1// Copyright 2014 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/factory.h"
6
7#include "src/conversions.h"
8#include "src/isolate-inl.h"
9#include "src/macro-assembler.h"
10
11namespace v8 {
12namespace internal {
13
14
15template<typename T>
16Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
17  CALL_HEAP_FUNCTION(
18      isolate(),
19      isolate()->heap()->Allocate(*map, space),
20      T);
21}
22
23
24template<typename T>
25Handle<T> Factory::New(Handle<Map> map,
26                       AllocationSpace space,
27                       Handle<AllocationSite> allocation_site) {
28  CALL_HEAP_FUNCTION(
29      isolate(),
30      isolate()->heap()->Allocate(*map, space, *allocation_site),
31      T);
32}
33
34
35Handle<HeapObject> Factory::NewFillerObject(int size,
36                                            bool double_align,
37                                            AllocationSpace space) {
38  CALL_HEAP_FUNCTION(
39      isolate(),
40      isolate()->heap()->AllocateFillerObject(size, double_align, space),
41      HeapObject);
42}
43
44
45Handle<Box> Factory::NewBox(Handle<Object> value) {
46  Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
47  result->set_value(*value);
48  return result;
49}
50
51
52Handle<Oddball> Factory::NewOddball(Handle<Map> map,
53                                    const char* to_string,
54                                    Handle<Object> to_number,
55                                    byte kind) {
56  Handle<Oddball> oddball = New<Oddball>(map, OLD_POINTER_SPACE);
57  Oddball::Initialize(isolate(), oddball, to_string, to_number, kind);
58  return oddball;
59}
60
61
62Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
63  ASSERT(0 <= size);
64  CALL_HEAP_FUNCTION(
65      isolate(),
66      isolate()->heap()->AllocateFixedArray(size, pretenure),
67      FixedArray);
68}
69
70
71Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
72                                                   PretenureFlag pretenure) {
73  ASSERT(0 <= size);
74  CALL_HEAP_FUNCTION(
75      isolate(),
76      isolate()->heap()->AllocateFixedArrayWithFiller(size,
77                                                      pretenure,
78                                                      *the_hole_value()),
79      FixedArray);
80}
81
82
83Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
84  CALL_HEAP_FUNCTION(
85      isolate(),
86      isolate()->heap()->AllocateUninitializedFixedArray(size),
87      FixedArray);
88}
89
90
91Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
92                                                    PretenureFlag pretenure) {
93  ASSERT(0 <= size);
94  CALL_HEAP_FUNCTION(
95      isolate(),
96      isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
97      FixedArrayBase);
98}
99
100
101Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
102    int size,
103    PretenureFlag pretenure) {
104  ASSERT(0 <= size);
105  Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
106  if (size > 0) {
107    Handle<FixedDoubleArray> double_array =
108        Handle<FixedDoubleArray>::cast(array);
109    for (int i = 0; i < size; ++i) {
110      double_array->set_the_hole(i);
111    }
112  }
113  return array;
114}
115
116
117Handle<ConstantPoolArray> Factory::NewConstantPoolArray(
118    const ConstantPoolArray::NumberOfEntries& small) {
119  ASSERT(small.total_count() > 0);
120  CALL_HEAP_FUNCTION(
121      isolate(),
122      isolate()->heap()->AllocateConstantPoolArray(small),
123      ConstantPoolArray);
124}
125
126
127Handle<ConstantPoolArray> Factory::NewExtendedConstantPoolArray(
128    const ConstantPoolArray::NumberOfEntries& small,
129    const ConstantPoolArray::NumberOfEntries& extended) {
130  ASSERT(small.total_count() > 0);
131  ASSERT(extended.total_count() > 0);
132  CALL_HEAP_FUNCTION(
133      isolate(),
134      isolate()->heap()->AllocateExtendedConstantPoolArray(small, extended),
135      ConstantPoolArray);
136}
137
138
139Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
140  return OrderedHashSet::Allocate(isolate(), 4);
141}
142
143
144Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
145  return OrderedHashMap::Allocate(isolate(), 4);
146}
147
148
149Handle<AccessorPair> Factory::NewAccessorPair() {
150  Handle<AccessorPair> accessors =
151      Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
152  accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
153  accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
154  accessors->set_access_flags(Smi::FromInt(0), SKIP_WRITE_BARRIER);
155  return accessors;
156}
157
158
159Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
160  Handle<TypeFeedbackInfo> info =
161      Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
162  info->initialize_storage();
163  return info;
164}
165
166
167// Internalized strings are created in the old generation (data space).
168Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
169  Utf8StringKey key(string, isolate()->heap()->HashSeed());
170  return InternalizeStringWithKey(&key);
171}
172
173
174// Internalized strings are created in the old generation (data space).
175Handle<String> Factory::InternalizeString(Handle<String> string) {
176  if (string->IsInternalizedString()) return string;
177  return StringTable::LookupString(isolate(), string);
178}
179
180
181Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
182  OneByteStringKey key(string, isolate()->heap()->HashSeed());
183  return InternalizeStringWithKey(&key);
184}
185
186
187Handle<String> Factory::InternalizeOneByteString(
188    Handle<SeqOneByteString> string, int from, int length) {
189  SubStringKey<uint8_t> key(string, from, length);
190  return InternalizeStringWithKey(&key);
191}
192
193
194Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
195  TwoByteStringKey key(string, isolate()->heap()->HashSeed());
196  return InternalizeStringWithKey(&key);
197}
198
199
200template<class StringTableKey>
201Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
202  return StringTable::LookupKey(isolate(), key);
203}
204
205
206template Handle<String> Factory::InternalizeStringWithKey<
207    SubStringKey<uint8_t> > (SubStringKey<uint8_t>* key);
208template Handle<String> Factory::InternalizeStringWithKey<
209    SubStringKey<uint16_t> > (SubStringKey<uint16_t>* key);
210
211
212MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
213                                                  PretenureFlag pretenure) {
214  int length = string.length();
215  if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
216  Handle<SeqOneByteString> result;
217  ASSIGN_RETURN_ON_EXCEPTION(
218      isolate(),
219      result,
220      NewRawOneByteString(string.length(), pretenure),
221      String);
222
223  DisallowHeapAllocation no_gc;
224  // Copy the characters into the new object.
225  CopyChars(SeqOneByteString::cast(*result)->GetChars(),
226            string.start(),
227            length);
228  return result;
229}
230
231MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
232                                               PretenureFlag pretenure) {
233  // Check for ASCII first since this is the common case.
234  const char* start = string.start();
235  int length = string.length();
236  int non_ascii_start = String::NonAsciiStart(start, length);
237  if (non_ascii_start >= length) {
238    // If the string is ASCII, we do not need to convert the characters
239    // since UTF8 is backwards compatible with ASCII.
240    return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
241  }
242
243  // Non-ASCII and we need to decode.
244  Access<UnicodeCache::Utf8Decoder>
245      decoder(isolate()->unicode_cache()->utf8_decoder());
246  decoder->Reset(string.start() + non_ascii_start,
247                 length - non_ascii_start);
248  int utf16_length = decoder->Utf16Length();
249  ASSERT(utf16_length > 0);
250  // Allocate string.
251  Handle<SeqTwoByteString> result;
252  ASSIGN_RETURN_ON_EXCEPTION(
253      isolate(), result,
254      NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
255      String);
256  // Copy ascii portion.
257  uint16_t* data = result->GetChars();
258  const char* ascii_data = string.start();
259  for (int i = 0; i < non_ascii_start; i++) {
260    *data++ = *ascii_data++;
261  }
262  // Now write the remainder.
263  decoder->WriteUtf16(data, utf16_length);
264  return result;
265}
266
267
268MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
269                                                  PretenureFlag pretenure) {
270  int length = string.length();
271  const uc16* start = string.start();
272  if (String::IsOneByte(start, length)) {
273    Handle<SeqOneByteString> result;
274    ASSIGN_RETURN_ON_EXCEPTION(
275        isolate(),
276        result,
277        NewRawOneByteString(length, pretenure),
278        String);
279    CopyChars(result->GetChars(), start, length);
280    return result;
281  } else {
282    Handle<SeqTwoByteString> result;
283    ASSIGN_RETURN_ON_EXCEPTION(
284        isolate(),
285        result,
286        NewRawTwoByteString(length, pretenure),
287        String);
288    CopyChars(result->GetChars(), start, length);
289    return result;
290  }
291}
292
293
294Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
295                                                      int chars,
296                                                      uint32_t hash_field) {
297  CALL_HEAP_FUNCTION(
298      isolate(),
299      isolate()->heap()->AllocateInternalizedStringFromUtf8(
300          str, chars, hash_field),
301      String);
302}
303
304
305MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
306      Vector<const uint8_t> str,
307      uint32_t hash_field) {
308  CALL_HEAP_FUNCTION(
309      isolate(),
310      isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
311      String);
312}
313
314
315MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
316      Vector<const uc16> str,
317      uint32_t hash_field) {
318  CALL_HEAP_FUNCTION(
319      isolate(),
320      isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
321      String);
322}
323
324
325Handle<String> Factory::NewInternalizedStringImpl(
326    Handle<String> string, int chars, uint32_t hash_field) {
327  CALL_HEAP_FUNCTION(
328      isolate(),
329      isolate()->heap()->AllocateInternalizedStringImpl(
330          *string, chars, hash_field),
331      String);
332}
333
334
335MaybeHandle<Map> Factory::InternalizedStringMapForString(
336    Handle<String> string) {
337  // If the string is in new space it cannot be used as internalized.
338  if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
339
340  // Find the corresponding internalized string map for strings.
341  switch (string->map()->instance_type()) {
342    case STRING_TYPE: return internalized_string_map();
343    case ASCII_STRING_TYPE: return ascii_internalized_string_map();
344    case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
345    case EXTERNAL_ASCII_STRING_TYPE:
346      return external_ascii_internalized_string_map();
347    case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
348      return external_internalized_string_with_one_byte_data_map();
349    case SHORT_EXTERNAL_STRING_TYPE:
350      return short_external_internalized_string_map();
351    case SHORT_EXTERNAL_ASCII_STRING_TYPE:
352      return short_external_ascii_internalized_string_map();
353    case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
354      return short_external_internalized_string_with_one_byte_data_map();
355    default: return MaybeHandle<Map>();  // No match found.
