1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_ARM
8
9#include "src/cpu-profiler.h"
10#include "src/unicode.h"
11#include "src/log.h"
12#include "src/code-stubs.h"
13#include "src/regexp-stack.h"
14#include "src/macro-assembler.h"
15#include "src/regexp-macro-assembler.h"
16#include "src/arm/regexp-macro-assembler-arm.h"
17
18namespace v8 {
19namespace internal {
20
21#ifndef V8_INTERPRETED_REGEXP
22/*
23 * This assembler uses the following register assignment convention
24 * - r4 : Temporarily stores the index of capture start after a matching pass
25 *        for a global regexp.
26 * - r5 : Pointer to current code object (Code*) including heap object tag.
27 * - r6 : Current position in input, as negative offset from end of string.
28 *        Please notice that this is the byte offset, not the character offset!
29 * - r7 : Currently loaded character. Must be loaded using
30 *        LoadCurrentCharacter before using any of the dispatch methods.
31 * - r8 : Points to tip of backtrack stack
32 * - r9 : Unused, might be used by C code and expected unchanged.
33 * - r10 : End of input (points to byte after last character in input).
34 * - r11 : Frame pointer. Used to access arguments, local variables and
35 *         RegExp registers.
36 * - r12 : IP register, used by assembler. Very volatile.
37 * - r13/sp : Points to tip of C stack.
38 *
39 * The remaining registers are free for computations.
40 * Each call to a public method should retain this convention.
41 *
42 * The stack will have the following structure:
43 *  - fp[56]  Isolate* isolate   (address of the current isolate)
44 *  - fp[52]  direct_call        (if 1, direct call from JavaScript code,
45 *                                if 0, call through the runtime system).
46 *  - fp[48]  stack_area_base    (high end of the memory area to use as
47 *                                backtracking stack).
48 *  - fp[44]  capture array size (may fit multiple sets of matches)
49 *  - fp[40]  int* capture_array (int[num_saved_registers_], for output).
50 *  - fp[36]  secondary link/return address used by native call.
51 *  --- sp when called ---
52 *  - fp[32]  return address     (lr).
53 *  - fp[28]  old frame pointer  (r11).
54 *  - fp[0..24]  backup of registers r4..r10.
55 *  --- frame pointer ----
56 *  - fp[-4]  end of input       (address of end of string).
57 *  - fp[-8]  start of input     (address of first character in string).
58 *  - fp[-12] start index        (character index of start).
59 *  - fp[-16] void* input_string (location of a handle containing the string).
60 *  - fp[-20] success counter    (only for global regexps to count matches).
61 *  - fp[-24] Offset of location before start of input (effectively character
62 *            position -1). Used to initialize capture registers to a
63 *            non-position.
64 *  - fp[-28] At start (if 1, we are starting at the start of the
65 *    string, otherwise 0)
66 *  - fp[-32] register 0         (Only positions must be stored in the first
67 *  -         register 1          num_saved_registers_ registers)
68 *  -         ...
69 *  -         register num_registers-1
70 *  --- sp ---
71 *
72 * The first num_saved_registers_ registers are initialized to point to
73 * "character -1" in the string (i.e., char_size() bytes before the first
74 * character of the string). The remaining registers start out as garbage.
75 *
76 * The data up to the return address must be placed there by the calling
77 * code and the remaining arguments are passed in registers, e.g. by calling the
78 * code entry as cast to a function with the signature:
79 * int (*match)(String* input_string,
80 *              int start_index,
81 *              Address start,
82 *              Address end,
83 *              Address secondary_return_address,  // Only used by native call.
84 *              int* capture_output_array,
85 *              byte* stack_area_base,
86 *              bool direct_call = false)
87 * The call is performed by NativeRegExpMacroAssembler::Execute()
88 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
89 * in arm/simulator-arm.h.
90 * When calling as a non-direct call (i.e., from C++ code), the return address
91 * area is overwritten with the LR register by the RegExp code. When doing a
92 * direct call from generated code, the return address is placed there by
93 * the calling code, as in a normal exit frame.
94 */
95
96#define __ ACCESS_MASM(masm_)
97
98RegExpMacroAssemblerARM::RegExpMacroAssemblerARM(
99    Mode mode,
100    int registers_to_save,
101    Zone* zone)
102    : NativeRegExpMacroAssembler(zone),
103      masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
104      mode_(mode),
105      num_registers_(registers_to_save),
106      num_saved_registers_(registers_to_save),
107      entry_label_(),
108      start_label_(),
109      success_label_(),
110      backtrack_label_(),
111      exit_label_() {
112  ASSERT_EQ(0, registers_to_save % 2);
113  __ jmp(&entry_label_);   // We'll write the entry code later.
114  __ bind(&start_label_);  // And then continue from here.
115}
116
117
118RegExpMacroAssemblerARM::~RegExpMacroAssemblerARM() {
119  delete masm_;
120  // Unuse labels in case we throw away the assembler without calling GetCode.
121  entry_label_.Unuse();
122  start_label_.Unuse();
123  success_label_.Unuse();
124  backtrack_label_.Unuse();
125  exit_label_.Unuse();
126  check_preempt_label_.Unuse();
127  stack_overflow_label_.Unuse();
128}
129
130
131int RegExpMacroAssemblerARM::stack_limit_slack()  {
132  return RegExpStack::kStackLimitSlack;
133}
134
135
136void RegExpMacroAssemblerARM::AdvanceCurrentPosition(int by) {
137  if (by != 0) {
138    __ add(current_input_offset(),
139           current_input_offset(), Operand(by * char_size()));
140  }
141}
142
143
144void RegExpMacroAssemblerARM::AdvanceRegister(int reg, int by) {
145  ASSERT(reg >= 0);
146  ASSERT(reg < num_registers_);
147  if (by != 0) {
148    __ ldr(r0, register_location(reg));
149    __ add(r0, r0, Operand(by));
150    __ str(r0, register_location(reg));
151  }
152}
153
154
155void RegExpMacroAssemblerARM::Backtrack() {
156  CheckPreemption();
157  // Pop Code* offset from backtrack stack, add Code* and jump to location.
