /**
1693     * Override the destructor to manage the life cycle of the underlying
1694     * buffer.
1695     */
1696    virtual ~ExternalStringResource() {}
1697
1698    /**
1699     * The string data from the underlying buffer.
1700     */
1701    virtual const uint16_t* data() const = 0;
1702
1703    /**
1704     * The length of the string. That is, the number of two-byte characters.
1705     */
1706    virtual size_t length() const = 0;
1707
1708   protected:
1709    ExternalStringResource() {}
1710  };
1711
1712  /**
1713   * An ExternalAsciiStringResource is a wrapper around an ASCII
1714   * string buffer that resides outside V8's heap. Implement an
1715   * ExternalAsciiStringResource to manage the life cycle of the
1716   * underlying buffer.  Note that the string data must be immutable
1717   * and that the data must be strict (7-bit) ASCII, not Latin-1 or
1718   * UTF-8, which would require special treatment internally in the
1719   * engine and, in the case of UTF-8, do not allow efficient indexing.
1720   * Use String::New or convert to 16 bit data for non-ASCII.
1721   */
1722
1723  class V8_EXPORT ExternalAsciiStringResource
1724      : public ExternalStringResourceBase {
1725   public:
1726    /**
1727     * Override the destructor to manage the life cycle of the underlying
1728     * buffer.
1729     */
1730    virtual ~ExternalAsciiStringResource() {}
1731    /** The string data from the underlying buffer.*/
1732    virtual const char* data() const = 0;
1733    /** The number of ASCII characters in the string.*/
1734    virtual size_t length() const = 0;
1735   protected:
1736    ExternalAsciiStringResource() {}
1737  };
1738
1739  typedef ExternalAsciiStringResource ExternalOneByteStringResource;
1740
1741  /**
1742   * If the string is an external string, return the ExternalStringResourceBase
1743   * regardless of the encoding, otherwise return NULL.  The encoding of the
1744   * string is returned in encoding_out.
1745   */
1746  V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
1747      Encoding* encoding_out) const;
1748
1749  /**
1750   * Get the ExternalStringResource for an external string.  Returns
1751   * NULL if IsExternal() doesn't return true.
1752   */
1753  V8_INLINE ExternalStringResource* GetExternalStringResource() const;
1754
1755  /**
1756   * Get the ExternalAsciiStringResource for an external ASCII string.
1757   * Returns NULL if IsExternalAscii() doesn't return true.
1758   */
1759  const ExternalAsciiStringResource* GetExternalAsciiStringResource() const;
1760
1761  V8_INLINE static String* Cast(v8::Value* obj);
1762
1763  enum NewStringType {
1764    kNormalString, kInternalizedString, kUndetectableString
1765  };
1766
1767  /** Allocates a new string from UTF-8 data.*/
1768  static Local<String> NewFromUtf8(Isolate* isolate,
1769                                  const char* data,
1770                                  NewStringType type = kNormalString,
1771                                  int length = -1);
1772
1773  /** Allocates a new string from Latin-1 data.*/
1774  static Local<String> NewFromOneByte(
1775      Isolate* isolate,
1776      const uint8_t* data,
1777      NewStringType type = kNormalString,
1778      int length = -1);
1779
1780  /** Allocates a new string from UTF-16 data.*/
1781  static Local<String> NewFromTwoByte(
1782      Isolate* isolate,
1783      const uint16_t* data,
1784      NewStringType type = kNormalString,
1785      int length = -1);
1786
1787  /**
1788   * Creates a new string by concatenating the left and the right strings
1789   * passed in as parameters.
1790   */
1791  static Local<String> Concat(Handle<String> left, Handle<String> right);
1792
1793  /**
1794   * Creates a new external string using the data defined in the given
1795   * resource. When the external string is no longer live on V8's heap the
1796   * resource will be disposed by calling its Dispose method. The caller of
1797   * this function should not otherwise delete or modify the resource. Neither
1798   * should the underlying buffer be deallocated or modified except through the
1799   * destructor of the external string resource.
1800   */
1801  static Local<String> NewExternal(Isolate* isolate,
1802                                   ExternalStringResource* resource);
1803
1804  /**
1805   * Associate an external string resource with this string by transforming it
1806   * in place so that existing references to this string in the JavaScript heap
1807   * will use the external string resource. The external string resource's
1808   * character contents need to be equivalent to this string.
1809   * Returns true if the string has been changed to be an external string.
1810   * The string is not modified if the operation fails. See NewExternal for
1811   * information on the lifetime of the resource.
1812   */
1813  bool MakeExternal(ExternalStringResource* resource);
1814
1815  /**
1816   * Creates a new external string using the ASCII data defined in the given
1817   * resource. When the external string is no longer live on V8's heap the
1818   * resource will be disposed by calling its Dispose method. The caller of
1819   * this function should not otherwise delete or modify the resource. Neither
1820   * should the underlying buffer be deallocated or modified except through the
1821   * destructor of the external string resource.
1822   */
1823  static Local<String> NewExternal(Isolate* isolate,
1824                                   ExternalAsciiStringResource* resource);
1825
1826  /**
1827   * Associate an external string resource with this string by transforming it
1828   * in place so that existing references to this string in the JavaScript heap
1829   * will use the external string resource. The external string resource's
1830   * character contents need to be equivalent to this string.
1831   * Returns true if the string has been changed to be an external string.
1832   * The string is not modified if the operation fails. See NewExternal for
1833   * information on the lifetime of the resource.
1834   */
1835  bool MakeExternal(ExternalAsciiStringResource* resource);
1836
1837  /**
1838   * Returns true if this string can be made external.
1839   */
1840  bool CanMakeExternal();
1841
1842  /**
1843   * Converts an object to a UTF-8-encoded character array.  Useful if
1844   * you want to print the object.  If conversion to a string fails
1845   * (e.g. due to an exception in the toString() method of the object)
1846   * then the length() method returns 0 and the * operator returns
1847   * NULL.
1848   */
1849  class V8_EXPORT Utf8Value {
1850   public:
1851    explicit Utf8Value(Handle<v8::Value> obj);
1852    ~Utf8Value();
1853    char* operator*() { return str_; }
1854    const char* operator*() const { return str_; }
1855    int length() const { return length_; }
1856   private:
1857    char* str_;
1858    int length_;
1859
1860    // Disallow copying and assigning.
1861    Utf8Value(const Utf8Value&);
1862    void operator=(const Utf8Value&);
1863  };
1864
1865  /**
1866   * Converts an object to a two-byte string.
1867   * If conversion to a string fails (eg. due to an exception in the toString()
1868   * method of the object) then the length() method returns 0 and the * operator
1869   * returns NULL.
1870   */
1871  class V8_EXPORT Value {
1872   public:
1873    explicit Value(Handle<v8::Value> obj);
1874    ~Value();
1875    uint16_t* operator*() { return str_; }
1876    const uint16_t* operator*() const { return str_; }
1877    int length() const { return length_; }
1878   private:
1879    uint16_t* str_;
1880    int length_;
1881
1882    // Disallow copying and assigning.
1883    Value(const Value&);
1884    void operator=(const Value&);
1885  };
1886
1887 private:
1888  void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
1889                                        Encoding encoding) const;
1890  void VerifyExternalStringResource(ExternalStringResource* val) const;
1891  static void CheckCast(v8::Value* obj);
1892};
1893
1894
1895/**
1896 * A JavaScript symbol (ECMA-262 edition 6)
1897 *
1898 * This is an experimental feature. Use at your own risk.
1899 */
1900class V8_EXPORT Symbol : public Primitive {
1901 public:
1902  // Returns the print name string of the symbol, or undefined if none.
1903  Local<Value> Name() const;
1904
1905  // Create a symbol. If name is not empty, it will be used as the description.
1906  static Local<Symbol> New(
1907      Isolate *isolate, Local<String> name = Local<String>());
1908
1909  // Access global symbol registry.
1910  // Note that symbols created this way are never collected, so
1911  // they should only be used for statically fixed properties.
1912  // Also, there is only one global name space for the names used as keys.
1913  // To minimize the potential for clashes, use qualified names as keys.
1914  static Local<Symbol> For(Isolate *isolate, Local<String> name);
1915
1916  // Retrieve a global symbol. Similar to |For|, but using a separate
1917  // registry that is not accessible by (and cannot clash with) JavaScript code.
1918  static Local<Symbol> ForApi(Isolate *isolate, Local<String> name);
1919
1920  V8_INLINE static Symbol* Cast(v8::Value* obj);
1921 private:
1922  Symbol();
1923  static void CheckCast(v8::Value* obj);
1924};
1925
1926
1927/**
1928 * A private symbol
1929 *
1930 * This is an experimental feature. Use at your own risk.
1931 */
1932class V8_EXPORT Private : public Data {
1933 public:
1934  // Returns the print name string of the private symbol, or undefined if none.
1935  Local<Value> Name() const;
1936
1937  // Create a private symbol. If name is not empty, it will be the description.
1938  static Local<Private> New(
1939      Isolate *isolate, Local<String> name = Local<String>());
1940
1941  // Retrieve a global private symbol. If a symbol with this name has not
1942  // been retrieved in the same isolate before, it is created.
1943  // Note that private symbols created this way are never collected, so
1944  // they should only be used for statically fixed properties.
1945  // Also, there is only one global name space for the names used as keys.
1946  // To minimize the potential for clashes, use qualified names as keys,
1947  // e.g., "Class#property".
1948  static Local<Private> ForApi(Isolate *isolate, Local<String> name);
1949
1950 private:
1951  Private();
1952};
1953
1954
1955/**
1956 * A JavaScript number value (ECMA-262, 4.3.20)
1957 */
1958class V8_EXPORT Number : public Primitive {
1959 public:
1960  double Value() const;
1961  static Local<Number> New(Isolate* isolate, double value);
1962  V8_INLINE static Number* Cast(v8::Value* obj);
1963 private:
1964  Number();
1965  static void CheckCast(v8::Value* obj);
1966};
1967
1968
1969/**
1970 * A JavaScript value representing a signed integer.
1971 */
1972class V8_EXPORT Integer : public Number {
1973 public:
1974  static Local<Integer> New(Isolate* isolate, int32_t value);
1975  static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
1976  int64_t Value() const;
1977  V8_INLINE static Integer* Cast(v8::Value* obj);
1978 private:
1979  Integer();
1980  static void CheckCast(v8::Value* obj);
1981};
1982
1983
1984/**
1985 * A JavaScript value representing a 32-bit signed integer.
1986 */
1987class V8_EXPORT Int32 : public Integer {
1988 public:
1989  int32_t Value() const;
1990 private:
1991  Int32();
1992};
1993
1994
1995/**
1996 * A JavaScript value representing a 32-bit unsigned integer.
1997 */
1998class V8_EXPORT Uint32 : public Integer {
1999 public:
2000  uint32_t Value() const;
2001 private:
2002  Uint32();
2003};
2004
2005
2006enum PropertyAttribute {
2007  None       = 0,
2008  ReadOnly   = 1 << 0,
2009  DontEnum   = 1 << 1,
2010  DontDelete = 1 << 2
2011};
2012
2013enum ExternalArrayType {
2014  kExternalInt8Array = 1,
2015  kExternalUint8Array,
2016  kExternalInt16Array,
2017  kExternalUint16Array,
2018  kExternalInt32Array,
2019  kExternalUint32Array,
2020  kExternalFloat32Array,
2021  kExternalFloat64Array,
2022  kExternalUint8ClampedArray,
2023
2024  // Legacy constant names
2025  kExternalByteArray = kExternalInt8Array,
2026  kExternalUnsignedByteArray = kExternalUint8Array,
2027  kExternalShortArray = kExternalInt16Array,
2028  kExternalUnsignedShortArray = kExternalUint16Array,
2029  kExternalIntArray = kExternalInt32Array,
2030  kExternalUnsignedIntArray = kExternalUint32Array,
2031  kExternalFloatArray = kExternalFloat32Array,
2032  kExternalDoubleArray = kExternalFloat64Array,
2033  kExternalPixelArray = kExternalUint8ClampedArray
2034};
2035
2036/**
2037 * Accessor[Getter|Setter] are used as callback functions when
2038 * setting|getting a particular property. See Object and ObjectTemplate's
2039 * method SetAccessor.
2040 */
2041typedef void (*AccessorGetterCallback)(
2042    Local<String> property,
2043    const PropertyCallbackInfo<Value>& info);
2044
2045
2046typedef void (*AccessorSetterCallback)(
2047    Local<String> property,
2048    Local<Value> value,
2049    const PropertyCallbackInfo<void>& info);
2050
2051
2052/**
2053 * Access control specifications.
2054 *
2055 * Some accessors should be accessible across contexts.  These
2056 * accessors have an explicit access control parameter which specifies
2057 * the kind of cross-context access that should be allowed.
2058 *
2059 * TODO(dcarney): Remove PROHIBITS_OVERWRITING as it is now unused.
2060 */
2061enum AccessControl {
2062  DEFAULT               = 0,
2063  ALL_CAN_READ          = 1,
2064  ALL_CAN_WRITE         = 1 << 1,
2065  PROHIBITS_OVERWRITING = 1 << 2
2066};
2067
2068
2069/**
2070 * A JavaScript object (ECMA-262, 4.3.3)
2071 */
2072class V8_EXPORT Object : public Value {
2073 public:
2074  bool Set(Handle<Value> key,
2075           Handle<Value> value,
2076           PropertyAttribute attribs = None);
2077
2078  bool Set(uint32_t index, Handle<Value> value);
2079
2080  // Sets an own property on this object bypassing interceptors and
2081  // overriding accessors or read-only properties.
2082  //
2083  // Note that if the object has an interceptor the property will be set
2084  // locally, but since the interceptor takes precedence the local property
2085  // will only be returned if the interceptor doesn't return a value.
2086  //
2087  // Note also that this only works for named properties.
2088  bool ForceSet(Handle<Value> key,
2089                Handle<Value> value,
2090                PropertyAttribute attribs = None);
2091
2092  Local<Value> Get(Handle<Value> key);
2093
2094  Local<Value> Get(uint32_t index);
2095
2096  /**
2097   * Gets the property attributes of a property which can be None or
2098   * any combination of ReadOnly, DontEnum and DontDelete. Returns
2099   * None when the property doesn't exist.
2100   */
2101  PropertyAttribute GetPropertyAttributes(Handle<Value> key);
2102
2103  bool Has(Handle<Value> key);
2104
2105  bool Delete(Handle<Value> key);
2106
2107  // Delete a property on this object bypassing interceptors and
2108  // ignoring dont-delete attributes.
2109  bool ForceDelete(Handle<Value> key);
2110
2111  bool Has(uint32_t index);
2112
2113  bool Delete(uint32_t index);
2114
2115  bool SetAccessor(Handle<String> name,
2116                   AccessorGetterCallback getter,
2117                   AccessorSetterCallback setter = 0,
2118                   Handle<Value> data = Handle<Value>(),
2119                   AccessControl settings = DEFAULT,
2120                   PropertyAttribute attribute = None);
2121
2122  // This function is not yet stable and should not be used at this time.
2123  bool SetDeclaredAccessor(Local<String> name,
2124                           Local<DeclaredAccessorDescriptor> descriptor,
2125                           PropertyAttribute attribute = None,
2126                           AccessControl settings = DEFAULT);
2127
2128  void SetAccessorProperty(Local<String> name,
2129                           Local<Function> getter,
2130                           Handle<Function> setter = Handle<Function>(),
2131                           PropertyAttribute attribute = None,
2132                           AccessControl settings = DEFAULT);
2133
2134  /**
2135   * Functionality for private properties.
2136   * This is an experimental feature, use at your own risk.
2137   * Note: Private properties are inherited. Do not rely on this, since it may
2138   * change.
2139   */
2140  bool HasPrivate(Handle<Private> key);
2141  bool SetPrivate(Handle<Private> key, Handle<Value> value);
2142  bool DeletePrivate(Handle<Private> key);
2143  Local<Value> GetPrivate(Handle<Private> key);
2144
2145  /**
2146   * Returns an array containing the names of the enumerable properties
2147   * of this object, including properties from prototype objects.  The
2148   * array returned by this method contains the same values as would
2149   * be enumerated by a for-in statement over this object.
2150   */
2151  Local<Array> GetPropertyNames();
2152
2153  /**
2154   * This function has the same functionality as GetPropertyNames but
2155   * the returned array doesn't contain the names of properties from
2156   * prototype objects.
2157   */
2158  Local<Array> GetOwnPropertyNames();
2159
2160  /**
2161   * Get the prototype object.  This does not skip objects marked to
2162   * be skipped by __proto__ and it does not consult the security
2163   * handler.
2164   */
2165  Local<Value> GetPrototype();
2166
2167  /**
2168   * Set the prototype object.  This does not skip objects marked to
2169   * be skipped by __proto__ and it does not consult the security
2170   * handler.
2171   */
2172  bool SetPrototype(Handle<Value> prototype);
2173
2174  /**
2175   * Finds an instance of the given function template in the prototype
2176   * chain.
2177   */
2178  Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
2179
2180  /**
2181   * Call builtin Object.prototype.toString on this object.
2182   * This is different from Value::ToString() that may call
2183   * user-defined toString function. This one does not.
2184   */
2185  Local<String> ObjectProtoToString();
2186
2187  /**
2188   * Returns the function invoked as a constructor for this object.
2189   * May be the null value.
2190   */
2191  Local<Value> GetConstructor();
2192
2193  /**
2194   * Returns the name of the function invoked as a constructor for this object.
2195   */
2196  Local<String> GetConstructorName();
2197
2198  /** Gets the number of internal fields for this Object. */
2199  int InternalFieldCount();
2200
2201  /** Same as above, but works for Persistents */
2202  V8_INLINE static int InternalFieldCount(
2203      const PersistentBase<Object>& object) {
2204    return object.val_->InternalFieldCount();
2205  }
2206
2207  /** Gets the value from an internal field. */
2208  V8_INLINE Local<Value> GetInternalField(int index);
2209
2210  /** Sets the value in an internal field. */
2211  void SetInternalField(int index, Handle<Value> value);
2212
2213  /**
2214   * Gets a 2-byte-aligned native pointer from an internal field. This field
2215   * must have been set by SetAlignedPointerInInternalField, everything else
2216   * leads to undefined behavior.
2217   */
2218  V8_INLINE void* GetAlignedPointerFromInternalField(int index);
2219
2220  /** Same as above, but works for Persistents */
2221  V8_INLINE static void* GetAlignedPointerFromInternalField(
2222      const PersistentBase<Object>& object, int index) {
2223    return object.val_->GetAlignedPointerFromInternalField(index);
2224  }
2225
2226  /**
2227   * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
2228   * a field, GetAlignedPointerFromInternalField must be used, everything else
2229   * leads to undefined behavior.
2230   */
2231  void SetAlignedPointerInInternalField(int index, void* value);
2232
2233  // Testers for local properties.
2234  bool HasOwnProperty(Handle<String> key);
2235  bool HasRealNamedProperty(Handle<String> key);
2236  bool HasRealIndexedProperty(uint32_t index);
2237  bool HasRealNamedCallbackProperty(Handle<String> key);
2238
2239  /**
2240   * If result.IsEmpty() no real property was located in the prototype chain.
2241   * This means interceptors in the prototype chain are not called.
2242   */
2243  Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
2244
2245  /**
2246   * If result.IsEmpty() no real property was located on the object or
2247   * in the prototype chain.
2248   * This means interceptors in the prototype chain are not called.
2249   */
2250  Local<Value> GetRealNamedProperty(Handle<String> key);
2251
2252  /** Tests for a named lookup interceptor.*/
2253  bool HasNamedLookupInterceptor();
2254
2255  /** Tests for an index lookup interceptor.*/
2256  bool HasIndexedLookupInterceptor();
2257
2258  /**
2259   * Turns on access check on the object if the object is an instance of
2260   * a template that has access check callbacks. If an object has no
2261   * access check info, the object cannot be accessed by anyone.
2262   */
2263  void TurnOnAccessCheck();
2264
2265  /**
2266   * Returns the identity hash for this object. The current implementation
2267   * uses a hidden property on the object to store the identity hash.
2268   *
2269   * The return value will never be 0. Also, it is not guaranteed to be
2270   * unique.
2271   */
2272  int GetIdentityHash();
2273
2274  /**
2275   * Access hidden properties on JavaScript objects. These properties are
2276   * hidden from the executing JavaScript and only accessible through the V8
2277   * C++ API. Hidden properties introduced by V8 internally (for example the
2278   * identity hash) are prefixed with "v8::".
2279   */
2280  bool SetHiddenValue(Handle<String> key, Handle<Value> value);
2281  Local<Value> GetHiddenValue(Handle<String> key);
2282  bool DeleteHiddenValue(Handle<String> key);
2283
2284  /**
2285   * Returns true if this is an instance of an api function (one
2286   * created from a function created from a function template) and has
2287   * been modified since it was created.  Note that this method is
2288   * conservative and may return true for objects that haven't actually
2289   * been modified.
