1// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2012 the V8 project authors. All rights reserved.
34
35
36#ifndef V8_MIPS_ASSEMBLER_MIPS_H_
37#define V8_MIPS_ASSEMBLER_MIPS_H_
38
39#include <stdio.h>
40
41#include "src/assembler.h"
42#include "src/mips/constants-mips.h"
43#include "src/serialize.h"
44
45namespace v8 {
46namespace internal {
47
48// CPU Registers.
49//
50// 1) We would prefer to use an enum, but enum values are assignment-
51// compatible with int, which has caused code-generation bugs.
52//
53// 2) We would prefer to use a class instead of a struct but we don't like
54// the register initialization to depend on the particular initialization
55// order (which appears to be different on OS X, Linux, and Windows for the
56// installed versions of C++ we tried). Using a struct permits C-style
57// "initialization". Also, the Register objects cannot be const as this
58// forces initialization stubs in MSVC, making us dependent on initialization
59// order.
60//
61// 3) By not using an enum, we are possibly preventing the compiler from
62// doing certain constant folds, which may significantly reduce the
63// code generated for some assembly instructions (because they boil down
64// to a few constants). If this is a problem, we could change the code
65// such that we use an enum in optimized mode, and the struct in debug
66// mode. This way we get the compile-time error checking in debug mode
67// and best performance in optimized code.
68
69
70// -----------------------------------------------------------------------------
71// Implementation of Register and FPURegister.
72
73// Core register.
74struct Register {
75  static const int kNumRegisters = v8::internal::kNumRegisters;
76  static const int kMaxNumAllocatableRegisters = 14;  // v0 through t6 and cp.
77  static const int kSizeInBytes = 4;
78  static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
79
80#if defined(V8_TARGET_LITTLE_ENDIAN)
81  static const int kMantissaOffset = 0;
82  static const int kExponentOffset = 4;
83#elif defined(V8_TARGET_BIG_ENDIAN)
84  static const int kMantissaOffset = 4;
85  static const int kExponentOffset = 0;
86#else
87#error Unknown endianness
88#endif
89
90  inline static int NumAllocatableRegisters();
91
92  static int ToAllocationIndex(Register reg) {
93    ASSERT((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
94           reg.is(from_code(kCpRegister)));
95    return reg.is(from_code(kCpRegister)) ?
96           kMaxNumAllocatableRegisters - 1 :  // Return last index for 'cp'.
97           reg.code() - 2;  // zero_reg and 'at' are skipped.
98  }
99
100  static Register FromAllocationIndex(int index) {
101    ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
102    return index == kMaxNumAllocatableRegisters - 1 ?
103           from_code(kCpRegister) :  // Last index is always the 'cp' register.
104           from_code(index + 2);  // zero_reg and 'at' are skipped.
105  }
106
107  static const char* AllocationIndexToString(int index) {
108    ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
109    const char* const names[] = {
110      "v0",
111      "v1",
112      "a0",
113      "a1",
114      "a2",
115      "a3",
116      "t0",
117      "t1",
118      "t2",
119      "t3",
120      "t4",
121      "t5",
122      "t6",
123      "s7",
124    };
125    return names[index];
126  }
127
128  static Register from_code(int code) {
129    Register r = { code };
130    return r;
131  }
132
133  bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
134  bool is(Register reg) const { return code_ == reg.code_; }
135  int code() const {
136    ASSERT(is_valid());
137    return code_;
138  }
139  int bit() const {
140    ASSERT(is_valid());
141    return 1 << code_;
142  }
143
144  // Unfortunately we can't make this private in a struct.
145  int code_;
146};
147
148#define REGISTER(N, C) \
149  const int kRegister_ ## N ## _Code = C; \
150  const Register N = { C }
151
152REGISTER(no_reg, -1);
153// Always zero.
154REGISTER(zero_reg, 0);
155// at: Reserved for synthetic instructions.
156REGISTER(at, 1);
157// v0, v1: Used when returning multiple values from subroutines.
158REGISTER(v0, 2);
159REGISTER(v1, 3);
160// a0 - a4: Used to pass non-FP parameters.
161REGISTER(a0, 4);
162REGISTER(a1, 5);
163REGISTER(a2, 6);
164REGISTER(a3, 7);
165// t0 - t9: Can be used without reservation, act as temporary registers and are
166// allowed to be destroyed by subroutines.
167REGISTER(t0, 8);
168REGISTER(t1, 9);
169REGISTER(t2, 10);
170REGISTER(t3, 11);
171REGISTER(t4, 12);
172REGISTER(t5, 13);
173REGISTER(t6, 14);
174REGISTER(t7, 15);
175// s0 - s7: Subroutine register variables. Subroutines that write to these
176// registers must restore their values before exiting so that the caller can
177// expect the values to be preserved.