356  }
357}
358
359
360MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
361    int length, PretenureFlag pretenure) {
362  if (length > String::kMaxLength || length < 0) {
363    return isolate()->Throw<SeqOneByteString>(NewInvalidStringLengthError());
364  }
365  CALL_HEAP_FUNCTION(
366      isolate(),
367      isolate()->heap()->AllocateRawOneByteString(length, pretenure),
368      SeqOneByteString);
369}
370
371
372MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
373    int length, PretenureFlag pretenure) {
374  if (length > String::kMaxLength || length < 0) {
375    return isolate()->Throw<SeqTwoByteString>(NewInvalidStringLengthError());
376  }
377  CALL_HEAP_FUNCTION(
378      isolate(),
379      isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
380      SeqTwoByteString);
381}
382
383
384Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
385  if (code <= String::kMaxOneByteCharCodeU) {
386    {
387      DisallowHeapAllocation no_allocation;
388      Object* value = single_character_string_cache()->get(code);
389      if (value != *undefined_value()) {
390        return handle(String::cast(value), isolate());
391      }
392    }
393    uint8_t buffer[1];
394    buffer[0] = static_cast<uint8_t>(code);
395    Handle<String> result =
396        InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
397    single_character_string_cache()->set(code, *result);
398    return result;
399  }
400  ASSERT(code <= String::kMaxUtf16CodeUnitU);
401
402  Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
403  result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
404  return result;
405}
406
407
408// Returns true for a character in a range.  Both limits are inclusive.
409static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
410  // This makes uses of the the unsigned wraparound.
411  return character - from <= to - from;
412}
413
414
415static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
416                                                          uint16_t c1,
417                                                          uint16_t c2) {
418  // Numeric strings have a different hash algorithm not known by
419  // LookupTwoCharsStringIfExists, so we skip this step for such strings.
420  if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
421    Handle<String> result;
422    if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
423        ToHandle(&result)) {
424      return result;
425    }
426  }
427
428  // Now we know the length is 2, we might as well make use of that fact
429  // when building the new string.
430  if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
431    // We can do this.
432    ASSERT(IsPowerOf2(String::kMaxOneByteCharCodeU + 1));  // because of this.
433    Handle<SeqOneByteString> str =
434        isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
435    uint8_t* dest = str->GetChars();
436    dest[0] = static_cast<uint8_t>(c1);
437    dest[1] = static_cast<uint8_t>(c2);
438    return str;
439  } else {
440    Handle<SeqTwoByteString> str =
441        isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
442    uc16* dest = str->GetChars();
443    dest[0] = c1;
444    dest[1] = c2;
445    return str;
446  }
447}
448
449
450template<typename SinkChar, typename StringType>
451Handle<String> ConcatStringContent(Handle<StringType> result,
452                                   Handle<String> first,
453                                   Handle<String> second) {
454  DisallowHeapAllocation pointer_stays_valid;
455  SinkChar* sink = result->GetChars();
456  String::WriteToFlat(*first, sink, 0, first->length());
457  String::WriteToFlat(*second, sink + first->length(), 0, second->length());
458  return result;
459}
460
461
462MaybeHandle<String> Factory::NewConsString(Handle<String> left,
463                                           Handle<String> right) {
464  int left_length = left->length();
465  if (left_length == 0) return right;
466  int right_length = right->length();
467  if (right_length == 0) return left;
468
469  int length = left_length + right_length;
470
471  if (length == 2) {
472    uint16_t c1 = left->Get(0);
473    uint16_t c2 = right->Get(0);
474    return MakeOrFindTwoCharacterString(isolate(), c1, c2);
475  }
476
477  // Make sure that an out of memory exception is thrown if the length
478  // of the new cons string is too large.
479  if (length > String::kMaxLength || length < 0) {
480    return isolate()->Throw<String>(NewInvalidStringLengthError());
481  }
482
483  bool left_is_one_byte = left->IsOneByteRepresentation();
484  bool right_is_one_byte = right->IsOneByteRepresentation();
485  bool is_one_byte = left_is_one_byte && right_is_one_byte;
486  bool is_one_byte_data_in_two_byte_string = false;
487  if (!is_one_byte) {
488    // At least one of the strings uses two-byte representation so we
489    // can't use the fast case code for short ASCII strings below, but
490    // we can try to save memory if all chars actually fit in ASCII.
491    is_one_byte_data_in_two_byte_string =
492        left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
493    if (is_one_byte_data_in_two_byte_string) {
494      isolate()->counters()->string_add_runtime_ext_to_ascii()->Increment();
495    }
496  }
497
498  // If the resulting string is small make a flat string.
499  if (length < ConsString::kMinLength) {
500    // Note that neither of the two inputs can be a slice because:
501    STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
502    ASSERT(left->IsFlat());
503    ASSERT(right->IsFlat());
504
505    STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
506    if (is_one_byte) {
507      Handle<SeqOneByteString> result =
508          NewRawOneByteString(length).ToHandleChecked();
509      DisallowHeapAllocation no_gc;
510      uint8_t* dest = result->GetChars();
511      // Copy left part.
512      const uint8_t* src = left->IsExternalString()
513          ? Handle<ExternalAsciiString>::cast(left)->GetChars()
514          : Handle<SeqOneByteString>::cast(left)->GetChars();
515      for (int i = 0; i < left_length; i++) *dest++ = src[i];
516      // Copy right part.
517      src = right->IsExternalString()
518          ? Handle<ExternalAsciiString>::cast(right)->GetChars()
519          : Handle<SeqOneByteString>::cast(right)->GetChars();
520      for (int i = 0; i < right_length; i++) *dest++ = src[i];
521      return result;
522    }
523
524    return (is_one_byte_data_in_two_byte_string)
525        ? ConcatStringContent<uint8_t>(
526            NewRawOneByteString(length).ToHandleChecked(), left, right)
527        : ConcatStringContent<uc16>(
528            NewRawTwoByteString(length).ToHandleChecked(), left, right);
529  }
530
531  Handle<Map> map = (is_one_byte || is_one_byte_data_in_two_byte_string)
532      ? cons_ascii_string_map()  : cons_string_map();
533  Handle<ConsString> result =  New<ConsString>(map, NEW_SPACE);
534
535  DisallowHeapAllocation no_gc;
536  WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
537
538  result->set_hash_field(String::kEmptyHashField);
539  result->set_length(length);
540  result->set_first(*left, mode);
541  result->set_second(*right, mode);
542  return result;
543}
544
545
546Handle<String> Factory::NewFlatConcatString(Handle<String> first,
547                                            Handle<String> second) {
548  int total_length = first->length() + second->length();
549  if (first->IsOneByteRepresentation() && second->IsOneByteRepresentation()) {
550    return ConcatStringContent<uint8_t>(
551        NewRawOneByteString(total_length).ToHandleChecked(), first, second);
552  } else {
553    return ConcatStringContent<uc16>(
554        NewRawTwoByteString(total_length).ToHandleChecked(), first, second);
555  }
556}
557
558
559Handle<String> Factory::NewProperSubString(Handle<String> str,
560                                           int begin,
561                                           int end) {
562#if VERIFY_HEAP
563  if (FLAG_verify_heap) str->StringVerify();
564#endif
565  ASSERT(begin > 0 || end < str->length());
566
567  str = String::Flatten(str);
568
569  int length = end - begin;
570  if (length <= 0) return empty_string();
571  if (length == 1) {
572    return LookupSingleCharacterStringFromCode(str->Get(begin));
573  }
574  if (length == 2) {
575    // Optimization for 2-byte strings often used as keys in a decompression
576    // dictionary.  Check whether we already have the string in the string
577    // table to prevent creation of many unnecessary strings.
578    uint16_t c1 = str->Get(begin);
579    uint16_t c2 = str->Get(begin + 1);
580    return MakeOrFindTwoCharacterString(isolate(), c1, c2);
581  }
582
583  if (!FLAG_string_slices || length < SlicedString::kMinLength) {
584    if (str->IsOneByteRepresentation()) {
585      Handle<SeqOneByteString> result =
586          NewRawOneByteString(length).ToHandleChecked();
587      uint8_t* dest = result->GetChars();
588      DisallowHeapAllocation no_gc;
589      String::WriteToFlat(*str, dest, begin, end);
590      return result;
591    } else {
592      Handle<SeqTwoByteString> result =
593          NewRawTwoByteString(length).ToHandleChecked();
594      uc16* dest = result->GetChars();
595      DisallowHeapAllocation no_gc;
596      String::WriteToFlat(*str, dest, begin, end);
597      return result;
598    }
599  }
600
601  int offset = begin;
602
603  if (str->IsSlicedString()) {
604    Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
605    str = Handle<String>(slice->parent(), isolate());
606    offset += slice->offset();
607  }
608
609  ASSERT(str->IsSeqString() || str->IsExternalString());
610  Handle<Map> map = str->IsOneByteRepresentation() ? sliced_ascii_string_map()
611                                                   : sliced_string_map();
612  Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
613
614  slice->set_hash_field(String::kEmptyHashField);
615  slice->set_length(length);
616  slice->set_parent(*str);
617  slice->set_offset(offset);
618  return slice;
619}
620
621
622MaybeHandle<String> Factory::NewExternalStringFromAscii(
623    const ExternalAsciiString::Resource* resource) {
624  size_t length = resource->length();
625  if (length > static_cast<size_t>(String::kMaxLength)) {
626    return isolate()->Throw<String>(NewInvalidStringLengthError());
627  }
628
629  Handle<Map> map = external_ascii_string_map();
630  Handle<ExternalAsciiString> external_string =
631      New<ExternalAsciiString>(map, NEW_SPACE);
632  external_string->set_length(static_cast<int>(length));
633  external_string->set_hash_field(String::kEmptyHashField);
634  external_string->set_resource(resource);
635
636  return external_string;
637}
638
639
640MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
641    const ExternalTwoByteString::Resource* resource) {
642  size_t length = resource->length();
643  if (length > static_cast<size_t>(String::kMaxLength)) {
644    return isolate()->Throw<String>(NewInvalidStringLengthError());
645  }
646
647  // For small strings we check whether the resource contains only
648  // one byte characters.  If yes, we use a different string map.