2290   */
2291  bool IsDirty();
2292
2293  /**
2294   * Clone this object with a fast but shallow copy.  Values will point
2295   * to the same values as the original object.
2296   */
2297  Local<Object> Clone();
2298
2299  /**
2300   * Returns the context in which the object was created.
2301   */
2302  Local<Context> CreationContext();
2303
2304  /**
2305   * Set the backing store of the indexed properties to be managed by the
2306   * embedding layer. Access to the indexed properties will follow the rules
2307   * spelled out in CanvasPixelArray.
2308   * Note: The embedding program still owns the data and needs to ensure that
2309   *       the backing store is preserved while V8 has a reference.
2310   */
2311  void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
2312  bool HasIndexedPropertiesInPixelData();
2313  uint8_t* GetIndexedPropertiesPixelData();
2314  int GetIndexedPropertiesPixelDataLength();
2315
2316  /**
2317   * Set the backing store of the indexed properties to be managed by the
2318   * embedding layer. Access to the indexed properties will follow the rules
2319   * spelled out for the CanvasArray subtypes in the WebGL specification.
2320   * Note: The embedding program still owns the data and needs to ensure that
2321   *       the backing store is preserved while V8 has a reference.
2322   */
2323  void SetIndexedPropertiesToExternalArrayData(void* data,
2324                                               ExternalArrayType array_type,
2325                                               int number_of_elements);
2326  bool HasIndexedPropertiesInExternalArrayData();
2327  void* GetIndexedPropertiesExternalArrayData();
2328  ExternalArrayType GetIndexedPropertiesExternalArrayDataType();
2329  int GetIndexedPropertiesExternalArrayDataLength();
2330
2331  /**
2332   * Checks whether a callback is set by the
2333   * ObjectTemplate::SetCallAsFunctionHandler method.
2334   * When an Object is callable this method returns true.
2335   */
2336  bool IsCallable();
2337
2338  /**
2339   * Call an Object as a function if a callback is set by the
2340   * ObjectTemplate::SetCallAsFunctionHandler method.
2341   */
2342  Local<Value> CallAsFunction(Handle<Value> recv,
2343                              int argc,
2344                              Handle<Value> argv[]);
2345
2346  /**
2347   * Call an Object as a constructor if a callback is set by the
2348   * ObjectTemplate::SetCallAsFunctionHandler method.
2349   * Note: This method behaves like the Function::NewInstance method.
2350   */
2351  Local<Value> CallAsConstructor(int argc, Handle<Value> argv[]);
2352
2353  static Local<Object> New(Isolate* isolate);
2354
2355  V8_INLINE static Object* Cast(Value* obj);
2356
2357 private:
2358  Object();
2359  static void CheckCast(Value* obj);
2360  Local<Value> SlowGetInternalField(int index);
2361  void* SlowGetAlignedPointerFromInternalField(int index);
2362};
2363
2364
2365/**
2366 * An instance of the built-in array constructor (ECMA-262, 15.4.2).
2367 */
2368class V8_EXPORT Array : public Object {
2369 public:
2370  uint32_t Length() const;
2371
2372  /**
2373   * Clones an element at index |index|.  Returns an empty
2374   * handle if cloning fails (for any reason).
2375   */
2376  Local<Object> CloneElementAt(uint32_t index);
2377
2378  /**
2379   * Creates a JavaScript array with the given length. If the length
2380   * is negative the returned array will have length 0.
2381   */
2382  static Local<Array> New(Isolate* isolate, int length = 0);
2383
2384  V8_INLINE static Array* Cast(Value* obj);
2385 private:
2386  Array();
2387  static void CheckCast(Value* obj);
2388};
2389
2390
2391template<typename T>
2392class ReturnValue {
2393 public:
2394  template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
2395      : value_(that.value_) {
2396    TYPE_CHECK(T, S);
2397  }
2398  // Handle setters
2399  template <typename S> V8_INLINE void Set(const Persistent<S>& handle);
2400  template <typename S> V8_INLINE void Set(const Handle<S> handle);
2401  // Fast primitive setters
2402  V8_INLINE void Set(bool value);
2403  V8_INLINE void Set(double i);
2404  V8_INLINE void Set(int32_t i);
2405  V8_INLINE void Set(uint32_t i);
2406  // Fast JS primitive setters
2407  V8_INLINE void SetNull();
2408  V8_INLINE void SetUndefined();
2409  V8_INLINE void SetEmptyString();
2410  // Convenience getter for Isolate
2411  V8_INLINE Isolate* GetIsolate();
2412
2413  // Pointer setter: Uncompilable to prevent inadvertent misuse.
2414  template <typename S>
2415  V8_INLINE void Set(S* whatever);
2416
2417 private:
2418  template<class F> friend class ReturnValue;
2419  template<class F> friend class FunctionCallbackInfo;
2420  template<class F> friend class PropertyCallbackInfo;
2421  template<class F, class G, class H> friend class PersistentValueMap;
2422  V8_INLINE void SetInternal(internal::Object* value) { *value_ = value; }
2423  V8_INLINE internal::Object* GetDefaultValue();
2424  V8_INLINE explicit ReturnValue(internal::Object** slot);
2425  internal::Object** value_;
2426};
2427
2428
2429/**
2430 * The argument information given to function call callbacks.  This
2431 * class provides access to information about the context of the call,
2432 * including the receiver, the number and values of arguments, and
2433 * the holder of the function.
2434 */
2435template<typename T>
2436class FunctionCallbackInfo {
2437 public:
2438  V8_INLINE int Length() const;
2439  V8_INLINE Local<Value> operator[](int i) const;
2440  V8_INLINE Local<Function> Callee() const;
2441  V8_INLINE Local<Object> This() const;
2442  V8_INLINE Local<Object> Holder() const;
2443  V8_INLINE bool IsConstructCall() const;
2444  V8_INLINE Local<Value> Data() const;
2445  V8_INLINE Isolate* GetIsolate() const;
2446  V8_INLINE ReturnValue<T> GetReturnValue() const;
2447  // This shouldn't be public, but the arm compiler needs it.
2448  static const int kArgsLength = 7;
2449
2450 protected:
2451  friend class internal::FunctionCallbackArguments;
2452  friend class internal::CustomArguments<FunctionCallbackInfo>;
2453  static const int kHolderIndex = 0;
2454  static const int kIsolateIndex = 1;
2455  static const int kReturnValueDefaultValueIndex = 2;
2456  static const int kReturnValueIndex = 3;
2457  static const int kDataIndex = 4;
2458  static const int kCalleeIndex = 5;
2459  static const int kContextSaveIndex = 6;
2460
2461  V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
2462                   internal::Object** values,
2463                   int length,
2464                   bool is_construct_call);
2465  internal::Object** implicit_args_;
2466  internal::Object** values_;
2467  int length_;
2468  bool is_construct_call_;
2469};
2470
2471
2472/**
2473 * The information passed to a property callback about the context
2474 * of the property access.
2475 */
2476template<typename T>
2477class PropertyCallbackInfo {
2478 public:
2479  V8_INLINE Isolate* GetIsolate() const;
2480  V8_INLINE Local<Value> Data() const;
2481  V8_INLINE Local<Object> This() const;
2482  V8_INLINE Local<Object> Holder() const;
2483  V8_INLINE ReturnValue<T> GetReturnValue() const;
2484  // This shouldn't be public, but the arm compiler needs it.
2485  static const int kArgsLength = 6;
2486
2487 protected:
2488  friend class MacroAssembler;
2489  friend class internal::PropertyCallbackArguments;
2490  friend class internal::CustomArguments<PropertyCallbackInfo>;
2491  static const int kHolderIndex = 0;
2492  static const int kIsolateIndex = 1;
2493  static const int kReturnValueDefaultValueIndex = 2;
2494  static const int kReturnValueIndex = 3;
2495  static const int kDataIndex = 4;
2496  static const int kThisIndex = 5;
2497
2498  V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
2499  internal::Object** args_;
2500};
2501
2502
2503typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
2504
2505
2506/**
2507 * A JavaScript function object (ECMA-262, 15.3).
2508 */
2509class V8_EXPORT Function : public Object {
2510 public:
2511  /**
2512   * Create a function in the current execution context
2513   * for a given FunctionCallback.
2514   */
2515  static Local<Function> New(Isolate* isolate,
2516                             FunctionCallback callback,
2517                             Local<Value> data = Local<Value>(),
2518                             int length = 0);
2519
2520  Local<Object> NewInstance() const;
2521  Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
2522  Local<Value> Call(Handle<Value> recv, int argc, Handle<Value> argv[]);
2523  void SetName(Handle<String> name);
2524  Handle<Value> GetName() const;
2525
2526  /**
2527   * Name inferred from variable or property assignment of this function.
2528   * Used to facilitate debugging and profiling of JavaScript code written
2529   * in an OO style, where many functions are anonymous but are assigned
2530   * to object properties.
2531   */
2532  Handle<Value> GetInferredName() const;
2533
2534  /**
2535   * User-defined name assigned to the "displayName" property of this function.
2536   * Used to facilitate debugging and profiling of JavaScript code.
2537   */
2538  Handle<Value> GetDisplayName() const;
2539
2540  /**
2541   * Returns zero based line number of function body and
2542   * kLineOffsetNotFound if no information available.
2543   */
2544  int GetScriptLineNumber() const;
2545  /**
2546   * Returns zero based column number of function body and
2547   * kLineOffsetNotFound if no information available.
2548   */
2549  int GetScriptColumnNumber() const;
2550
2551  /**
2552   * Tells whether this function is builtin.
2553   */
2554  bool IsBuiltin() const;
2555
2556  /**
2557   * Returns scriptId.
2558   */
2559  int ScriptId() const;
2560
2561  /**
2562   * Returns the original function if this function is bound, else returns
2563   * v8::Undefined.
2564   */
2565  Local<Value> GetBoundFunction() const;
2566
2567  ScriptOrigin GetScriptOrigin() const;
2568  V8_INLINE static Function* Cast(Value* obj);
2569  static const int kLineOffsetNotFound;
2570
2571 private:
2572  Function();
2573  static void CheckCast(Value* obj);
2574};
2575
2576
2577/**
2578 * An instance of the built-in Promise constructor (ES6 draft).
2579 * This API is experimental. Only works with --harmony flag.
2580 */
2581class V8_EXPORT Promise : public Object {
2582 public:
2583  class V8_EXPORT Resolver : public Object {
2584   public:
2585    /**
2586     * Create a new resolver, along with an associated promise in pending state.
2587     */
2588    static Local<Resolver> New(Isolate* isolate);
2589
2590    /**
2591     * Extract the associated promise.
2592     */
2593    Local<Promise> GetPromise();
2594
2595    /**
2596     * Resolve/reject the associated promise with a given value.
2597     * Ignored if the promise is no longer pending.
2598     */
2599    void Resolve(Handle<Value> value);
2600    void Reject(Handle<Value> value);
2601
2602    V8_INLINE static Resolver* Cast(Value* obj);
2603
2604   private:
2605    Resolver();
2606    static void CheckCast(Value* obj);
2607  };
2608
2609  /**
2610   * Register a resolution/rejection handler with a promise.
2611   * The handler is given the respective resolution/rejection value as
2612   * an argument. If the promise is already resolved/rejected, the handler is
2613   * invoked at the end of turn.
2614   */
2615  Local<Promise> Chain(Handle<Function> handler);
2616  Local<Promise> Catch(Handle<Function> handler);
2617  Local<Promise> Then(Handle<Function> handler);
2618
2619  V8_INLINE static Promise* Cast(Value* obj);
2620
2621 private:
2622  Promise();
2623  static void CheckCast(Value* obj);
2624};
2625
2626
2627#ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
2628// The number of required internal fields can be defined by embedder.
2629#define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
2630#endif
2631
2632/**
2633 * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
2634 * This API is experimental and may change significantly.
2635 */
2636class V8_EXPORT ArrayBuffer : public Object {
2637 public:
2638  /**
2639   * Allocator that V8 uses to allocate |ArrayBuffer|'s memory.
2640   * The allocator is a global V8 setting. It should be set with
2641   * V8::SetArrayBufferAllocator prior to creation of a first ArrayBuffer.
2642   *
2643   * This API is experimental and may change significantly.
2644   */
2645  class V8_EXPORT Allocator { // NOLINT
2646   public:
2647    virtual ~Allocator() {}
2648
2649    /**
2650     * Allocate |length| bytes. Return NULL if allocation is not successful.
2651     * Memory should be initialized to zeroes.
2652     */
2653    virtual void* Allocate(size_t length) = 0;
2654
2655    /**
2656     * Allocate |length| bytes. Return NULL if allocation is not successful.
2657     * Memory does not have to be initialized.
2658     */
2659    virtual void* AllocateUninitialized(size_t length) = 0;
2660    /**
2661     * Free the memory block of size |length|, pointed to by |data|.
2662     * That memory is guaranteed to be previously allocated by |Allocate|.
2663     */
2664    virtual void Free(void* data, size_t length) = 0;
2665  };
2666
2667  /**
2668   * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
2669   * returns an instance of this class, populated, with a pointer to data
2670   * and byte length.
2671   *
2672   * The Data pointer of ArrayBuffer::Contents is always allocated with
2673   * Allocator::Allocate that is set with V8::SetArrayBufferAllocator.
2674   *
2675   * This API is experimental and may change significantly.
2676   */
2677  class V8_EXPORT Contents { // NOLINT
2678   public:
2679    Contents() : data_(NULL), byte_length_(0) {}
2680
2681    void* Data() const { return data_; }
2682    size_t ByteLength() const { return byte_length_; }
2683
2684   private:
2685    void* data_;
2686    size_t byte_length_;
2687
2688    friend class ArrayBuffer;
2689  };
2690
2691
2692  /**
2693   * Data length in bytes.
2694   */
2695  size_t ByteLength() const;
2696
2697  /**
2698   * Create a new ArrayBuffer. Allocate |byte_length| bytes.
2699   * Allocated memory will be owned by a created ArrayBuffer and
2700   * will be deallocated when it is garbage-collected,
2701   * unless the object is externalized.
2702   */
2703  static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
2704
2705  /**
2706   * Create a new ArrayBuffer over an existing memory block.
2707   * The created array buffer is immediately in externalized state.
2708   * The memory block will not be reclaimed when a created ArrayBuffer
2709   * is garbage-collected.
2710   */
2711  static Local<ArrayBuffer> New(Isolate* isolate, void* data,
2712                                size_t byte_length);
2713
2714  /**
2715   * Returns true if ArrayBuffer is extrenalized, that is, does not
2716   * own its memory block.
2717   */
2718  bool IsExternal() const;
2719
2720  /**
2721   * Neuters this ArrayBuffer and all its views (typed arrays).
2722   * Neutering sets the byte length of the buffer and all typed arrays to zero,
2723   * preventing JavaScript from ever accessing underlying backing store.
2724   * ArrayBuffer should have been externalized.
2725   */
2726  void Neuter();
2727
2728  /**
2729   * Make this ArrayBuffer external. The pointer to underlying memory block
2730   * and byte length are returned as |Contents| structure. After ArrayBuffer
2731   * had been etxrenalized, it does no longer owns the memory block. The caller
2732   * should take steps to free memory when it is no longer needed.
2733   *
2734   * The memory block is guaranteed to be allocated with |Allocator::Allocate|
2735   * that has been set with V8::SetArrayBufferAllocator.
2736   */
2737  Contents Externalize();
2738
2739  V8_INLINE static ArrayBuffer* Cast(Value* obj);
2740
2741  static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
2742
2743 private:
2744  ArrayBuffer();
2745  static void CheckCast(Value* obj);
2746};
2747
2748
2749#ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
2750// The number of required internal fields can be defined by embedder.
2751#define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
2752#endif
2753
2754
2755/**
2756 * A base class for an instance of one of "views" over ArrayBuffer,
2757 * including TypedArrays and DataView (ES6 draft 15.13).
2758 *
2759 * This API is experimental and may change significantly.
2760 */
2761class V8_EXPORT ArrayBufferView : public Object {
2762 public:
2763  /**
2764   * Returns underlying ArrayBuffer.
2765   */
2766  Local<ArrayBuffer> Buffer();
2767  /**
2768   * Byte offset in |Buffer|.
2769   */
2770  size_t ByteOffset();
2771  /**
2772   * Size of a view in bytes.
2773   */
2774  size_t ByteLength();
2775
2776  V8_INLINE static ArrayBufferView* Cast(Value* obj);
2777
2778  static const int kInternalFieldCount =
2779      V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
2780
2781 private:
2782  ArrayBufferView();
2783  static void CheckCast(Value* obj);
2784};
2785
2786
2787/**
2788 * A base class for an instance of TypedArray series of constructors
2789 * (ES6 draft 15.13.6).
2790 * This API is experimental and may change significantly.
2791 */
2792class V8_EXPORT TypedArray : public ArrayBufferView {
2793 public:
2794  /**
2795   * Number of elements in this typed array
2796   * (e.g. for Int16Array, |ByteLength|/2).
2797   */
2798  size_t Length();
2799
2800  V8_INLINE static TypedArray* Cast(Value* obj);
2801
2802 private:
2803  TypedArray();
2804  static void CheckCast(Value* obj);
2805};
2806
2807
2808/**
2809 * An instance of Uint8Array constructor (ES6 draft 15.13.6).
2810 * This API is experimental and may change significantly.
2811 */
2812class V8_EXPORT Uint8Array : public TypedArray {
2813 public:
2814  static Local<Uint8Array> New(Handle<ArrayBuffer> array_buffer,
2815                               size_t byte_offset, size_t length);
2816  V8_INLINE static Uint8Array* Cast(Value* obj);
2817
2818 private:
2819  Uint8Array();
2820  static void CheckCast(Value* obj);
2821};
2822
2823
2824/**
2825 * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
2826 * This API is experimental and may change significantly.
2827 */
2828class V8_EXPORT Uint8ClampedArray : public TypedArray {
2829 public:
2830  static Local<Uint8ClampedArray> New(Handle<ArrayBuffer> array_buffer,
2831                               size_t byte_offset, size_t length);
2832  V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
2833
2834 private:
2835  Uint8ClampedArray();
2836  static void CheckCast(Value* obj);
2837};
2838
2839/**
2840 * An instance of Int8Array constructor (ES6 draft 15.13.6).
2841 * This API is experimental and may change significantly.
2842 */
2843class V8_EXPORT Int8Array : public TypedArray {
2844 public:
2845  static Local<Int8Array> New(Handle<ArrayBuffer> array_buffer,
2846                               size_t byte_offset, size_t length);
2847  V8_INLINE static Int8Array* Cast(Value* obj);
2848
2849 private:
2850  Int8Array();
2851  static void CheckCast(Value* obj);
2852};
2853
2854
2855/**
2856 * An instance of Uint16Array constructor (ES6 draft 15.13.6).
2857 * This API is experimental and may change significantly.
2858 */
2859class V8_EXPORT Uint16Array : public TypedArray {
2860 public:
2861  static Local<Uint16Array> New(Handle<ArrayBuffer> array_buffer,
2862                               size_t byte_offset, size_t length);
2863  V8_INLINE static Uint16Array* Cast(Value* obj);
2864
2865 private:
2866  Uint16Array();
2867  static void CheckCast(Value* obj);
2868};
2869
2870
2871/**
2872 * An instance of Int16Array constructor (ES6 draft 15.13.6).
2873 * This API is experimental and may change significantly.
2874 */
2875class V8_EXPORT Int16Array : public TypedArray {
2876 public:
2877  static Local<Int16Array> New(Handle<ArrayBuffer> array_buffer,
2878                               size_t byte_offset, size_t length);
2879  V8_INLINE static Int16Array* Cast(Value* obj);
2880
2881 private:
2882  Int16Array();
2883  static void CheckCast(Value* obj);
2884};
2885
2886
2887/**
2888 * An instance of Uint32Array constructor (ES6 draft 15.13.6).
2889 * This API is experimental and may change significantly.
2890 */
2891class V8_EXPORT Uint32Array : public TypedArray {
2892 public:
2893  static Local<Uint32Array> New(Handle<ArrayBuffer> array_buffer,
2894                               size_t byte_offset, size_t length);
2895  V8_INLINE static Uint32Array* Cast(Value* obj);
2896
2897 private:
2898  Uint32Array();
2899  static void CheckCast(Value* obj);
2900};
2901
2902
2903/**
2904 * An instance of Int32Array constructor (ES6 draft 15.13.6).
2905 * This API is experimental and may change significantly.
2906 */
2907class V8_EXPORT Int32Array : public TypedArray {
2908 public:
2909  static Local<Int32Array> New(Handle<ArrayBuffer> array_buffer,
2910                               size_t byte_offset, size_t length);
2911  V8_INLINE static Int32Array* Cast(Value* obj);
2912
2913 private:
2914  Int32Array();
2915  static void CheckCast(Value* obj);
2916};
2917
2918
2919/**
2920 * An instance of Float32Array constructor (ES6 draft 15.13.6).