178REGISTER(s0, 16);
179REGISTER(s1, 17);
180REGISTER(s2, 18);
181REGISTER(s3, 19);
182REGISTER(s4, 20);
183REGISTER(s5, 21);
184REGISTER(s6, 22);
185REGISTER(s7, 23);
186REGISTER(t8, 24);
187REGISTER(t9, 25);
188// k0, k1: Reserved for system calls and interrupt handlers.
189REGISTER(k0, 26);
190REGISTER(k1, 27);
191// gp: Reserved.
192REGISTER(gp, 28);
193// sp: Stack pointer.
194REGISTER(sp, 29);
195// fp: Frame pointer.
196REGISTER(fp, 30);
197// ra: Return address pointer.
198REGISTER(ra, 31);
199
200#undef REGISTER
201
202
203int ToNumber(Register reg);
204
205Register ToRegister(int num);
206
207// Coprocessor register.
208struct FPURegister {
209  static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
210
211  // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
212  // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
213  // number of Double regs (64-bit regs, or FPU-reg-pairs).
214
215  // A few double registers are reserved: one as a scratch register and one to
216  // hold 0.0.
217  //  f28: 0.0
218  //  f30: scratch register.
219  static const int kNumReservedRegisters = 2;
220  static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
221      kNumReservedRegisters;
222
223  inline static int NumRegisters();
224  inline static int NumAllocatableRegisters();
225  inline static int ToAllocationIndex(FPURegister reg);
226  static const char* AllocationIndexToString(int index);
227
228  static FPURegister FromAllocationIndex(int index) {
229    ASSERT(index >= 0 && index < kMaxNumAllocatableRegisters);
230    return from_code(index * 2);
231  }
232
233  static FPURegister from_code(int code) {
234    FPURegister r = { code };
235    return r;
236  }
237
238  bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
239  bool is(FPURegister creg) const { return code_ == creg.code_; }
240  FPURegister low() const {
241    // Find low reg of a Double-reg pair, which is the reg itself.
242    ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
243    FPURegister reg;
244    reg.code_ = code_;
245    ASSERT(reg.is_valid());
246    return reg;
247  }
248  FPURegister high() const {
249    // Find high reg of a Doubel-reg pair, which is reg + 1.
250    ASSERT(code_ % 2 == 0);  // Specified Double reg must be even.
251    FPURegister reg;
252    reg.code_ = code_ + 1;
253    ASSERT(reg.is_valid());
254    return reg;
255  }
256
257  int code() const {
258    ASSERT(is_valid());
259    return code_;
260  }
261  int bit() const {
262    ASSERT(is_valid());
263    return 1 << code_;
264  }
265  void setcode(int f) {
266    code_ = f;
267    ASSERT(is_valid());
268  }
269  // Unfortunately we can't make this private in a struct.
270  int code_;
271};
272
273// V8 now supports the O32 ABI, and the FPU Registers are organized as 32
274// 32-bit registers, f0 through f31. When used as 'double' they are used
275// in pairs, starting with the even numbered register. So a double operation
276// on f0 really uses f0 and f1.
277// (Modern mips hardware also supports 32 64-bit registers, via setting
278// (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
279// but it is not in common use. Someday we will want to support this in v8.)
280
281// For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
282typedef FPURegister DoubleRegister;
283typedef FPURegister FloatRegister;
284
285const FPURegister no_freg = { -1 };
286
287const FPURegister f0 = { 0 };  // Return value in hard float mode.
288const FPURegister f1 = { 1 };
289const FPURegister f2 = { 2 };
290const FPURegister f3 = { 3 };
291const FPURegister f4 = { 4 };
292const FPURegister f5 = { 5 };
293const FPURegister f6 = { 6 };
294const FPURegister f7 = { 7 };
295const FPURegister f8 = { 8 };
296const FPURegister f9 = { 9 };
297const FPURegister f10 = { 10 };
298const FPURegister f11 = { 11 };
299const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
300const FPURegister f13 = { 13 };
301const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
302const FPURegister f15 = { 15 };
303const FPURegister f16 = { 16 };
304const FPURegister f17 = { 17 };
305const FPURegister f18 = { 18 };
306const FPURegister f19 = { 19 };
307const FPURegister f20 = { 20 };
308const FPURegister f21 = { 21 };
309const FPURegister f22 = { 22 };
310const FPURegister f23 = { 23 };
311const FPURegister f24 = { 24 };
312const FPURegister f25 = { 25 };
313const FPURegister f26 = { 26 };
314const FPURegister f27 = { 27 };
315const FPURegister f28 = { 28 };
316const FPURegister f29 = { 29 };
317const FPURegister f30 = { 30 };
318const FPURegister f31 = { 31 };
319
320// Register aliases.
321// cp is assumed to be a callee saved register.
