1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_IA32
8
9#include "src/codegen.h"
10#include "src/deoptimizer.h"
11#include "src/full-codegen.h"
12#include "src/safepoint-table.h"
13
14namespace v8 {
15namespace internal {
16
17const int Deoptimizer::table_entry_size_ = 10;
18
19
20int Deoptimizer::patch_size() {
21  return Assembler::kCallInstructionLength;
22}
23
24
25void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
26  Isolate* isolate = code->GetIsolate();
27  HandleScope scope(isolate);
28
29  // Compute the size of relocation information needed for the code
30  // patching in Deoptimizer::DeoptimizeFunction.
31  int min_reloc_size = 0;
32  int prev_pc_offset = 0;
33  DeoptimizationInputData* deopt_data =
34      DeoptimizationInputData::cast(code->deoptimization_data());
35  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
36    int pc_offset = deopt_data->Pc(i)->value();
37    if (pc_offset == -1) continue;
38    ASSERT_GE(pc_offset, prev_pc_offset);
39    int pc_delta = pc_offset - prev_pc_offset;
40    // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
41    // if encodable with small pc delta encoding and up to 6 bytes
42    // otherwise.
43    if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
44      min_reloc_size += 2;
45    } else {
46      min_reloc_size += 6;
47    }
48    prev_pc_offset = pc_offset;
49  }
50
51  // If the relocation information is not big enough we create a new
52  // relocation info object that is padded with comments to make it
53  // big enough for lazy doptimization.
54  int reloc_length = code->relocation_info()->length();
55  if (min_reloc_size > reloc_length) {
56    int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
57    // Padding needed.
58    int min_padding = min_reloc_size - reloc_length;
59    // Number of comments needed to take up at least that much space.
60    int additional_comments =
61        (min_padding + comment_reloc_size - 1) / comment_reloc_size;
62    // Actual padding size.
63    int padding = additional_comments * comment_reloc_size;
64    // Allocate new relocation info and copy old relocation to the end
65    // of the new relocation info array because relocation info is
66    // written and read backwards.
67    Factory* factory = isolate->factory();
68    Handle<ByteArray> new_reloc =
69        factory->NewByteArray(reloc_length + padding, TENURED);
70    MemCopy(new_reloc->GetDataStartAddress() + padding,
71            code->relocation_info()->GetDataStartAddress(), reloc_length);
72    // Create a relocation writer to write the comments in the padding
73    // space. Use position 0 for everything to ensure short encoding.
74    RelocInfoWriter reloc_info_writer(
75        new_reloc->GetDataStartAddress() + padding, 0);
76    intptr_t comment_string
77        = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
78    RelocInfo rinfo(0, RelocInfo::COMMENT, comment_string, NULL);
79    for (int i = 0; i < additional_comments; ++i) {
80#ifdef DEBUG
81      byte* pos_before = reloc_info_writer.pos();
82#endif
83      reloc_info_writer.Write(&rinfo);
84      ASSERT(RelocInfo::kMinRelocCommentSize ==
85             pos_before - reloc_info_writer.pos());
86    }
87    // Replace relocation information on the code object.
88    code->set_relocation_info(*new_reloc);
89  }
90}
91
92
93void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
94  Address code_start_address = code->instruction_start();
95
96  if (FLAG_zap_code_space) {
97    // Fail hard and early if we enter this code object again.
98    byte* pointer = code->FindCodeAgeSequence();
99    if (pointer != NULL) {
100      pointer += kNoCodeAgeSequenceLength;
101    } else {
102      pointer = code->instruction_start();
103    }
104    CodePatcher patcher(pointer, 1);
105    patcher.masm()->int3();
106
107    DeoptimizationInputData* data =
108        DeoptimizationInputData::cast(code->deoptimization_data());
109    int osr_offset = data->OsrPcOffset()->value();
110    if (osr_offset > 0) {
111      CodePatcher osr_patcher(code->instruction_start() + osr_offset, 1);
112      osr_patcher.masm()->int3();
113    }
114  }
115
116  // We will overwrite the code's relocation info in-place. Relocation info
117  // is written backward. The relocation info is the payload of a byte
118  // array.  Later on we will slide this to the start of the byte array and
119  // create a filler object in the remaining space.