2921 * This API is experimental and may change significantly.
2922 */
2923class V8_EXPORT Float32Array : public TypedArray {
2924 public:
2925  static Local<Float32Array> New(Handle<ArrayBuffer> array_buffer,
2926                               size_t byte_offset, size_t length);
2927  V8_INLINE static Float32Array* Cast(Value* obj);
2928
2929 private:
2930  Float32Array();
2931  static void CheckCast(Value* obj);
2932};
2933
2934
2935/**
2936 * An instance of Float64Array constructor (ES6 draft 15.13.6).
2937 * This API is experimental and may change significantly.
2938 */
2939class V8_EXPORT Float64Array : public TypedArray {
2940 public:
2941  static Local<Float64Array> New(Handle<ArrayBuffer> array_buffer,
2942                               size_t byte_offset, size_t length);
2943  V8_INLINE static Float64Array* Cast(Value* obj);
2944
2945 private:
2946  Float64Array();
2947  static void CheckCast(Value* obj);
2948};
2949
2950
2951/**
2952 * An instance of DataView constructor (ES6 draft 15.13.7).
2953 * This API is experimental and may change significantly.
2954 */
2955class V8_EXPORT DataView : public ArrayBufferView {
2956 public:
2957  static Local<DataView> New(Handle<ArrayBuffer> array_buffer,
2958                             size_t byte_offset, size_t length);
2959  V8_INLINE static DataView* Cast(Value* obj);
2960
2961 private:
2962  DataView();
2963  static void CheckCast(Value* obj);
2964};
2965
2966
2967/**
2968 * An instance of the built-in Date constructor (ECMA-262, 15.9).
2969 */
2970class V8_EXPORT Date : public Object {
2971 public:
2972  static Local<Value> New(Isolate* isolate, double time);
2973
2974  /**
2975   * A specialization of Value::NumberValue that is more efficient
2976   * because we know the structure of this object.
2977   */
2978  double ValueOf() const;
2979
2980  V8_INLINE static Date* Cast(v8::Value* obj);
2981
2982  /**
2983   * Notification that the embedder has changed the time zone,
2984   * daylight savings time, or other date / time configuration
2985   * parameters.  V8 keeps a cache of various values used for
2986   * date / time computation.  This notification will reset
2987   * those cached values for the current context so that date /
2988   * time configuration changes would be reflected in the Date
2989   * object.
2990   *
2991   * This API should not be called more than needed as it will
2992   * negatively impact the performance of date operations.
2993   */
2994  static void DateTimeConfigurationChangeNotification(Isolate* isolate);
2995
2996 private:
2997  static void CheckCast(v8::Value* obj);
2998};
2999
3000
3001/**
3002 * A Number object (ECMA-262, 4.3.21).
3003 */
3004class V8_EXPORT NumberObject : public Object {
3005 public:
3006  static Local<Value> New(Isolate* isolate, double value);
3007
3008  double ValueOf() const;
3009
3010  V8_INLINE static NumberObject* Cast(v8::Value* obj);
3011
3012 private:
3013  static void CheckCast(v8::Value* obj);
3014};
3015
3016
3017/**
3018 * A Boolean object (ECMA-262, 4.3.15).
3019 */
3020class V8_EXPORT BooleanObject : public Object {
3021 public:
3022  static Local<Value> New(bool value);
3023
3024  bool ValueOf() const;
3025
3026  V8_INLINE static BooleanObject* Cast(v8::Value* obj);
3027
3028 private:
3029  static void CheckCast(v8::Value* obj);
3030};
3031
3032
3033/**
3034 * A String object (ECMA-262, 4.3.18).
3035 */
3036class V8_EXPORT StringObject : public Object {
3037 public:
3038  static Local<Value> New(Handle<String> value);
3039
3040  Local<String> ValueOf() const;
3041
3042  V8_INLINE static StringObject* Cast(v8::Value* obj);
3043
3044 private:
3045  static void CheckCast(v8::Value* obj);
3046};
3047
3048
3049/**
3050 * A Symbol object (ECMA-262 edition 6).
3051 *
3052 * This is an experimental feature. Use at your own risk.
3053 */
3054class V8_EXPORT SymbolObject : public Object {
3055 public:
3056  static Local<Value> New(Isolate* isolate, Handle<Symbol> value);
3057
3058  Local<Symbol> ValueOf() const;
3059
3060  V8_INLINE static SymbolObject* Cast(v8::Value* obj);
3061
3062 private:
3063  static void CheckCast(v8::Value* obj);
3064};
3065
3066
3067/**
3068 * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
3069 */
3070class V8_EXPORT RegExp : public Object {
3071 public:
3072  /**
3073   * Regular expression flag bits. They can be or'ed to enable a set
3074   * of flags.
3075   */
3076  enum Flags {
3077    kNone = 0,
3078    kGlobal = 1,
3079    kIgnoreCase = 2,
3080    kMultiline = 4
3081  };
3082
3083  /**
3084   * Creates a regular expression from the given pattern string and
3085   * the flags bit field. May throw a JavaScript exception as
3086   * described in ECMA-262, 15.10.4.1.
3087   *
3088   * For example,
3089   *   RegExp::New(v8::String::New("foo"),
3090   *               static_cast<RegExp::Flags>(kGlobal | kMultiline))
3091   * is equivalent to evaluating "/foo/gm".
3092   */
3093  static Local<RegExp> New(Handle<String> pattern, Flags flags);
3094
3095  /**
3096   * Returns the value of the source property: a string representing
3097   * the regular expression.
3098   */
3099  Local<String> GetSource() const;
3100
3101  /**
3102   * Returns the flags bit field.
3103   */
3104  Flags GetFlags() const;
3105
3106  V8_INLINE static RegExp* Cast(v8::Value* obj);
3107
3108 private:
3109  static void CheckCast(v8::Value* obj);
3110};
3111
3112
3113/**
3114 * A JavaScript value that wraps a C++ void*. This type of value is mainly used
3115 * to associate C++ data structures with JavaScript objects.
3116 */
3117class V8_EXPORT External : public Value {
3118 public:
3119  static Local<External> New(Isolate* isolate, void* value);
3120  V8_INLINE static External* Cast(Value* obj);
3121  void* Value() const;
3122 private:
3123  static void CheckCast(v8::Value* obj);
3124};
3125
3126
3127// --- Templates ---
3128
3129
3130/**
3131 * The superclass of object and function templates.
3132 */
3133class V8_EXPORT Template : public Data {
3134 public:
3135  /** Adds a property to each instance created by this template.*/
3136  void Set(Handle<String> name, Handle<Data> value,
3137           PropertyAttribute attributes = None);
3138  V8_INLINE void Set(Isolate* isolate, const char* name, Handle<Data> value);
3139
3140  void SetAccessorProperty(
3141     Local<String> name,
3142     Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
3143     Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
3144     PropertyAttribute attribute = None,
3145     AccessControl settings = DEFAULT);
3146
3147  /**
3148   * Whenever the property with the given name is accessed on objects
3149   * created from this Template the getter and setter callbacks
3150   * are called instead of getting and setting the property directly
3151   * on the JavaScript object.
3152   *
3153   * \param name The name of the property for which an accessor is added.
3154   * \param getter The callback to invoke when getting the property.
3155   * \param setter The callback to invoke when setting the property.
3156   * \param data A piece of data that will be passed to the getter and setter
3157   *   callbacks whenever they are invoked.
3158   * \param settings Access control settings for the accessor. This is a bit
3159   *   field consisting of one of more of
3160   *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
3161   *   The default is to not allow cross-context access.
3162   *   ALL_CAN_READ means that all cross-context reads are allowed.
3163   *   ALL_CAN_WRITE means that all cross-context writes are allowed.
3164   *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
3165   *   cross-context access.
3166   * \param attribute The attributes of the property for which an accessor
3167   *   is added.
3168   * \param signature The signature describes valid receivers for the accessor
3169   *   and is used to perform implicit instance checks against them. If the
3170   *   receiver is incompatible (i.e. is not an instance of the constructor as
3171   *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
3172   *   thrown and no callback is invoked.
3173   */
3174  void SetNativeDataProperty(Local<String> name,
3175                             AccessorGetterCallback getter,
3176                             AccessorSetterCallback setter = 0,
3177                             // TODO(dcarney): gcc can't handle Local below
3178                             Handle<Value> data = Handle<Value>(),
3179                             PropertyAttribute attribute = None,
3180                             Local<AccessorSignature> signature =
3181                                 Local<AccessorSignature>(),
3182                             AccessControl settings = DEFAULT);
3183
3184  // This function is not yet stable and should not be used at this time.
3185  bool SetDeclaredAccessor(Local<String> name,
3186                           Local<DeclaredAccessorDescriptor> descriptor,
3187                           PropertyAttribute attribute = None,
3188                           Local<AccessorSignature> signature =
3189                               Local<AccessorSignature>(),
3190                           AccessControl settings = DEFAULT);
3191
3192 private:
3193  Template();
3194
3195  friend class ObjectTemplate;
3196  friend class FunctionTemplate;
3197};
3198
3199
3200/**
3201 * NamedProperty[Getter|Setter] are used as interceptors on object.
3202 * See ObjectTemplate::SetNamedPropertyHandler.
3203 */
3204typedef void (*NamedPropertyGetterCallback)(
3205    Local<String> property,
3206    const PropertyCallbackInfo<Value>& info);
3207
3208
3209/**
3210 * Returns the value if the setter intercepts the request.
3211 * Otherwise, returns an empty handle.
3212 */
3213typedef void (*NamedPropertySetterCallback)(
3214    Local<String> property,
3215    Local<Value> value,
3216    const PropertyCallbackInfo<Value>& info);
3217
3218
3219/**
3220 * Returns a non-empty handle if the interceptor intercepts the request.
3221 * The result is an integer encoding property attributes (like v8::None,
3222 * v8::DontEnum, etc.)
3223 */
3224typedef void (*NamedPropertyQueryCallback)(
3225    Local<String> property,
3226    const PropertyCallbackInfo<Integer>& info);
3227
3228
3229/**
3230 * Returns a non-empty handle if the deleter intercepts the request.
3231 * The return value is true if the property could be deleted and false
3232 * otherwise.
3233 */
3234typedef void (*NamedPropertyDeleterCallback)(
3235    Local<String> property,
3236    const PropertyCallbackInfo<Boolean>& info);
3237
3238
3239/**
3240 * Returns an array containing the names of the properties the named
3241 * property getter intercepts.
3242 */
3243typedef void (*NamedPropertyEnumeratorCallback)(
3244    const PropertyCallbackInfo<Array>& info);
3245
3246
3247/**
3248 * Returns the value of the property if the getter intercepts the
3249 * request.  Otherwise, returns an empty handle.
3250 */
3251typedef void (*IndexedPropertyGetterCallback)(
3252    uint32_t index,
3253    const PropertyCallbackInfo<Value>& info);
3254
3255
3256/**
3257 * Returns the value if the setter intercepts the request.
3258 * Otherwise, returns an empty handle.
3259 */
3260typedef void (*IndexedPropertySetterCallback)(
3261    uint32_t index,
3262    Local<Value> value,
3263    const PropertyCallbackInfo<Value>& info);
3264
3265
3266/**
3267 * Returns a non-empty handle if the interceptor intercepts the request.
3268 * The result is an integer encoding property attributes.
3269 */
3270typedef void (*IndexedPropertyQueryCallback)(
3271    uint32_t index,
3272    const PropertyCallbackInfo<Integer>& info);
3273
3274
3275/**
3276 * Returns a non-empty handle if the deleter intercepts the request.
3277 * The return value is true if the property could be deleted and false
3278 * otherwise.
3279 */
3280typedef void (*IndexedPropertyDeleterCallback)(
3281    uint32_t index,
3282    const PropertyCallbackInfo<Boolean>& info);
3283
3284
3285/**
3286 * Returns an array containing the indices of the properties the
3287 * indexed property getter intercepts.
3288 */
3289typedef void (*IndexedPropertyEnumeratorCallback)(
3290    const PropertyCallbackInfo<Array>& info);
3291
3292
3293/**
3294 * Access type specification.
3295 */
3296enum AccessType {
3297  ACCESS_GET,
3298  ACCESS_SET,
3299  ACCESS_HAS,
3300  ACCESS_DELETE,
3301  ACCESS_KEYS
3302};
3303
3304
3305/**
3306 * Returns true if cross-context access should be allowed to the named
3307 * property with the given key on the host object.
3308 */
3309typedef bool (*NamedSecurityCallback)(Local<Object> host,
3310                                      Local<Value> key,
3311                                      AccessType type,
3312                                      Local<Value> data);
3313
3314
3315/**
3316 * Returns true if cross-context access should be allowed to the indexed
3317 * property with the given index on the host object.
3318 */
3319typedef bool (*IndexedSecurityCallback)(Local<Object> host,
3320                                        uint32_t index,
3321                                        AccessType type,
3322                                        Local<Value> data);
3323
3324
3325/**
3326 * A FunctionTemplate is used to create functions at runtime. There
3327 * can only be one function created from a FunctionTemplate in a
3328 * context.  The lifetime of the created function is equal to the
3329 * lifetime of the context.  So in case the embedder needs to create
3330 * temporary functions that can be collected using Scripts is
3331 * preferred.
3332 *
3333 * A FunctionTemplate can have properties, these properties are added to the
3334 * function object when it is created.
3335 *
3336 * A FunctionTemplate has a corresponding instance template which is
3337 * used to create object instances when the function is used as a
3338 * constructor. Properties added to the instance template are added to
3339 * each object instance.
3340 *
3341 * A FunctionTemplate can have a prototype template. The prototype template
3342 * is used to create the prototype object of the function.
3343 *
3344 * The following example shows how to use a FunctionTemplate:
3345 *
3346 * \code
3347 *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
3348 *    t->Set("func_property", v8::Number::New(1));
3349 *
3350 *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
3351 *    proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
3352 *    proto_t->Set("proto_const", v8::Number::New(2));
3353 *
3354 *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
3355 *    instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
3356 *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
3357 *    instance_t->Set("instance_property", Number::New(3));
3358 *
3359 *    v8::Local<v8::Function> function = t->GetFunction();
3360 *    v8::Local<v8::Object> instance = function->NewInstance();
3361 * \endcode
3362 *
3363 * Let's use "function" as the JS variable name of the function object
3364 * and "instance" for the instance object created above.  The function
3365 * and the instance will have the following properties:
3366 *
3367 * \code
3368 *   func_property in function == true;
3369 *   function.func_property == 1;
3370 *
3371 *   function.prototype.proto_method() invokes 'InvokeCallback'
3372 *   function.prototype.proto_const == 2;
3373 *
3374 *   instance instanceof function == true;
3375 *   instance.instance_accessor calls 'InstanceAccessorCallback'
3376 *   instance.instance_property == 3;
3377 * \endcode
3378 *
3379 * A FunctionTemplate can inherit from another one by calling the
3380 * FunctionTemplate::Inherit method.  The following graph illustrates
3381 * the semantics of inheritance:
3382 *
3383 * \code
3384 *   FunctionTemplate Parent  -> Parent() . prototype -> { }
3385 *     ^                                                  ^
3386 *     | Inherit(Parent)                                  | .__proto__
3387 *     |                                                  |
3388 *   FunctionTemplate Child   -> Child()  . prototype -> { }
3389 * \endcode
3390 *
3391 * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
3392 * object of the Child() function has __proto__ pointing to the
3393 * Parent() function's prototype object. An instance of the Child
3394 * function has all properties on Parent's instance templates.
3395 *
3396 * Let Parent be the FunctionTemplate initialized in the previous
3397 * section and create a Child FunctionTemplate by:
3398 *
3399 * \code
3400 *   Local<FunctionTemplate> parent = t;
3401 *   Local<FunctionTemplate> child = FunctionTemplate::New();
3402 *   child->Inherit(parent);
3403 *
3404 *   Local<Function> child_function = child->GetFunction();
3405 *   Local<Object> child_instance = child_function->NewInstance();
3406 * \endcode
3407 *
3408 * The Child function and Child instance will have the following
3409 * properties:
3410 *
3411 * \code
3412 *   child_func.prototype.__proto__ == function.prototype;
3413 *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
3414 *   child_instance.instance_property == 3;
3415 * \endcode
3416 */
3417class V8_EXPORT FunctionTemplate : public Template {
3418 public:
3419  /** Creates a function template.*/
3420  static Local<FunctionTemplate> New(
3421      Isolate* isolate,
3422      FunctionCallback callback = 0,
3423      Handle<Value> data = Handle<Value>(),
3424      Handle<Signature> signature = Handle<Signature>(),
3425      int length = 0);
3426
3427  /** Returns the unique function instance in the current execution context.*/
3428  Local<Function> GetFunction();
3429
3430  /**
3431   * Set the call-handler callback for a FunctionTemplate.  This
3432   * callback is called whenever the function created from this
3433   * FunctionTemplate is called.
3434   */
3435  void SetCallHandler(FunctionCallback callback,
3436                      Handle<Value> data = Handle<Value>());
3437
3438  /** Set the predefined length property for the FunctionTemplate. */
3439  void SetLength(int length);
3440
3441  /** Get the InstanceTemplate. */
3442  Local<ObjectTemplate> InstanceTemplate();
3443
3444  /** Causes the function template to inherit from a parent function template.*/
3445  void Inherit(Handle<FunctionTemplate> parent);
3446
3447  /**
3448   * A PrototypeTemplate is the template used to create the prototype object
3449   * of the function created by this template.
3450   */
3451  Local<ObjectTemplate> PrototypeTemplate();
3452
3453  /**
3454   * Set the class name of the FunctionTemplate.  This is used for
3455   * printing objects created with the function created from the
3456   * FunctionTemplate as its constructor.
3457   */
3458  void SetClassName(Handle<String> name);
3459
3460  /**
3461   * Determines whether the __proto__ accessor ignores instances of
3462   * the function template.  If instances of the function template are
3463   * ignored, __proto__ skips all instances and instead returns the
3464   * next object in the prototype chain.
3465   *
3466   * Call with a value of true to make the __proto__ accessor ignore
3467   * instances of the function template.  Call with a value of false
3468   * to make the __proto__ accessor not ignore instances of the
3469   * function template.  By default, instances of a function template
3470   * are not ignored.
3471   */
3472  void SetHiddenPrototype(bool value);
3473
3474  /**
3475   * Sets the ReadOnly flag in the attributes of the 'prototype' property
3476   * of functions created from this FunctionTemplate to true.
3477   */
3478  void ReadOnlyPrototype();
3479
3480  /**
3481   * Removes the prototype property from functions created from this
3482   * FunctionTemplate.
3483   */
3484  void RemovePrototype();
3485
3486  /**
3487   * Returns true if the given object is an instance of this function
3488   * template.
3489   */
3490  bool HasInstance(Handle<Value> object);
3491
3492 private:
3493  FunctionTemplate();
3494  friend class Context;
3495  friend class ObjectTemplate;
3496};
3497
3498
3499/**
3500 * An ObjectTemplate is used to create objects at runtime.
3501 *
3502 * Properties added to an ObjectTemplate are added to each object
3503 * created from the ObjectTemplate.
3504 */
3505class V8_EXPORT ObjectTemplate : public Template {
3506 public:
3507  /** Creates an ObjectTemplate. */
3508  static Local<ObjectTemplate> New(Isolate* isolate);
3509  // Will be deprecated soon.
3510  static Local<ObjectTemplate> New();
3511
3512  /** Creates a new instance of this template.*/
3513  Local<Object> NewInstance();
3514
3515  /**
3516   * Sets an accessor on the object template.
3517   *
3518   * Whenever the property with the given name is accessed on objects
3519   * created from this ObjectTemplate the getter and setter callbacks
3520   * are called instead of getting and setting the property directly
3521   * on the JavaScript object.
3522   *
3523   * \param name The name of the property for which an accessor is added.
3524   * \param getter The callback to invoke when getting the property.
3525   * \param setter The callback to invoke when setting the property.
3526   * \param data A piece of data that will be passed to the getter and setter
3527   *   callbacks whenever they are invoked.
3528   * \param settings Access control settings for the accessor. This is a bit
3529   *   field consisting of one of more of
3530   *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
3531   *   The default is to not allow cross-context access.
3532   *   ALL_CAN_READ means that all cross-context reads are allowed.
3533   *   ALL_CAN_WRITE means that all cross-context writes are allowed.
3534   *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
3535   *   cross-context access.
3536   * \param attribute The attributes of the property for which an accessor
3537   *   is added.
3538   * \param signature The signature describes valid receivers for the accessor
3539   *   and is used to perform implicit instance checks against them. If the
3540   *   receiver is incompatible (i.e. is not an instance of the constructor as
3541   *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
3542   *   thrown and no callback is invoked.