322// Defined using #define instead of "static const Register&" because Clang
323// complains otherwise when a compilation unit that includes this header
324// doesn't use the variables.
325#define kRootRegister s6
326#define cp s7
327#define kLithiumScratchReg s3
328#define kLithiumScratchReg2 s4
329#define kLithiumScratchDouble f30
330#define kDoubleRegZero f28
331
332// FPU (coprocessor 1) control registers.
333// Currently only FCSR (#31) is implemented.
334struct FPUControlRegister {
335  bool is_valid() const { return code_ == kFCSRRegister; }
336  bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
337  int code() const {
338    ASSERT(is_valid());
339    return code_;
340  }
341  int bit() const {
342    ASSERT(is_valid());
343    return 1 << code_;
344  }
345  void setcode(int f) {
346    code_ = f;
347    ASSERT(is_valid());
348  }
349  // Unfortunately we can't make this private in a struct.
350  int code_;
351};
352
353const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
354const FPUControlRegister FCSR = { kFCSRRegister };
355
356
357// -----------------------------------------------------------------------------
358// Machine instruction Operands.
359
360// Class Operand represents a shifter operand in data processing instructions.
361class Operand BASE_EMBEDDED {
362 public:
363  // Immediate.
364  INLINE(explicit Operand(int32_t immediate,
365         RelocInfo::Mode rmode = RelocInfo::NONE32));
366  INLINE(explicit Operand(const ExternalReference& f));
367  INLINE(explicit Operand(const char* s));
368  INLINE(explicit Operand(Object** opp));
369  INLINE(explicit Operand(Context** cpp));
370  explicit Operand(Handle<Object> handle);
371  INLINE(explicit Operand(Smi* value));
372
373  // Register.
374  INLINE(explicit Operand(Register rm));
375
376  // Return true if this is a register operand.
377  INLINE(bool is_reg() const);
378
379  inline int32_t immediate() const {
380    ASSERT(!is_reg());
381    return imm32_;
382  }
383
384  Register rm() const { return rm_; }
385
386 private:
387  Register rm_;
388  int32_t imm32_;  // Valid if rm_ == no_reg.
389  RelocInfo::Mode rmode_;
390
391  friend class Assembler;
392  friend class MacroAssembler;
393};
394
395
396// On MIPS we have only one adressing mode with base_reg + offset.
397// Class MemOperand represents a memory operand in load and store instructions.
398class MemOperand : public Operand {
399 public:
400  // Immediate value attached to offset.
401  enum OffsetAddend {
402    offset_minus_one = -1,
403    offset_zero = 0
404  };
405
406  explicit MemOperand(Register rn, int32_t offset = 0);
407  explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
408                      OffsetAddend offset_addend = offset_zero);
409  int32_t offset() const { return offset_; }
410
411  bool OffsetIsInt16Encodable() const {
412    return is_int16(offset_);
413  }
414
415 private:
416  int32_t offset_;
417
418  friend class Assembler;
419};
420
421
422class Assembler : public AssemblerBase {
423 public:
424  // Create an assembler. Instructions and relocation information are emitted
425  // into a buffer, with the instructions starting from the beginning and the
426  // relocation information starting from the end of the buffer. See CodeDesc
427  // for a detailed comment on the layout (globals.h).
428  //
429  // If the provided buffer is NULL, the assembler allocates and grows its own
430  // buffer, and buffer_size determines the initial buffer size. The buffer is
431  // owned by the assembler and deallocated upon destruction of the assembler.
432  //
433  // If the provided buffer is not NULL, the assembler uses the provided buffer
434  // for code generation and assumes its size to be buffer_size. If the buffer
435  // is too small, a fatal error occurs. No deallocation of the buffer is done
436  // upon destruction of the assembler.
437  Assembler(Isolate* isolate, void* buffer, int buffer_size);
438  virtual ~Assembler() { }
439
440  // GetCode emits any pending (non-emitted) code and fills the descriptor
441  // desc. GetCode() is idempotent; it returns the same result if no other
442  // Assembler functions are invoked in between GetCode() calls.
443  void GetCode(CodeDesc* desc);
444
445  // Label operations & relative jumps (PPUM Appendix D).
446  //
447  // Takes a branch opcode (cc) and a label (L) and generates
448  // either a backward branch or a forward branch and links it
449  // to the label fixup chain. Usage:
450  //
451  // Label L;    // unbound label
452  // j(cc, &L);  // forward branch to unbound label
453  // bind(&L);   // bind label to the current pc
454  // j(cc, &L);  // backward branch to bound label
455  // bind(&L);   // illegal: a label may be bound only once
456  //
457  // Note: The same Label can be used for forward and backward branches
458  // but it may be bound only once.
459  void bind(Label* L);  // Binds an unbound label L to current code position.