158  Pop(r0);
159  __ add(pc, r0, Operand(code_pointer()));
160}
161
162
163void RegExpMacroAssemblerARM::Bind(Label* label) {
164  __ bind(label);
165}
166
167
168void RegExpMacroAssemblerARM::CheckCharacter(uint32_t c, Label* on_equal) {
169  __ cmp(current_character(), Operand(c));
170  BranchOrBacktrack(eq, on_equal);
171}
172
173
174void RegExpMacroAssemblerARM::CheckCharacterGT(uc16 limit, Label* on_greater) {
175  __ cmp(current_character(), Operand(limit));
176  BranchOrBacktrack(gt, on_greater);
177}
178
179
180void RegExpMacroAssemblerARM::CheckAtStart(Label* on_at_start) {
181  Label not_at_start;
182  // Did we start the match at the start of the string at all?
183  __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
184  __ cmp(r0, Operand::Zero());
185  BranchOrBacktrack(ne, &not_at_start);
186
187  // If we did, are we still at the start of the input?
188  __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
189  __ add(r0, end_of_input_address(), Operand(current_input_offset()));
190  __ cmp(r0, r1);
191  BranchOrBacktrack(eq, on_at_start);
192  __ bind(&not_at_start);
193}
194
195
196void RegExpMacroAssemblerARM::CheckNotAtStart(Label* on_not_at_start) {
197  // Did we start the match at the start of the string at all?
198  __ ldr(r0, MemOperand(frame_pointer(), kStartIndex));
199  __ cmp(r0, Operand::Zero());
200  BranchOrBacktrack(ne, on_not_at_start);
201  // If we did, are we still at the start of the input?
202  __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
203  __ add(r0, end_of_input_address(), Operand(current_input_offset()));
204  __ cmp(r0, r1);
205  BranchOrBacktrack(ne, on_not_at_start);
206}
207
208
209void RegExpMacroAssemblerARM::CheckCharacterLT(uc16 limit, Label* on_less) {
210  __ cmp(current_character(), Operand(limit));
211  BranchOrBacktrack(lt, on_less);
212}
213
214
215void RegExpMacroAssemblerARM::CheckGreedyLoop(Label* on_equal) {
216  __ ldr(r0, MemOperand(backtrack_stackpointer(), 0));
217  __ cmp(current_input_offset(), r0);
218  __ add(backtrack_stackpointer(),
219         backtrack_stackpointer(), Operand(kPointerSize), LeaveCC, eq);
220  BranchOrBacktrack(eq, on_equal);
221}
222
223
224void RegExpMacroAssemblerARM::CheckNotBackReferenceIgnoreCase(
225    int start_reg,
226    Label* on_no_match) {
227  Label fallthrough;
228  __ ldr(r0, register_location(start_reg));  // Index of start of capture
229  __ ldr(r1, register_location(start_reg + 1));  // Index of end of capture
230  __ sub(r1, r1, r0, SetCC);  // Length of capture.
231
232  // If length is zero, either the capture is empty or it is not participating.
233  // In either case succeed immediately.
234  __ b(eq, &fallthrough);
235
236  // Check that there are enough characters left in the input.
237  __ cmn(r1, Operand(current_input_offset()));
238  BranchOrBacktrack(gt, on_no_match);
239
240  if (mode_ == ASCII) {
241    Label success;
242    Label fail;
243    Label loop_check;
244
245    // r0 - offset of start of capture
246    // r1 - length of capture
247    __ add(r0, r0, Operand(end_of_input_address()));
248    __ add(r2, end_of_input_address(), Operand(current_input_offset()));
249    __ add(r1, r0, Operand(r1));
250
251    // r0 - Address of start of capture.
252    // r1 - Address of end of capture
253    // r2 - Address of current input position.
254
255    Label loop;
256    __ bind(&loop);
257    __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
258    __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
259    __ cmp(r4, r3);
260    __ b(eq, &loop_check);
261
262    // Mismatch, try case-insensitive match (converting letters to lower-case).
263    __ orr(r3, r3, Operand(0x20));  // Convert capture character to lower-case.
264    __ orr(r4, r4, Operand(0x20));  // Also convert input character.
265    __ cmp(r4, r3);
266    __ b(ne, &fail);
267    __ sub(r3, r3, Operand('a'));
268    __ cmp(r3, Operand('z' - 'a'));  // Is r3 a lowercase letter?
269    __ b(ls, &loop_check);  // In range 'a'-'z'.
270    // Latin-1: Check for values in range [224,254] but not 247.
271    __ sub(r3, r3, Operand(224 - 'a'));
272    __ cmp(r3, Operand(254 - 224));
273    __ b(hi, &fail);  // Weren't Latin-1 letters.
274    __ cmp(r3, Operand(247 - 224));  // Check for 247.
275    __ b(eq, &fail);
276
277    __ bind(&loop_check);
278    __ cmp(r0, r1);
279    __ b(lt, &loop);
280    __ jmp(&success);
281
282    __ bind(&fail);
283    BranchOrBacktrack(al, on_no_match);
284
285    __ bind(&success);
286    // Compute new value of character position after the matched part.
287    __ sub(current_input_offset(), r2, end_of_input_address());
288  } else {
289    ASSERT(mode_ == UC16);
290    int argument_count = 4;
291    __ PrepareCallCFunction(argument_count, r2);
292
293    // r0 - offset of start of capture
294    // r1 - length of capture
295
296    // Put arguments into arguments registers.
297    // Parameters are
298    //   r0: Address byte_offset1 - Address captured substring's start.
299    //   r1: Address byte_offset2 - Address of current character position.
300    //   r2: size_t byte_length - length of capture in bytes(!)
301    //   r3: Isolate* isolate
302
303    // Address of start of capture.
304    __ add(r0, r0, Operand(end_of_input_address()));
305    // Length of capture.
306    __ mov(r2, Operand(r1));
307    // Save length in callee-save register for use on return.
308    __ mov(r4, Operand(r1));
309    // Address of current input position.
310    __ add(r1, current_input_offset(), Operand(end_of_input_address()));
311    // Isolate.