3543   */
3544  void SetAccessor(Handle<String> name,
3545                   AccessorGetterCallback getter,
3546                   AccessorSetterCallback setter = 0,
3547                   Handle<Value> data = Handle<Value>(),
3548                   AccessControl settings = DEFAULT,
3549                   PropertyAttribute attribute = None,
3550                   Handle<AccessorSignature> signature =
3551                       Handle<AccessorSignature>());
3552
3553  /**
3554   * Sets a named property handler on the object template.
3555   *
3556   * Whenever a named property is accessed on objects created from
3557   * this object template, the provided callback is invoked instead of
3558   * accessing the property directly on the JavaScript object.
3559   *
3560   * \param getter The callback to invoke when getting a property.
3561   * \param setter The callback to invoke when setting a property.
3562   * \param query The callback to invoke to check if a property is present,
3563   *   and if present, get its attributes.
3564   * \param deleter The callback to invoke when deleting a property.
3565   * \param enumerator The callback to invoke to enumerate all the named
3566   *   properties of an object.
3567   * \param data A piece of data that will be passed to the callbacks
3568   *   whenever they are invoked.
3569   */
3570  void SetNamedPropertyHandler(
3571      NamedPropertyGetterCallback getter,
3572      NamedPropertySetterCallback setter = 0,
3573      NamedPropertyQueryCallback query = 0,
3574      NamedPropertyDeleterCallback deleter = 0,
3575      NamedPropertyEnumeratorCallback enumerator = 0,
3576      Handle<Value> data = Handle<Value>());
3577
3578  /**
3579   * Sets an indexed property handler on the object template.
3580   *
3581   * Whenever an indexed property is accessed on objects created from
3582   * this object template, the provided callback is invoked instead of
3583   * accessing the property directly on the JavaScript object.
3584   *
3585   * \param getter The callback to invoke when getting a property.
3586   * \param setter The callback to invoke when setting a property.
3587   * \param query The callback to invoke to check if an object has a property.
3588   * \param deleter The callback to invoke when deleting a property.
3589   * \param enumerator The callback to invoke to enumerate all the indexed
3590   *   properties of an object.
3591   * \param data A piece of data that will be passed to the callbacks
3592   *   whenever they are invoked.
3593   */
3594  void SetIndexedPropertyHandler(
3595      IndexedPropertyGetterCallback getter,
3596      IndexedPropertySetterCallback setter = 0,
3597      IndexedPropertyQueryCallback query = 0,
3598      IndexedPropertyDeleterCallback deleter = 0,
3599      IndexedPropertyEnumeratorCallback enumerator = 0,
3600      Handle<Value> data = Handle<Value>());
3601
3602  /**
3603   * Sets the callback to be used when calling instances created from
3604   * this template as a function.  If no callback is set, instances
3605   * behave like normal JavaScript objects that cannot be called as a
3606   * function.
3607   */
3608  void SetCallAsFunctionHandler(FunctionCallback callback,
3609                                Handle<Value> data = Handle<Value>());
3610
3611  /**
3612   * Mark object instances of the template as undetectable.
3613   *
3614   * In many ways, undetectable objects behave as though they are not
3615   * there.  They behave like 'undefined' in conditionals and when
3616   * printed.  However, properties can be accessed and called as on
3617   * normal objects.
3618   */
3619  void MarkAsUndetectable();
3620
3621  /**
3622   * Sets access check callbacks on the object template.
3623   *
3624   * When accessing properties on instances of this object template,
3625   * the access check callback will be called to determine whether or
3626   * not to allow cross-context access to the properties.
3627   * The last parameter specifies whether access checks are turned
3628   * on by default on instances. If access checks are off by default,
3629   * they can be turned on on individual instances by calling
3630   * Object::TurnOnAccessCheck().
3631   */
3632  void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
3633                               IndexedSecurityCallback indexed_handler,
3634                               Handle<Value> data = Handle<Value>(),
3635                               bool turned_on_by_default = true);
3636
3637  /**
3638   * Gets the number of internal fields for objects generated from
3639   * this template.
3640   */
3641  int InternalFieldCount();
3642
3643  /**
3644   * Sets the number of internal fields for objects generated from
3645   * this template.
3646   */
3647  void SetInternalFieldCount(int value);
3648
3649 private:
3650  ObjectTemplate();
3651  static Local<ObjectTemplate> New(internal::Isolate* isolate,
3652                                   Handle<FunctionTemplate> constructor);
3653  friend class FunctionTemplate;
3654};
3655
3656
3657/**
3658 * A Signature specifies which receivers and arguments are valid
3659 * parameters to a function.
3660 */
3661class V8_EXPORT Signature : public Data {
3662 public:
3663  static Local<Signature> New(Isolate* isolate,
3664                              Handle<FunctionTemplate> receiver =
3665                                  Handle<FunctionTemplate>(),
3666                              int argc = 0,
3667                              Handle<FunctionTemplate> argv[] = 0);
3668
3669 private:
3670  Signature();
3671};
3672
3673
3674/**
3675 * An AccessorSignature specifies which receivers are valid parameters
3676 * to an accessor callback.
3677 */
3678class V8_EXPORT AccessorSignature : public Data {
3679 public:
3680  static Local<AccessorSignature> New(Isolate* isolate,
3681                                      Handle<FunctionTemplate> receiver =
3682                                          Handle<FunctionTemplate>());
3683
3684 private:
3685  AccessorSignature();
3686};
3687
3688
3689class V8_EXPORT DeclaredAccessorDescriptor : public Data {
3690 private:
3691  DeclaredAccessorDescriptor();
3692};
3693
3694
3695class V8_EXPORT ObjectOperationDescriptor : public Data {
3696 public:
3697  // This function is not yet stable and should not be used at this time.
3698  static Local<RawOperationDescriptor> NewInternalFieldDereference(
3699      Isolate* isolate,
3700      int internal_field);
3701 private:
3702  ObjectOperationDescriptor();
3703};
3704
3705
3706enum DeclaredAccessorDescriptorDataType {
3707    kDescriptorBoolType,
3708    kDescriptorInt8Type, kDescriptorUint8Type,
3709    kDescriptorInt16Type, kDescriptorUint16Type,
3710    kDescriptorInt32Type, kDescriptorUint32Type,
3711    kDescriptorFloatType, kDescriptorDoubleType
3712};
3713
3714
3715class V8_EXPORT RawOperationDescriptor : public Data {
3716 public:
3717  Local<DeclaredAccessorDescriptor> NewHandleDereference(Isolate* isolate);
3718  Local<RawOperationDescriptor> NewRawDereference(Isolate* isolate);
3719  Local<RawOperationDescriptor> NewRawShift(Isolate* isolate,
3720                                            int16_t byte_offset);
3721  Local<DeclaredAccessorDescriptor> NewPointerCompare(Isolate* isolate,
3722                                                      void* compare_value);
3723  Local<DeclaredAccessorDescriptor> NewPrimitiveValue(
3724      Isolate* isolate,
3725      DeclaredAccessorDescriptorDataType data_type,
3726      uint8_t bool_offset = 0);
3727  Local<DeclaredAccessorDescriptor> NewBitmaskCompare8(Isolate* isolate,
3728                                                       uint8_t bitmask,
3729                                                       uint8_t compare_value);
3730  Local<DeclaredAccessorDescriptor> NewBitmaskCompare16(
3731      Isolate* isolate,
3732      uint16_t bitmask,
3733      uint16_t compare_value);
3734  Local<DeclaredAccessorDescriptor> NewBitmaskCompare32(
3735      Isolate* isolate,
3736      uint32_t bitmask,
3737      uint32_t compare_value);
3738
3739 private:
3740  RawOperationDescriptor();
3741};
3742
3743
3744/**
3745 * A utility for determining the type of objects based on the template
3746 * they were constructed from.
3747 */
3748class V8_EXPORT TypeSwitch : public Data {
3749 public:
3750  static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
3751  static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
3752  int match(Handle<Value> value);
3753 private:
3754  TypeSwitch();
3755};
3756
3757
3758// --- Extensions ---
3759
3760class V8_EXPORT ExternalAsciiStringResourceImpl
3761    : public String::ExternalAsciiStringResource {
3762 public:
3763  ExternalAsciiStringResourceImpl() : data_(0), length_(0) {}
3764  ExternalAsciiStringResourceImpl(const char* data, size_t length)
3765      : data_(data), length_(length) {}
3766  const char* data() const { return data_; }
3767  size_t length() const { return length_; }
3768
3769 private:
3770  const char* data_;
3771  size_t length_;
3772};
3773
3774/**
3775 * Ignore
3776 */
3777class V8_EXPORT Extension {  // NOLINT
3778 public:
3779  // Note that the strings passed into this constructor must live as long
3780  // as the Extension itself.
3781  Extension(const char* name,
3782            const char* source = 0,
3783            int dep_count = 0,
3784            const char** deps = 0,
3785            int source_length = -1);
3786  virtual ~Extension() { }
3787  virtual v8::Handle<v8::FunctionTemplate> GetNativeFunctionTemplate(
3788      v8::Isolate* isolate, v8::Handle<v8::String> name) {
3789    return v8::Handle<v8::FunctionTemplate>();
3790  }
3791
3792  const char* name() const { return name_; }
3793  size_t source_length() const { return source_length_; }
3794  const String::ExternalAsciiStringResource* source() const {
3795    return &source_; }
3796  int dependency_count() { return dep_count_; }
3797  const char** dependencies() { return deps_; }
3798  void set_auto_enable(bool value) { auto_enable_ = value; }
3799  bool auto_enable() { return auto_enable_; }
3800
3801 private:
3802  const char* name_;
3803  size_t source_length_;  // expected to initialize before source_
3804  ExternalAsciiStringResourceImpl source_;
3805  int dep_count_;
3806  const char** deps_;
3807  bool auto_enable_;
3808
3809  // Disallow copying and assigning.
3810  Extension(const Extension&);
3811  void operator=(const Extension&);
3812};
3813
3814
3815void V8_EXPORT RegisterExtension(Extension* extension);
3816
3817
3818// --- Statics ---
3819
3820V8_INLINE Handle<Primitive> Undefined(Isolate* isolate);
3821V8_INLINE Handle<Primitive> Null(Isolate* isolate);
3822V8_INLINE Handle<Boolean> True(Isolate* isolate);
3823V8_INLINE Handle<Boolean> False(Isolate* isolate);
3824
3825
3826/**
3827 * A set of constraints that specifies the limits of the runtime's memory use.
3828 * You must set the heap size before initializing the VM - the size cannot be
3829 * adjusted after the VM is initialized.
3830 *
3831 * If you are using threads then you should hold the V8::Locker lock while
3832 * setting the stack limit and you must set a non-default stack limit separately
3833 * for each thread.
3834 */
3835class V8_EXPORT ResourceConstraints {
3836 public:
3837  ResourceConstraints();
3838
3839  /**
3840   * Configures the constraints with reasonable default values based on the
3841   * capabilities of the current device the VM is running on.
3842   *
3843   * \param physical_memory The total amount of physical memory on the current
3844   *   device, in bytes.
3845   * \param virtual_memory_limit The amount of virtual memory on the current
3846   *   device, in bytes, or zero, if there is no limit.
3847   * \param number_of_processors The number of CPUs available on the current
3848   *   device.
3849   */
3850  void ConfigureDefaults(uint64_t physical_memory,
3851                         uint64_t virtual_memory_limit,
3852                         uint32_t number_of_processors);
3853
3854  int max_semi_space_size() const { return max_semi_space_size_; }
3855  void set_max_semi_space_size(int value) { max_semi_space_size_ = value; }
3856  int max_old_space_size() const { return max_old_space_size_; }
3857  void set_max_old_space_size(int value) { max_old_space_size_ = value; }
3858  int max_executable_size() const { return max_executable_size_; }
3859  void set_max_executable_size(int value) { max_executable_size_ = value; }
3860  uint32_t* stack_limit() const { return stack_limit_; }
3861  // Sets an address beyond which the VM's stack may not grow.
3862  void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
3863  int max_available_threads() const { return max_available_threads_; }
3864  // Set the number of threads available to V8, assuming at least 1.
3865  void set_max_available_threads(int value) {
3866    max_available_threads_ = value;
3867  }
3868  size_t code_range_size() const { return code_range_size_; }
3869  void set_code_range_size(size_t value) {
3870    code_range_size_ = value;
3871  }
3872
3873 private:
3874  int max_semi_space_size_;
3875  int max_old_space_size_;
3876  int max_executable_size_;
3877  uint32_t* stack_limit_;
3878  int max_available_threads_;
3879  size_t code_range_size_;
3880};
3881
3882
3883/**
3884 * Sets the given ResourceConstraints on the given Isolate.
3885 */
3886bool V8_EXPORT SetResourceConstraints(Isolate* isolate,
3887                                      ResourceConstraints* constraints);
3888
3889
3890// --- Exceptions ---
3891
3892
3893typedef void (*FatalErrorCallback)(const char* location, const char* message);
3894
3895
3896typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> error);
3897
3898// --- Tracing ---
3899
3900typedef void (*LogEventCallback)(const char* name, int event);
3901
3902/**
3903 * Create new error objects by calling the corresponding error object
3904 * constructor with the message.
3905 */
3906class V8_EXPORT Exception {
3907 public:
3908  static Local<Value> RangeError(Handle<String> message);
3909  static Local<Value> ReferenceError(Handle<String> message);
3910  static Local<Value> SyntaxError(Handle<String> message);
3911  static Local<Value> TypeError(Handle<String> message);
3912  static Local<Value> Error(Handle<String> message);
3913};
3914
3915
3916// --- Counters Callbacks ---
3917
3918typedef int* (*CounterLookupCallback)(const char* name);
3919
3920typedef void* (*CreateHistogramCallback)(const char* name,
3921                                         int min,
3922                                         int max,
3923                                         size_t buckets);
3924
3925typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
3926
3927// --- Memory Allocation Callback ---
3928  enum ObjectSpace {
3929    kObjectSpaceNewSpace = 1 << 0,
3930    kObjectSpaceOldPointerSpace = 1 << 1,
3931    kObjectSpaceOldDataSpace = 1 << 2,
3932    kObjectSpaceCodeSpace = 1 << 3,
3933    kObjectSpaceMapSpace = 1 << 4,
3934    kObjectSpaceLoSpace = 1 << 5,
3935
3936    kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldPointerSpace |
3937      kObjectSpaceOldDataSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
3938      kObjectSpaceLoSpace
3939  };
3940
3941  enum AllocationAction {
3942    kAllocationActionAllocate = 1 << 0,
3943    kAllocationActionFree = 1 << 1,
3944    kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
3945  };
3946
3947typedef void (*MemoryAllocationCallback)(ObjectSpace space,
3948                                         AllocationAction action,
3949                                         int size);
3950
3951// --- Leave Script Callback ---
3952typedef void (*CallCompletedCallback)();
3953
3954// --- Microtask Callback ---
3955typedef void (*MicrotaskCallback)(void* data);
3956
3957// --- Failed Access Check Callback ---
3958typedef void (*FailedAccessCheckCallback)(Local<Object> target,
3959                                          AccessType type,
3960                                          Local<Value> data);
3961
3962// --- AllowCodeGenerationFromStrings callbacks ---
3963
3964/**
3965 * Callback to check if code generation from strings is allowed. See
3966 * Context::AllowCodeGenerationFromStrings.
3967 */
3968typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
3969
3970// --- Garbage Collection Callbacks ---
3971
3972/**
3973 * Applications can register callback functions which will be called
3974 * before and after a garbage collection.  Allocations are not
3975 * allowed in the callback functions, you therefore cannot manipulate
3976 * objects (set or delete properties for example) since it is possible
3977 * such operations will result in the allocation of objects.
3978 */
3979enum GCType {
3980  kGCTypeScavenge = 1 << 0,
3981  kGCTypeMarkSweepCompact = 1 << 1,
3982  kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact
3983};
3984
3985enum GCCallbackFlags {
3986  kNoGCCallbackFlags = 0,
3987  kGCCallbackFlagCompacted = 1 << 0,
3988  kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1,
3989  kGCCallbackFlagForced = 1 << 2
3990};
3991
3992typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
3993typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
3994
3995typedef void (*InterruptCallback)(Isolate* isolate, void* data);
3996
3997
3998/**
3999 * Collection of V8 heap information.
4000 *
4001 * Instances of this class can be passed to v8::V8::HeapStatistics to
4002 * get heap statistics from V8.
4003 */
4004class V8_EXPORT HeapStatistics {
4005 public:
4006  HeapStatistics();
4007  size_t total_heap_size() { return total_heap_size_; }
4008  size_t total_heap_size_executable() { return total_heap_size_executable_; }
4009  size_t total_physical_size() { return total_physical_size_; }
4010  size_t used_heap_size() { return used_heap_size_; }
4011  size_t heap_size_limit() { return heap_size_limit_; }
4012
4013 private:
4014  size_t total_heap_size_;
4015  size_t total_heap_size_executable_;
4016  size_t total_physical_size_;
4017  size_t used_heap_size_;
4018  size_t heap_size_limit_;
4019
4020  friend class V8;
4021  friend class Isolate;
4022};
4023
4024
4025class RetainedObjectInfo;
4026
4027/**
4028 * Isolate represents an isolated instance of the V8 engine.  V8
4029 * isolates have completely separate states.  Objects from one isolate
4030 * must not be used in other isolates.  When V8 is initialized a
4031 * default isolate is implicitly created and entered.  The embedder
4032 * can create additional isolates and use them in parallel in multiple
4033 * threads.  An isolate can be entered by at most one thread at any
4034 * given time.  The Locker/Unlocker API must be used to synchronize.
4035 */
4036class V8_EXPORT Isolate {
4037 public:
4038  /**
4039   * Stack-allocated class which sets the isolate for all operations
4040   * executed within a local scope.
4041   */
4042  class V8_EXPORT Scope {
4043   public:
4044    explicit Scope(Isolate* isolate) : isolate_(isolate) {
4045      isolate->Enter();
4046    }
4047
4048    ~Scope() { isolate_->Exit(); }
4049
4050   private:
4051    Isolate* const isolate_;
4052
4053    // Prevent copying of Scope objects.
4054    Scope(const Scope&);
4055    Scope& operator=(const Scope&);
4056  };
4057
4058
4059  /**
4060   * Assert that no Javascript code is invoked.
4061   */
4062  class V8_EXPORT DisallowJavascriptExecutionScope {
4063   public:
4064    enum OnFailure { CRASH_ON_FAILURE, THROW_ON_FAILURE };
4065
4066    DisallowJavascriptExecutionScope(Isolate* isolate, OnFailure on_failure);
4067    ~DisallowJavascriptExecutionScope();
4068
4069   private:
4070    bool on_failure_;
4071    void* internal_;
4072
4073    // Prevent copying of Scope objects.
4074    DisallowJavascriptExecutionScope(const DisallowJavascriptExecutionScope&);
4075    DisallowJavascriptExecutionScope& operator=(
4076        const DisallowJavascriptExecutionScope&);
4077  };
4078
4079
4080  /**
4081   * Introduce exception to DisallowJavascriptExecutionScope.
4082   */
4083  class V8_EXPORT AllowJavascriptExecutionScope {
4084   public:
4085    explicit AllowJavascriptExecutionScope(Isolate* isolate);
4086    ~AllowJavascriptExecutionScope();
4087
4088   private:
4089    void* internal_throws_;
4090    void* internal_assert_;
4091
4092    // Prevent copying of Scope objects.
4093    AllowJavascriptExecutionScope(const AllowJavascriptExecutionScope&);
4094    AllowJavascriptExecutionScope& operator=(
4095        const AllowJavascriptExecutionScope&);
4096  };
4097
4098  /**
4099   * Do not run microtasks while this scope is active, even if microtasks are
4100   * automatically executed otherwise.
4101   */
4102  class V8_EXPORT SuppressMicrotaskExecutionScope {
4103   public:
4104    explicit SuppressMicrotaskExecutionScope(Isolate* isolate);
4105    ~SuppressMicrotaskExecutionScope();
4106
4107   private:
4108    internal::Isolate* isolate_;
4109
4110    // Prevent copying of Scope objects.
4111    SuppressMicrotaskExecutionScope(const SuppressMicrotaskExecutionScope&);
4112    SuppressMicrotaskExecutionScope& operator=(
4113        const SuppressMicrotaskExecutionScope&);
4114  };
4115
4116  /**
4117   * Types of garbage collections that can be requested via
4118   * RequestGarbageCollectionForTesting.
4119   */
4120  enum GarbageCollectionType {
4121    kFullGarbageCollection,
4122    kMinorGarbageCollection
4123  };
4124
4125  /**
4126   * Creates a new isolate.  Does not change the currently entered
4127   * isolate.
4128   *
4129   * When an isolate is no longer used its resources should be freed
4130   * by calling Dispose().  Using the delete operator is not allowed.
4131   */
4132  static Isolate* New();
4133
4134  /**
4135   * Returns the entered isolate for the current thread or NULL in
4136   * case there is no current isolate.