460  // Determines if Label is bound and near enough so that branch instruction
461  // can be used to reach it, instead of jump instruction.
462  bool is_near(Label* L);
463
464  // Returns the branch offset to the given label from the current code
465  // position. Links the label to the current position if it is still unbound.
466  // Manages the jump elimination optimization if the second parameter is true.
467  int32_t branch_offset(Label* L, bool jump_elimination_allowed);
468  int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
469    int32_t o = branch_offset(L, jump_elimination_allowed);
470    ASSERT((o & 3) == 0);   // Assert the offset is aligned.
471    return o >> 2;
472  }
473  uint32_t jump_address(Label* L);
474
475  // Puts a labels target address at the given position.
476  // The high 8 bits are set to zero.
477  void label_at_put(Label* L, int at_offset);
478
479  // Read/Modify the code target address in the branch/call instruction at pc.
480  static Address target_address_at(Address pc);
481  static void set_target_address_at(Address pc,
482                                    Address target,
483                                    ICacheFlushMode icache_flush_mode =
484                                        FLUSH_ICACHE_IF_NEEDED);
485  // On MIPS there is no Constant Pool so we skip that parameter.
486  INLINE(static Address target_address_at(Address pc,
487                                          ConstantPoolArray* constant_pool)) {
488    return target_address_at(pc);
489  }
490  INLINE(static void set_target_address_at(Address pc,
491                                           ConstantPoolArray* constant_pool,
492                                           Address target,
493                                           ICacheFlushMode icache_flush_mode =
494                                               FLUSH_ICACHE_IF_NEEDED)) {
495    set_target_address_at(pc, target, icache_flush_mode);
496  }
497  INLINE(static Address target_address_at(Address pc, Code* code)) {
498    ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
499    return target_address_at(pc, constant_pool);
500  }
501  INLINE(static void set_target_address_at(Address pc,
502                                           Code* code,
503                                           Address target,
504                                           ICacheFlushMode icache_flush_mode =
505                                               FLUSH_ICACHE_IF_NEEDED)) {
506    ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
507    set_target_address_at(pc, constant_pool, target, icache_flush_mode);
508  }
509
510  // Return the code target address at a call site from the return address
511  // of that call in the instruction stream.
512  inline static Address target_address_from_return_address(Address pc);
513
514  static void JumpLabelToJumpRegister(Address pc);
515
516  static void QuietNaN(HeapObject* nan);
517
518  // This sets the branch destination (which gets loaded at the call address).
519  // This is for calls and branches within generated code.  The serializer
520  // has already deserialized the lui/ori instructions etc.
521  inline static void deserialization_set_special_target_at(
522      Address instruction_payload, Code* code, Address target) {
523    set_target_address_at(
524        instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
525        code,
526        target);
527  }
528
529  // Size of an instruction.
530  static const int kInstrSize = sizeof(Instr);
531
532  // Difference between address of current opcode and target address offset.
533  static const int kBranchPCOffset = 4;
534
535  // Here we are patching the address in the LUI/ORI instruction pair.
536  // These values are used in the serialization process and must be zero for
537  // MIPS platform, as Code, Embedded Object or External-reference pointers
538  // are split across two consecutive instructions and don't exist separately
539  // in the code, so the serializer should not step forwards in memory after
540  // a target is resolved and written.
541  static const int kSpecialTargetSize = 0;
542
543  // Number of consecutive instructions used to store 32bit constant.
544  // Before jump-optimizations, this constant was used in
545  // RelocInfo::target_address_address() function to tell serializer address of
546  // the instruction that follows LUI/ORI instruction pair. Now, with new jump
547  // optimization, where jump-through-register instruction that usually
548  // follows LUI/ORI pair is substituted with J/JAL, this constant equals
549  // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
550  static const int kInstructionsFor32BitConstant = 3;
551
552  // Distance between the instruction referring to the address of the call
553  // target and the return address.
554  static const int kCallTargetAddressOffset = 4 * kInstrSize;
555
556  // Distance between start of patched return sequence and the emitted address
557  // to jump to.
558  static const int kPatchReturnSequenceAddressOffset = 0;
559
560  // Distance between start of patched debug break slot and the emitted address
561  // to jump to.
562  static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
563
564  // Difference between address of current opcode and value read from pc
565  // register.
566  static const int kPcLoadDelta = 4;
567
568  static const int kPatchDebugBreakSlotReturnOffset = 4 * kInstrSize;
569
570  // Number of instructions used for the JS return sequence. The constant is
571  // used by the debugger to patch the JS return sequence.
572  static const int kJSReturnSequenceInstructions = 7;
573  static const int kDebugBreakSlotInstructions = 4;
574  static const int kDebugBreakSlotLength =
575      kDebugBreakSlotInstructions * kInstrSize;
576
577
578  // ---------------------------------------------------------------------------
579  // Code generation.