312    __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
313
314    {
315      AllowExternalCallThatCantCauseGC scope(masm_);
316      ExternalReference function =
317          ExternalReference::re_case_insensitive_compare_uc16(isolate());
318      __ CallCFunction(function, argument_count);
319    }
320
321    // Check if function returned non-zero for success or zero for failure.
322    __ cmp(r0, Operand::Zero());
323    BranchOrBacktrack(eq, on_no_match);
324    // On success, increment position by length of capture.
325    __ add(current_input_offset(), current_input_offset(), Operand(r4));
326  }
327
328  __ bind(&fallthrough);
329}
330
331
332void RegExpMacroAssemblerARM::CheckNotBackReference(
333    int start_reg,
334    Label* on_no_match) {
335  Label fallthrough;
336  Label success;
337
338  // Find length of back-referenced capture.
339  __ ldr(r0, register_location(start_reg));
340  __ ldr(r1, register_location(start_reg + 1));
341  __ sub(r1, r1, r0, SetCC);  // Length to check.
342  // Succeed on empty capture (including no capture).
343  __ b(eq, &fallthrough);
344
345  // Check that there are enough characters left in the input.
346  __ cmn(r1, Operand(current_input_offset()));
347  BranchOrBacktrack(gt, on_no_match);
348
349  // Compute pointers to match string and capture string
350  __ add(r0, r0, Operand(end_of_input_address()));
351  __ add(r2, end_of_input_address(), Operand(current_input_offset()));
352  __ add(r1, r1, Operand(r0));
353
354  Label loop;
355  __ bind(&loop);
356  if (mode_ == ASCII) {
357    __ ldrb(r3, MemOperand(r0, char_size(), PostIndex));
358    __ ldrb(r4, MemOperand(r2, char_size(), PostIndex));
359  } else {
360    ASSERT(mode_ == UC16);
361    __ ldrh(r3, MemOperand(r0, char_size(), PostIndex));
362    __ ldrh(r4, MemOperand(r2, char_size(), PostIndex));
363  }
364  __ cmp(r3, r4);
365  BranchOrBacktrack(ne, on_no_match);
366  __ cmp(r0, r1);
367  __ b(lt, &loop);
368
369  // Move current character position to position after match.
370  __ sub(current_input_offset(), r2, end_of_input_address());
371  __ bind(&fallthrough);
372}
373
374
375void RegExpMacroAssemblerARM::CheckNotCharacter(unsigned c,
376                                                Label* on_not_equal) {
377  __ cmp(current_character(), Operand(c));
378  BranchOrBacktrack(ne, on_not_equal);
379}
380
381
382void RegExpMacroAssemblerARM::CheckCharacterAfterAnd(uint32_t c,
383                                                     uint32_t mask,
384                                                     Label* on_equal) {
385  if (c == 0) {
386    __ tst(current_character(), Operand(mask));
387  } else {
388    __ and_(r0, current_character(), Operand(mask));
389    __ cmp(r0, Operand(c));
390  }
391  BranchOrBacktrack(eq, on_equal);
392}
393
394
395void RegExpMacroAssemblerARM::CheckNotCharacterAfterAnd(unsigned c,
396                                                        unsigned mask,
397                                                        Label* on_not_equal) {
398  if (c == 0) {
399    __ tst(current_character(), Operand(mask));
400  } else {
401    __ and_(r0, current_character(), Operand(mask));
402    __ cmp(r0, Operand(c));
403  }
404  BranchOrBacktrack(ne, on_not_equal);
405}
406
407
408void RegExpMacroAssemblerARM::CheckNotCharacterAfterMinusAnd(
409    uc16 c,
410    uc16 minus,
411    uc16 mask,
412    Label* on_not_equal) {
413  ASSERT(minus < String::kMaxUtf16CodeUnit);
414  __ sub(r0, current_character(), Operand(minus));
415  __ and_(r0, r0, Operand(mask));
416  __ cmp(r0, Operand(c));
417  BranchOrBacktrack(ne, on_not_equal);
418}
419
420
421void RegExpMacroAssemblerARM::CheckCharacterInRange(
422    uc16 from,
423    uc16 to,
424    Label* on_in_range) {
425  __ sub(r0, current_character(), Operand(from));
426  __ cmp(r0, Operand(to - from));
427  BranchOrBacktrack(ls, on_in_range);  // Unsigned lower-or-same condition.
428}
429
430
431void RegExpMacroAssemblerARM::CheckCharacterNotInRange(
432    uc16 from,
433    uc16 to,
434    Label* on_not_in_range) {
435  __ sub(r0, current_character(), Operand(from));
436  __ cmp(r0, Operand(to - from));
437  BranchOrBacktrack(hi, on_not_in_range);  // Unsigned higher condition.
438}
439
440
441void RegExpMacroAssemblerARM::CheckBitInTable(
442    Handle<ByteArray> table,
443    Label* on_bit_set) {
444  __ mov(r0, Operand(table));
445  if (mode_ != ASCII || kTableMask != String::kMaxOneByteCharCode) {
446    __ and_(r1, current_character(), Operand(kTableSize - 1));
447    __ add(r1, r1, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
448  } else {
449    __ add(r1,
450           current_character(),
451           Operand(ByteArray::kHeaderSize - kHeapObjectTag));
452  }
453  __ ldrb(r0, MemOperand(r0, r1));
454  __ cmp(r0, Operand::Zero());
455  BranchOrBacktrack(ne, on_bit_set);
456}
457
458
459bool RegExpMacroAssemblerARM::CheckSpecialCharacterClass(uc16 type,
460                                                         Label* on_no_match) {
461  // Range checks (c in min..max) are generally implemented by an unsigned
462  // (c - min) <= (max - min) check
463  switch (type) {
464  case 's':
465    // Match space-characters
466    if (mode_ == ASCII) {
467      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
468      Label success;
469      __ cmp(current_character(), Operand(' '));
470      __ b(eq, &success);
471      // Check range 0x09..0x0d
472      __ sub(r0, current_character(), Operand('\t'));
473      __ cmp(r0, Operand('\r' - '\t'));
474      __ b(ls, &success);
475      // \u00a0 (NBSP).