649  static const size_t kOneByteCheckLengthLimit = 32;
650  bool is_one_byte = length <= kOneByteCheckLengthLimit &&
651      String::IsOneByte(resource->data(), static_cast<int>(length));
652  Handle<Map> map = is_one_byte ?
653      external_string_with_one_byte_data_map() : external_string_map();
654  Handle<ExternalTwoByteString> external_string =
655      New<ExternalTwoByteString>(map, NEW_SPACE);
656  external_string->set_length(static_cast<int>(length));
657  external_string->set_hash_field(String::kEmptyHashField);
658  external_string->set_resource(resource);
659
660  return external_string;
661}
662
663
664Handle<Symbol> Factory::NewSymbol() {
665  CALL_HEAP_FUNCTION(
666      isolate(),
667      isolate()->heap()->AllocateSymbol(),
668      Symbol);
669}
670
671
672Handle<Symbol> Factory::NewPrivateSymbol() {
673  Handle<Symbol> symbol = NewSymbol();
674  symbol->set_is_private(true);
675  return symbol;
676}
677
678
679Handle<Context> Factory::NewNativeContext() {
680  Handle<FixedArray> array = NewFixedArray(Context::NATIVE_CONTEXT_SLOTS);
681  array->set_map_no_write_barrier(*native_context_map());
682  Handle<Context> context = Handle<Context>::cast(array);
683  context->set_js_array_maps(*undefined_value());
684  ASSERT(context->IsNativeContext());
685  return context;
686}
687
688
689Handle<Context> Factory::NewGlobalContext(Handle<JSFunction> function,
690                                          Handle<ScopeInfo> scope_info) {
691  Handle<FixedArray> array =
692      NewFixedArray(scope_info->ContextLength(), TENURED);
693  array->set_map_no_write_barrier(*global_context_map());
694  Handle<Context> context = Handle<Context>::cast(array);
695  context->set_closure(*function);
696  context->set_previous(function->context());
697  context->set_extension(*scope_info);
698  context->set_global_object(function->context()->global_object());
699  ASSERT(context->IsGlobalContext());
700  return context;
701}
702
703
704Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
705  Handle<FixedArray> array =
706      NewFixedArray(scope_info->ContextLength(), TENURED);
707  array->set_map_no_write_barrier(*module_context_map());
708  // Instance link will be set later.
709  Handle<Context> context = Handle<Context>::cast(array);
710  context->set_extension(Smi::FromInt(0));
711  return context;
712}
713
714
715Handle<Context> Factory::NewFunctionContext(int length,
716                                            Handle<JSFunction> function) {
717  ASSERT(length >= Context::MIN_CONTEXT_SLOTS);
718  Handle<FixedArray> array = NewFixedArray(length);
719  array->set_map_no_write_barrier(*function_context_map());
720  Handle<Context> context = Handle<Context>::cast(array);
721  context->set_closure(*function);
722  context->set_previous(function->context());
723  context->set_extension(Smi::FromInt(0));
724  context->set_global_object(function->context()->global_object());
725  return context;
726}
727
728
729Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
730                                         Handle<Context> previous,
731                                         Handle<String> name,
732                                         Handle<Object> thrown_object) {
733  STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
734  Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
735  array->set_map_no_write_barrier(*catch_context_map());
736  Handle<Context> context = Handle<Context>::cast(array);
737  context->set_closure(*function);
738  context->set_previous(*previous);
739  context->set_extension(*name);
740  context->set_global_object(previous->global_object());
741  context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
742  return context;
743}
744
745
746Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
747                                        Handle<Context> previous,
748                                        Handle<JSReceiver> extension) {
749  Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
750  array->set_map_no_write_barrier(*with_context_map());
751  Handle<Context> context = Handle<Context>::cast(array);
752  context->set_closure(*function);
753  context->set_previous(*previous);
754  context->set_extension(*extension);
755  context->set_global_object(previous->global_object());
756  return context;
757}
758
759
760Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
761                                         Handle<Context> previous,
762                                         Handle<ScopeInfo> scope_info) {
763  Handle<FixedArray> array =
764      NewFixedArrayWithHoles(scope_info->ContextLength());
765  array->set_map_no_write_barrier(*block_context_map());
766  Handle<Context> context = Handle<Context>::cast(array);
767  context->set_closure(*function);
768  context->set_previous(*previous);
769  context->set_extension(*scope_info);
770  context->set_global_object(previous->global_object());
771  return context;
772}
773
774
775Handle<Struct> Factory::NewStruct(InstanceType type) {
776  CALL_HEAP_FUNCTION(
777      isolate(),
778      isolate()->heap()->AllocateStruct(type),
779      Struct);
780}
781
782
783Handle<CodeCache> Factory::NewCodeCache() {
784  Handle<CodeCache> code_cache =
785      Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
786  code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
787  code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
788  return code_cache;
789}
790
791
792Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
793    int aliased_context_slot) {
794  Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
795      NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
796  entry->set_aliased_context_slot(aliased_context_slot);
797  return entry;
798}
799
800
801Handle<DeclaredAccessorDescriptor> Factory::NewDeclaredAccessorDescriptor() {
802  return Handle<DeclaredAccessorDescriptor>::cast(
803      NewStruct(DECLARED_ACCESSOR_DESCRIPTOR_TYPE));
804}
805
806
807Handle<DeclaredAccessorInfo> Factory::NewDeclaredAccessorInfo() {
808  Handle<DeclaredAccessorInfo> info =
809      Handle<DeclaredAccessorInfo>::cast(
810          NewStruct(DECLARED_ACCESSOR_INFO_TYPE));
811  info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
812  return info;
813}
814
815
816Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
817  Handle<ExecutableAccessorInfo> info =
818      Handle<ExecutableAccessorInfo>::cast(
819          NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
820  info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
821  return info;
822}
823
824
825Handle<Script> Factory::NewScript(Handle<String> source) {
826  // Generate id for this script.
827  Heap* heap = isolate()->heap();
828  int id = heap->last_script_id()->value() + 1;
829  if (!Smi::IsValid(id) || id < 0) id = 1;
830  heap->set_last_script_id(Smi::FromInt(id));
831
832  // Create and initialize script object.
833  Handle<Foreign> wrapper = NewForeign(0, TENURED);
834  Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
835  script->set_source(*source);
836  script->set_name(heap->undefined_value());
837  script->set_id(Smi::FromInt(id));
838  script->set_line_offset(Smi::FromInt(0));
839  script->set_column_offset(Smi::FromInt(0));
840  script->set_context_data(heap->undefined_value());
841  script->set_type(Smi::FromInt(Script::TYPE_NORMAL));
842  script->set_wrapper(*wrapper);
843  script->set_line_ends(heap->undefined_value());
844  script->set_eval_from_shared(heap->undefined_value());
845  script->set_eval_from_instructions_offset(Smi::FromInt(0));
846  script->set_flags(Smi::FromInt(0));
847
848  return script;
849}
850
851
852Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
853  CALL_HEAP_FUNCTION(isolate(),
854                     isolate()->heap()->AllocateForeign(addr, pretenure),
855                     Foreign);
856}
857
858
859Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
860  return NewForeign((Address) desc, TENURED);
861}
862
863
864Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
865  ASSERT(0 <= length);
866  CALL_HEAP_FUNCTION(
867      isolate(),
868      isolate()->heap()->AllocateByteArray(length, pretenure),
869      ByteArray);
870}
871
872
873Handle<ExternalArray> Factory::NewExternalArray(int length,
874                                                ExternalArrayType array_type,
875                                                void* external_pointer,
876                                                PretenureFlag pretenure) {
877  ASSERT(0 <= length && length <= Smi::kMaxValue);
878  CALL_HEAP_FUNCTION(
879      isolate(),
880      isolate()->heap()->AllocateExternalArray(length,
881                                               array_type,
882                                               external_pointer,
883                                               pretenure),
884      ExternalArray);
885}
886
887
888Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
889    int length,
890    ExternalArrayType array_type,
891    PretenureFlag pretenure) {
892  ASSERT(0 <= length && length <= Smi::kMaxValue);
893  CALL_HEAP_FUNCTION(
894      isolate(),
895      isolate()->heap()->AllocateFixedTypedArray(length,
896                                                 array_type,
897                                                 pretenure),
898      FixedTypedArrayBase);
899}
900
901
902Handle<Cell> Factory::NewCell(Handle<Object> value) {
903  AllowDeferredHandleDereference convert_to_cell;
904  CALL_HEAP_FUNCTION(
905      isolate(),
906      isolate()->heap()->AllocateCell(*value),
907      Cell);
908}
909
910
911Handle<PropertyCell> Factory::NewPropertyCellWithHole() {
912  CALL_HEAP_FUNCTION(
913      isolate(),
914      isolate()->heap()->AllocatePropertyCell(),
915      PropertyCell);
916}
917
918
919Handle<PropertyCell> Factory::NewPropertyCell(Handle<Object> value) {
920  AllowDeferredHandleDereference convert_to_cell;
921  Handle<PropertyCell> cell = NewPropertyCellWithHole();
922  PropertyCell::SetValueInferType(cell, value);
923  return cell;
924}
925
926
927Handle<AllocationSite> Factory::NewAllocationSite() {
928  Handle<Map> map = allocation_site_map();
929  Handle<AllocationSite> site = New<AllocationSite>(map, OLD_POINTER_SPACE);
930  site->Initialize();
931
932  // Link the site
933  site->set_weak_next(isolate()->heap()->allocation_sites_list());
934  isolate()->heap()->set_allocation_sites_list(*site);
935  return site;
936}
937
938
939Handle<Map> Factory::NewMap(InstanceType type,
940                            int instance_size,
941                            ElementsKind elements_kind) {
942  CALL_HEAP_FUNCTION(
943      isolate(),
944      isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
945      Map);
946}
947
948
949Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
950  CALL_HEAP_FUNCTION(isolate(),
951                     isolate()->heap()->CopyJSObject(*object, NULL),
952                     JSObject);
953}
954
955
956Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
957    Handle<JSObject> object,
958    Handle<AllocationSite> site) {
959  CALL_HEAP_FUNCTION(isolate(),
960                     isolate()->heap()->CopyJSObject(
961                         *object,
962                         site.is_null() ? NULL : *site),
963                     JSObject);
964}
965
966
967Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
968                                                  Handle<Map> map) {
969  CALL_HEAP_FUNCTION(isolate(),
970                     isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
971                     FixedArray);
972}
973
974
975Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
976  CALL_HEAP_FUNCTION(isolate(),
977                     isolate()->heap()->CopyFixedArray(*array),
978                     FixedArray);
979}
980
981
982Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
983    Handle<FixedArray> array) {
984  ASSERT(isolate()->heap()->InNewSpace(*array));
985  CALL_HEAP_FUNCTION(isolate(),
986                     isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
987                     FixedArray);
988}
989
990
991Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
992    Handle<FixedDoubleArray> array) {
993  CALL_HEAP_FUNCTION(isolate(),
994                     isolate()->heap()->CopyFixedDoubleArray(*array),
995                     FixedDoubleArray);
996}
997
998
999Handle<ConstantPoolArray> Factory::CopyConstantPoolArray(
1000    Handle<ConstantPoolArray> array) {
1001  CALL_HEAP_FUNCTION(isolate(),
1002                     isolate()->heap()->CopyConstantPoolArray(*array),
1003                     ConstantPoolArray);
1004}
1005
1006
1007Handle<Object> Factory::NewNumber(double value,
1008                                  PretenureFlag pretenure) {
1009  // We need to distinguish the minus zero value and this cannot be
1010  // done after conversion to int. Doing this by comparing bit
1011  // patterns is faster than using fpclassify() et al.