580
581  // Insert the smallest number of nop instructions
582  // possible to align the pc offset to a multiple
583  // of m. m must be a power of 2 (>= 4).
584  void Align(int m);
585  // Aligns code to something that's optimal for a jump target for the platform.
586  void CodeTargetAlign();
587
588  // Different nop operations are used by the code generator to detect certain
589  // states of the generated code.
590  enum NopMarkerTypes {
591    NON_MARKING_NOP = 0,
592    DEBUG_BREAK_NOP,
593    // IC markers.
594    PROPERTY_ACCESS_INLINED,
595    PROPERTY_ACCESS_INLINED_CONTEXT,
596    PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
597    // Helper values.
598    LAST_CODE_MARKER,
599    FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
600    // Code aging
601    CODE_AGE_MARKER_NOP = 6,
602    CODE_AGE_SEQUENCE_NOP
603  };
604
605  // Type == 0 is the default non-marking nop. For mips this is a
606  // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
607  // marking, to avoid conflict with ssnop and ehb instructions.
608  void nop(unsigned int type = 0) {
609    ASSERT(type < 32);
610    Register nop_rt_reg = (type == 0) ? zero_reg : at;
611    sll(zero_reg, nop_rt_reg, type, true);
612  }
613
614
615  // --------Branch-and-jump-instructions----------
616  // We don't use likely variant of instructions.
617  void b(int16_t offset);
618  void b(Label* L) { b(branch_offset(L, false)>>2); }
619  void bal(int16_t offset);
620  void bal(Label* L) { bal(branch_offset(L, false)>>2); }
621
622  void beq(Register rs, Register rt, int16_t offset);
623  void beq(Register rs, Register rt, Label* L) {
624    beq(rs, rt, branch_offset(L, false) >> 2);
625  }
626  void bgez(Register rs, int16_t offset);
627  void bgezal(Register rs, int16_t offset);
628  void bgtz(Register rs, int16_t offset);
629  void blez(Register rs, int16_t offset);
630  void bltz(Register rs, int16_t offset);
631  void bltzal(Register rs, int16_t offset);
632  void bne(Register rs, Register rt, int16_t offset);
633  void bne(Register rs, Register rt, Label* L) {
634    bne(rs, rt, branch_offset(L, false)>>2);
635  }
636
637  // Never use the int16_t b(l)cond version with a branch offset
638  // instead of using the Label* version.
639
640  // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
641  void j(int32_t target);
642  void jal(int32_t target);
643  void jalr(Register rs, Register rd = ra);
644  void jr(Register target);
645  void j_or_jr(int32_t target, Register rs);
646  void jal_or_jalr(int32_t target, Register rs);
647
648
649  // -------Data-processing-instructions---------
650
651  // Arithmetic.
652  void addu(Register rd, Register rs, Register rt);
653  void subu(Register rd, Register rs, Register rt);
654  void mult(Register rs, Register rt);
655  void multu(Register rs, Register rt);
656  void div(Register rs, Register rt);
657  void divu(Register rs, Register rt);
658  void mul(Register rd, Register rs, Register rt);
659
660  void addiu(Register rd, Register rs, int32_t j);
661
662  // Logical.
663  void and_(Register rd, Register rs, Register rt);
664  void or_(Register rd, Register rs, Register rt);
665  void xor_(Register rd, Register rs, Register rt);
666  void nor(Register rd, Register rs, Register rt);
667
668  void andi(Register rd, Register rs, int32_t j);
669  void ori(Register rd, Register rs, int32_t j);
670  void xori(Register rd, Register rs, int32_t j);
671  void lui(Register rd, int32_t j);
672
673  // Shifts.
674  // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
675  // and may cause problems in normal code. coming_from_nop makes sure this
676  // doesn't happen.
677  void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
678  void sllv(Register rd, Register rt, Register rs);
679  void srl(Register rd, Register rt, uint16_t sa);
680  void srlv(Register rd, Register rt, Register rs);
681  void sra(Register rt, Register rd, uint16_t sa);
682  void srav(Register rt, Register rd, Register rs);
683  void rotr(Register rd, Register rt, uint16_t sa);
684  void rotrv(Register rd, Register rt, Register rs);
685
686
687  // ------------Memory-instructions-------------
688
689  void lb(Register rd, const MemOperand& rs);
690  void lbu(Register rd, const MemOperand& rs);
691  void lh(Register rd, const MemOperand& rs);
692  void lhu(Register rd, const MemOperand& rs);
693  void lw(Register rd, const MemOperand& rs);
694  void lwl(Register rd, const MemOperand& rs);
695  void lwr(Register rd, const MemOperand& rs);
696  void sb(Register rd, const MemOperand& rs);
697  void sh(Register rd, const MemOperand& rs);
698  void sw(Register rd, const MemOperand& rs);
699  void swl(Register rd, const MemOperand& rs);
700  void swr(Register rd, const MemOperand& rs);
701
702
703  // ----------------Prefetch--------------------
704
705  void pref(int32_t hint, const MemOperand& rs);
706
707
708  // -------------Misc-instructions--------------
709
710  // Break / Trap instructions.