120  ByteArray* reloc_info = code->relocation_info();
121  Address reloc_end_address = reloc_info->address() + reloc_info->Size();
122  RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);
123
124  // Since the call is a relative encoding, write new
125  // reloc info.  We do not need any of the existing reloc info because the
126  // existing code will not be used again (we zap it in debug builds).
127  //
128  // Emit call to lazy deoptimization at all lazy deopt points.
129  DeoptimizationInputData* deopt_data =
130      DeoptimizationInputData::cast(code->deoptimization_data());
131  SharedFunctionInfo* shared =
132      SharedFunctionInfo::cast(deopt_data->SharedFunctionInfo());
133  shared->EvictFromOptimizedCodeMap(code, "deoptimized code");
134#ifdef DEBUG
135  Address prev_call_address = NULL;
136#endif
137  // For each LLazyBailout instruction insert a call to the corresponding
138  // deoptimization entry.
139  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
140    if (deopt_data->Pc(i)->value() == -1) continue;
141    // Patch lazy deoptimization entry.
142    Address call_address = code_start_address + deopt_data->Pc(i)->value();
143    CodePatcher patcher(call_address, patch_size());
144    Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
145    patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
146    // We use RUNTIME_ENTRY for deoptimization bailouts.
147    RelocInfo rinfo(call_address + 1,  // 1 after the call opcode.
148                    RelocInfo::RUNTIME_ENTRY,
149                    reinterpret_cast<intptr_t>(deopt_entry),
150                    NULL);
151    reloc_info_writer.Write(&rinfo);
152    ASSERT_GE(reloc_info_writer.pos(),
153              reloc_info->address() + ByteArray::kHeaderSize);
154    ASSERT(prev_call_address == NULL ||
155           call_address >= prev_call_address + patch_size());
156    ASSERT(call_address + patch_size() <= code->instruction_end());
157#ifdef DEBUG
158    prev_call_address = call_address;
159#endif
160  }
161
162  // Move the relocation info to the beginning of the byte array.
163  int new_reloc_size = reloc_end_address - reloc_info_writer.pos();
164  MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_size);
165
166  // The relocation info is in place, update the size.
167  reloc_info->set_length(new_reloc_size);
168
169  // Handle the junk part after the new relocation info. We will create
170  // a non-live object in the extra space at the end of the former reloc info.
171  Address junk_address = reloc_info->address() + reloc_info->Size();
172  ASSERT(junk_address <= reloc_end_address);
173  isolate->heap()->CreateFillerObjectAt(junk_address,
174                                        reloc_end_address - junk_address);
175}
176
177
178void Deoptimizer::FillInputFrame(Address tos, JavaScriptFrame* frame) {
179  // Set the register values. The values are not important as there are no
180  // callee saved registers in JavaScript frames, so all registers are
181  // spilled. Registers ebp and esp are set to the correct values though.
182
183  for (int i = 0; i < Register::kNumRegisters; i++) {
184    input_->SetRegister(i, i * 4);
185  }
186  input_->SetRegister(esp.code(), reinterpret_cast<intptr_t>(frame->sp()));
187  input_->SetRegister(ebp.code(), reinterpret_cast<intptr_t>(frame->fp()));
188  for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; i++) {
189    input_->SetDoubleRegister(i, 0.0);
190  }
191
192  // Fill the frame content from the actual data on the frame.