1012  if (IsMinusZero(value)) return NewHeapNumber(-0.0, pretenure);
1013
1014  int int_value = FastD2I(value);
1015  if (value == int_value && Smi::IsValid(int_value)) {
1016    return handle(Smi::FromInt(int_value), isolate());
1017  }
1018
1019  // Materialize the value in the heap.
1020  return NewHeapNumber(value, pretenure);
1021}
1022
1023
1024Handle<Object> Factory::NewNumberFromInt(int32_t value,
1025                                         PretenureFlag pretenure) {
1026  if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
1027  // Bypass NumberFromDouble to avoid various redundant checks.
1028  return NewHeapNumber(FastI2D(value), pretenure);
1029}
1030
1031
1032Handle<Object> Factory::NewNumberFromUint(uint32_t value,
1033                                          PretenureFlag pretenure) {
1034  int32_t int32v = static_cast<int32_t>(value);
1035  if (int32v >= 0 && Smi::IsValid(int32v)) {
1036    return handle(Smi::FromInt(int32v), isolate());
1037  }
1038  return NewHeapNumber(FastUI2D(value), pretenure);
1039}
1040
1041
1042Handle<HeapNumber> Factory::NewHeapNumber(double value,
1043                                          PretenureFlag pretenure) {
1044  CALL_HEAP_FUNCTION(
1045      isolate(),
1046      isolate()->heap()->AllocateHeapNumber(value, pretenure), HeapNumber);
1047}
1048
1049
1050Handle<Object> Factory::NewTypeError(const char* message,
1051                                     Vector< Handle<Object> > args) {
1052  return NewError("MakeTypeError", message, args);
1053}
1054
1055
1056Handle<Object> Factory::NewTypeError(Handle<String> message) {
1057  return NewError("$TypeError", message);
1058}
1059
1060
1061Handle<Object> Factory::NewRangeError(const char* message,
1062                                      Vector< Handle<Object> > args) {
1063  return NewError("MakeRangeError", message, args);
1064}
1065
1066
1067Handle<Object> Factory::NewRangeError(Handle<String> message) {
1068  return NewError("$RangeError", message);
1069}
1070
1071
1072Handle<Object> Factory::NewSyntaxError(const char* message,
1073                                       Handle<JSArray> args) {
1074  return NewError("MakeSyntaxError", message, args);
1075}
1076
1077
1078Handle<Object> Factory::NewSyntaxError(Handle<String> message) {
1079  return NewError("$SyntaxError", message);
1080}
1081
1082
1083Handle<Object> Factory::NewReferenceError(const char* message,
1084                                          Vector< Handle<Object> > args) {
1085  return NewError("MakeReferenceError", message, args);
1086}
1087
1088
1089Handle<Object> Factory::NewReferenceError(const char* message,
1090                                          Handle<JSArray> args) {
1091  return NewError("MakeReferenceError", message, args);
1092}
1093
1094
1095Handle<Object> Factory::NewReferenceError(Handle<String> message) {
1096  return NewError("$ReferenceError", message);
1097}
1098
1099
1100Handle<Object> Factory::NewError(const char* maker,
1101                                 const char* message,
1102                                 Vector< Handle<Object> > args) {
1103  // Instantiate a closeable HandleScope for EscapeFrom.
1104  v8::EscapableHandleScope scope(reinterpret_cast<v8::Isolate*>(isolate()));
1105  Handle<FixedArray> array = NewFixedArray(args.length());
1106  for (int i = 0; i < args.length(); i++) {
1107    array->set(i, *args[i]);
1108  }
1109  Handle<JSArray> object = NewJSArrayWithElements(array);
1110  Handle<Object> result = NewError(maker, message, object);
1111  return result.EscapeFrom(&scope);
1112}
1113
1114
1115Handle<Object> Factory::NewEvalError(const char* message,
1116                                     Vector< Handle<Object> > args) {
1117  return NewError("MakeEvalError", message, args);
1118}
1119
1120
1121Handle<Object> Factory::NewError(const char* message,
1122                                 Vector< Handle<Object> > args) {
1123  return NewError("MakeError", message, args);
1124}
1125
1126
1127Handle<String> Factory::EmergencyNewError(const char* message,
1128                                          Handle<JSArray> args) {
1129  const int kBufferSize = 1000;
1130  char buffer[kBufferSize];
1131  size_t space = kBufferSize;
1132  char* p = &buffer[0];
1133
1134  Vector<char> v(buffer, kBufferSize);
1135  StrNCpy(v, message, space);
1136  space -= Min(space, strlen(message));
1137  p = &buffer[kBufferSize] - space;
1138
1139  for (unsigned i = 0; i < ARRAY_SIZE(args); i++) {
1140    if (space > 0) {
1141      *p++ = ' ';
1142      space--;
1143      if (space > 0) {
1144        Handle<String> arg_str = Handle<String>::cast(
1145            Object::GetElement(isolate(), args, i).ToHandleChecked());
1146        SmartArrayPointer<char> arg = arg_str->ToCString();
1147        Vector<char> v2(p, static_cast<int>(space));
1148        StrNCpy(v2, arg.get(), space);
1149        space -= Min(space, strlen(arg.get()));
1150        p = &buffer[kBufferSize] - space;
1151      }
1152    }
1153  }
1154  if (space > 0) {
1155    *p = '\0';
1156  } else {
1157    buffer[kBufferSize - 1] = '\0';
1158  }
1159  return NewStringFromUtf8(CStrVector(buffer), TENURED).ToHandleChecked();
1160}
1161
1162
1163Handle<Object> Factory::NewError(const char* maker,
1164                                 const char* message,
1165                                 Handle<JSArray> args) {
1166  Handle<String> make_str = InternalizeUtf8String(maker);
1167  Handle<Object> fun_obj = Object::GetProperty(
1168      isolate()->js_builtins_object(), make_str).ToHandleChecked();
1169  // If the builtins haven't been properly configured yet this error
1170  // constructor may not have been defined.  Bail out.
1171  if (!fun_obj->IsJSFunction()) {
1172    return EmergencyNewError(message, args);
1173  }
1174  Handle<JSFunction> fun = Handle<JSFunction>::cast(fun_obj);
1175  Handle<Object> message_obj = InternalizeUtf8String(message);
1176  Handle<Object> argv[] = { message_obj, args };
1177
1178  // Invoke the JavaScript factory method. If an exception is thrown while
1179  // running the factory method, use the exception as the result.
1180  Handle<Object> result;
1181  Handle<Object> exception;
1182  if (!Execution::TryCall(fun,
1183                          isolate()->js_builtins_object(),
1184                          ARRAY_SIZE(argv),
1185                          argv,
1186                          &exception).ToHandle(&result)) {
1187    return exception;
1188  }
1189  return result;
1190}
1191
1192
1193Handle<Object> Factory::NewError(Handle<String> message) {
1194  return NewError("$Error", message);
1195}
1196
1197
1198Handle<Object> Factory::NewError(const char* constructor,
1199                                 Handle<String> message) {
1200  Handle<String> constr = InternalizeUtf8String(constructor);
1201  Handle<JSFunction> fun = Handle<JSFunction>::cast(Object::GetProperty(
1202      isolate()->js_builtins_object(), constr).ToHandleChecked());
1203  Handle<Object> argv[] = { message };
1204
1205  // Invoke the JavaScript factory method. If an exception is thrown while
1206  // running the factory method, use the exception as the result.
1207  Handle<Object> result;
1208  Handle<Object> exception;
1209  if (!Execution::TryCall(fun,
1210                          isolate()->js_builtins_object(),
1211                          ARRAY_SIZE(argv),
1212                          argv,
1213                          &exception).ToHandle(&result)) {
1214    return exception;
1215  }
1216  return result;
1217}
1218
1219
1220void Factory::InitializeFunction(Handle<JSFunction> function,
1221                                 Handle<SharedFunctionInfo> info,
1222                                 Handle<Context> context) {
1223  function->initialize_properties();
1224  function->initialize_elements();
1225  function->set_shared(*info);
1226  function->set_code(info->code());
1227  function->set_context(*context);
1228  function->set_prototype_or_initial_map(*the_hole_value());
1229  function->set_literals_or_bindings(*empty_fixed_array());
1230  function->set_next_function_link(*undefined_value());
1231}
1232
1233
1234Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1235                                        Handle<SharedFunctionInfo> info,
1236                                        Handle<Context> context,
1237                                        PretenureFlag pretenure) {
1238  AllocationSpace space = pretenure == TENURED ? OLD_POINTER_SPACE : NEW_SPACE;
1239  Handle<JSFunction> result = New<JSFunction>(map, space);
1240  InitializeFunction(result, info, context);
1241  return result;
1242}
1243
1244
1245Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
1246                                        Handle<String> name,
1247                                        MaybeHandle<Code> code) {
1248  Handle<Context> context(isolate()->context()->native_context());
1249  Handle<SharedFunctionInfo> info = NewSharedFunctionInfo(name, code);
1250  ASSERT((info->strict_mode() == SLOPPY) &&
1251         (map.is_identical_to(isolate()->sloppy_function_map()) ||
1252          map.is_identical_to(
1253              isolate()->sloppy_function_without_prototype_map()) ||
1254          map.is_identical_to(
1255              isolate()->sloppy_function_with_readonly_prototype_map())));
1256  return NewFunction(map, info, context);
1257}
1258
1259
1260Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
1261  return NewFunction(
1262      isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
1263}
1264
1265
1266Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
1267                                                        Handle<Code> code) {
1268  return NewFunction(
1269      isolate()->sloppy_function_without_prototype_map(), name, code);
1270}
1271
1272
1273Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1274                                        Handle<Code> code,
1275                                        Handle<Object> prototype,
1276                                        bool read_only_prototype) {
1277  Handle<Map> map = read_only_prototype
1278      ? isolate()->sloppy_function_with_readonly_prototype_map()
1279      : isolate()->sloppy_function_map();
1280  Handle<JSFunction> result = NewFunction(map, name, code);
1281  result->set_prototype_or_initial_map(*prototype);
1282  return result;
1283}
1284
1285
1286Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1287                                        Handle<Code> code,
1288                                        Handle<Object> prototype,
1289                                        InstanceType type,
1290                                        int instance_size,
1291                                        bool read_only_prototype) {
1292  // Allocate the function
1293  Handle<JSFunction> function = NewFunction(
1294      name, code, prototype, read_only_prototype);
1295
1296  Handle<Map> initial_map = NewMap(
1297      type, instance_size, GetInitialFastElementsKind());
1298  if (prototype->IsTheHole() && !function->shared()->is_generator()) {
1299    prototype = NewFunctionPrototype(function);
1300  }
1301  initial_map->set_prototype(*prototype);
1302  function->set_initial_map(*initial_map);
1303  initial_map->set_constructor(*function);
1304
1305  return function;
1306}
1307
1308
1309Handle<JSFunction> Factory::NewFunction(Handle<String> name,
1310                                        Handle<Code> code,
1311                                        InstanceType type,
1312                                        int instance_size) {
1313  return NewFunction(name, code, the_hole_value(), type, instance_size);
1314}
1315
1316
1317Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
1318  // Make sure to use globals from the function's context, since the function
1319  // can be from a different context.