711  void break_(uint32_t code, bool break_as_stop = false);
712  void stop(const char* msg, uint32_t code = kMaxStopCode);
713  void tge(Register rs, Register rt, uint16_t code);
714  void tgeu(Register rs, Register rt, uint16_t code);
715  void tlt(Register rs, Register rt, uint16_t code);
716  void tltu(Register rs, Register rt, uint16_t code);
717  void teq(Register rs, Register rt, uint16_t code);
718  void tne(Register rs, Register rt, uint16_t code);
719
720  // Move from HI/LO register.
721  void mfhi(Register rd);
722  void mflo(Register rd);
723
724  // Set on less than.
725  void slt(Register rd, Register rs, Register rt);
726  void sltu(Register rd, Register rs, Register rt);
727  void slti(Register rd, Register rs, int32_t j);
728  void sltiu(Register rd, Register rs, int32_t j);
729
730  // Conditional move.
731  void movz(Register rd, Register rs, Register rt);
732  void movn(Register rd, Register rs, Register rt);
733  void movt(Register rd, Register rs, uint16_t cc = 0);
734  void movf(Register rd, Register rs, uint16_t cc = 0);
735
736  // Bit twiddling.
737  void clz(Register rd, Register rs);
738  void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
739  void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
740
741  // --------Coprocessor-instructions----------------
742
743  // Load, store, and move.
744  void lwc1(FPURegister fd, const MemOperand& src);
745  void ldc1(FPURegister fd, const MemOperand& src);
746
747  void swc1(FPURegister fs, const MemOperand& dst);
748  void sdc1(FPURegister fs, const MemOperand& dst);
749
750  void mtc1(Register rt, FPURegister fs);
751  void mfc1(Register rt, FPURegister fs);
752
753  void ctc1(Register rt, FPUControlRegister fs);
754  void cfc1(Register rt, FPUControlRegister fs);
755
756  // Arithmetic.
757  void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
758  void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
759  void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
760  void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
761  void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
762  void abs_d(FPURegister fd, FPURegister fs);
763  void mov_d(FPURegister fd, FPURegister fs);
764  void neg_d(FPURegister fd, FPURegister fs);
765  void sqrt_d(FPURegister fd, FPURegister fs);
766
767  // Conversion.
768  void cvt_w_s(FPURegister fd, FPURegister fs);
769  void cvt_w_d(FPURegister fd, FPURegister fs);
770  void trunc_w_s(FPURegister fd, FPURegister fs);
771  void trunc_w_d(FPURegister fd, FPURegister fs);
772  void round_w_s(FPURegister fd, FPURegister fs);
773  void round_w_d(FPURegister fd, FPURegister fs);
774  void floor_w_s(FPURegister fd, FPURegister fs);
775  void floor_w_d(FPURegister fd, FPURegister fs);
776  void ceil_w_s(FPURegister fd, FPURegister fs);
777  void ceil_w_d(FPURegister fd, FPURegister fs);
778
779  void cvt_l_s(FPURegister fd, FPURegister fs);
780  void cvt_l_d(FPURegister fd, FPURegister fs);
781  void trunc_l_s(FPURegister fd, FPURegister fs);
782  void trunc_l_d(FPURegister fd, FPURegister fs);
783  void round_l_s(FPURegister fd, FPURegister fs);
784  void round_l_d(FPURegister fd, FPURegister fs);
785  void floor_l_s(FPURegister fd, FPURegister fs);
786  void floor_l_d(FPURegister fd, FPURegister fs);
787  void ceil_l_s(FPURegister fd, FPURegister fs);
788  void ceil_l_d(FPURegister fd, FPURegister fs);
789
790  void cvt_s_w(FPURegister fd, FPURegister fs);
791  void cvt_s_l(FPURegister fd, FPURegister fs);
792  void cvt_s_d(FPURegister fd, FPURegister fs);
793
794  void cvt_d_w(FPURegister fd, FPURegister fs);
795  void cvt_d_l(FPURegister fd, FPURegister fs);
796  void cvt_d_s(FPURegister fd, FPURegister fs);
797
798  // Conditions and branches.
799  void c(FPUCondition cond, SecondaryField fmt,
800         FPURegister ft, FPURegister fs, uint16_t cc = 0);
801
802  void bc1f(int16_t offset, uint16_t cc = 0);
803  void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
804  void bc1t(int16_t offset, uint16_t cc = 0);
805  void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
806  void fcmp(FPURegister src1, const double src2, FPUCondition cond);
807
808  // Check the code size generated from label to here.