193  for (unsigned i = 0; i < input_->GetFrameSize(); i += kPointerSize) {
194    input_->SetFrameSlot(i, Memory::uint32_at(tos + i));
195  }
196}
197
198
199void Deoptimizer::SetPlatformCompiledStubRegisters(
200    FrameDescription* output_frame, CodeStubInterfaceDescriptor* descriptor) {
201  intptr_t handler =
202      reinterpret_cast<intptr_t>(descriptor->deoptimization_handler_);
203  int params = descriptor->GetHandlerParameterCount();
204  output_frame->SetRegister(eax.code(), params);
205  output_frame->SetRegister(ebx.code(), handler);
206}
207
208
209void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
210  for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; ++i) {
211    double double_value = input_->GetDoubleRegister(i);
212    output_frame->SetDoubleRegister(i, double_value);
213  }
214}
215
216
217bool Deoptimizer::HasAlignmentPadding(JSFunction* function) {
218  int parameter_count = function->shared()->formal_parameter_count() + 1;
219  unsigned input_frame_size = input_->GetFrameSize();
220  unsigned alignment_state_offset =
221      input_frame_size - parameter_count * kPointerSize -
222      StandardFrameConstants::kFixedFrameSize -
223      kPointerSize;
224  ASSERT(JavaScriptFrameConstants::kDynamicAlignmentStateOffset ==
225      JavaScriptFrameConstants::kLocal0Offset);
226  int32_t alignment_state = input_->GetFrameSlot(alignment_state_offset);
227  return (alignment_state == kAlignmentPaddingPushed);
228}
229
230
231#define __ masm()->
232
233void Deoptimizer::EntryGenerator::Generate() {
234  GeneratePrologue();
235
236  // Save all general purpose registers before messing with them.
237  const int kNumberOfRegisters = Register::kNumRegisters;
238
239  const int kDoubleRegsSize = kDoubleSize *
240                              XMMRegister::kMaxNumAllocatableRegisters;
241  __ sub(esp, Immediate(kDoubleRegsSize));
242  for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; ++i) {
243    XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
244    int offset = i * kDoubleSize;
245    __ movsd(Operand(esp, offset), xmm_reg);
246  }
247
248  __ pushad();
249
250  const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
251                                      kDoubleRegsSize;
252
253  // Get the bailout id from the stack.
254  __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));
255
256  // Get the address of the location in the code object
257  // and compute the fp-to-sp delta in register edx.
258  __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
259  __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));
260
261  __ sub(edx, ebp);
262  __ neg(edx);
263
264  // Allocate a new deoptimizer object.
265  __ PrepareCallCFunction(6, eax);
266  __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
267  __ mov(Operand(esp, 0 * kPointerSize), eax);  // Function.
268  __ mov(Operand(esp, 1 * kPointerSize), Immediate(type()));  // Bailout type.
269  __ mov(Operand(esp, 2 * kPointerSize), ebx);  // Bailout id.
270  __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Code address or 0.
271  __ mov(Operand(esp, 4 * kPointerSize), edx);  // Fp-to-sp delta.
272  __ mov(Operand(esp, 5 * kPointerSize),
273         Immediate(ExternalReference::isolate_address(isolate())));
274  {
275    AllowExternalCallThatCantCauseGC scope(masm());
276    __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
277  }
278
279  // Preserve deoptimizer object in register eax and get the input
280  // frame descriptor pointer.
281  __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));
282
283  // Fill in the input registers.
284  for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
285    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
286    __ pop(Operand(ebx, offset));
287  }
288
289  int double_regs_offset = FrameDescription::double_registers_offset();
290  // Fill in the double input registers.
291  for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; ++i) {
292    int dst_offset = i * kDoubleSize + double_regs_offset;
293    int src_offset = i * kDoubleSize;
294    __ movsd(xmm0, Operand(esp, src_offset));
295    __ movsd(Operand(ebx, dst_offset), xmm0);
296  }
297
298  // Clear FPU all exceptions.
299  // TODO(ulan): Find out why the TOP register is not zero here in some cases,
300  // and check that the generated code never deoptimizes with unbalanced stack.
301  __ fnclex();
302
303  // Remove the bailout id, return address and the double registers.
304  __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));
305
306  // Compute a pointer to the unwinding limit in register ecx; that is
307  // the first stack slot not part of the input frame.
308  __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
309  __ add(ecx, esp);
310
311  // Unwind the stack down to - but not including - the unwinding
312  // limit and copy the contents of the activation frame to the input
313  // frame description.