476      __ cmp(r0, Operand(0x00a0 - '\t'));
477      BranchOrBacktrack(ne, on_no_match);
478      __ bind(&success);
479      return true;
480    }
481    return false;
482  case 'S':
483    // The emitted code for generic character classes is good enough.
484    return false;
485  case 'd':
486    // Match ASCII digits ('0'..'9')
487    __ sub(r0, current_character(), Operand('0'));
488    __ cmp(r0, Operand('9' - '0'));
489    BranchOrBacktrack(hi, on_no_match);
490    return true;
491  case 'D':
492    // Match non ASCII-digits
493    __ sub(r0, current_character(), Operand('0'));
494    __ cmp(r0, Operand('9' - '0'));
495    BranchOrBacktrack(ls, on_no_match);
496    return true;
497  case '.': {
498    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
499    __ eor(r0, current_character(), Operand(0x01));
500    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
501    __ sub(r0, r0, Operand(0x0b));
502    __ cmp(r0, Operand(0x0c - 0x0b));
503    BranchOrBacktrack(ls, on_no_match);
504    if (mode_ == UC16) {
505      // Compare original value to 0x2028 and 0x2029, using the already
506      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
507      // 0x201d (0x2028 - 0x0b) or 0x201e.
508      __ sub(r0, r0, Operand(0x2028 - 0x0b));
509      __ cmp(r0, Operand(1));
510      BranchOrBacktrack(ls, on_no_match);
511    }
512    return true;
513  }
514  case 'n': {
515    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
516    __ eor(r0, current_character(), Operand(0x01));
517    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
518    __ sub(r0, r0, Operand(0x0b));
519    __ cmp(r0, Operand(0x0c - 0x0b));
520    if (mode_ == ASCII) {
521      BranchOrBacktrack(hi, on_no_match);
522    } else {
523      Label done;
524      __ b(ls, &done);
525      // Compare original value to 0x2028 and 0x2029, using the already
526      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
527      // 0x201d (0x2028 - 0x0b) or 0x201e.
528      __ sub(r0, r0, Operand(0x2028 - 0x0b));
529      __ cmp(r0, Operand(1));
530      BranchOrBacktrack(hi, on_no_match);
531      __ bind(&done);
532    }
533    return true;
534  }
535  case 'w': {
536    if (mode_ != ASCII) {
537      // Table is 128 entries, so all ASCII characters can be tested.
538      __ cmp(current_character(), Operand('z'));
539      BranchOrBacktrack(hi, on_no_match);
540    }
541    ExternalReference map = ExternalReference::re_word_character_map();
542    __ mov(r0, Operand(map));
543    __ ldrb(r0, MemOperand(r0, current_character()));
544    __ cmp(r0, Operand::Zero());
545    BranchOrBacktrack(eq, on_no_match);
546    return true;
547  }
548  case 'W': {
549    Label done;
550    if (mode_ != ASCII) {
551      // Table is 128 entries, so all ASCII characters can be tested.
552      __ cmp(current_character(), Operand('z'));
553      __ b(hi, &done);
554    }
555    ExternalReference map = ExternalReference::re_word_character_map();
556    __ mov(r0, Operand(map));
557    __ ldrb(r0, MemOperand(r0, current_character()));
558    __ cmp(r0, Operand::Zero());
559    BranchOrBacktrack(ne, on_no_match);
560    if (mode_ != ASCII) {
561      __ bind(&done);
562    }
563    return true;
564  }
565  case '*':
566    // Match any character.
567    return true;
568  // No custom implementation (yet): s(UC16), S(UC16).
569  default:
570    return false;
571  }
572}
573
574
575void RegExpMacroAssemblerARM::Fail() {
576  __ mov(r0, Operand(FAILURE));
577  __ jmp(&exit_label_);
578}
579
580
581Handle<HeapObject> RegExpMacroAssemblerARM::GetCode(Handle<String> source) {
582  Label return_r0;
583  // Finalize code - write the entry point code now we know how many
584  // registers we need.
585
586  // Entry code:
587  __ bind(&entry_label_);
588
589  // Tell the system that we have a stack frame.  Because the type is MANUAL, no
590  // is generated.
591  FrameScope scope(masm_, StackFrame::MANUAL);
592
593  // Actually emit code to start a new stack frame.
594  // Push arguments
595  // Save callee-save registers.
596  // Start new stack frame.
597  // Store link register in existing stack-cell.
598  // Order here should correspond to order of offset constants in header file.
599  RegList registers_to_retain = r4.bit() | r5.bit() | r6.bit() |
600      r7.bit() | r8.bit() | r9.bit() | r10.bit() | fp.bit();
601  RegList argument_registers = r0.bit() | r1.bit() | r2.bit() | r3.bit();
602  __ stm(db_w, sp, argument_registers | registers_to_retain | lr.bit());
603  // Set frame pointer in space for it if this is not a direct call
604  // from generated code.
605  __ add(frame_pointer(), sp, Operand(4 * kPointerSize));
606  __ mov(r0, Operand::Zero());
607  __ push(r0);  // Make room for success counter and initialize it to 0.
608  __ push(r0);  // Make room for "position - 1" constant (value is irrelevant).
609  // Check if we have space on the stack for registers.
610  Label stack_limit_hit;
611  Label stack_ok;
612
613  ExternalReference stack_limit =
614      ExternalReference::address_of_stack_limit(isolate());
615  __ mov(r0, Operand(stack_limit));
616  __ ldr(r0, MemOperand(r0));
617  __ sub(r0, sp, r0, SetCC);
618  // Handle it if the stack pointer is already below the stack limit.
619  __ b(ls, &stack_limit_hit);
620  // Check if there is room for the variable number of registers above
621  // the stack limit.
622  __ cmp(r0, Operand(num_registers_ * kPointerSize));
623  __ b(hs, &stack_ok);
624  // Exit with OutOfMemory exception. There is not enough space on the stack
625  // for our working registers.