4137   */
4138  static Isolate* GetCurrent();
4139
4140  /**
4141   * Methods below this point require holding a lock (using Locker) in
4142   * a multi-threaded environment.
4143   */
4144
4145  /**
4146   * Sets this isolate as the entered one for the current thread.
4147   * Saves the previously entered one (if any), so that it can be
4148   * restored when exiting.  Re-entering an isolate is allowed.
4149   */
4150  void Enter();
4151
4152  /**
4153   * Exits this isolate by restoring the previously entered one in the
4154   * current thread.  The isolate may still stay the same, if it was
4155   * entered more than once.
4156   *
4157   * Requires: this == Isolate::GetCurrent().
4158   */
4159  void Exit();
4160
4161  /**
4162   * Disposes the isolate.  The isolate must not be entered by any
4163   * thread to be disposable.
4164   */
4165  void Dispose();
4166
4167  /**
4168   * Associate embedder-specific data with the isolate. |slot| has to be
4169   * between 0 and GetNumberOfDataSlots() - 1.
4170   */
4171  V8_INLINE void SetData(uint32_t slot, void* data);
4172
4173  /**
4174   * Retrieve embedder-specific data from the isolate.
4175   * Returns NULL if SetData has never been called for the given |slot|.
4176   */
4177  V8_INLINE void* GetData(uint32_t slot);
4178
4179  /**
4180   * Returns the maximum number of available embedder data slots. Valid slots
4181   * are in the range of 0 - GetNumberOfDataSlots() - 1.
4182   */
4183  V8_INLINE static uint32_t GetNumberOfDataSlots();
4184
4185  /**
4186   * Get statistics about the heap memory usage.
4187   */
4188  void GetHeapStatistics(HeapStatistics* heap_statistics);
4189
4190  /**
4191   * Adjusts the amount of registered external memory. Used to give V8 an
4192   * indication of the amount of externally allocated memory that is kept alive
4193   * by JavaScript objects. V8 uses this to decide when to perform global
4194   * garbage collections. Registering externally allocated memory will trigger
4195   * global garbage collections more often than it would otherwise in an attempt
4196   * to garbage collect the JavaScript objects that keep the externally
4197   * allocated memory alive.
4198   *
4199   * \param change_in_bytes the change in externally allocated memory that is
4200   *   kept alive by JavaScript objects.
4201   * \returns the adjusted value.
4202   */
4203  V8_INLINE int64_t
4204      AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
4205
4206  /**
4207   * Returns heap profiler for this isolate. Will return NULL until the isolate
4208   * is initialized.
4209   */
4210  HeapProfiler* GetHeapProfiler();
4211
4212  /**
4213   * Returns CPU profiler for this isolate. Will return NULL unless the isolate
4214   * is initialized. It is the embedder's responsibility to stop all CPU
4215   * profiling activities if it has started any.
4216   */
4217  CpuProfiler* GetCpuProfiler();
4218
4219  /** Returns true if this isolate has a current context. */
4220  bool InContext();
4221
4222  /** Returns the context that is on the top of the stack. */
4223  Local<Context> GetCurrentContext();
4224
4225  /**
4226   * Returns the context of the calling JavaScript code.  That is the
4227   * context of the top-most JavaScript frame.  If there are no
4228   * JavaScript frames an empty handle is returned.
4229   */
4230  Local<Context> GetCallingContext();
4231
4232  /** Returns the last entered context. */
4233  Local<Context> GetEnteredContext();
4234
4235  /**
4236   * Schedules an exception to be thrown when returning to JavaScript.  When an
4237   * exception has been scheduled it is illegal to invoke any JavaScript
4238   * operation; the caller must return immediately and only after the exception
4239   * has been handled does it become legal to invoke JavaScript operations.
4240   */
4241  Local<Value> ThrowException(Local<Value> exception);
4242
4243  /**
4244   * Allows the host application to group objects together. If one
4245   * object in the group is alive, all objects in the group are alive.
4246   * After each garbage collection, object groups are removed. It is
4247   * intended to be used in the before-garbage-collection callback
4248   * function, for instance to simulate DOM tree connections among JS
4249   * wrapper objects. Object groups for all dependent handles need to
4250   * be provided for kGCTypeMarkSweepCompact collections, for all other
4251   * garbage collection types it is sufficient to provide object groups
4252   * for partially dependent handles only.
4253   */
4254  template<typename T> void SetObjectGroupId(const Persistent<T>& object,
4255                                             UniqueId id);
4256
4257  /**
4258   * Allows the host application to declare implicit references from an object
4259   * group to an object. If the objects of the object group are alive, the child
4260   * object is alive too. After each garbage collection, all implicit references
4261   * are removed. It is intended to be used in the before-garbage-collection
4262   * callback function.
4263   */
4264  template<typename T> void SetReferenceFromGroup(UniqueId id,
4265                                                  const Persistent<T>& child);
4266
4267  /**
4268   * Allows the host application to declare implicit references from an object
4269   * to another object. If the parent object is alive, the child object is alive
4270   * too. After each garbage collection, all implicit references are removed. It
4271   * is intended to be used in the before-garbage-collection callback function.
4272   */
4273  template<typename T, typename S>
4274  void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
4275
4276  typedef void (*GCPrologueCallback)(Isolate* isolate,
4277                                     GCType type,
4278                                     GCCallbackFlags flags);
4279  typedef void (*GCEpilogueCallback)(Isolate* isolate,
4280                                     GCType type,
4281                                     GCCallbackFlags flags);
4282
4283  /**
4284   * Enables the host application to receive a notification before a
4285   * garbage collection. Allocations are allowed in the callback function,
4286   * but the callback is not re-entrant: if the allocation inside it will
4287   * trigger the garbage collection, the callback won't be called again.
4288   * It is possible to specify the GCType filter for your callback. But it is
4289   * not possible to register the same callback function two times with
4290   * different GCType filters.
4291   */
4292  void AddGCPrologueCallback(
4293      GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
4294
4295  /**
4296   * This function removes callback which was installed by
4297   * AddGCPrologueCallback function.
4298   */
4299  void RemoveGCPrologueCallback(GCPrologueCallback callback);
4300
4301  /**
4302   * Enables the host application to receive a notification after a
4303   * garbage collection. Allocations are allowed in the callback function,
4304   * but the callback is not re-entrant: if the allocation inside it will
4305   * trigger the garbage collection, the callback won't be called again.
4306   * It is possible to specify the GCType filter for your callback. But it is
4307   * not possible to register the same callback function two times with
4308   * different GCType filters.
4309   */
4310  void AddGCEpilogueCallback(
4311      GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
4312
4313  /**
4314   * This function removes callback which was installed by
4315   * AddGCEpilogueCallback function.
4316   */
4317  void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
4318
4319  /**
4320   * Request V8 to interrupt long running JavaScript code and invoke
4321   * the given |callback| passing the given |data| to it. After |callback|
4322   * returns control will be returned to the JavaScript code.
4323   * At any given moment V8 can remember only a single callback for the very
4324   * last interrupt request.
4325   * Can be called from another thread without acquiring a |Locker|.
4326   * Registered |callback| must not reenter interrupted Isolate.
4327   */
4328  void RequestInterrupt(InterruptCallback callback, void* data);
4329
4330  /**
4331   * Clear interrupt request created by |RequestInterrupt|.
4332   * Can be called from another thread without acquiring a |Locker|.
4333   */
4334  void ClearInterrupt();
4335
4336  /**
4337   * Request garbage collection in this Isolate. It is only valid to call this
4338   * function if --expose_gc was specified.
4339   *
4340   * This should only be used for testing purposes and not to enforce a garbage
4341   * collection schedule. It has strong negative impact on the garbage
4342   * collection performance. Use IdleNotification() or LowMemoryNotification()
4343   * instead to influence the garbage collection schedule.
4344   */
4345  void RequestGarbageCollectionForTesting(GarbageCollectionType type);
4346
4347  /**
4348   * Set the callback to invoke for logging event.
4349   */
4350  void SetEventLogger(LogEventCallback that);
4351
4352  /**
4353   * Adds a callback to notify the host application when a script finished
4354   * running.  If a script re-enters the runtime during executing, the
4355   * CallCompletedCallback is only invoked when the outer-most script
4356   * execution ends.  Executing scripts inside the callback do not trigger
4357   * further callbacks.
4358   */
4359  void AddCallCompletedCallback(CallCompletedCallback callback);
4360
4361  /**
4362   * Removes callback that was installed by AddCallCompletedCallback.
4363   */
4364  void RemoveCallCompletedCallback(CallCompletedCallback callback);
4365
4366  /**
4367   * Experimental: Runs the Microtask Work Queue until empty
4368   * Any exceptions thrown by microtask callbacks are swallowed.
4369   */
4370  void RunMicrotasks();
4371
4372  /**
4373   * Experimental: Enqueues the callback to the Microtask Work Queue
4374   */
4375  void EnqueueMicrotask(Handle<Function> microtask);
4376
4377  /**
4378   * Experimental: Enqueues the callback to the Microtask Work Queue
4379   */
4380  void EnqueueMicrotask(MicrotaskCallback microtask, void* data = NULL);
4381
4382   /**
4383   * Experimental: Controls whether the Microtask Work Queue is automatically
4384   * run when the script call depth decrements to zero.
4385   */
4386  void SetAutorunMicrotasks(bool autorun);
4387
4388  /**
4389   * Experimental: Returns whether the Microtask Work Queue is automatically
4390   * run when the script call depth decrements to zero.
4391   */
4392  bool WillAutorunMicrotasks() const;
4393
4394  /**
4395   * Enables the host application to provide a mechanism for recording
4396   * statistics counters.
4397   */
4398  void SetCounterFunction(CounterLookupCallback);
4399
4400  /**
4401   * Enables the host application to provide a mechanism for recording
4402   * histograms. The CreateHistogram function returns a
4403   * histogram which will later be passed to the AddHistogramSample
4404   * function.
4405   */
4406  void SetCreateHistogramFunction(CreateHistogramCallback);
4407  void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
4408
4409 private:
4410  template<class K, class V, class Traits> friend class PersistentValueMap;
4411
4412  Isolate();
4413  Isolate(const Isolate&);
4414  ~Isolate();
4415  Isolate& operator=(const Isolate&);
4416  void* operator new(size_t size);
4417  void operator delete(void*, size_t);
4418
4419  void SetObjectGroupId(internal::Object** object, UniqueId id);
4420  void SetReferenceFromGroup(UniqueId id, internal::Object** object);
4421  void SetReference(internal::Object** parent, internal::Object** child);
4422  void CollectAllGarbage(const char* gc_reason);
4423};
4424
4425class V8_EXPORT StartupData {
4426 public:
4427  enum CompressionAlgorithm {
4428    kUncompressed,
4429    kBZip2
4430  };
4431
4432  const char* data;
4433  int compressed_size;
4434  int raw_size;
4435};
4436
4437
4438/**
4439 * A helper class for driving V8 startup data decompression.  It is based on
4440 * "CompressedStartupData" API functions from the V8 class.  It isn't mandatory
4441 * for an embedder to use this class, instead, API functions can be used
4442 * directly.
4443 *
4444 * For an example of the class usage, see the "shell.cc" sample application.
4445 */
4446class V8_EXPORT StartupDataDecompressor {  // NOLINT
4447 public:
4448  StartupDataDecompressor();
4449  virtual ~StartupDataDecompressor();
4450  int Decompress();
4451
4452 protected:
4453  virtual int DecompressData(char* raw_data,
4454                             int* raw_data_size,
4455                             const char* compressed_data,
4456                             int compressed_data_size) = 0;
4457
4458 private:
4459  char** raw_data;
4460};
4461
4462
4463/**
4464 * EntropySource is used as a callback function when v8 needs a source
4465 * of entropy.
4466 */
4467typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
4468
4469
4470/**
4471 * ReturnAddressLocationResolver is used as a callback function when v8 is
4472 * resolving the location of a return address on the stack. Profilers that
4473 * change the return address on the stack can use this to resolve the stack
4474 * location to whereever the profiler stashed the original return address.
4475 *
4476 * \param return_addr_location points to a location on stack where a machine
4477 *    return address resides.
4478 * \returns either return_addr_location, or else a pointer to the profiler's
4479 *    copy of the original return address.
4480 *
4481 * \note the resolver function must not cause garbage collection.
4482 */
4483typedef uintptr_t (*ReturnAddressLocationResolver)(
4484    uintptr_t return_addr_location);
4485
4486
4487/**
4488 * FunctionEntryHook is the type of the profile entry hook called at entry to
4489 * any generated function when function-level profiling is enabled.
4490 *
4491 * \param function the address of the function that's being entered.
4492 * \param return_addr_location points to a location on stack where the machine
4493 *    return address resides. This can be used to identify the caller of
4494 *    \p function, and/or modified to divert execution when \p function exits.
4495 *
4496 * \note the entry hook must not cause garbage collection.
4497 */
4498typedef void (*FunctionEntryHook)(uintptr_t function,
4499                                  uintptr_t return_addr_location);
4500
4501
4502/**
4503 * A JIT code event is issued each time code is added, moved or removed.
4504 *
4505 * \note removal events are not currently issued.
4506 */
4507struct JitCodeEvent {
4508  enum EventType {
4509    CODE_ADDED,
4510    CODE_MOVED,
4511    CODE_REMOVED,
4512    CODE_ADD_LINE_POS_INFO,
4513    CODE_START_LINE_INFO_RECORDING,
4514    CODE_END_LINE_INFO_RECORDING
4515  };
4516  // Definition of the code position type. The "POSITION" type means the place
4517  // in the source code which are of interest when making stack traces to
4518  // pin-point the source location of a stack frame as close as possible.
4519  // The "STATEMENT_POSITION" means the place at the beginning of each
4520  // statement, and is used to indicate possible break locations.
4521  enum PositionType {
4522    POSITION,
4523    STATEMENT_POSITION
4524  };
4525
4526  // Type of event.
4527  EventType type;
4528  // Start of the instructions.
4529  void* code_start;
4530  // Size of the instructions.
4531  size_t code_len;
4532  // Script info for CODE_ADDED event.
4533  Handle<Script> script;
4534  // User-defined data for *_LINE_INFO_* event. It's used to hold the source
4535  // code line information which is returned from the
4536  // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
4537  // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
4538  void* user_data;
4539
4540  struct name_t {
4541    // Name of the object associated with the code, note that the string is not
4542    // zero-terminated.
4543    const char* str;
4544    // Number of chars in str.
4545    size_t len;
4546  };
4547
4548  struct line_info_t {
4549    // PC offset
4550    size_t offset;
4551    // Code postion
4552    size_t pos;
4553    // The position type.
4554    PositionType position_type;
4555  };
4556
4557  union {
4558    // Only valid for CODE_ADDED.
4559    struct name_t name;
4560
4561    // Only valid for CODE_ADD_LINE_POS_INFO
4562    struct line_info_t line_info;
4563
4564    // New location of instructions. Only valid for CODE_MOVED.
4565    void* new_code_start;
4566  };
4567};
4568
4569/**
4570 * Option flags passed to the SetJitCodeEventHandler function.
4571 */
4572enum JitCodeEventOptions {
4573  kJitCodeEventDefault = 0,
4574  // Generate callbacks for already existent code.
4575  kJitCodeEventEnumExisting = 1
4576};
4577
4578
4579/**
4580 * Callback function passed to SetJitCodeEventHandler.
4581 *
4582 * \param event code add, move or removal event.
4583 */
4584typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
4585
4586
4587/**
4588 * Interface for iterating through all external resources in the heap.
4589 */
4590class V8_EXPORT ExternalResourceVisitor {  // NOLINT
4591 public:
4592  virtual ~ExternalResourceVisitor() {}
4593  virtual void VisitExternalString(Handle<String> string) {}
4594};
4595
4596
4597/**
4598 * Interface for iterating through all the persistent handles in the heap.
4599 */
4600class V8_EXPORT PersistentHandleVisitor {  // NOLINT
4601 public:
4602  virtual ~PersistentHandleVisitor() {}
4603  virtual void VisitPersistentHandle(Persistent<Value>* value,
4604                                     uint16_t class_id) {}
4605};
4606
4607
4608/**
4609 * Container class for static utility functions.
4610 */
4611class V8_EXPORT V8 {
4612 public:
4613  /** Set the callback to invoke in case of fatal errors. */
4614  static void SetFatalErrorHandler(FatalErrorCallback that);
4615
4616  /**
4617   * Set the callback to invoke to check if code generation from
4618   * strings should be allowed.
4619   */
4620  static void SetAllowCodeGenerationFromStringsCallback(
4621      AllowCodeGenerationFromStringsCallback that);
4622
4623  /**
4624   * Set allocator to use for ArrayBuffer memory.
4625   * The allocator should be set only once. The allocator should be set
4626   * before any code tha uses ArrayBuffers is executed.
4627   * This allocator is used in all isolates.
4628   */
4629  static void SetArrayBufferAllocator(ArrayBuffer::Allocator* allocator);
4630
4631  /**
4632   * Check if V8 is dead and therefore unusable.  This is the case after
4633   * fatal errors such as out-of-memory situations.
4634   */
4635  static bool IsDead();
4636
4637  /**
4638   * The following 4 functions are to be used when V8 is built with
4639   * the 'compress_startup_data' flag enabled. In this case, the
4640   * embedder must decompress startup data prior to initializing V8.
4641   *
4642   * This is how interaction with V8 should look like:
4643   *   int compressed_data_count = v8::V8::GetCompressedStartupDataCount();
4644   *   v8::StartupData* compressed_data =
4645   *     new v8::StartupData[compressed_data_count];
4646   *   v8::V8::GetCompressedStartupData(compressed_data);
4647   *   ... decompress data (compressed_data can be updated in-place) ...
4648   *   v8::V8::SetDecompressedStartupData(compressed_data);
4649   *   ... now V8 can be initialized
4650   *   ... make sure the decompressed data stays valid until V8 shutdown
4651   *
4652   * A helper class StartupDataDecompressor is provided. It implements
4653   * the protocol of the interaction described above, and can be used in
4654   * most cases instead of calling these API functions directly.
4655   */
4656  static StartupData::CompressionAlgorithm GetCompressedStartupDataAlgorithm();
4657  static int GetCompressedStartupDataCount();
4658  static void GetCompressedStartupData(StartupData* compressed_data);
4659  static void SetDecompressedStartupData(StartupData* decompressed_data);
4660
4661  /**
4662   * Adds a message listener.
4663   *
4664   * The same message listener can be added more than once and in that
4665   * case it will be called more than once for each message.
4666   *
4667   * If data is specified, it will be passed to the callback when it is called.
4668   * Otherwise, the exception object will be passed to the callback instead.
4669   */
4670  static bool AddMessageListener(MessageCallback that,
4671                                 Handle<Value> data = Handle<Value>());
4672
4673  /**
4674   * Remove all message listeners from the specified callback function.
4675   */
4676  static void RemoveMessageListeners(MessageCallback that);
4677
4678  /**
4679   * Tells V8 to capture current stack trace when uncaught exception occurs
4680   * and report it to the message listeners. The option is off by default.
4681   */
4682  static void SetCaptureStackTraceForUncaughtExceptions(
4683      bool capture,
4684      int frame_limit = 10,
4685      StackTrace::StackTraceOptions options = StackTrace::kOverview);
4686
4687  /**
4688   * Sets V8 flags from a string.
4689   */
4690  static void SetFlagsFromString(const char* str, int length);
4691
4692  /**
4693   * Sets V8 flags from the command line.
4694   */
4695  static void SetFlagsFromCommandLine(int* argc,
4696                                      char** argv,
4697                                      bool remove_flags);
4698
4699  /** Get the version string. */
4700  static const char* GetVersion();
4701
4702  /**
4703   * Enables the host application to provide a mechanism for recording
4704   * statistics counters.
4705   *
4706   * Deprecated, use Isolate::SetCounterFunction instead.
4707   */
4708  static void SetCounterFunction(CounterLookupCallback);
4709
4710  /**
4711   * Enables the host application to provide a mechanism for recording
4712   * histograms. The CreateHistogram function returns a
4713   * histogram which will later be passed to the AddHistogramSample
4714   * function.
4715   *
4716   * Deprecated, use Isolate::SetCreateHistogramFunction instead.
4717   * Isolate::SetAddHistogramSampleFunction instead.
4718   */
4719  static void SetCreateHistogramFunction(CreateHistogramCallback);
4720
4721  /** Deprecated, use Isolate::SetAddHistogramSampleFunction instead. */
4722  static void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
4723
4724  /** Callback function for reporting failed access checks.*/
4725  static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
4726
4727  /**
4728   * Enables the host application to receive a notification before a
4729   * garbage collection.  Allocations are not allowed in the
4730   * callback function, you therefore cannot manipulate objects (set
4731   * or delete properties for example) since it is possible such
4732   * operations will result in the allocation of objects. It is possible
4733   * to specify the GCType filter for your callback. But it is not possible to
4734   * register the same callback function two times with different
4735   * GCType filters.