1320  Handle<Context> native_context(function->context()->native_context());
1321  Handle<Map> new_map;
1322  if (function->shared()->is_generator()) {
1323    // Generator prototypes can share maps since they don't have "constructor"
1324    // properties.
1325    new_map = handle(native_context->generator_object_prototype_map());
1326  } else {
1327    // Each function prototype gets a fresh map to avoid unwanted sharing of
1328    // maps between prototypes of different constructors.
1329    Handle<JSFunction> object_function(native_context->object_function());
1330    ASSERT(object_function->has_initial_map());
1331    new_map = Map::Copy(handle(object_function->initial_map()));
1332  }
1333
1334  Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
1335
1336  if (!function->shared()->is_generator()) {
1337    JSObject::SetOwnPropertyIgnoreAttributes(prototype,
1338                                             constructor_string(),
1339                                             function,
1340                                             DONT_ENUM).Assert();
1341  }
1342
1343  return prototype;
1344}
1345
1346
1347Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
1348    Handle<SharedFunctionInfo> info,
1349    Handle<Context> context,
1350    PretenureFlag pretenure) {
1351  int map_index = Context::FunctionMapIndex(info->strict_mode(),
1352                                            info->is_generator());
1353  Handle<Map> map(Map::cast(context->native_context()->get(map_index)));
1354  Handle<JSFunction> result = NewFunction(map, info, context, pretenure);
1355
1356  if (info->ic_age() != isolate()->heap()->global_ic_age()) {
1357    info->ResetForNewContext(isolate()->heap()->global_ic_age());
1358  }
1359
1360  int index = info->SearchOptimizedCodeMap(context->native_context(),
1361                                           BailoutId::None());
1362  if (!info->bound() && index < 0) {
1363    int number_of_literals = info->num_literals();
1364    Handle<FixedArray> literals = NewFixedArray(number_of_literals, pretenure);
1365    if (number_of_literals > 0) {
1366      // Store the native context in the literals array prefix. This
1367      // context will be used when creating object, regexp and array
1368      // literals in this function.
1369      literals->set(JSFunction::kLiteralNativeContextIndex,
1370                    context->native_context());
1371    }
1372    result->set_literals(*literals);
1373  }
1374
1375  if (index > 0) {
1376    // Caching of optimized code enabled and optimized code found.
1377    FixedArray* literals = info->GetLiteralsFromOptimizedCodeMap(index);
1378    if (literals != NULL) result->set_literals(literals);
1379    Code* code = info->GetCodeFromOptimizedCodeMap(index);
1380    ASSERT(!code->marked_for_deoptimization());
1381    result->ReplaceCode(code);
1382    return result;
1383  }
1384
1385  if (isolate()->use_crankshaft() &&
1386      FLAG_always_opt &&
1387      result->is_compiled() &&
1388      !info->is_toplevel() &&
1389      info->allows_lazy_compilation() &&
1390      !info->optimization_disabled() &&
1391      !isolate()->DebuggerHasBreakPoints()) {
1392    result->MarkForOptimization();
1393  }
1394  return result;
1395}
1396
1397
1398Handle<JSObject> Factory::NewIteratorResultObject(Handle<Object> value,
1399                                                     bool done) {
1400  Handle<Map> map(isolate()->native_context()->iterator_result_map());
1401  Handle<JSObject> result = NewJSObjectFromMap(map, NOT_TENURED, false);
1402  result->InObjectPropertyAtPut(
1403      JSGeneratorObject::kResultValuePropertyIndex, *value);
1404  result->InObjectPropertyAtPut(
1405      JSGeneratorObject::kResultDonePropertyIndex, *ToBoolean(done));
1406  return result;
1407}
1408
1409
1410Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
1411  Handle<FixedArray> array = NewFixedArray(length, TENURED);
1412  array->set_map_no_write_barrier(*scope_info_map());
1413  Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
1414  return scope_info;
1415}
1416
1417
1418Handle<JSObject> Factory::NewExternal(void* value) {
1419  Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
1420  Handle<JSObject> external = NewJSObjectFromMap(external_map());
1421  external->SetInternalField(0, *foreign);
1422  return external;
1423}
1424
1425
1426Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
1427  CALL_HEAP_FUNCTION(isolate(),
1428                     isolate()->heap()->AllocateCode(object_size, immovable),
1429                     Code);
1430}
1431
1432
1433Handle<Code> Factory::NewCode(const CodeDesc& desc,
1434                              Code::Flags flags,
1435                              Handle<Object> self_ref,
1436                              bool immovable,
1437                              bool crankshafted,
1438                              int prologue_offset,
1439                              bool is_debug) {
1440  Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
1441  Handle<ConstantPoolArray> constant_pool =
1442      desc.origin->NewConstantPool(isolate());
1443
1444  // Compute size.
1445  int body_size = RoundUp(desc.instr_size, kObjectAlignment);
1446  int obj_size = Code::SizeFor(body_size);
1447
1448  Handle<Code> code = NewCodeRaw(obj_size, immovable);
1449  ASSERT(isolate()->code_range() == NULL ||
1450         !isolate()->code_range()->valid() ||
1451         isolate()->code_range()->contains(code->address()));
1452
1453  // The code object has not been fully initialized yet.  We rely on the
1454  // fact that no allocation will happen from this point on.
1455  DisallowHeapAllocation no_gc;
1456  code->set_gc_metadata(Smi::FromInt(0));
1457  code->set_ic_age(isolate()->heap()->global_ic_age());
1458  code->set_instruction_size(desc.instr_size);
1459  code->set_relocation_info(*reloc_info);
1460  code->set_flags(flags);
1461  code->set_raw_kind_specific_flags1(0);
1462  code->set_raw_kind_specific_flags2(0);
1463  code->set_is_crankshafted(crankshafted);
1464  code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1465  code->set_raw_type_feedback_info(*undefined_value());
1466  code->set_next_code_link(*undefined_value());
1467  code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1468  code->set_prologue_offset(prologue_offset);
1469  if (code->kind() == Code::OPTIMIZED_FUNCTION) {
1470    code->set_marked_for_deoptimization(false);
1471  }
1472
1473  if (is_debug) {
1474    ASSERT(code->kind() == Code::FUNCTION);
1475    code->set_has_debug_break_slots(true);
1476  }
1477
1478  desc.origin->PopulateConstantPool(*constant_pool);
1479  code->set_constant_pool(*constant_pool);
1480
1481  // Allow self references to created code object by patching the handle to
1482  // point to the newly allocated Code object.
1483  if (!self_ref.is_null()) *(self_ref.location()) = *code;
1484
1485  // Migrate generated code.
1486  // The generated code can contain Object** values (typically from handles)
1487  // that are dereferenced during the copy to point directly to the actual heap
1488  // objects. These pointers can include references to the code object itself,
1489  // through the self_reference parameter.
1490  code->CopyFrom(desc);
1491
1492#ifdef VERIFY_HEAP
1493  if (FLAG_verify_heap) code->ObjectVerify();
1494#endif
1495  return code;
1496}
1497
1498
1499Handle<Code> Factory::CopyCode(Handle<Code> code) {
1500  CALL_HEAP_FUNCTION(isolate(),
1501                     isolate()->heap()->CopyCode(*code),
1502                     Code);
1503}
1504
1505
1506Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
1507  CALL_HEAP_FUNCTION(isolate(),
1508                     isolate()->heap()->CopyCode(*code, reloc_info),
1509                     Code);
1510}
1511
1512
1513Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
1514                                      PretenureFlag pretenure) {
1515  JSFunction::EnsureHasInitialMap(constructor);
1516  CALL_HEAP_FUNCTION(
1517      isolate(),
1518      isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
1519}
1520
1521
1522Handle<JSObject> Factory::NewJSObjectWithMemento(
1523    Handle<JSFunction> constructor,
1524    Handle<AllocationSite> site) {
1525  JSFunction::EnsureHasInitialMap(constructor);
1526  CALL_HEAP_FUNCTION(
1527      isolate(),
1528      isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
1529      JSObject);
1530}
1531
1532
1533Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
1534                                      Handle<ScopeInfo> scope_info) {
1535  // Allocate a fresh map. Modules do not have a prototype.
1536  Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
1537  // Allocate the object based on the map.
1538  Handle<JSModule> module =
1539      Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
1540  module->set_context(*context);
1541  module->set_scope_info(*scope_info);
1542  return module;
1543}
1544
1545
1546Handle<GlobalObject> Factory::NewGlobalObject(Handle<JSFunction> constructor) {
1547  ASSERT(constructor->has_initial_map());
1548  Handle<Map> map(constructor->initial_map());
1549  ASSERT(map->is_dictionary_map());
1550
1551  // Make sure no field properties are described in the initial map.
1552  // This guarantees us that normalizing the properties does not
1553  // require us to change property values to PropertyCells.