314  __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
315  Label pop_loop_header;
316  __ jmp(&pop_loop_header);
317  Label pop_loop;
318  __ bind(&pop_loop);
319  __ pop(Operand(edx, 0));
320  __ add(edx, Immediate(sizeof(uint32_t)));
321  __ bind(&pop_loop_header);
322  __ cmp(ecx, esp);
323  __ j(not_equal, &pop_loop);
324
325  // Compute the output frame in the deoptimizer.
326  __ push(eax);
327  __ PrepareCallCFunction(1, ebx);
328  __ mov(Operand(esp, 0 * kPointerSize), eax);
329  {
330    AllowExternalCallThatCantCauseGC scope(masm());
331    __ CallCFunction(
332        ExternalReference::compute_output_frames_function(isolate()), 1);
333  }
334  __ pop(eax);
335
336  // If frame was dynamically aligned, pop padding.
337  Label no_padding;
338  __ cmp(Operand(eax, Deoptimizer::has_alignment_padding_offset()),
339         Immediate(0));
340  __ j(equal, &no_padding);
341  __ pop(ecx);
342  if (FLAG_debug_code) {
343    __ cmp(ecx, Immediate(kAlignmentZapValue));
344    __ Assert(equal, kAlignmentMarkerExpected);
345  }
346  __ bind(&no_padding);
347
348  // Replace the current frame with the output frames.
349  Label outer_push_loop, inner_push_loop,
350      outer_loop_header, inner_loop_header;
351  // Outer loop state: eax = current FrameDescription**, edx = one past the
352  // last FrameDescription**.
353  __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
354  __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
355  __ lea(edx, Operand(eax, edx, times_4, 0));
356  __ jmp(&outer_loop_header);
357  __ bind(&outer_push_loop);
358  // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
359  __ mov(ebx, Operand(eax, 0));
360  __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
361  __ jmp(&inner_loop_header);
362  __ bind(&inner_push_loop);
363  __ sub(ecx, Immediate(sizeof(uint32_t)));
364  __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
365  __ bind(&inner_loop_header);
366  __ test(ecx, ecx);
367  __ j(not_zero, &inner_push_loop);
368  __ add(eax, Immediate(kPointerSize));
369  __ bind(&outer_loop_header);
370  __ cmp(eax, edx);
371  __ j(below, &outer_push_loop);
372
373  // In case of a failed STUB, we have to restore the XMM registers.
374  for (int i = 0; i < XMMRegister::kMaxNumAllocatableRegisters; ++i) {
375    XMMRegister xmm_reg = XMMRegister::FromAllocationIndex(i);
376    int src_offset = i * kDoubleSize + double_regs_offset;
377    __ movsd(xmm_reg, Operand(ebx, src_offset));
378  }
379
380  // Push state, pc, and continuation from the last output frame.
381  __ push(Operand(ebx, FrameDescription::state_offset()));
382  __ push(Operand(ebx, FrameDescription::pc_offset()));
383  __ push(Operand(ebx, FrameDescription::continuation_offset()));
384
385
386  // Push the registers from the last output frame.
387  for (int i = 0; i < kNumberOfRegisters; i++) {
388    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
389    __ push(Operand(ebx, offset));
390  }
391
392  // Restore the registers from the stack.
393  __ popad();
394
395  // Return to the continuation point.
396  __ ret(0);
397}
398
399
400void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
401  // Create a sequence of deoptimization entries.
402  Label done;
403  for (int i = 0; i < count(); i++) {
404    int start = masm()->pc_offset();
405    USE(start);
406    __ push_imm32(i);
407    __ jmp(&done);
408    ASSERT(masm()->pc_offset() - start == table_entry_size_);
409  }
410  __ bind(&done);
411}
412
413
414void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
415  SetFrameSlot(offset, value);
416}
417
418
419void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
420  SetFrameSlot(offset, value);
421}
422
423
424void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
425  // No out-of-line constant pool support.
426  UNREACHABLE();
427}
428
429
430#undef __
431
432
433} }  // namespace v8::internal
434
435#endif  // V8_TARGET_ARCH_IA32
436