4736   */
4737  static void AddGCPrologueCallback(
4738      GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
4739
4740  /**
4741   * This function removes callback which was installed by
4742   * AddGCPrologueCallback function.
4743   */
4744  static void RemoveGCPrologueCallback(GCPrologueCallback callback);
4745
4746  /**
4747   * Enables the host application to receive a notification after a
4748   * garbage collection.  Allocations are not allowed in the
4749   * callback function, you therefore cannot manipulate objects (set
4750   * or delete properties for example) since it is possible such
4751   * operations will result in the allocation of objects. It is possible
4752   * to specify the GCType filter for your callback. But it is not possible to
4753   * register the same callback function two times with different
4754   * GCType filters.
4755   */
4756  static void AddGCEpilogueCallback(
4757      GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
4758
4759  /**
4760   * This function removes callback which was installed by
4761   * AddGCEpilogueCallback function.
4762   */
4763  static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
4764
4765  /**
4766   * Enables the host application to provide a mechanism to be notified
4767   * and perform custom logging when V8 Allocates Executable Memory.
4768   */
4769  static void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
4770                                          ObjectSpace space,
4771                                          AllocationAction action);
4772
4773  /**
4774   * Removes callback that was installed by AddMemoryAllocationCallback.
4775   */
4776  static void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
4777
4778  /**
4779   * Initializes from snapshot if possible. Otherwise, attempts to
4780   * initialize from scratch.  This function is called implicitly if
4781   * you use the API without calling it first.
4782   */
4783  static bool Initialize();
4784
4785  /**
4786   * Allows the host application to provide a callback which can be used
4787   * as a source of entropy for random number generators.
4788   */
4789  static void SetEntropySource(EntropySource source);
4790
4791  /**
4792   * Allows the host application to provide a callback that allows v8 to
4793   * cooperate with a profiler that rewrites return addresses on stack.
4794   */
4795  static void SetReturnAddressLocationResolver(
4796      ReturnAddressLocationResolver return_address_resolver);
4797
4798  /**
4799   * Allows the host application to provide the address of a function that's
4800   * invoked on entry to every V8-generated function.
4801   * Note that \p entry_hook is invoked at the very start of each
4802   * generated function.
4803   *
4804   * \param isolate the isolate to operate on.
4805   * \param entry_hook a function that will be invoked on entry to every
4806   *   V8-generated function.
4807   * \returns true on success on supported platforms, false on failure.
4808   * \note Setting an entry hook can only be done very early in an isolates
4809   *   lifetime, and once set, the entry hook cannot be revoked.
4810   */
4811  static bool SetFunctionEntryHook(Isolate* isolate,
4812                                   FunctionEntryHook entry_hook);
4813
4814  /**
4815   * Allows the host application to provide the address of a function that is
4816   * notified each time code is added, moved or removed.
4817   *
4818   * \param options options for the JIT code event handler.
4819   * \param event_handler the JIT code event handler, which will be invoked
4820   *     each time code is added, moved or removed.
4821   * \note \p event_handler won't get notified of existent code.
4822   * \note since code removal notifications are not currently issued, the
4823   *     \p event_handler may get notifications of code that overlaps earlier
4824   *     code notifications. This happens when code areas are reused, and the
4825   *     earlier overlapping code areas should therefore be discarded.
4826   * \note the events passed to \p event_handler and the strings they point to
4827   *     are not guaranteed to live past each call. The \p event_handler must
4828   *     copy strings and other parameters it needs to keep around.
4829   * \note the set of events declared in JitCodeEvent::EventType is expected to
4830   *     grow over time, and the JitCodeEvent structure is expected to accrue
4831   *     new members. The \p event_handler function must ignore event codes
4832   *     it does not recognize to maintain future compatibility.
4833   */
4834  static void SetJitCodeEventHandler(JitCodeEventOptions options,
4835                                     JitCodeEventHandler event_handler);
4836
4837  /**
4838   * Forcefully terminate the current thread of JavaScript execution
4839   * in the given isolate.
4840   *
4841   * This method can be used by any thread even if that thread has not
4842   * acquired the V8 lock with a Locker object.
4843   *
4844   * \param isolate The isolate in which to terminate the current JS execution.
4845   */
4846  static void TerminateExecution(Isolate* isolate);
4847
4848  /**
4849   * Is V8 terminating JavaScript execution.
4850   *
4851   * Returns true if JavaScript execution is currently terminating
4852   * because of a call to TerminateExecution.  In that case there are
4853   * still JavaScript frames on the stack and the termination
4854   * exception is still active.
4855   *
4856   * \param isolate The isolate in which to check.
4857   */
4858  static bool IsExecutionTerminating(Isolate* isolate = NULL);
4859
4860  /**
4861   * Resume execution capability in the given isolate, whose execution
4862   * was previously forcefully terminated using TerminateExecution().
4863   *
4864   * When execution is forcefully terminated using TerminateExecution(),
4865   * the isolate can not resume execution until all JavaScript frames
4866   * have propagated the uncatchable exception which is generated.  This
4867   * method allows the program embedding the engine to handle the
4868   * termination event and resume execution capability, even if
4869   * JavaScript frames remain on the stack.
4870   *
4871   * This method can be used by any thread even if that thread has not
4872   * acquired the V8 lock with a Locker object.
4873   *
4874   * \param isolate The isolate in which to resume execution capability.
4875   */
4876  static void CancelTerminateExecution(Isolate* isolate);
4877
4878  /**
4879   * Releases any resources used by v8 and stops any utility threads
4880   * that may be running.  Note that disposing v8 is permanent, it
4881   * cannot be reinitialized.
4882   *
4883   * It should generally not be necessary to dispose v8 before exiting
4884   * a process, this should happen automatically.  It is only necessary
4885   * to use if the process needs the resources taken up by v8.
4886   */
4887  static bool Dispose();
4888
4889  /**
4890   * Iterates through all external resources referenced from current isolate
4891   * heap.  GC is not invoked prior to iterating, therefore there is no
4892   * guarantee that visited objects are still alive.
4893   */
4894  static void VisitExternalResources(ExternalResourceVisitor* visitor);
4895
4896  /**
4897   * Iterates through all the persistent handles in the current isolate's heap
4898   * that have class_ids.
4899   */
4900  static void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
4901
4902  /**
4903   * Iterates through all the persistent handles in the current isolate's heap
4904   * that have class_ids and are candidates to be marked as partially dependent
4905   * handles. This will visit handles to young objects created since the last
4906   * garbage collection but is free to visit an arbitrary superset of these
4907   * objects.
4908   */
4909  static void VisitHandlesForPartialDependence(
4910      Isolate* isolate, PersistentHandleVisitor* visitor);
4911
4912  /**
4913   * Optional notification that the embedder is idle.
4914   * V8 uses the notification to reduce memory footprint.
4915   * This call can be used repeatedly if the embedder remains idle.
4916   * Returns true if the embedder should stop calling IdleNotification
4917   * until real work has been done.  This indicates that V8 has done
4918   * as much cleanup as it will be able to do.
4919   *
4920   * The hint argument specifies the amount of work to be done in the function
4921   * on scale from 1 to 1000. There is no guarantee that the actual work will
4922   * match the hint.
4923   */
4924  static bool IdleNotification(int hint = 1000);
4925
4926  /**
4927   * Optional notification that the system is running low on memory.
4928   * V8 uses these notifications to attempt to free memory.
4929   */
4930  static void LowMemoryNotification();
4931
4932  /**
4933   * Optional notification that a context has been disposed. V8 uses
4934   * these notifications to guide the GC heuristic. Returns the number
4935   * of context disposals - including this one - since the last time
4936   * V8 had a chance to clean up.
4937   */
4938  static int ContextDisposedNotification();
4939
4940  /**
4941   * Initialize the ICU library bundled with V8. The embedder should only
4942   * invoke this method when using the bundled ICU. Returns true on success.
4943   *
4944   * If V8 was compiled with the ICU data in an external file, the location
4945   * of the data file has to be provided.
4946   */
4947  static bool InitializeICU(const char* icu_data_file = NULL);
4948
4949  /**
4950   * Sets the v8::Platform to use. This should be invoked before V8 is
4951   * initialized.
4952   */
4953  static void InitializePlatform(Platform* platform);
4954
4955  /**
4956   * Clears all references to the v8::Platform. This should be invoked after
4957   * V8 was disposed.
4958   */
4959  static void ShutdownPlatform();
4960
4961 private:
4962  V8();
4963
4964  static internal::Object** GlobalizeReference(internal::Isolate* isolate,
4965                                               internal::Object** handle);
4966  static internal::Object** CopyPersistent(internal::Object** handle);
4967  static void DisposeGlobal(internal::Object** global_handle);
4968  typedef WeakCallbackData<Value, void>::Callback WeakCallback;
4969  static void MakeWeak(internal::Object** global_handle,
4970                       void* data,
4971                       WeakCallback weak_callback);
4972  static void* ClearWeak(internal::Object** global_handle);
4973  static void Eternalize(Isolate* isolate,
4974                         Value* handle,
4975                         int* index);
4976  static Local<Value> GetEternal(Isolate* isolate, int index);
4977
4978  template <class T> friend class Handle;
4979  template <class T> friend class Local;
4980  template <class T> friend class Eternal;
4981  template <class T> friend class PersistentBase;
4982  template <class T, class M> friend class Persistent;
4983  friend class Context;
4984};
4985
4986
4987/**
4988 * An external exception handler.
4989 */
4990class V8_EXPORT TryCatch {
4991 public:
4992  /**
4993   * Creates a new try/catch block and registers it with v8.  Note that
4994   * all TryCatch blocks should be stack allocated because the memory
4995   * location itself is compared against JavaScript try/catch blocks.
4996   */
4997  TryCatch();
4998
4999  /**
5000   * Unregisters and deletes this try/catch block.
5001   */
5002  ~TryCatch();
5003
5004  /**
5005   * Returns true if an exception has been caught by this try/catch block.
5006   */
5007  bool HasCaught() const;
5008
5009  /**
5010   * For certain types of exceptions, it makes no sense to continue execution.
5011   *
5012   * If CanContinue returns false, the correct action is to perform any C++
5013   * cleanup needed and then return.  If CanContinue returns false and
5014   * HasTerminated returns true, it is possible to call
5015   * CancelTerminateExecution in order to continue calling into the engine.
5016   */
5017  bool CanContinue() const;
5018
5019  /**
5020   * Returns true if an exception has been caught due to script execution
5021   * being terminated.
5022   *
5023   * There is no JavaScript representation of an execution termination
5024   * exception.  Such exceptions are thrown when the TerminateExecution
5025   * methods are called to terminate a long-running script.
5026   *
5027   * If such an exception has been thrown, HasTerminated will return true,
5028   * indicating that it is possible to call CancelTerminateExecution in order
5029   * to continue calling into the engine.
5030   */
5031  bool HasTerminated() const;
5032
5033  /**
5034   * Throws the exception caught by this TryCatch in a way that avoids
5035   * it being caught again by this same TryCatch.  As with ThrowException
5036   * it is illegal to execute any JavaScript operations after calling
5037   * ReThrow; the caller must return immediately to where the exception
5038   * is caught.
5039   */
5040  Handle<Value> ReThrow();
5041
5042  /**
5043   * Returns the exception caught by this try/catch block.  If no exception has
5044   * been caught an empty handle is returned.
5045   *
5046   * The returned handle is valid until this TryCatch block has been destroyed.
5047   */
5048  Local<Value> Exception() const;
5049
5050  /**
5051   * Returns the .stack property of the thrown object.  If no .stack
5052   * property is present an empty handle is returned.
5053   */
5054  Local<Value> StackTrace() const;
5055
5056  /**
5057   * Returns the message associated with this exception.  If there is
5058   * no message associated an empty handle is returned.
5059   *
5060   * The returned handle is valid until this TryCatch block has been
5061   * destroyed.
5062   */
5063  Local<v8::Message> Message() const;
5064
5065  /**
5066   * Clears any exceptions that may have been caught by this try/catch block.
5067   * After this method has been called, HasCaught() will return false.
5068   *
5069   * It is not necessary to clear a try/catch block before using it again; if
5070   * another exception is thrown the previously caught exception will just be
5071   * overwritten.  However, it is often a good idea since it makes it easier
5072   * to determine which operation threw a given exception.
5073   */
5074  void Reset();
5075
5076  /**
5077   * Set verbosity of the external exception handler.
5078   *
5079   * By default, exceptions that are caught by an external exception
5080   * handler are not reported.  Call SetVerbose with true on an
5081   * external exception handler to have exceptions caught by the
5082   * handler reported as if they were not caught.
5083   */
5084  void SetVerbose(bool value);
5085
5086  /**
5087   * Set whether or not this TryCatch should capture a Message object
5088   * which holds source information about where the exception
5089   * occurred.  True by default.
5090   */
5091  void SetCaptureMessage(bool value);
5092
5093  /**
5094   * There are cases when the raw address of C++ TryCatch object cannot be
5095   * used for comparisons with addresses into the JS stack. The cases are:
5096   * 1) ARM, ARM64 and MIPS simulators which have separate JS stack.
5097   * 2) Address sanitizer allocates local C++ object in the heap when
5098   *    UseAfterReturn mode is enabled.
5099   * This method returns address that can be used for comparisons with
5100   * addresses into the JS stack. When neither simulator nor ASAN's
5101   * UseAfterReturn is enabled, then the address returned will be the address
5102   * of the C++ try catch handler itself.
5103   */
5104  static void* JSStackComparableAddress(v8::TryCatch* handler) {
5105    if (handler == NULL) return NULL;
5106    return handler->js_stack_comparable_address_;
5107  }
5108
5109 private:
5110  // Make it hard to create heap-allocated TryCatch blocks.
5111  TryCatch(const TryCatch&);
5112  void operator=(const TryCatch&);
5113  void* operator new(size_t size);
5114  void operator delete(void*, size_t);
5115
5116  v8::internal::Isolate* isolate_;
5117  v8::TryCatch* next_;
5118  void* exception_;
5119  void* message_obj_;
5120  void* message_script_;
5121  void* js_stack_comparable_address_;
5122  int message_start_pos_;
5123  int message_end_pos_;
5124  bool is_verbose_ : 1;
5125  bool can_continue_ : 1;
5126  bool capture_message_ : 1;
5127  bool rethrow_ : 1;
5128  bool has_terminated_ : 1;
5129
5130  friend class v8::internal::Isolate;
5131};
5132
5133
5134// --- Context ---
5135
5136
5137/**
5138 * A container for extension names.
5139 */
5140class V8_EXPORT ExtensionConfiguration {
5141 public:
5142  ExtensionConfiguration() : name_count_(0), names_(NULL) { }
5143  ExtensionConfiguration(int name_count, const char* names[])
5144      : name_count_(name_count), names_(names) { }
5145
5146  const char** begin() const { return &names_[0]; }
5147  const char** end()  const { return &names_[name_count_]; }
5148
5149 private:
5150  const int name_count_;
5151  const char** names_;
5152};
5153
5154
5155/**
5156 * A sandboxed execution context with its own set of built-in objects
5157 * and functions.
5158 */
5159class V8_EXPORT Context {
5160 public:
5161  /**
5162   * Returns the global proxy object.
5163   *
5164   * Global proxy object is a thin wrapper whose prototype points to actual
5165   * context's global object with the properties like Object, etc. This is done
5166   * that way for security reasons (for more details see
5167   * https://wiki.mozilla.org/Gecko:SplitWindow).
5168   *
5169   * Please note that changes to global proxy object prototype most probably
5170   * would break VM---v8 expects only global object as a prototype of global
5171   * proxy object.
5172   */
5173  Local<Object> Global();
5174
5175  /**
5176   * Detaches the global object from its context before
5177   * the global object can be reused to create a new context.
5178   */
5179  void DetachGlobal();
5180
5181  /**
5182   * Creates a new context and returns a handle to the newly allocated
5183   * context.
5184   *
5185   * \param isolate The isolate in which to create the context.
5186   *
5187   * \param extensions An optional extension configuration containing
5188   * the extensions to be installed in the newly created context.
5189   *
5190   * \param global_template An optional object template from which the
5191   * global object for the newly created context will be created.
5192   *
5193   * \param global_object An optional global object to be reused for
5194   * the newly created context. This global object must have been
5195   * created by a previous call to Context::New with the same global
5196   * template. The state of the global object will be completely reset
5197   * and only object identify will remain.
5198   */
5199  static Local<Context> New(
5200      Isolate* isolate,
5201      ExtensionConfiguration* extensions = NULL,
5202      Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
5203      Handle<Value> global_object = Handle<Value>());
5204
5205  /**
5206   * Sets the security token for the context.  To access an object in
5207   * another context, the security tokens must match.
5208   */
5209  void SetSecurityToken(Handle<Value> token);
5210
5211  /** Restores the security token to the default value. */
5212  void UseDefaultSecurityToken();
5213
5214  /** Returns the security token of this context.*/
5215  Handle<Value> GetSecurityToken();
5216
5217  /**
5218   * Enter this context.  After entering a context, all code compiled
5219   * and run is compiled and run in this context.  If another context
5220   * is already entered, this old context is saved so it can be
5221   * restored when the new context is exited.
5222   */
5223  void Enter();
5224
5225  /**
5226   * Exit this context.  Exiting the current context restores the
5227   * context that was in place when entering the current context.
5228   */
5229  void Exit();
5230
5231  /**
5232   * Returns true if the context has experienced an out of memory situation.
5233   * Since V8 always treats OOM as fatal error, this can no longer return true.
5234   * Therefore this is now deprecated.
5235   * */
5236  V8_DEPRECATED("This can no longer happen. OOM is a fatal error.",
5237                bool HasOutOfMemoryException()) { return false; }
5238
5239  /** Returns an isolate associated with a current context. */
5240  v8::Isolate* GetIsolate();
5241
5242  /**
5243   * Gets the embedder data with the given index, which must have been set by a
5244   * previous call to SetEmbedderData with the same index. Note that index 0
5245   * currently has a special meaning for Chrome's debugger.
5246   */
5247  V8_INLINE Local<Value> GetEmbedderData(int index);
5248
5249  /**
5250   * Sets the embedder data with the given index, growing the data as
5251   * needed. Note that index 0 currently has a special meaning for Chrome's
5252   * debugger.
5253   */
5254  void SetEmbedderData(int index, Handle<Value> value);
5255
5256  /**
5257   * Gets a 2-byte-aligned native pointer from the embedder data with the given
5258   * index, which must have bees set by a previous call to
5259   * SetAlignedPointerInEmbedderData with the same index. Note that index 0
5260   * currently has a special meaning for Chrome's debugger.
5261   */
5262  V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
5263
5264  /**
5265   * Sets a 2-byte-aligned native pointer in the embedder data with the given
5266   * index, growing the data as needed. Note that index 0 currently has a
5267   * special meaning for Chrome's debugger.
5268   */
5269  void SetAlignedPointerInEmbedderData(int index, void* value);
5270
5271  /**
5272   * Control whether code generation from strings is allowed. Calling
5273   * this method with false will disable 'eval' and the 'Function'
5274   * constructor for code running in this context. If 'eval' or the
5275   * 'Function' constructor are used an exception will be thrown.
5276   *
5277   * If code generation from strings is not allowed the
5278   * V8::AllowCodeGenerationFromStrings callback will be invoked if
5279   * set before blocking the call to 'eval' or the 'Function'
5280   * constructor. If that callback returns true, the call will be
5281   * allowed, otherwise an exception will be thrown. If no callback is
5282   * set an exception will be thrown.
5283   */
5284  void AllowCodeGenerationFromStrings(bool allow);
5285
5286  /**
5287   * Returns true if code generation from strings is allowed for the context.
5288   * For more details see AllowCodeGenerationFromStrings(bool) documentation.
5289   */
5290  bool IsCodeGenerationFromStringsAllowed();
5291
5292  /**
5293   * Sets the error description for the exception that is thrown when
5294   * code generation from strings is not allowed and 'eval' or the 'Function'
5295   * constructor are called.
5296   */
5297  void SetErrorMessageForCodeGenerationFromStrings(Handle<String> message);
5298
5299  /**
5300   * Stack-allocated class which sets the execution context for all
5301   * operations executed within a local scope.
5302   */
5303  class Scope {
5304   public:
5305    explicit V8_INLINE Scope(Handle<Context> context) : context_(context) {
5306      context_->Enter();
5307    }
5308    V8_INLINE ~Scope() { context_->Exit(); }
5309
5310   private:
5311    Handle<Context> context_;
5312  };
5313
5314 private:
5315  friend class Value;
5316  friend class Script;
5317  friend class Object;
5318  friend class Function;
5319
5320  Local<Value> SlowGetEmbedderData(int index);
5321  void* SlowGetAlignedPointerFromEmbedderData(int index);
5322};
5323
5324
5325/**
5326 * Multiple threads in V8 are allowed, but only one thread at a time is allowed
5327 * to use any given V8 isolate, see the comments in the Isolate class. The
5328 * definition of 'using a V8 isolate' includes accessing handles or holding onto
5329 * object pointers obtained from V8 handles while in the particular V8 isolate.