626  __ mov(r0, Operand(EXCEPTION));
627  __ jmp(&return_r0);
628
629  __ bind(&stack_limit_hit);
630  CallCheckStackGuardState(r0);
631  __ cmp(r0, Operand::Zero());
632  // If returned value is non-zero, we exit with the returned value as result.
633  __ b(ne, &return_r0);
634
635  __ bind(&stack_ok);
636
637  // Allocate space on stack for registers.
638  __ sub(sp, sp, Operand(num_registers_ * kPointerSize));
639  // Load string end.
640  __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
641  // Load input start.
642  __ ldr(r0, MemOperand(frame_pointer(), kInputStart));
643  // Find negative length (offset of start relative to end).
644  __ sub(current_input_offset(), r0, end_of_input_address());
645  // Set r0 to address of char before start of the input string
646  // (effectively string position -1).
647  __ ldr(r1, MemOperand(frame_pointer(), kStartIndex));
648  __ sub(r0, current_input_offset(), Operand(char_size()));
649  __ sub(r0, r0, Operand(r1, LSL, (mode_ == UC16) ? 1 : 0));
650  // Store this value in a local variable, for use when clearing
651  // position registers.
652  __ str(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
653
654  // Initialize code pointer register
655  __ mov(code_pointer(), Operand(masm_->CodeObject()));
656
657  Label load_char_start_regexp, start_regexp;
658  // Load newline if index is at start, previous character otherwise.
659  __ cmp(r1, Operand::Zero());
660  __ b(ne, &load_char_start_regexp);
661  __ mov(current_character(), Operand('\n'), LeaveCC, eq);
662  __ jmp(&start_regexp);
663
664  // Global regexp restarts matching here.
665  __ bind(&load_char_start_regexp);
666  // Load previous char as initial value of current character register.
667  LoadCurrentCharacterUnchecked(-1, 1);
668  __ bind(&start_regexp);
669
670  // Initialize on-stack registers.
671  if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
672    // Fill saved registers with initial value = start offset - 1
673    if (num_saved_registers_ > 8) {
674      // Address of register 0.
675      __ add(r1, frame_pointer(), Operand(kRegisterZero));
676      __ mov(r2, Operand(num_saved_registers_));
677      Label init_loop;
678      __ bind(&init_loop);
679      __ str(r0, MemOperand(r1, kPointerSize, NegPostIndex));
680      __ sub(r2, r2, Operand(1), SetCC);
681      __ b(ne, &init_loop);
682    } else {
683      for (int i = 0; i < num_saved_registers_; i++) {
684        __ str(r0, register_location(i));
685      }
686    }
687  }
688
689  // Initialize backtrack stack pointer.
690  __ ldr(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
691
692  __ jmp(&start_label_);
693
694  // Exit code:
695  if (success_label_.is_linked()) {
696    // Save captures when successful.
697    __ bind(&success_label_);
698    if (num_saved_registers_ > 0) {
699      // copy captures to output
700      __ ldr(r1, MemOperand(frame_pointer(), kInputStart));
701      __ ldr(r0, MemOperand(frame_pointer(), kRegisterOutput));
702      __ ldr(r2, MemOperand(frame_pointer(), kStartIndex));
703      __ sub(r1, end_of_input_address(), r1);
704      // r1 is length of input in bytes.
705      if (mode_ == UC16) {
706        __ mov(r1, Operand(r1, LSR, 1));
707      }
708      // r1 is length of input in characters.
709      __ add(r1, r1, Operand(r2));
710      // r1 is length of string in characters.
711
712      ASSERT_EQ(0, num_saved_registers_ % 2);
713      // Always an even number of capture registers. This allows us to
714      // unroll the loop once to add an operation between a load of a register
715      // and the following use of that register.
716      for (int i = 0; i < num_saved_registers_; i += 2) {
717        __ ldr(r2, register_location(i));
718        __ ldr(r3, register_location(i + 1));
719        if (i == 0 && global_with_zero_length_check()) {
720          // Keep capture start in r4 for the zero-length check later.
721          __ mov(r4, r2);
722        }
723        if (mode_ == UC16) {
724          __ add(r2, r1, Operand(r2, ASR, 1));
725          __ add(r3, r1, Operand(r3, ASR, 1));
726        } else {
727          __ add(r2, r1, Operand(r2));
728          __ add(r3, r1, Operand(r3));
729        }
730        __ str(r2, MemOperand(r0, kPointerSize, PostIndex));
731        __ str(r3, MemOperand(r0, kPointerSize, PostIndex));
732      }
733    }
734
735    if (global()) {
736      // Restart matching if the regular expression is flagged as global.
737      __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
738      __ ldr(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
739      __ ldr(r2, MemOperand(frame_pointer(), kRegisterOutput));
740      // Increment success counter.
741      __ add(r0, r0, Operand(1));
742      __ str(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
743      // Capture results have been stored, so the number of remaining global
744      // output registers is reduced by the number of stored captures.
745      __ sub(r1, r1, Operand(num_saved_registers_));
746      // Check whether we have enough room for another set of capture results.
747      __ cmp(r1, Operand(num_saved_registers_));
748      __ b(lt, &return_r0);
749
750      __ str(r1, MemOperand(frame_pointer(), kNumOutputRegisters));
751      // Advance the location for output.
752      __ add(r2, r2, Operand(num_saved_registers_ * kPointerSize));
753      __ str(r2, MemOperand(frame_pointer(), kRegisterOutput));
754
755      // Prepare r0 to initialize registers with its value in the next run.
756      __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
757
758      if (global_with_zero_length_check()) {
759        // Special case for zero-length matches.
760        // r4: capture start index
761        __ cmp(current_input_offset(), r4);
762        // Not a zero-length match, restart.
763        __ b(ne, &load_char_start_regexp);
764        // Offset from the end is zero if we already reached the end.
765        __ cmp(current_input_offset(), Operand::Zero());
766        __ b(eq, &exit_label_);
767        // Advance current position after a zero-length match.