1554  ASSERT(map->NextFreePropertyIndex() == 0);
1555
1556  // Make sure we don't have a ton of pre-allocated slots in the
1557  // global objects. They will be unused once we normalize the object.
1558  ASSERT(map->unused_property_fields() == 0);
1559  ASSERT(map->inobject_properties() == 0);
1560
1561  // Initial size of the backing store to avoid resize of the storage during
1562  // bootstrapping. The size differs between the JS global object ad the
1563  // builtins object.
1564  int initial_size = map->instance_type() == JS_GLOBAL_OBJECT_TYPE ? 64 : 512;
1565
1566  // Allocate a dictionary object for backing storage.
1567  int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
1568  Handle<NameDictionary> dictionary =
1569      NameDictionary::New(isolate(), at_least_space_for);
1570
1571  // The global object might be created from an object template with accessors.
1572  // Fill these accessors into the dictionary.
1573  Handle<DescriptorArray> descs(map->instance_descriptors());
1574  for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
1575    PropertyDetails details = descs->GetDetails(i);
1576    ASSERT(details.type() == CALLBACKS);  // Only accessors are expected.
1577    PropertyDetails d = PropertyDetails(details.attributes(), CALLBACKS, i + 1);
1578    Handle<Name> name(descs->GetKey(i));
1579    Handle<Object> value(descs->GetCallbacksObject(i), isolate());
1580    Handle<PropertyCell> cell = NewPropertyCell(value);
1581    // |dictionary| already contains enough space for all properties.
1582    USE(NameDictionary::Add(dictionary, name, cell, d));
1583  }
1584
1585  // Allocate the global object and initialize it with the backing store.
1586  Handle<GlobalObject> global = New<GlobalObject>(map, OLD_POINTER_SPACE);
1587  isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
1588
1589  // Create a new map for the global object.
1590  Handle<Map> new_map = Map::CopyDropDescriptors(map);
1591  new_map->set_dictionary_map(true);
1592
1593  // Set up the global object as a normalized object.
1594  global->set_map(*new_map);
1595  global->set_properties(*dictionary);
1596
1597  // Make sure result is a global object with properties in dictionary.
1598  ASSERT(global->IsGlobalObject() && !global->HasFastProperties());
1599  return global;
1600}
1601
1602
1603Handle<JSObject> Factory::NewJSObjectFromMap(
1604    Handle<Map> map,
1605    PretenureFlag pretenure,
1606    bool alloc_props,
1607    Handle<AllocationSite> allocation_site) {
1608  CALL_HEAP_FUNCTION(
1609      isolate(),
1610      isolate()->heap()->AllocateJSObjectFromMap(
1611          *map,
1612          pretenure,
1613          alloc_props,
1614          allocation_site.is_null() ? NULL : *allocation_site),
1615      JSObject);
1616}
1617
1618
1619Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1620                                    PretenureFlag pretenure) {
1621  Context* native_context = isolate()->context()->native_context();
1622  JSFunction* array_function = native_context->array_function();
1623  Map* map = array_function->initial_map();
1624  Map* transition_map = isolate()->get_initial_js_array_map(elements_kind);
1625  if (transition_map != NULL) map = transition_map;
1626  return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
1627}
1628
1629
1630Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
1631                                    int length,
1632                                    int capacity,
1633                                    ArrayStorageAllocationMode mode,
1634                                    PretenureFlag pretenure) {
1635  Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1636  NewJSArrayStorage(array, length, capacity, mode);
1637  return array;
1638}
1639
1640
1641Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
1642                                                ElementsKind elements_kind,
1643                                                int length,
1644                                                PretenureFlag pretenure) {
1645  ASSERT(length <= elements->length());
1646  Handle<JSArray> array = NewJSArray(elements_kind, pretenure);
1647
1648  array->set_elements(*elements);
1649  array->set_length(Smi::FromInt(length));
1650  JSObject::ValidateElements(array);
1651  return array;
1652}
1653
1654
1655void Factory::NewJSArrayStorage(Handle<JSArray> array,
1656                                int length,
1657                                int capacity,
1658                                ArrayStorageAllocationMode mode) {
1659  ASSERT(capacity >= length);
1660
1661  if (capacity == 0) {
1662    array->set_length(Smi::FromInt(0));
1663    array->set_elements(*empty_fixed_array());
1664    return;
1665  }
1666
1667  Handle<FixedArrayBase> elms;
1668  ElementsKind elements_kind = array->GetElementsKind();
1669  if (IsFastDoubleElementsKind(elements_kind)) {
1670    if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1671      elms = NewFixedDoubleArray(capacity);
1672    } else {
1673      ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1674      elms = NewFixedDoubleArrayWithHoles(capacity);
1675    }
1676  } else {
1677    ASSERT(IsFastSmiOrObjectElementsKind(elements_kind));
1678    if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
1679      elms = NewUninitializedFixedArray(capacity);
1680    } else {
1681      ASSERT(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
1682      elms = NewFixedArrayWithHoles(capacity);
1683    }
1684  }
1685
1686  array->set_elements(*elms);
1687  array->set_length(Smi::FromInt(length));
1688}
1689
1690
1691Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
1692    Handle<JSFunction> function) {
1693  ASSERT(function->shared()->is_generator());
1694  JSFunction::EnsureHasInitialMap(function);
1695  Handle<Map> map(function->initial_map());
1696  ASSERT(map->instance_type() == JS_GENERATOR_OBJECT_TYPE);
1697  CALL_HEAP_FUNCTION(
1698      isolate(),
1699      isolate()->heap()->AllocateJSObjectFromMap(*map),
1700      JSGeneratorObject);
1701}
1702
1703
1704Handle<JSArrayBuffer> Factory::NewJSArrayBuffer() {
1705  Handle<JSFunction> array_buffer_fun(
1706      isolate()->context()->native_context()->array_buffer_fun());
1707  CALL_HEAP_FUNCTION(
1708      isolate(),
1709      isolate()->heap()->AllocateJSObject(*array_buffer_fun),
1710      JSArrayBuffer);
1711}
1712
1713
1714Handle<JSDataView> Factory::NewJSDataView() {
1715  Handle<JSFunction> data_view_fun(
1716      isolate()->context()->native_context()->data_view_fun());
1717  CALL_HEAP_FUNCTION(
1718      isolate(),
1719      isolate()->heap()->AllocateJSObject(*data_view_fun),
1720      JSDataView);
1721}
1722
1723
1724static JSFunction* GetTypedArrayFun(ExternalArrayType type,
1725                                    Isolate* isolate) {
1726  Context* native_context = isolate->context()->native_context();
1727  switch (type) {
1728#define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size)                        \
1729    case kExternal##Type##Array:                                              \
1730      return native_context->type##_array_fun();
1731
1732    TYPED_ARRAYS(TYPED_ARRAY_FUN)
1733#undef TYPED_ARRAY_FUN
1734
1735    default:
1736      UNREACHABLE();
1737      return NULL;
1738  }
1739}
1740
1741
1742Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type) {
1743  Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
1744
1745  CALL_HEAP_FUNCTION(
1746      isolate(),
1747      isolate()->heap()->AllocateJSObject(*typed_array_fun_handle),
1748      JSTypedArray);
1749}
1750
1751
1752Handle<JSProxy> Factory::NewJSProxy(Handle<Object> handler,
1753                                    Handle<Object> prototype) {
1754  // Allocate map.
1755  // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1756  // maps. Will probably depend on the identity of the handler object, too.
1757  Handle<Map> map = NewMap(JS_PROXY_TYPE, JSProxy::kSize);
1758  map->set_prototype(*prototype);
1759
1760  // Allocate the proxy object.
1761  Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
1762  result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1763  result->set_handler(*handler);
1764  result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1765  return result;
1766}
1767
1768
1769Handle<JSProxy> Factory::NewJSFunctionProxy(Handle<Object> handler,
1770                                            Handle<Object> call_trap,
1771                                            Handle<Object> construct_trap,
1772                                            Handle<Object> prototype) {
1773  // Allocate map.
1774  // TODO(rossberg): Once we optimize proxies, think about a scheme to share
1775  // maps. Will probably depend on the identity of the handler object, too.
1776  Handle<Map> map = NewMap(JS_FUNCTION_PROXY_TYPE, JSFunctionProxy::kSize);
1777  map->set_prototype(*prototype);
1778
1779  // Allocate the proxy object.
1780  Handle<JSFunctionProxy> result = New<JSFunctionProxy>(map, NEW_SPACE);
1781  result->InitializeBody(map->instance_size(), Smi::FromInt(0));
1782  result->set_handler(*handler);
1783  result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
1784  result->set_call_trap(*call_trap);
1785  result->set_construct_trap(*construct_trap);
1786  return result;
1787}
1788
1789
1790void Factory::ReinitializeJSReceiver(Handle<JSReceiver> object,
1791                                     InstanceType type,
1792                                     int size) {
1793  ASSERT(type >= FIRST_JS_OBJECT_TYPE);
1794
1795  // Allocate fresh map.
1796  // TODO(rossberg): Once we optimize proxies, cache these maps.
1797  Handle<Map> map = NewMap(type, size);
1798
1799  // Check that the receiver has at least the size of the fresh object.
1800  int size_difference = object->map()->instance_size() - map->instance_size();
1801  ASSERT(size_difference >= 0);
1802
1803  map->set_prototype(object->map()->prototype());
1804
1805  // Allocate the backing storage for the properties.
1806  int prop_size = map->InitialPropertiesLength();
1807  Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1808
1809  Heap* heap = isolate()->heap();
1810  MaybeHandle<SharedFunctionInfo> shared;
1811  if (type == JS_FUNCTION_TYPE) {
1812    OneByteStringKey key(STATIC_ASCII_VECTOR("<freezing call trap>"),
1813                         heap->HashSeed());
1814    Handle<String> name = InternalizeStringWithKey(&key);
1815    shared = NewSharedFunctionInfo(name, MaybeHandle<Code>());
1816  }
1817
1818  // In order to keep heap in consistent state there must be no allocations
1819  // before object re-initialization is finished and filler object is installed.
1820  DisallowHeapAllocation no_allocation;
1821
1822  // Reset the map for the object.
1823  object->set_map(*map);
1824  Handle<JSObject> jsobj = Handle<JSObject>::cast(object);
1825
1826  // Reinitialize the object from the constructor map.
1827  heap->InitializeJSObjectFromMap(*jsobj, *properties, *map);
1828
1829  // Functions require some minimal initialization.