5330 * It is up to the user of V8 to ensure, perhaps with locking, that this
5331 * constraint is not violated. In addition to any other synchronization
5332 * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
5333 * used to signal thead switches to V8.
5334 *
5335 * v8::Locker is a scoped lock object. While it's active, i.e. between its
5336 * construction and destruction, the current thread is allowed to use the locked
5337 * isolate. V8 guarantees that an isolate can be locked by at most one thread at
5338 * any time. In other words, the scope of a v8::Locker is a critical section.
5339 *
5340 * Sample usage:
5341* \code
5342 * ...
5343 * {
5344 *   v8::Locker locker(isolate);
5345 *   v8::Isolate::Scope isolate_scope(isolate);
5346 *   ...
5347 *   // Code using V8 and isolate goes here.
5348 *   ...
5349 * } // Destructor called here
5350 * \endcode
5351 *
5352 * If you wish to stop using V8 in a thread A you can do this either by
5353 * destroying the v8::Locker object as above or by constructing a v8::Unlocker
5354 * object:
5355 *
5356 * \code
5357 * {
5358 *   isolate->Exit();
5359 *   v8::Unlocker unlocker(isolate);
5360 *   ...
5361 *   // Code not using V8 goes here while V8 can run in another thread.
5362 *   ...
5363 * } // Destructor called here.
5364 * isolate->Enter();
5365 * \endcode
5366 *
5367 * The Unlocker object is intended for use in a long-running callback from V8,
5368 * where you want to release the V8 lock for other threads to use.
5369 *
5370 * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
5371 * given thread. This can be useful if you have code that can be called either
5372 * from code that holds the lock or from code that does not. The Unlocker is
5373 * not recursive so you can not have several Unlockers on the stack at once, and
5374 * you can not use an Unlocker in a thread that is not inside a Locker's scope.
5375 *
5376 * An unlocker will unlock several lockers if it has to and reinstate the
5377 * correct depth of locking on its destruction, e.g.:
5378 *
5379 * \code
5380 * // V8 not locked.
5381 * {
5382 *   v8::Locker locker(isolate);
5383 *   Isolate::Scope isolate_scope(isolate);
5384 *   // V8 locked.
5385 *   {
5386 *     v8::Locker another_locker(isolate);
5387 *     // V8 still locked (2 levels).
5388 *     {
5389 *       isolate->Exit();
5390 *       v8::Unlocker unlocker(isolate);
5391 *       // V8 not locked.
5392 *     }
5393 *     isolate->Enter();
5394 *     // V8 locked again (2 levels).
5395 *   }
5396 *   // V8 still locked (1 level).
5397 * }
5398 * // V8 Now no longer locked.
5399 * \endcode
5400 */
5401class V8_EXPORT Unlocker {
5402 public:
5403  /**
5404   * Initialize Unlocker for a given Isolate.
5405   */
5406  V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
5407
5408  ~Unlocker();
5409 private:
5410  void Initialize(Isolate* isolate);
5411
5412  internal::Isolate* isolate_;
5413};
5414
5415
5416class V8_EXPORT Locker {
5417 public:
5418  /**
5419   * Initialize Locker for a given Isolate.
5420   */
5421  V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
5422
5423  ~Locker();
5424
5425  /**
5426   * Returns whether or not the locker for a given isolate, is locked by the
5427   * current thread.
5428   */
5429  static bool IsLocked(Isolate* isolate);
5430
5431  /**
5432   * Returns whether v8::Locker is being used by this V8 instance.
5433   */
5434  static bool IsActive();
5435
5436 private:
5437  void Initialize(Isolate* isolate);
5438
5439  bool has_lock_;
5440  bool top_level_;
5441  internal::Isolate* isolate_;
5442
5443  static bool active_;
5444
5445  // Disallow copying and assigning.
5446  Locker(const Locker&);
5447  void operator=(const Locker&);
5448};
5449
5450
5451// --- Implementation ---
5452
5453
5454namespace internal {
5455
5456const int kApiPointerSize = sizeof(void*);  // NOLINT
5457const int kApiIntSize = sizeof(int);  // NOLINT
5458const int kApiInt64Size = sizeof(int64_t);  // NOLINT
5459
5460// Tag information for HeapObject.
5461const int kHeapObjectTag = 1;
5462const int kHeapObjectTagSize = 2;
5463const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
5464
5465// Tag information for Smi.
5466const int kSmiTag = 0;
5467const int kSmiTagSize = 1;
5468const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
5469
5470template <size_t ptr_size> struct SmiTagging;
5471
5472template<int kSmiShiftSize>
5473V8_INLINE internal::Object* IntToSmi(int value) {
5474  int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
5475  intptr_t tagged_value =
5476      (static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag;
5477  return reinterpret_cast<internal::Object*>(tagged_value);
5478}
5479
5480// Smi constants for 32-bit systems.
5481template <> struct SmiTagging<4> {
5482  static const int kSmiShiftSize = 0;
5483  static const int kSmiValueSize = 31;
5484  V8_INLINE static int SmiToInt(internal::Object* value) {
5485    int shift_bits = kSmiTagSize + kSmiShiftSize;
5486    // Throw away top 32 bits and shift down (requires >> to be sign extending).
5487    return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
5488  }
5489  V8_INLINE static internal::Object* IntToSmi(int value) {
5490    return internal::IntToSmi<kSmiShiftSize>(value);
5491  }
5492  V8_INLINE static bool IsValidSmi(intptr_t value) {
5493    // To be representable as an tagged small integer, the two
5494    // most-significant bits of 'value' must be either 00 or 11 due to
5495    // sign-extension. To check this we add 01 to the two
5496    // most-significant bits, and check if the most-significant bit is 0
5497    //
5498    // CAUTION: The original code below:
5499    // bool result = ((value + 0x40000000) & 0x80000000) == 0;
5500    // may lead to incorrect results according to the C language spec, and
5501    // in fact doesn't work correctly with gcc4.1.1 in some cases: The
5502    // compiler may produce undefined results in case of signed integer
5503    // overflow. The computation must be done w/ unsigned ints.
5504    return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
5505  }
5506};
5507
5508// Smi constants for 64-bit systems.
5509template <> struct SmiTagging<8> {
5510  static const int kSmiShiftSize = 31;
5511  static const int kSmiValueSize = 32;
5512  V8_INLINE static int SmiToInt(internal::Object* value) {
5513    int shift_bits = kSmiTagSize + kSmiShiftSize;
5514    // Shift down and throw away top 32 bits.
5515    return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
5516  }
5517  V8_INLINE static internal::Object* IntToSmi(int value) {
5518    return internal::IntToSmi<kSmiShiftSize>(value);
5519  }
5520  V8_INLINE static bool IsValidSmi(intptr_t value) {
5521    // To be representable as a long smi, the value must be a 32-bit integer.
5522    return (value == static_cast<int32_t>(value));
5523  }
5524};
5525
5526typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
5527const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
5528const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
5529V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
5530V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
5531
5532/**
5533 * This class exports constants and functionality from within v8 that
5534 * is necessary to implement inline functions in the v8 api.  Don't
5535 * depend on functions and constants defined here.
5536 */
5537class Internals {
5538 public:
5539  // These values match non-compiler-dependent values defined within
5540  // the implementation of v8.
5541  static const int kHeapObjectMapOffset = 0;
5542  static const int kMapInstanceTypeOffset = 1 * kApiPointerSize + kApiIntSize;
5543  static const int kStringResourceOffset = 3 * kApiPointerSize;
5544
5545  static const int kOddballKindOffset = 3 * kApiPointerSize;
5546  static const int kForeignAddressOffset = kApiPointerSize;
5547  static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
5548  static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
5549  static const int kContextHeaderSize = 2 * kApiPointerSize;
5550  static const int kContextEmbedderDataIndex = 76;
5551  static const int kFullStringRepresentationMask = 0x07;
5552  static const int kStringEncodingMask = 0x4;
5553  static const int kExternalTwoByteRepresentationTag = 0x02;
5554  static const int kExternalAsciiRepresentationTag = 0x06;
5555
5556  static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
5557  static const int kAmountOfExternalAllocatedMemoryOffset =
5558      4 * kApiPointerSize;
5559  static const int kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset =
5560      kAmountOfExternalAllocatedMemoryOffset + kApiInt64Size;
5561  static const int kIsolateRootsOffset =
5562      kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset + kApiInt64Size +
5563      kApiPointerSize;
5564  static const int kUndefinedValueRootIndex = 5;
5565  static const int kNullValueRootIndex = 7;
5566  static const int kTrueValueRootIndex = 8;
5567  static const int kFalseValueRootIndex = 9;
5568  static const int kEmptyStringRootIndex = 163;
5569
5570  // The external allocation limit should be below 256 MB on all architectures
5571  // to avoid that resource-constrained embedders run low on memory.
5572  static const int kExternalAllocationLimit = 192 * 1024 * 1024;
5573
5574  static const int kNodeClassIdOffset = 1 * kApiPointerSize;
5575  static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
5576  static const int kNodeStateMask = 0xf;
5577  static const int kNodeStateIsWeakValue = 2;
5578  static const int kNodeStateIsPendingValue = 3;
5579  static const int kNodeStateIsNearDeathValue = 4;
5580  static const int kNodeIsIndependentShift = 4;
5581  static const int kNodeIsPartiallyDependentShift = 5;
5582
5583  static const int kJSObjectType = 0xbb;
5584  static const int kFirstNonstringType = 0x80;
5585  static const int kOddballType = 0x83;
5586  static const int kForeignType = 0x87;
5587
5588  static const int kUndefinedOddballKind = 5;
5589  static const int kNullOddballKind = 3;
5590
5591  static const uint32_t kNumIsolateDataSlots = 4;
5592
5593  V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
5594  V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
5595#ifdef V8_ENABLE_CHECKS
5596    CheckInitializedImpl(isolate);
5597#endif
5598  }
5599
5600  V8_INLINE static bool HasHeapObjectTag(internal::Object* value) {
5601    return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
5602            kHeapObjectTag);
5603  }
5604
5605  V8_INLINE static int SmiValue(internal::Object* value) {
5606    return PlatformSmiTagging::SmiToInt(value);
5607  }
5608
5609  V8_INLINE static internal::Object* IntToSmi(int value) {
5610    return PlatformSmiTagging::IntToSmi(value);
5611  }
5612
5613  V8_INLINE static bool IsValidSmi(intptr_t value) {
5614    return PlatformSmiTagging::IsValidSmi(value);
5615  }
5616
5617  V8_INLINE static int GetInstanceType(internal::Object* obj) {
5618    typedef internal::Object O;
5619    O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
5620    return ReadField<uint8_t>(map, kMapInstanceTypeOffset);
5621  }
5622
5623  V8_INLINE static int GetOddballKind(internal::Object* obj) {
5624    typedef internal::Object O;
5625    return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
5626  }
5627
5628  V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
5629    int representation = (instance_type & kFullStringRepresentationMask);
5630    return representation == kExternalTwoByteRepresentationTag;
5631  }
5632
5633  V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
5634      uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5635      return *addr & static_cast<uint8_t>(1U << shift);
5636  }
5637
5638  V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
5639                                       bool value, int shift) {
5640      uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5641      uint8_t mask = static_cast<uint8_t>(1 << shift);
5642      *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
5643  }
5644
5645  V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
5646    uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5647    return *addr & kNodeStateMask;
5648  }
5649
5650  V8_INLINE static void UpdateNodeState(internal::Object** obj,
5651                                        uint8_t value) {
5652    uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5653    *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
5654  }
5655
5656  V8_INLINE static void SetEmbedderData(v8::Isolate *isolate,
5657                                        uint32_t slot,
5658                                        void *data) {
5659    uint8_t *addr = reinterpret_cast<uint8_t *>(isolate) +
5660                    kIsolateEmbedderDataOffset + slot * kApiPointerSize;
5661    *reinterpret_cast<void**>(addr) = data;
5662  }
5663
5664  V8_INLINE static void* GetEmbedderData(v8::Isolate* isolate, uint32_t slot) {
5665    uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
5666        kIsolateEmbedderDataOffset + slot * kApiPointerSize;
5667    return *reinterpret_cast<void**>(addr);
5668  }
5669
5670  V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
5671                                              int index) {
5672    uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
5673    return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
5674  }
5675
5676  template <typename T>
5677  V8_INLINE static T ReadField(internal::Object* ptr, int offset) {
5678    uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag;
5679    return *reinterpret_cast<T*>(addr);
5680  }
5681
5682  template <typename T>
5683  V8_INLINE static T ReadEmbedderData(v8::Context* context, int index) {
5684    typedef internal::Object O;
5685    typedef internal::Internals I;
5686    O* ctx = *reinterpret_cast<O**>(context);
5687    int embedder_data_offset = I::kContextHeaderSize +
5688        (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
5689    O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
5690    int value_offset =
5691        I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
5692    return I::ReadField<T>(embedder_data, value_offset);
5693  }
5694};
5695
5696}  // namespace internal
5697
5698
5699template <class T>
5700Local<T>::Local() : Handle<T>() { }
5701
5702
5703template <class T>
5704Local<T> Local<T>::New(Isolate* isolate, Handle<T> that) {
5705  return New(isolate, that.val_);
5706}
5707
5708template <class T>
5709Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
5710  return New(isolate, that.val_);
5711}
5712
5713template <class T>
5714Handle<T> Handle<T>::New(Isolate* isolate, T* that) {
5715  if (that == NULL) return Handle<T>();
5716  T* that_ptr = that;
5717  internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
5718  return Handle<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
5719      reinterpret_cast<internal::Isolate*>(isolate), *p)));
5720}
5721
5722
5723template <class T>
5724Local<T> Local<T>::New(Isolate* isolate, T* that) {
5725  if (that == NULL) return Local<T>();
5726  T* that_ptr = that;
5727  internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
5728  return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
5729      reinterpret_cast<internal::Isolate*>(isolate), *p)));
5730}
5731
5732
5733template<class T>
5734template<class S>
5735void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
5736  TYPE_CHECK(T, S);
5737  V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
5738}
5739
5740
5741template<class T>
5742Local<T> Eternal<T>::Get(Isolate* isolate) {
5743  return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
5744}
5745
5746
5747template <class T>
5748T* PersistentBase<T>::New(Isolate* isolate, T* that) {
5749  if (that == NULL) return NULL;
5750  internal::Object** p = reinterpret_cast<internal::Object**>(that);
5751  return reinterpret_cast<T*>(
5752      V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
5753                             p));
5754}
5755
5756
5757template <class T, class M>
5758template <class S, class M2>
5759void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
5760  TYPE_CHECK(T, S);
5761  this->Reset();
5762  if (that.IsEmpty()) return;
5763  internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
5764  this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
5765  M::Copy(that, this);
5766}
5767
5768
5769template <class T>
5770bool PersistentBase<T>::IsIndependent() const {
5771  typedef internal::Internals I;
5772  if (this->IsEmpty()) return false;
5773  return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
5774                        I::kNodeIsIndependentShift);
5775}
5776
5777
5778template <class T>
5779bool PersistentBase<T>::IsNearDeath() const {
5780  typedef internal::Internals I;
5781  if (this->IsEmpty()) return false;
5782  uint8_t node_state =
5783      I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
5784  return node_state == I::kNodeStateIsNearDeathValue ||
5785      node_state == I::kNodeStateIsPendingValue;
5786}
5787
5788
5789template <class T>
5790bool PersistentBase<T>::IsWeak() const {
5791  typedef internal::Internals I;
5792  if (this->IsEmpty()) return false;
5793  return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
5794      I::kNodeStateIsWeakValue;
5795}
5796
5797
5798template <class T>
5799void PersistentBase<T>::Reset() {
5800  if (this->IsEmpty()) return;
5801  V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
5802  val_ = 0;
5803}
5804
5805
5806template <class T>
5807template <class S>
5808void PersistentBase<T>::Reset(Isolate* isolate, const Handle<S>& other) {
5809  TYPE_CHECK(T, S);
5810  Reset();
5811  if (other.IsEmpty()) return;
5812  this->val_ = New(isolate, other.val_);
5813}
5814
5815
5816template <class T>
5817template <class S>
5818void PersistentBase<T>::Reset(Isolate* isolate,
5819                              const PersistentBase<S>& other) {
5820  TYPE_CHECK(T, S);
5821  Reset();
5822  if (other.IsEmpty()) return;
5823  this->val_ = New(isolate, other.val_);
5824}
5825
5826
5827template <class T>
5828template <typename S, typename P>
5829void PersistentBase<T>::SetWeak(
5830    P* parameter,
5831    typename WeakCallbackData<S, P>::Callback callback) {
5832  TYPE_CHECK(S, T);
5833  typedef typename WeakCallbackData<Value, void>::Callback Callback;
5834  V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_),
5835               parameter,
5836               reinterpret_cast<Callback>(callback));
5837}
5838
5839
5840template <class T>
5841template <typename P>
5842void PersistentBase<T>::SetWeak(
5843    P* parameter,
5844    typename WeakCallbackData<T, P>::Callback callback) {
5845  SetWeak<T, P>(parameter, callback);
5846}
5847
5848
5849template <class T>
5850template<typename P>
5851P* PersistentBase<T>::ClearWeak() {
5852  return reinterpret_cast<P*>(
5853    V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_)));
5854}
5855
5856
5857template <class T>
5858void PersistentBase<T>::MarkIndependent() {
5859  typedef internal::Internals I;
5860  if (this->IsEmpty()) return;
5861  I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
5862                    true,
5863                    I::kNodeIsIndependentShift);
5864}
5865
5866
5867template <class T>
5868void PersistentBase<T>::MarkPartiallyDependent() {
5869  typedef internal::Internals I;
5870  if (this->IsEmpty()) return;
5871  I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
5872                    true,
5873                    I::kNodeIsPartiallyDependentShift);
5874}
5875
5876
5877template <class T, class M>
5878T* Persistent<T, M>::ClearAndLeak() {
5879  T* old;
5880  old = this->val_;
5881  this->val_ = NULL;
5882  return old;
5883}
5884
5885
5886template <class T>
5887void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
5888  typedef internal::Internals I;
5889  if (this->IsEmpty()) return;
5890  internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
5891  uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
5892  *reinterpret_cast<uint16_t*>(addr) = class_id;
5893}
5894
5895
5896template <class T>
5897uint16_t PersistentBase<T>::WrapperClassId() const {
5898  typedef internal::Internals I;
5899  if (this->IsEmpty()) return 0;
5900  internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
5901  uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
5902  return *reinterpret_cast<uint16_t*>(addr);
5903}
5904
5905
5906template<typename T>
5907ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
5908
5909template<typename T>
5910template<typename S>
5911void ReturnValue<T>::Set(const Persistent<S>& handle) {
5912  TYPE_CHECK(T, S);
5913  if (V8_UNLIKELY(handle.IsEmpty())) {
5914    *value_ = GetDefaultValue();
5915  } else {
5916    *value_ = *reinterpret_cast<internal::Object**>(*handle);
5917  }
5918}
5919
5920template<typename T>
5921template<typename S>
5922void ReturnValue<T>::Set(const Handle<S> handle) {
5923  TYPE_CHECK(T, S);
5924  if (V8_UNLIKELY(handle.IsEmpty())) {
5925    *value_ = GetDefaultValue();
5926  } else {
5927    *value_ = *reinterpret_cast<internal::Object**>(*handle);
5928  }
5929}
5930
5931template<typename T>
5932void ReturnValue<T>::Set(double i) {
5933  TYPE_CHECK(T, Number);
5934  Set(Number::New(GetIsolate(), i));
5935}
5936
5937template<typename T>
5938void ReturnValue<T>::Set(int32_t i) {
5939  TYPE_CHECK(T, Integer);
5940  typedef internal::Internals I;
5941  if (V8_LIKELY(I::IsValidSmi(i))) {
5942    *value_ = I::IntToSmi(i);
5943    return;
5944  }
5945  Set(Integer::New(GetIsolate(), i));
5946}
5947
5948template<typename T>
5949void ReturnValue<T>::Set(uint32_t i) {
5950  TYPE_CHECK(T, Integer);
5951  // Can't simply use INT32_MAX here for whatever reason.