768        __ add(current_input_offset(),
769               current_input_offset(),
770               Operand((mode_ == UC16) ? 2 : 1));
771      }
772
773      __ b(&load_char_start_regexp);
774    } else {
775      __ mov(r0, Operand(SUCCESS));
776    }
777  }
778
779  // Exit and return r0
780  __ bind(&exit_label_);
781  if (global()) {
782    __ ldr(r0, MemOperand(frame_pointer(), kSuccessfulCaptures));
783  }
784
785  __ bind(&return_r0);
786  // Skip sp past regexp registers and local variables..
787  __ mov(sp, frame_pointer());
788  // Restore registers r4..r11 and return (restoring lr to pc).
789  __ ldm(ia_w, sp, registers_to_retain | pc.bit());
790
791  // Backtrack code (branch target for conditional backtracks).
792  if (backtrack_label_.is_linked()) {
793    __ bind(&backtrack_label_);
794    Backtrack();
795  }
796
797  Label exit_with_exception;
798
799  // Preempt-code
800  if (check_preempt_label_.is_linked()) {
801    SafeCallTarget(&check_preempt_label_);
802
803    CallCheckStackGuardState(r0);
804    __ cmp(r0, Operand::Zero());
805    // If returning non-zero, we should end execution with the given
806    // result as return value.
807    __ b(ne, &return_r0);
808
809    // String might have moved: Reload end of string from frame.
810    __ ldr(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
811    SafeReturn();
812  }
813
814  // Backtrack stack overflow code.
815  if (stack_overflow_label_.is_linked()) {
816    SafeCallTarget(&stack_overflow_label_);
817    // Reached if the backtrack-stack limit has been hit.
818    Label grow_failed;
819
820    // Call GrowStack(backtrack_stackpointer(), &stack_base)
821    static const int num_arguments = 3;
822    __ PrepareCallCFunction(num_arguments, r0);
823    __ mov(r0, backtrack_stackpointer());
824    __ add(r1, frame_pointer(), Operand(kStackHighEnd));
825    __ mov(r2, Operand(ExternalReference::isolate_address(isolate())));
826    ExternalReference grow_stack =
827        ExternalReference::re_grow_stack(isolate());
828    __ CallCFunction(grow_stack, num_arguments);
829    // If return NULL, we have failed to grow the stack, and
830    // must exit with a stack-overflow exception.
831    __ cmp(r0, Operand::Zero());
832    __ b(eq, &exit_with_exception);
833    // Otherwise use return value as new stack pointer.
834    __ mov(backtrack_stackpointer(), r0);
835    // Restore saved registers and continue.
836    SafeReturn();
837  }
838
839  if (exit_with_exception.is_linked()) {
840    // If any of the code above needed to exit with an exception.
841    __ bind(&exit_with_exception);
842    // Exit with Result EXCEPTION(-1) to signal thrown exception.
843    __ mov(r0, Operand(EXCEPTION));
844    __ jmp(&return_r0);
845  }
846
847  CodeDesc code_desc;
848  masm_->GetCode(&code_desc);
849  Handle<Code> code = isolate()->factory()->NewCode(
850      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
851  PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
852  return Handle<HeapObject>::cast(code);
853}
854
855
856void RegExpMacroAssemblerARM::GoTo(Label* to) {
857  BranchOrBacktrack(al, to);
858}
859
860
861void RegExpMacroAssemblerARM::IfRegisterGE(int reg,
862                                           int comparand,
863                                           Label* if_ge) {
864  __ ldr(r0, register_location(reg));
865  __ cmp(r0, Operand(comparand));
866  BranchOrBacktrack(ge, if_ge);
867}
868
869
870void RegExpMacroAssemblerARM::IfRegisterLT(int reg,
871                                           int comparand,
872                                           Label* if_lt) {
873  __ ldr(r0, register_location(reg));
874  __ cmp(r0, Operand(comparand));
875  BranchOrBacktrack(lt, if_lt);
876}
877
878
879void RegExpMacroAssemblerARM::IfRegisterEqPos(int reg,
880                                              Label* if_eq) {
881  __ ldr(r0, register_location(reg));
882  __ cmp(r0, Operand(current_input_offset()));
883  BranchOrBacktrack(eq, if_eq);
884}
885
886
887RegExpMacroAssembler::IrregexpImplementation
888    RegExpMacroAssemblerARM::Implementation() {
889  return kARMImplementation;
890}
891
892
893void RegExpMacroAssemblerARM::LoadCurrentCharacter(int cp_offset,
894                                                   Label* on_end_of_input,
895                                                   bool check_bounds,
896                                                   int characters) {
897  ASSERT(cp_offset >= -1);      // ^ and \b can look behind one character.
898  ASSERT(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
899  if (check_bounds) {
900    CheckPosition(cp_offset + characters - 1, on_end_of_input);
901  }
902  LoadCurrentCharacterUnchecked(cp_offset, characters);
903}
904
905
906void RegExpMacroAssemblerARM::PopCurrentPosition() {
907  Pop(current_input_offset());
908}
909
910
911void RegExpMacroAssemblerARM::PopRegister(int register_index) {
912  Pop(r0);
913  __ str(r0, register_location(register_index));
914}
915
916
917void RegExpMacroAssemblerARM::PushBacktrack(Label* label) {
918  __ mov_label_offset(r0, label);
919  Push(r0);
920  CheckStackLimit();
921}
922
923
924void RegExpMacroAssemblerARM::PushCurrentPosition() {
925  Push(current_input_offset());
926}
927
928
929void RegExpMacroAssemblerARM::PushRegister(int register_index,
930                                           StackCheckFlag check_stack_limit) {
931  __ ldr(r0, register_location(register_index));
932  Push(r0);
933  if (check_stack_limit) CheckStackLimit();
934}
935
936
937void RegExpMacroAssemblerARM::ReadCurrentPositionFromRegister(int reg) {
938  __ ldr(current_input_offset(), register_location(reg));
939}
940
941
942void RegExpMacroAssemblerARM::ReadStackPointerFromRegister(int reg) {
943  __ ldr(backtrack_stackpointer(), register_location(reg));
944  __ ldr(r0, MemOperand(frame_pointer(), kStackHighEnd));
945  __ add(backtrack_stackpointer(), backtrack_stackpointer(), Operand(r0));
946}
947
948
949void RegExpMacroAssemblerARM::SetCurrentPositionFromEnd(int by) {
950  Label after_position;
951  __ cmp(current_input_offset(), Operand(-by * char_size()));
952  __ b(ge, &after_position);
953  __ mov(current_input_offset(), Operand(-by * char_size()));
954  // On RegExp code entry (where this operation is used), the character before
955  // the current position is expected to be already loaded.