1830  if (type == JS_FUNCTION_TYPE) {
1831    map->set_function_with_prototype(true);
1832    Handle<JSFunction> js_function = Handle<JSFunction>::cast(object);
1833    Handle<Context> context(isolate()->context()->native_context());
1834    InitializeFunction(js_function, shared.ToHandleChecked(), context);
1835  }
1836
1837  // Put in filler if the new object is smaller than the old.
1838  if (size_difference > 0) {
1839    heap->CreateFillerObjectAt(
1840        object->address() + map->instance_size(), size_difference);
1841  }
1842}
1843
1844
1845void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
1846                                        Handle<JSFunction> constructor) {
1847  ASSERT(constructor->has_initial_map());
1848  Handle<Map> map(constructor->initial_map(), isolate());
1849
1850  // The proxy's hash should be retained across reinitialization.
1851  Handle<Object> hash(object->hash(), isolate());
1852
1853  // Check that the already allocated object has the same size and type as
1854  // objects allocated using the constructor.
1855  ASSERT(map->instance_size() == object->map()->instance_size());
1856  ASSERT(map->instance_type() == object->map()->instance_type());
1857
1858  // Allocate the backing storage for the properties.
1859  int prop_size = map->InitialPropertiesLength();
1860  Handle<FixedArray> properties = NewFixedArray(prop_size, TENURED);
1861
1862  // In order to keep heap in consistent state there must be no allocations
1863  // before object re-initialization is finished.
1864  DisallowHeapAllocation no_allocation;
1865
1866  // Reset the map for the object.
1867  object->set_map(constructor->initial_map());
1868
1869  Heap* heap = isolate()->heap();
1870  // Reinitialize the object from the constructor map.
1871  heap->InitializeJSObjectFromMap(*object, *properties, *map);
1872
1873  // Restore the saved hash.
1874  object->set_hash(*hash);
1875}
1876
1877
1878void Factory::BecomeJSObject(Handle<JSReceiver> object) {
1879  ReinitializeJSReceiver(object, JS_OBJECT_TYPE, JSObject::kHeaderSize);
1880}
1881
1882
1883void Factory::BecomeJSFunction(Handle<JSReceiver> object) {
1884  ReinitializeJSReceiver(object, JS_FUNCTION_TYPE, JSFunction::kSize);
1885}
1886
1887
1888Handle<FixedArray> Factory::NewTypeFeedbackVector(int slot_count) {
1889  // Ensure we can skip the write barrier
1890  ASSERT_EQ(isolate()->heap()->uninitialized_symbol(),
1891            *TypeFeedbackInfo::UninitializedSentinel(isolate()));
1892
1893  CALL_HEAP_FUNCTION(
1894      isolate(),
1895      isolate()->heap()->AllocateFixedArrayWithFiller(
1896          slot_count,
1897          TENURED,
1898          *TypeFeedbackInfo::UninitializedSentinel(isolate())),
1899      FixedArray);
1900}
1901
1902
1903Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1904    Handle<String> name,
1905    int number_of_literals,
1906    bool is_generator,
1907    Handle<Code> code,
1908    Handle<ScopeInfo> scope_info,
1909    Handle<FixedArray> feedback_vector) {
1910  Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(name, code);
1911  shared->set_scope_info(*scope_info);
1912  shared->set_feedback_vector(*feedback_vector);
1913  int literals_array_size = number_of_literals;
1914  // If the function contains object, regexp or array literals,
1915  // allocate extra space for a literals array prefix containing the
1916  // context.
1917  if (number_of_literals > 0) {
1918    literals_array_size += JSFunction::kLiteralsPrefixSize;
1919  }
1920  shared->set_num_literals(literals_array_size);
1921  if (is_generator) {
1922    shared->set_instance_class_name(isolate()->heap()->Generator_string());
1923    shared->DisableOptimization(kGenerator);
1924  }
1925  return shared;
1926}
1927
1928
1929Handle<JSMessageObject> Factory::NewJSMessageObject(
1930    Handle<String> type,
1931    Handle<JSArray> arguments,
1932    int start_position,
1933    int end_position,
1934    Handle<Object> script,
1935    Handle<Object> stack_frames) {
1936  Handle<Map> map = message_object_map();
1937  Handle<JSMessageObject> message = New<JSMessageObject>(map, NEW_SPACE);
1938  message->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1939  message->initialize_elements();
1940  message->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1941  message->set_type(*type);
1942  message->set_arguments(*arguments);
1943  message->set_start_position(start_position);
1944  message->set_end_position(end_position);
1945  message->set_script(*script);
1946  message->set_stack_frames(*stack_frames);
1947  return message;
1948}
1949
1950
1951Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
1952    Handle<String> name,
1953    MaybeHandle<Code> maybe_code) {
1954  Handle<Map> map = shared_function_info_map();
1955  Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map,
1956                                                             OLD_POINTER_SPACE);
1957
1958  // Set pointer fields.
1959  share->set_name(*name);
1960  Handle<Code> code;
1961  if (!maybe_code.ToHandle(&code)) {
1962    code = handle(isolate()->builtins()->builtin(Builtins::kIllegal));
1963  }
1964  share->set_code(*code);
1965  share->set_optimized_code_map(Smi::FromInt(0));
1966  share->set_scope_info(ScopeInfo::Empty(isolate()));
1967  Code* construct_stub =
1968      isolate()->builtins()->builtin(Builtins::kJSConstructStubGeneric);
1969  share->set_construct_stub(construct_stub);
1970  share->set_instance_class_name(*Object_string());
1971  share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
1972  share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
1973  share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
1974  share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
1975  share->set_feedback_vector(*empty_fixed_array(), SKIP_WRITE_BARRIER);
1976  share->set_profiler_ticks(0);
1977  share->set_ast_node_count(0);
1978  share->set_counters(0);
1979
1980  // Set integer fields (smi or int, depending on the architecture).
1981  share->set_length(0);
1982  share->set_formal_parameter_count(0);
1983  share->set_expected_nof_properties(0);
1984  share->set_num_literals(0);
1985  share->set_start_position_and_type(0);
1986  share->set_end_position(0);
1987  share->set_function_token_position(0);
1988  // All compiler hints default to false or 0.
1989  share->set_compiler_hints(0);
1990  share->set_opt_count_and_bailout_reason(0);
1991
1992  return share;
1993}
1994
1995
1996static inline int NumberCacheHash(Handle<FixedArray> cache,
1997                                  Handle<Object> number) {
1998  int mask = (cache->length() >> 1) - 1;
1999  if (number->IsSmi()) {
2000    return Handle<Smi>::cast(number)->value() & mask;
2001  } else {
2002    DoubleRepresentation rep(number->Number());
2003    return
2004        (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
2005  }
2006}
2007
2008
2009Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
2010  DisallowHeapAllocation no_gc;
2011  int hash = NumberCacheHash(number_string_cache(), number);
2012  Object* key = number_string_cache()->get(hash * 2);
2013  if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
2014                         key->Number() == number->Number())) {
2015    return Handle<String>(
2016        String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
2017  }
2018  return undefined_value();
2019}
2020
2021
2022void Factory::SetNumberStringCache(Handle<Object> number,
2023                                   Handle<String> string) {
2024  int hash = NumberCacheHash(number_string_cache(), number);
2025  if (number_string_cache()->get(hash * 2) != *undefined_value()) {
2026    int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
2027    if (number_string_cache()->length() != full_size) {
2028      // The first time we have a hash collision, we move to the full sized
2029      // number string cache.  The idea is to have a small number string
2030      // cache in the snapshot to keep  boot-time memory usage down.
2031      // If we expand the number string cache already while creating
2032      // the snapshot then that didn't work out.
2033      ASSERT(!isolate()->serializer_enabled() || FLAG_extra_code != NULL);
2034      Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
2035      isolate()->heap()->set_number_string_cache(*new_cache);
2036      return;
2037    }
2038  }
2039  number_string_cache()->set(hash * 2, *number);
2040  number_string_cache()->set(hash * 2 + 1, *string);
2041}
2042
2043
2044Handle<String> Factory::NumberToString(Handle<Object> number,
2045                                       bool check_number_string_cache) {
2046  isolate()->counters()->number_to_string_runtime()->Increment();
2047  if (check_number_string_cache) {
2048    Handle<Object> cached = GetNumberStringCache(number);
2049    if (!cached->IsUndefined()) return Handle<String>::cast(cached);
2050  }
2051
2052  char arr[100];
2053  Vector<char> buffer(arr, ARRAY_SIZE(arr));
2054  const char* str;
2055  if (number->IsSmi()) {
2056    int num = Handle<Smi>::cast(number)->value();
2057    str = IntToCString(num, buffer);
2058  } else {
2059    double num = Handle<HeapNumber>::cast(number)->value();
2060    str = DoubleToCString(num, buffer);
2061  }
2062
2063  // We tenure the allocated string since it is referenced from the
2064  // number-string cache which lives in the old space.
2065  Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
2066  SetNumberStringCache(number, js_string);
2067  return js_string;
2068}
2069
2070
2071Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
2072  // Get the original code of the function.
2073  Handle<Code> code(shared->code());
2074
2075  // Create a copy of the code before allocating the debug info object to avoid
2076  // allocation while setting up the debug info object.
2077  Handle<Code> original_code(*Factory::CopyCode(code));
2078
2079  // Allocate initial fixed array for active break points before allocating the
2080  // debug info object to avoid allocation while setting up the debug info
2081  // object.
2082  Handle<FixedArray> break_points(
2083      NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
2084
2085  // Create and set up the debug info object. Debug info contains function, a
2086  // copy of the original code, the executing code and initial fixed array for
2087  // active break points.
2088  Handle<DebugInfo> debug_info =
2089      Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
2090  debug_info->set_shared(*shared);
2091  debug_info->set_original_code(*original_code);
2092  debug_info->set_code(*code);
2093  debug_info->set_break_points(*break_points);
2094
2095  // Link debug info to function.