809  int SizeOfCodeGeneratedSince(Label* label) {
810    return pc_offset() - label->pos();
811  }
812
813  // Check the number of instructions generated from label to here.
814  int InstructionsGeneratedSince(Label* label) {
815    return SizeOfCodeGeneratedSince(label) / kInstrSize;
816  }
817
818  // Class for scoping postponing the trampoline pool generation.
819  class BlockTrampolinePoolScope {
820   public:
821    explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
822      assem_->StartBlockTrampolinePool();
823    }
824    ~BlockTrampolinePoolScope() {
825      assem_->EndBlockTrampolinePool();
826    }
827
828   private:
829    Assembler* assem_;
830
831    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
832  };
833
834  // Class for postponing the assembly buffer growth. Typically used for
835  // sequences of instructions that must be emitted as a unit, before
836  // buffer growth (and relocation) can occur.
837  // This blocking scope is not nestable.
838  class BlockGrowBufferScope {
839   public:
840    explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
841      assem_->StartBlockGrowBuffer();
842    }
843    ~BlockGrowBufferScope() {
844      assem_->EndBlockGrowBuffer();
845    }
846
847   private:
848    Assembler* assem_;
849
850    DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
851  };
852
853  // Debugging.
854
855  // Mark address of the ExitJSFrame code.
856  void RecordJSReturn();
857
858  // Mark address of a debug break slot.
859  void RecordDebugBreakSlot();
860
861  // Record the AST id of the CallIC being compiled, so that it can be placed
862  // in the relocation information.
863  void SetRecordedAstId(TypeFeedbackId ast_id) {
864    ASSERT(recorded_ast_id_.IsNone());
865    recorded_ast_id_ = ast_id;
866  }
867
868  TypeFeedbackId RecordedAstId() {
869    ASSERT(!recorded_ast_id_.IsNone());
870    return recorded_ast_id_;
871  }
872
873  void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
874
875  // Record a comment relocation entry that can be used by a disassembler.
876  // Use --code-comments to enable.
877  void RecordComment(const char* msg);
878
879  static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
880
881  // Writes a single byte or word of data in the code stream.  Used for
882  // inline tables, e.g., jump-tables.
883  void db(uint8_t data);
884  void dd(uint32_t data);
885
886  // Emits the address of the code stub's first instruction.
887  void emit_code_stub_address(Code* stub);
888
889  PositionsRecorder* positions_recorder() { return &positions_recorder_; }
890
891  // Postpone the generation of the trampoline pool for the specified number of
892  // instructions.
893  void BlockTrampolinePoolFor(int instructions);
894
895  // Check if there is less than kGap bytes available in the buffer.
896  // If this is the case, we need to grow the buffer before emitting
897  // an instruction or relocation information.
898  inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
899
900  // Get the number of bytes available in the buffer.
901  inline int available_space() const { return reloc_info_writer.pos() - pc_; }
902
903  // Read/patch instructions.
904  static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
905  static void instr_at_put(byte* pc, Instr instr) {
906    *reinterpret_cast<Instr*>(pc) = instr;
907  }
908  Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
909  void instr_at_put(int pos, Instr instr) {
910    *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
911  }
912
913  // Check if an instruction is a branch of some kind.
914  static bool IsBranch(Instr instr);
915  static bool IsBeq(Instr instr);
916  static bool IsBne(Instr instr);
917
918  static bool IsJump(Instr instr);
919  static bool IsJ(Instr instr);
920  static bool IsLui(Instr instr);
921  static bool IsOri(Instr instr);
922
923  static bool IsJal(Instr instr);
924  static bool IsJr(Instr instr);
925  static bool IsJalr(Instr instr);
926
927  static bool IsNop(Instr instr, unsigned int type);
928  static bool IsPop(Instr instr);
929  static bool IsPush(Instr instr);
930  static bool IsLwRegFpOffset(Instr instr);
931  static bool IsSwRegFpOffset(Instr instr);
932  static bool IsLwRegFpNegOffset(Instr instr);
933  static bool IsSwRegFpNegOffset(Instr instr);
934
935  static Register GetRtReg(Instr instr);
936  static Register GetRsReg(Instr instr);
937  static Register GetRdReg(Instr instr);
938
939  static uint32_t GetRt(Instr instr);
940  static uint32_t GetRtField(Instr instr);
941  static uint32_t GetRs(Instr instr);
942  static uint32_t GetRsField(Instr instr);
943  static uint32_t GetRd(Instr instr);
944  static uint32_t GetRdField(Instr instr);
945  static uint32_t GetSa(Instr instr);
946  static uint32_t GetSaField(Instr instr);
947  static uint32_t GetOpcodeField(Instr instr);
948  static uint32_t GetFunction(Instr instr);
949  static uint32_t GetFunctionField(Instr instr);
950  static uint32_t GetImmediate16(Instr instr);
951  static uint32_t GetLabelConst(Instr instr);
952
953  static int32_t GetBranchOffset(Instr instr);
954  static bool IsLw(Instr instr);
955  static int16_t GetLwOffset(Instr instr);
956  static Instr SetLwOffset(Instr instr, int16_t offset);
957
958  static bool IsSw(Instr instr);
959  static Instr SetSwOffset(Instr instr, int16_t offset);
960  static bool IsAddImmediate(Instr instr);
961  static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
962
963  static bool IsAndImmediate(Instr instr);
964  static bool IsEmittedConstant(Instr instr);
965
966  void CheckTrampolinePool();
967
968  // Allocate a constant pool of the correct size for the generated code.