956  // We have advanced the position, so it's safe to read backwards.
957  LoadCurrentCharacterUnchecked(-1, 1);
958  __ bind(&after_position);
959}
960
961
962void RegExpMacroAssemblerARM::SetRegister(int register_index, int to) {
963  ASSERT(register_index >= num_saved_registers_);  // Reserved for positions!
964  __ mov(r0, Operand(to));
965  __ str(r0, register_location(register_index));
966}
967
968
969bool RegExpMacroAssemblerARM::Succeed() {
970  __ jmp(&success_label_);
971  return global();
972}
973
974
975void RegExpMacroAssemblerARM::WriteCurrentPositionToRegister(int reg,
976                                                             int cp_offset) {
977  if (cp_offset == 0) {
978    __ str(current_input_offset(), register_location(reg));
979  } else {
980    __ add(r0, current_input_offset(), Operand(cp_offset * char_size()));
981    __ str(r0, register_location(reg));
982  }
983}
984
985
986void RegExpMacroAssemblerARM::ClearRegisters(int reg_from, int reg_to) {
987  ASSERT(reg_from <= reg_to);
988  __ ldr(r0, MemOperand(frame_pointer(), kInputStartMinusOne));
989  for (int reg = reg_from; reg <= reg_to; reg++) {
990    __ str(r0, register_location(reg));
991  }
992}
993
994
995void RegExpMacroAssemblerARM::WriteStackPointerToRegister(int reg) {
996  __ ldr(r1, MemOperand(frame_pointer(), kStackHighEnd));
997  __ sub(r0, backtrack_stackpointer(), r1);
998  __ str(r0, register_location(reg));
999}
1000
1001
1002// Private methods:
1003
1004void RegExpMacroAssemblerARM::CallCheckStackGuardState(Register scratch) {
1005  __ PrepareCallCFunction(3, scratch);
1006
1007  // RegExp code frame pointer.
1008  __ mov(r2, frame_pointer());
1009  // Code* of self.
1010  __ mov(r1, Operand(masm_->CodeObject()));
1011
1012  // We need to make room for the return address on the stack.
1013  int stack_alignment = OS::ActivationFrameAlignment();
1014  ASSERT(IsAligned(stack_alignment, kPointerSize));
1015  __ sub(sp, sp, Operand(stack_alignment));
1016
1017  // r0 will point to the return address, placed by DirectCEntry.
1018  __ mov(r0, sp);
1019
1020  ExternalReference stack_guard_check =
1021      ExternalReference::re_check_stack_guard_state(isolate());
1022  __ mov(ip, Operand(stack_guard_check));
1023  DirectCEntryStub stub(isolate());
1024  stub.GenerateCall(masm_, ip);
1025
1026  // Drop the return address from the stack.
1027  __ add(sp, sp, Operand(stack_alignment));
1028
1029  ASSERT(stack_alignment != 0);
1030  __ ldr(sp, MemOperand(sp, 0));
1031
1032  __ mov(code_pointer(), Operand(masm_->CodeObject()));
1033}
1034
1035
1036// Helper function for reading a value out of a stack frame.
1037template <typename T>
1038static T& frame_entry(Address re_frame, int frame_offset) {
1039  return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1040}
1041
1042
1043int RegExpMacroAssemblerARM::CheckStackGuardState(Address* return_address,
1044                                                  Code* re_code,
1045                                                  Address re_frame) {
1046  Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1047  StackLimitCheck check(isolate);
1048  if (check.JsHasOverflowed()) {
1049    isolate->StackOverflow();
1050    return EXCEPTION;
1051  }
1052
1053  // If not real stack overflow the stack guard was used to interrupt
1054  // execution for another purpose.
1055
1056  // If this is a direct call from JavaScript retry the RegExp forcing the call
1057  // through the runtime system. Currently the direct call cannot handle a GC.
1058  if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1059    return RETRY;
1060  }
1061
1062  // Prepare for possible GC.
1063  HandleScope handles(isolate);
1064  Handle<Code> code_handle(re_code);
1065
1066  Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1067
1068  // Current string.
1069  bool is_ascii = subject->IsOneByteRepresentationUnderneath();
1070
1071  ASSERT(re_code->instruction_start() <= *return_address);
1072  ASSERT(*return_address <=
1073      re_code->instruction_start() + re_code->instruction_size());
1074
1075  Object* result = isolate->stack_guard()->HandleInterrupts();
1076
1077  if (*code_handle != re_code) {  // Return address no longer valid
1078    int delta = code_handle->address() - re_code->address();
1079    // Overwrite the return address on the stack.
1080    *return_address += delta;
1081  }
1082
1083  if (result->IsException()) {
1084    return EXCEPTION;
1085  }
1086
1087  Handle<String> subject_tmp = subject;
1088  int slice_offset = 0;
1089
1090  // Extract the underlying string and the slice offset.
1091  if (StringShape(*subject_tmp).IsCons()) {
1092    subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1093  } else if (StringShape(*subject_tmp).IsSliced()) {
1094    SlicedString* slice = SlicedString::cast(*subject_tmp);
1095    subject_tmp = Handle<String>(slice->parent());
1096    slice_offset = slice->offset();
1097  }
1098
1099  // String might have changed.
1100  if (subject_tmp->IsOneByteRepresentation() != is_ascii) {
1101    // If we changed between an ASCII and an UC16 string, the specialized
1102    // code cannot be used, and we need to restart regexp matching from
1103    // scratch (including, potentially, compiling a new version of the code).
1104    return RETRY;
1105  }
1106
1107  // Otherwise, the content of the string might have moved. It must still
1108  // be a sequential or external string with the same content.
1109  // Update the start and end pointers in the stack frame to the current
1110  // location (whether it has actually moved or not).