2096  shared->set_debug_info(*debug_info);
2097
2098  return debug_info;
2099}
2100
2101
2102Handle<JSObject> Factory::NewArgumentsObject(Handle<Object> callee,
2103                                             int length) {
2104  CALL_HEAP_FUNCTION(
2105      isolate(),
2106      isolate()->heap()->AllocateArgumentsObject(*callee, length), JSObject);
2107}
2108
2109
2110Handle<JSFunction> Factory::CreateApiFunction(
2111    Handle<FunctionTemplateInfo> obj,
2112    Handle<Object> prototype,
2113    ApiInstanceType instance_type) {
2114  Handle<Code> code = isolate()->builtins()->HandleApiCall();
2115  Handle<Code> construct_stub = isolate()->builtins()->JSConstructStubApi();
2116
2117  Handle<JSFunction> result;
2118  if (obj->remove_prototype()) {
2119    result = NewFunctionWithoutPrototype(empty_string(), code);
2120  } else {
2121    int internal_field_count = 0;
2122    if (!obj->instance_template()->IsUndefined()) {
2123      Handle<ObjectTemplateInfo> instance_template =
2124          Handle<ObjectTemplateInfo>(
2125              ObjectTemplateInfo::cast(obj->instance_template()));
2126      internal_field_count =
2127          Smi::cast(instance_template->internal_field_count())->value();
2128    }
2129
2130    // TODO(svenpanne) Kill ApiInstanceType and refactor things by generalizing
2131    // JSObject::GetHeaderSize.
2132    int instance_size = kPointerSize * internal_field_count;
2133    InstanceType type;
2134    switch (instance_type) {
2135      case JavaScriptObject:
2136        type = JS_OBJECT_TYPE;
2137        instance_size += JSObject::kHeaderSize;
2138        break;
2139      case InnerGlobalObject:
2140        type = JS_GLOBAL_OBJECT_TYPE;
2141        instance_size += JSGlobalObject::kSize;
2142        break;
2143      case OuterGlobalObject:
2144        type = JS_GLOBAL_PROXY_TYPE;
2145        instance_size += JSGlobalProxy::kSize;
2146        break;
2147      default:
2148        UNREACHABLE();
2149        type = JS_OBJECT_TYPE;  // Keep the compiler happy.
2150        break;
2151    }
2152
2153    result = NewFunction(empty_string(), code, prototype, type,
2154                         instance_size, obj->read_only_prototype());
2155  }
2156
2157  result->shared()->set_length(obj->length());
2158  Handle<Object> class_name(obj->class_name(), isolate());
2159  if (class_name->IsString()) {
2160    result->shared()->set_instance_class_name(*class_name);
2161    result->shared()->set_name(*class_name);
2162  }
2163  result->shared()->set_function_data(*obj);
2164  result->shared()->set_construct_stub(*construct_stub);
2165  result->shared()->DontAdaptArguments();
2166
2167  if (obj->remove_prototype()) {
2168    ASSERT(result->shared()->IsApiFunction());
2169    ASSERT(!result->has_initial_map());
2170    ASSERT(!result->has_prototype());
2171    return result;
2172  }
2173
2174  JSObject::SetOwnPropertyIgnoreAttributes(
2175      handle(JSObject::cast(result->prototype())),
2176      constructor_string(),
2177      result,
2178      DONT_ENUM).Assert();
2179
2180  // Down from here is only valid for API functions that can be used as a
2181  // constructor (don't set the "remove prototype" flag).
2182
2183  Handle<Map> map(result->initial_map());
2184
2185  // Mark as undetectable if needed.
2186  if (obj->undetectable()) {
2187    map->set_is_undetectable();
2188  }
2189
2190  // Mark as hidden for the __proto__ accessor if needed.
2191  if (obj->hidden_prototype()) {
2192    map->set_is_hidden_prototype();
2193  }
2194
2195  // Mark as needs_access_check if needed.
2196  if (obj->needs_access_check()) {
2197    map->set_is_access_check_needed(true);
2198  }
2199
2200  // Set interceptor information in the map.
2201  if (!obj->named_property_handler()->IsUndefined()) {
2202    map->set_has_named_interceptor();
2203  }
2204  if (!obj->indexed_property_handler()->IsUndefined()) {
2205    map->set_has_indexed_interceptor();
2206  }
2207
2208  // Set instance call-as-function information in the map.
2209  if (!obj->instance_call_handler()->IsUndefined()) {
2210    map->set_has_instance_call_handler();
2211  }
2212
2213  // Recursively copy parent instance templates' accessors,
2214  // 'data' may be modified.
2215  int max_number_of_additional_properties = 0;
2216  int max_number_of_static_properties = 0;
2217  FunctionTemplateInfo* info = *obj;
2218  while (true) {
2219    if (!info->instance_template()->IsUndefined()) {
2220      Object* props =
2221          ObjectTemplateInfo::cast(
2222              info->instance_template())->property_accessors();
2223      if (!props->IsUndefined()) {
2224        Handle<Object> props_handle(props, isolate());
2225        NeanderArray props_array(props_handle);
2226        max_number_of_additional_properties += props_array.length();
2227      }
2228    }
2229    if (!info->property_accessors()->IsUndefined()) {
2230      Object* props = info->property_accessors();
2231      if (!props->IsUndefined()) {
2232        Handle<Object> props_handle(props, isolate());
2233        NeanderArray props_array(props_handle);
2234        max_number_of_static_properties += props_array.length();
2235      }
2236    }
2237    Object* parent = info->parent_template();
2238    if (parent->IsUndefined()) break;
2239    info = FunctionTemplateInfo::cast(parent);
2240  }
2241
2242  Map::EnsureDescriptorSlack(map, max_number_of_additional_properties);
2243
2244  // Use a temporary FixedArray to acculumate static accessors
2245  int valid_descriptors = 0;
2246  Handle<FixedArray> array;
2247  if (max_number_of_static_properties > 0) {
2248    array = NewFixedArray(max_number_of_static_properties);
2249  }
2250
2251  while (true) {
2252    // Install instance descriptors
2253    if (!obj->instance_template()->IsUndefined()) {
2254      Handle<ObjectTemplateInfo> instance =
2255          Handle<ObjectTemplateInfo>(
2256              ObjectTemplateInfo::cast(obj->instance_template()), isolate());
2257      Handle<Object> props = Handle<Object>(instance->property_accessors(),
2258                                            isolate());
2259      if (!props->IsUndefined()) {
2260        Map::AppendCallbackDescriptors(map, props);
2261      }
2262    }
2263    // Accumulate static accessors
2264    if (!obj->property_accessors()->IsUndefined()) {
2265      Handle<Object> props = Handle<Object>(obj->property_accessors(),
2266                                            isolate());
2267      valid_descriptors =
2268          AccessorInfo::AppendUnique(props, array, valid_descriptors);
2269    }
2270    // Climb parent chain
2271    Handle<Object> parent = Handle<Object>(obj->parent_template(), isolate());
2272    if (parent->IsUndefined()) break;
2273    obj = Handle<FunctionTemplateInfo>::cast(parent);
2274  }
2275
2276  // Install accumulated static accessors
2277  for (int i = 0; i < valid_descriptors; i++) {
2278    Handle<AccessorInfo> accessor(AccessorInfo::cast(array->get(i)));
2279    JSObject::SetAccessor(result, accessor).Assert();
2280  }
2281
2282  ASSERT(result->shared()->IsApiFunction());
2283  return result;
2284}
2285
2286
2287Handle<MapCache> Factory::AddToMapCache(Handle<Context> context,
2288                                        Handle<FixedArray> keys,
2289                                        Handle<Map> map) {
2290  Handle<MapCache> map_cache = handle(MapCache::cast(context->map_cache()));
2291  Handle<MapCache> result = MapCache::Put(map_cache, keys, map);
2292  context->set_map_cache(*result);
2293  return result;
2294}
2295
2296
2297Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
2298                                               Handle<FixedArray> keys) {
2299  if (context->map_cache()->IsUndefined()) {
2300    // Allocate the new map cache for the native context.
2301    Handle<MapCache> new_cache = MapCache::New(isolate(), 24);
2302    context->set_map_cache(*new_cache);
2303  }
2304  // Check to see whether there is a matching element in the cache.
2305  Handle<MapCache> cache =
2306      Handle<MapCache>(MapCache::cast(context->map_cache()));
2307  Handle<Object> result = Handle<Object>(cache->Lookup(*keys), isolate());
2308  if (result->IsMap()) return Handle<Map>::cast(result);
2309  // Create a new map and add it to the cache.
2310  Handle<Map> map = Map::Create(
2311      handle(context->object_function()), keys->length());
2312  AddToMapCache(context, keys, map);
2313  return map;
2314}
2315
2316
2317void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
2318                                JSRegExp::Type type,
2319                                Handle<String> source,
2320                                JSRegExp::Flags flags,
2321                                Handle<Object> data) {
2322  Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
2323
2324  store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2325  store->set(JSRegExp::kSourceIndex, *source);
2326  store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2327  store->set(JSRegExp::kAtomPatternIndex, *data);
2328  regexp->set_data(*store);
2329}
2330
2331void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
2332                                    JSRegExp::Type type,
2333                                    Handle<String> source,
2334                                    JSRegExp::Flags flags,
2335                                    int capture_count) {
2336  Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
2337  Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
2338  store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
2339  store->set(JSRegExp::kSourceIndex, *source);
2340  store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags.value()));
2341  store->set(JSRegExp::kIrregexpASCIICodeIndex, uninitialized);
2342  store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
2343  store->set(JSRegExp::kIrregexpASCIICodeSavedIndex, uninitialized);
2344  store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
2345  store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
2346  store->set(JSRegExp::kIrregexpCaptureCountIndex,
2347             Smi::FromInt(capture_count));
2348  regexp->set_data(*store);
2349}
2350
2351
2352
2353MaybeHandle<FunctionTemplateInfo> Factory::ConfigureInstance(
2354    Handle<FunctionTemplateInfo> desc, Handle<JSObject> instance) {
2355  // Configure the instance by adding the properties specified by the
2356  // instance template.
2357  Handle<Object> instance_template(desc->instance_template(), isolate());
2358  if (!instance_template->IsUndefined()) {
2359      RETURN_ON_EXCEPTION(
2360          isolate(),
2361          Execution::ConfigureInstance(isolate(), instance, instance_template),
2362          FunctionTemplateInfo);
2363  }
2364  return desc;
2365}
2366
2367
2368Handle<Object> Factory::GlobalConstantFor(Handle<String> name) {
2369  if (String::Equals(name, undefined_string())) return undefined_value();
2370  if (String::Equals(name, nan_string())) return nan_value();
2371  if (String::Equals(name, infinity_string())) return infinity_value();
2372  return Handle<Object>::null();
2373}
2374
2375
2376Handle<Object> Factory::ToBoolean(bool value) {
2377  return value ? true_value() : false_value();
2378}
2379
2380
2381} }  // namespace v8::internal
2382