5952  bool fits_into_int32_t = (i & (1U << 31)) == 0;
5953  if (V8_LIKELY(fits_into_int32_t)) {
5954    Set(static_cast<int32_t>(i));
5955    return;
5956  }
5957  Set(Integer::NewFromUnsigned(GetIsolate(), i));
5958}
5959
5960template<typename T>
5961void ReturnValue<T>::Set(bool value) {
5962  TYPE_CHECK(T, Boolean);
5963  typedef internal::Internals I;
5964  int root_index;
5965  if (value) {
5966    root_index = I::kTrueValueRootIndex;
5967  } else {
5968    root_index = I::kFalseValueRootIndex;
5969  }
5970  *value_ = *I::GetRoot(GetIsolate(), root_index);
5971}
5972
5973template<typename T>
5974void ReturnValue<T>::SetNull() {
5975  TYPE_CHECK(T, Primitive);
5976  typedef internal::Internals I;
5977  *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
5978}
5979
5980template<typename T>
5981void ReturnValue<T>::SetUndefined() {
5982  TYPE_CHECK(T, Primitive);
5983  typedef internal::Internals I;
5984  *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
5985}
5986
5987template<typename T>
5988void ReturnValue<T>::SetEmptyString() {
5989  TYPE_CHECK(T, String);
5990  typedef internal::Internals I;
5991  *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
5992}
5993
5994template<typename T>
5995Isolate* ReturnValue<T>::GetIsolate() {
5996  // Isolate is always the pointer below the default value on the stack.
5997  return *reinterpret_cast<Isolate**>(&value_[-2]);
5998}
5999
6000template<typename T>
6001template<typename S>
6002void ReturnValue<T>::Set(S* whatever) {
6003  // Uncompilable to prevent inadvertent misuse.
6004  TYPE_CHECK(S*, Primitive);
6005}
6006
6007template<typename T>
6008internal::Object* ReturnValue<T>::GetDefaultValue() {
6009  // Default value is always the pointer below value_ on the stack.
6010  return value_[-1];
6011}
6012
6013
6014template<typename T>
6015FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
6016                                              internal::Object** values,
6017                                              int length,
6018                                              bool is_construct_call)
6019    : implicit_args_(implicit_args),
6020      values_(values),
6021      length_(length),
6022      is_construct_call_(is_construct_call) { }
6023
6024
6025template<typename T>
6026Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
6027  if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
6028  return Local<Value>(reinterpret_cast<Value*>(values_ - i));
6029}
6030
6031
6032template<typename T>
6033Local<Function> FunctionCallbackInfo<T>::Callee() const {
6034  return Local<Function>(reinterpret_cast<Function*>(
6035      &implicit_args_[kCalleeIndex]));
6036}
6037
6038
6039template<typename T>
6040Local<Object> FunctionCallbackInfo<T>::This() const {
6041  return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
6042}
6043
6044
6045template<typename T>
6046Local<Object> FunctionCallbackInfo<T>::Holder() const {
6047  return Local<Object>(reinterpret_cast<Object*>(
6048      &implicit_args_[kHolderIndex]));
6049}
6050
6051
6052template<typename T>
6053Local<Value> FunctionCallbackInfo<T>::Data() const {
6054  return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
6055}
6056
6057
6058template<typename T>
6059Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
6060  return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
6061}
6062
6063
6064template<typename T>
6065ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
6066  return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
6067}
6068
6069
6070template<typename T>
6071bool FunctionCallbackInfo<T>::IsConstructCall() const {
6072  return is_construct_call_;
6073}
6074
6075
6076template<typename T>
6077int FunctionCallbackInfo<T>::Length() const {
6078  return length_;
6079}
6080
6081
6082Handle<Value> ScriptOrigin::ResourceName() const {
6083  return resource_name_;
6084}
6085
6086
6087Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
6088  return resource_line_offset_;
6089}
6090
6091
6092Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
6093  return resource_column_offset_;
6094}
6095
6096Handle<Boolean> ScriptOrigin::ResourceIsSharedCrossOrigin() const {
6097  return resource_is_shared_cross_origin_;
6098}
6099
6100
6101ScriptCompiler::Source::Source(Local<String> string, const ScriptOrigin& origin,
6102                               CachedData* data)
6103    : source_string(string),
6104      resource_name(origin.ResourceName()),
6105      resource_line_offset(origin.ResourceLineOffset()),
6106      resource_column_offset(origin.ResourceColumnOffset()),
6107      resource_is_shared_cross_origin(origin.ResourceIsSharedCrossOrigin()),
6108      cached_data(data) {}
6109
6110
6111ScriptCompiler::Source::Source(Local<String> string,
6112                               CachedData* data)
6113    : source_string(string), cached_data(data) {}
6114
6115
6116ScriptCompiler::Source::~Source() {
6117  delete cached_data;
6118}
6119
6120
6121const ScriptCompiler::CachedData* ScriptCompiler::Source::GetCachedData()
6122    const {
6123  return cached_data;
6124}
6125
6126
6127Handle<Boolean> Boolean::New(Isolate* isolate, bool value) {
6128  return value ? True(isolate) : False(isolate);
6129}
6130
6131
6132void Template::Set(Isolate* isolate, const char* name, v8::Handle<Data> value) {
6133  Set(v8::String::NewFromUtf8(isolate, name), value);
6134}
6135
6136
6137Local<Value> Object::GetInternalField(int index) {
6138#ifndef V8_ENABLE_CHECKS
6139  typedef internal::Object O;
6140  typedef internal::HeapObject HO;
6141  typedef internal::Internals I;
6142  O* obj = *reinterpret_cast<O**>(this);
6143  // Fast path: If the object is a plain JSObject, which is the common case, we
6144  // know where to find the internal fields and can return the value directly.
6145  if (I::GetInstanceType(obj) == I::kJSObjectType) {
6146    int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
6147    O* value = I::ReadField<O*>(obj, offset);
6148    O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
6149    return Local<Value>(reinterpret_cast<Value*>(result));
6150  }
6151#endif
6152  return SlowGetInternalField(index);
6153}
6154
6155
6156void* Object::GetAlignedPointerFromInternalField(int index) {
6157#ifndef V8_ENABLE_CHECKS
6158  typedef internal::Object O;
6159  typedef internal::Internals I;
6160  O* obj = *reinterpret_cast<O**>(this);
6161  // Fast path: If the object is a plain JSObject, which is the common case, we
6162  // know where to find the internal fields and can return the value directly.
6163  if (V8_LIKELY(I::GetInstanceType(obj) == I::kJSObjectType)) {
6164    int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
6165    return I::ReadField<void*>(obj, offset);
6166  }
6167#endif
6168  return SlowGetAlignedPointerFromInternalField(index);
6169}
6170
6171
6172String* String::Cast(v8::Value* value) {
6173#ifdef V8_ENABLE_CHECKS
6174  CheckCast(value);
6175#endif
6176  return static_cast<String*>(value);
6177}
6178
6179
6180Local<String> String::Empty(Isolate* isolate) {
6181  typedef internal::Object* S;
6182  typedef internal::Internals I;
6183  I::CheckInitialized(isolate);
6184  S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
6185  return Local<String>(reinterpret_cast<String*>(slot));
6186}
6187
6188
6189String::ExternalStringResource* String::GetExternalStringResource() const {
6190  typedef internal::Object O;
6191  typedef internal::Internals I;
6192  O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
6193  String::ExternalStringResource* result;
6194  if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
6195    void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
6196    result = reinterpret_cast<String::ExternalStringResource*>(value);
6197  } else {
6198    result = NULL;
6199  }
6200#ifdef V8_ENABLE_CHECKS
6201  VerifyExternalStringResource(result);
6202#endif
6203  return result;
6204}
6205
6206
6207String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
6208    String::Encoding* encoding_out) const {
6209  typedef internal::Object O;
6210  typedef internal::Internals I;
6211  O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
6212  int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
6213  *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
6214  ExternalStringResourceBase* resource = NULL;
6215  if (type == I::kExternalAsciiRepresentationTag ||
6216      type == I::kExternalTwoByteRepresentationTag) {
6217    void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
6218    resource = static_cast<ExternalStringResourceBase*>(value);
6219  }
6220#ifdef V8_ENABLE_CHECKS
6221    VerifyExternalStringResourceBase(resource, *encoding_out);
6222#endif
6223  return resource;
6224}
6225
6226
6227bool Value::IsUndefined() const {
6228#ifdef V8_ENABLE_CHECKS
6229  return FullIsUndefined();
6230#else
6231  return QuickIsUndefined();
6232#endif
6233}
6234
6235bool Value::QuickIsUndefined() const {
6236  typedef internal::Object O;
6237  typedef internal::Internals I;
6238  O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
6239  if (!I::HasHeapObjectTag(obj)) return false;
6240  if (I::GetInstanceType(obj) != I::kOddballType) return false;
6241  return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
6242}
6243
6244
6245bool Value::IsNull() const {
6246#ifdef V8_ENABLE_CHECKS
6247  return FullIsNull();
6248#else
6249  return QuickIsNull();
6250#endif
6251}
6252
6253bool Value::QuickIsNull() const {
6254  typedef internal::Object O;
6255  typedef internal::Internals I;
6256  O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
6257  if (!I::HasHeapObjectTag(obj)) return false;
6258  if (I::GetInstanceType(obj) != I::kOddballType) return false;
6259  return (I::GetOddballKind(obj) == I::kNullOddballKind);
6260}
6261
6262
6263bool Value::IsString() const {
6264#ifdef V8_ENABLE_CHECKS
6265  return FullIsString();
6266#else
6267  return QuickIsString();
6268#endif
6269}
6270
6271bool Value::QuickIsString() const {
6272  typedef internal::Object O;
6273  typedef internal::Internals I;
6274  O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
6275  if (!I::HasHeapObjectTag(obj)) return false;
6276  return (I::GetInstanceType(obj) < I::kFirstNonstringType);
6277}
6278
6279
6280template <class T> Value* Value::Cast(T* value) {
6281  return static_cast<Value*>(value);
6282}
6283
6284
6285Symbol* Symbol::Cast(v8::Value* value) {
6286#ifdef V8_ENABLE_CHECKS
6287  CheckCast(value);
6288#endif
6289  return static_cast<Symbol*>(value);
6290}
6291
6292
6293Number* Number::Cast(v8::Value* value) {
6294#ifdef V8_ENABLE_CHECKS
6295  CheckCast(value);
6296#endif
6297  return static_cast<Number*>(value);
6298}
6299
6300
6301Integer* Integer::Cast(v8::Value* value) {
6302#ifdef V8_ENABLE_CHECKS
6303  CheckCast(value);
6304#endif
6305  return static_cast<Integer*>(value);
6306}
6307
6308
6309Date* Date::Cast(v8::Value* value) {
6310#ifdef V8_ENABLE_CHECKS
6311  CheckCast(value);
6312#endif
6313  return static_cast<Date*>(value);
6314}
6315
6316
6317StringObject* StringObject::Cast(v8::Value* value) {
6318#ifdef V8_ENABLE_CHECKS
6319  CheckCast(value);
6320#endif
6321  return static_cast<StringObject*>(value);
6322}
6323
6324
6325SymbolObject* SymbolObject::Cast(v8::Value* value) {
6326#ifdef V8_ENABLE_CHECKS
6327  CheckCast(value);
6328#endif
6329  return static_cast<SymbolObject*>(value);
6330}
6331
6332
6333NumberObject* NumberObject::Cast(v8::Value* value) {
6334#ifdef V8_ENABLE_CHECKS
6335  CheckCast(value);
6336#endif
6337  return static_cast<NumberObject*>(value);
6338}
6339
6340
6341BooleanObject* BooleanObject::Cast(v8::Value* value) {
6342#ifdef V8_ENABLE_CHECKS
6343  CheckCast(value);
6344#endif
6345  return static_cast<BooleanObject*>(value);
6346}
6347
6348
6349RegExp* RegExp::Cast(v8::Value* value) {
6350#ifdef V8_ENABLE_CHECKS
6351  CheckCast(value);
6352#endif
6353  return static_cast<RegExp*>(value);
6354}
6355
6356
6357Object* Object::Cast(v8::Value* value) {
6358#ifdef V8_ENABLE_CHECKS
6359  CheckCast(value);
6360#endif
6361  return static_cast<Object*>(value);
6362}
6363
6364
6365Array* Array::Cast(v8::Value* value) {
6366#ifdef V8_ENABLE_CHECKS
6367  CheckCast(value);
6368#endif
6369  return static_cast<Array*>(value);
6370}
6371
6372
6373Promise* Promise::Cast(v8::Value* value) {
6374#ifdef V8_ENABLE_CHECKS
6375  CheckCast(value);
6376#endif
6377  return static_cast<Promise*>(value);
6378}
6379
6380
6381Promise::Resolver* Promise::Resolver::Cast(v8::Value* value) {
6382#ifdef V8_ENABLE_CHECKS
6383  CheckCast(value);
6384#endif
6385  return static_cast<Promise::Resolver*>(value);
6386}
6387
6388
6389ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
6390#ifdef V8_ENABLE_CHECKS
6391  CheckCast(value);
6392#endif
6393  return static_cast<ArrayBuffer*>(value);
6394}
6395
6396
6397ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
6398#ifdef V8_ENABLE_CHECKS
6399  CheckCast(value);
6400#endif
6401  return static_cast<ArrayBufferView*>(value);
6402}
6403
6404
6405TypedArray* TypedArray::Cast(v8::Value* value) {
6406#ifdef V8_ENABLE_CHECKS
6407  CheckCast(value);
6408#endif
6409  return static_cast<TypedArray*>(value);
6410}
6411
6412
6413Uint8Array* Uint8Array::Cast(v8::Value* value) {
6414#ifdef V8_ENABLE_CHECKS
6415  CheckCast(value);
6416#endif
6417  return static_cast<Uint8Array*>(value);
6418}
6419
6420
6421Int8Array* Int8Array::Cast(v8::Value* value) {
6422#ifdef V8_ENABLE_CHECKS
6423  CheckCast(value);
6424#endif
6425  return static_cast<Int8Array*>(value);
6426}
6427
6428
6429Uint16Array* Uint16Array::Cast(v8::Value* value) {
6430#ifdef V8_ENABLE_CHECKS
6431  CheckCast(value);
6432#endif
6433  return static_cast<Uint16Array*>(value);
6434}
6435
6436
6437Int16Array* Int16Array::Cast(v8::Value* value) {
6438#ifdef V8_ENABLE_CHECKS
6439  CheckCast(value);
6440#endif
6441  return static_cast<Int16Array*>(value);
6442}
6443
6444
6445Uint32Array* Uint32Array::Cast(v8::Value* value) {
6446#ifdef V8_ENABLE_CHECKS
6447  CheckCast(value);
6448#endif
6449  return static_cast<Uint32Array*>(value);
6450}
6451
6452
6453Int32Array* Int32Array::Cast(v8::Value* value) {
6454#ifdef V8_ENABLE_CHECKS
6455  CheckCast(value);
6456#endif
6457  return static_cast<Int32Array*>(value);
6458}
6459
6460
6461Float32Array* Float32Array::Cast(v8::Value* value) {
6462#ifdef V8_ENABLE_CHECKS
6463  CheckCast(value);
6464#endif
6465  return static_cast<Float32Array*>(value);
6466}
6467
6468
6469Float64Array* Float64Array::Cast(v8::Value* value) {
6470#ifdef V8_ENABLE_CHECKS
6471  CheckCast(value);
6472#endif
6473  return static_cast<Float64Array*>(value);
6474}
6475
6476
6477Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
6478#ifdef V8_ENABLE_CHECKS
6479  CheckCast(value);
6480#endif
6481  return static_cast<Uint8ClampedArray*>(value);
6482}
6483
6484
6485DataView* DataView::Cast(v8::Value* value) {
6486#ifdef V8_ENABLE_CHECKS
6487  CheckCast(value);
6488#endif
6489  return static_cast<DataView*>(value);
6490}
6491
6492
6493Function* Function::Cast(v8::Value* value) {
6494#ifdef V8_ENABLE_CHECKS
6495  CheckCast(value);
6496#endif
6497  return static_cast<Function*>(value);
6498}
6499
6500
6501External* External::Cast(v8::Value* value) {
6502#ifdef V8_ENABLE_CHECKS
6503  CheckCast(value);
6504#endif
6505  return static_cast<External*>(value);
6506}
6507
6508
6509template<typename T>
6510Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
6511  return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
6512}
6513
6514
6515template<typename T>
6516Local<Value> PropertyCallbackInfo<T>::Data() const {
6517  return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
6518}
6519
6520
6521template<typename T>
6522Local<Object> PropertyCallbackInfo<T>::This() const {
6523  return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
6524}
6525
6526
6527template<typename T>
6528Local<Object> PropertyCallbackInfo<T>::Holder() const {
6529  return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
6530}
6531
6532
6533template<typename T>
6534ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
6535  return ReturnValue<T>(&args_[kReturnValueIndex]);
6536}
6537
6538
6539Handle<Primitive> Undefined(Isolate* isolate) {
6540  typedef internal::Object* S;
6541  typedef internal::Internals I;
6542  I::CheckInitialized(isolate);
6543  S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
6544  return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
6545}
6546
6547
6548Handle<Primitive> Null(Isolate* isolate) {
6549  typedef internal::Object* S;
6550  typedef internal::Internals I;
6551  I::CheckInitialized(isolate);
6552  S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
6553  return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
6554}
6555
6556
6557Handle<Boolean> True(Isolate* isolate) {
6558  typedef internal::Object* S;
6559  typedef internal::Internals I;
6560  I::CheckInitialized(isolate);
6561  S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
6562  return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
6563}
6564
6565
6566Handle<Boolean> False(Isolate* isolate) {
6567  typedef internal::Object* S;
6568  typedef internal::Internals I;
6569  I::CheckInitialized(isolate);
6570  S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
6571  return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
6572}
6573
6574
6575void Isolate::SetData(uint32_t slot, void* data) {
6576  typedef internal::Internals I;
6577  I::SetEmbedderData(this, slot, data);
6578}
6579
6580
6581void* Isolate::GetData(uint32_t slot) {
6582  typedef internal::Internals I;
6583  return I::GetEmbedderData(this, slot);
6584}
6585
6586
6587uint32_t Isolate::GetNumberOfDataSlots() {
6588  typedef internal::Internals I;
6589  return I::kNumIsolateDataSlots;
6590}
6591
6592
6593int64_t Isolate::AdjustAmountOfExternalAllocatedMemory(
6594    int64_t change_in_bytes) {
6595  typedef internal::Internals I;
6596  int64_t* amount_of_external_allocated_memory =
6597      reinterpret_cast<int64_t*>(reinterpret_cast<uint8_t*>(this) +
6598                                 I::kAmountOfExternalAllocatedMemoryOffset);
6599  int64_t* amount_of_external_allocated_memory_at_last_global_gc =
6600      reinterpret_cast<int64_t*>(
6601          reinterpret_cast<uint8_t*>(this) +
6602          I::kAmountOfExternalAllocatedMemoryAtLastGlobalGCOffset);
6603  int64_t amount = *amount_of_external_allocated_memory + change_in_bytes;
6604  if (change_in_bytes > 0 &&
6605      amount - *amount_of_external_allocated_memory_at_last_global_gc >
6606          I::kExternalAllocationLimit) {
6607    CollectAllGarbage("external memory allocation limit reached.");
6608  } else {
6609    *amount_of_external_allocated_memory = amount;
6610  }
6611  return *amount_of_external_allocated_memory;
6612}
6613
6614
6615template<typename T>
6616void Isolate::SetObjectGroupId(const Persistent<T>& object,
6617                               UniqueId id) {
6618  TYPE_CHECK(Value, T);
6619  SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
6620}
6621
6622
6623template<typename T>
6624void Isolate::SetReferenceFromGroup(UniqueId id,
6625                                    const Persistent<T>& object) {
6626  TYPE_CHECK(Value, T);
6627  SetReferenceFromGroup(id,
6628                        reinterpret_cast<v8::internal::Object**>(object.val_));
6629}
6630
6631
6632template<typename T, typename S>
6633void Isolate::SetReference(const Persistent<T>& parent,
6634                           const Persistent<S>& child) {
6635  TYPE_CHECK(Object, T);
6636  TYPE_CHECK(Value, S);
6637  SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
6638               reinterpret_cast<v8::internal::Object**>(child.val_));
6639}
6640
6641
6642Local<Value> Context::GetEmbedderData(int index) {
6643#ifndef V8_ENABLE_CHECKS
6644  typedef internal::Object O;
6645  typedef internal::HeapObject HO;
6646  typedef internal::Internals I;
6647  HO* context = *reinterpret_cast<HO**>(this);
6648  O** result =
6649      HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
6650  return Local<Value>(reinterpret_cast<Value*>(result));
6651#else
6652  return SlowGetEmbedderData(index);
6653#endif
6654}
6655
6656
6657void* Context::GetAlignedPointerFromEmbedderData(int index) {
6658#ifndef V8_ENABLE_CHECKS
6659  typedef internal::Internals I;
6660  return I::ReadEmbedderData<void*>(this, index);
6661#else
6662  return SlowGetAlignedPointerFromEmbedderData(index);
6663#endif
6664}
6665
6666
6667/**
6668 * \example shell.cc
6669 * A simple shell that takes a list of expressions on the
6670 * command-line and executes them.
6671 */
6672
6673
6674/**
6675 * \example process.cc
6676 */
6677
6678
6679}  // namespace v8
6680
6681
6682#undef TYPE_CHECK
6683
6684
6685#endif  // V8_H_
6686