1111  ASSERT(StringShape(*subject_tmp).IsSequential() ||
1112      StringShape(*subject_tmp).IsExternal());
1113
1114  // The original start address of the characters to match.
1115  const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1116
1117  // Find the current start address of the same character at the current string
1118  // position.
1119  int start_index = frame_entry<int>(re_frame, kStartIndex);
1120  const byte* new_address = StringCharacterPosition(*subject_tmp,
1121                                                    start_index + slice_offset);
1122
1123  if (start_address != new_address) {
1124    // If there is a difference, update the object pointer and start and end
1125    // addresses in the RegExp stack frame to match the new value.
1126    const byte* end_address = frame_entry<const byte* >(re_frame, kInputEnd);
1127    int byte_length = static_cast<int>(end_address - start_address);
1128    frame_entry<const String*>(re_frame, kInputString) = *subject;
1129    frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1130    frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1131  } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1132    // Subject string might have been a ConsString that underwent
1133    // short-circuiting during GC. That will not change start_address but
1134    // will change pointer inside the subject handle.
1135    frame_entry<const String*>(re_frame, kInputString) = *subject;
1136  }
1137
1138  return 0;
1139}
1140
1141
1142MemOperand RegExpMacroAssemblerARM::register_location(int register_index) {
1143  ASSERT(register_index < (1<<30));
1144  if (num_registers_ <= register_index) {
1145    num_registers_ = register_index + 1;
1146  }
1147  return MemOperand(frame_pointer(),
1148                    kRegisterZero - register_index * kPointerSize);
1149}
1150
1151
1152void RegExpMacroAssemblerARM::CheckPosition(int cp_offset,
1153                                            Label* on_outside_input) {
1154  __ cmp(current_input_offset(), Operand(-cp_offset * char_size()));
1155  BranchOrBacktrack(ge, on_outside_input);
1156}
1157
1158
1159void RegExpMacroAssemblerARM::BranchOrBacktrack(Condition condition,
1160                                                Label* to) {
1161  if (condition == al) {  // Unconditional.
1162    if (to == NULL) {
1163      Backtrack();
1164      return;
1165    }
1166    __ jmp(to);
1167    return;
1168  }
1169  if (to == NULL) {
1170    __ b(condition, &backtrack_label_);
1171    return;
1172  }
1173  __ b(condition, to);
1174}
1175
1176
1177void RegExpMacroAssemblerARM::SafeCall(Label* to, Condition cond) {
1178  __ bl(to, cond);
1179}
1180
1181
1182void RegExpMacroAssemblerARM::SafeReturn() {
1183  __ pop(lr);
1184  __ add(pc, lr, Operand(masm_->CodeObject()));
1185}
1186
1187
1188void RegExpMacroAssemblerARM::SafeCallTarget(Label* name) {
1189  __ bind(name);
1190  __ sub(lr, lr, Operand(masm_->CodeObject()));
1191  __ push(lr);
1192}
1193
1194
1195void RegExpMacroAssemblerARM::Push(Register source) {
1196  ASSERT(!source.is(backtrack_stackpointer()));
1197  __ str(source,
1198         MemOperand(backtrack_stackpointer(), kPointerSize, NegPreIndex));
1199}
1200
1201
1202void RegExpMacroAssemblerARM::Pop(Register target) {
1203  ASSERT(!target.is(backtrack_stackpointer()));
1204  __ ldr(target,
1205         MemOperand(backtrack_stackpointer(), kPointerSize, PostIndex));
1206}
1207
1208
1209void RegExpMacroAssemblerARM::CheckPreemption() {
1210  // Check for preemption.
1211  ExternalReference stack_limit =
1212      ExternalReference::address_of_stack_limit(isolate());
1213  __ mov(r0, Operand(stack_limit));
1214  __ ldr(r0, MemOperand(r0));
1215  __ cmp(sp, r0);
1216  SafeCall(&check_preempt_label_, ls);
1217}
1218
1219
1220void RegExpMacroAssemblerARM::CheckStackLimit() {
1221  ExternalReference stack_limit =
1222      ExternalReference::address_of_regexp_stack_limit(isolate());
1223  __ mov(r0, Operand(stack_limit));
1224  __ ldr(r0, MemOperand(r0));
1225  __ cmp(backtrack_stackpointer(), Operand(r0));
1226  SafeCall(&stack_overflow_label_, ls);
1227}
1228
1229
1230bool RegExpMacroAssemblerARM::CanReadUnaligned() {
1231  return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
1232}
1233
1234
1235void RegExpMacroAssemblerARM::LoadCurrentCharacterUnchecked(int cp_offset,
1236                                                            int characters) {
1237  Register offset = current_input_offset();
1238  if (cp_offset != 0) {
1239    // r4 is not being used to store the capture start index at this point.
1240    __ add(r4, current_input_offset(), Operand(cp_offset * char_size()));
1241    offset = r4;
1242  }
1243  // The ldr, str, ldrh, strh instructions can do unaligned accesses, if the CPU
1244  // and the operating system running on the target allow it.
1245  // If unaligned load/stores are not supported then this function must only
1246  // be used to load a single character at a time.
1247  if (!CanReadUnaligned()) {
1248    ASSERT(characters == 1);
1249  }
1250
1251  if (mode_ == ASCII) {
1252    if (characters == 4) {
1253      __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
1254    } else if (characters == 2) {
1255      __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
1256    } else {
1257      ASSERT(characters == 1);
1258      __ ldrb(current_character(), MemOperand(end_of_input_address(), offset));
1259    }
1260  } else {
1261    ASSERT(mode_ == UC16);
1262    if (characters == 2) {
1263      __ ldr(current_character(), MemOperand(end_of_input_address(), offset));
1264    } else {
1265      ASSERT(characters == 1);
1266      __ ldrh(current_character(), MemOperand(end_of_input_address(), offset));
1267    }
1268  }
1269}
1270
1271
1272#undef __
1273
1274#endif  // V8_INTERPRETED_REGEXP
1275
1276}}  // namespace v8::internal
1277
1278#endif  // V8_TARGET_ARCH_ARM
1279