969  Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
970
971  // Generate the constant pool for the generated code.
972  void PopulateConstantPool(ConstantPoolArray* constant_pool);
973
974 protected:
975  // Relocation for a type-recording IC has the AST id added to it.  This
976  // member variable is a way to pass the information from the call site to
977  // the relocation info.
978  TypeFeedbackId recorded_ast_id_;
979
980  int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
981
982  // Decode branch instruction at pos and return branch target pos.
983  int target_at(int32_t pos);
984
985  // Patch branch instruction at pos to branch to given branch target pos.
986  void target_at_put(int32_t pos, int32_t target_pos);
987
988  // Say if we need to relocate with this mode.
989  bool MustUseReg(RelocInfo::Mode rmode);
990
991  // Record reloc info for current pc_.
992  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
993
994  // Block the emission of the trampoline pool before pc_offset.
995  void BlockTrampolinePoolBefore(int pc_offset) {
996    if (no_trampoline_pool_before_ < pc_offset)
997      no_trampoline_pool_before_ = pc_offset;
998  }
999
1000  void StartBlockTrampolinePool() {
1001    trampoline_pool_blocked_nesting_++;
1002  }
1003
1004  void EndBlockTrampolinePool() {
1005    trampoline_pool_blocked_nesting_--;
1006  }
1007
1008  bool is_trampoline_pool_blocked() const {
1009    return trampoline_pool_blocked_nesting_ > 0;
1010  }
1011
1012  bool has_exception() const {
1013    return internal_trampoline_exception_;
1014  }
1015
1016  void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
1017
1018  bool is_trampoline_emitted() const {
1019    return trampoline_emitted_;
1020  }
1021
1022  // Temporarily block automatic assembly buffer growth.
1023  void StartBlockGrowBuffer() {
1024    ASSERT(!block_buffer_growth_);
1025    block_buffer_growth_ = true;
1026  }
1027
1028  void EndBlockGrowBuffer() {
1029    ASSERT(block_buffer_growth_);
1030    block_buffer_growth_ = false;
1031  }
1032
1033  bool is_buffer_growth_blocked() const {
1034    return block_buffer_growth_;
1035  }
1036
1037 private:
1038  // Buffer size and constant pool distance are checked together at regular
1039  // intervals of kBufferCheckInterval emitted bytes.
1040  static const int kBufferCheckInterval = 1*KB/2;
1041
1042  // Code generation.
1043  // The relocation writer's position is at least kGap bytes below the end of
1044  // the generated instructions. This is so that multi-instruction sequences do
1045  // not have to check for overflow. The same is true for writes of large
1046  // relocation info entries.
1047  static const int kGap = 32;
1048
1049
1050  // Repeated checking whether the trampoline pool should be emitted is rather
1051  // expensive. By default we only check again once a number of instructions
1052  // has been generated.
1053  static const int kCheckConstIntervalInst = 32;
1054  static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
1055
1056  int next_buffer_check_;  // pc offset of next buffer check.
1057
1058  // Emission of the trampoline pool may be blocked in some code sequences.
1059  int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
1060  int no_trampoline_pool_before_;  // Block emission before this pc offset.
1061
1062  // Keep track of the last emitted pool to guarantee a maximal distance.
1063  int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
1064
1065  // Automatic growth of the assembly buffer may be blocked for some sequences.
1066  bool block_buffer_growth_;  // Block growth when true.
1067
1068  // Relocation information generation.
1069  // Each relocation is encoded as a variable size value.
1070  static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
1071  RelocInfoWriter reloc_info_writer;
1072
1073  // The bound position, before this we cannot do instruction elimination.
1074  int last_bound_pos_;
1075
1076  // Code emission.
1077  inline void CheckBuffer();
1078  void GrowBuffer();
1079  inline void emit(Instr x);
1080  inline void CheckTrampolinePoolQuick();
1081
1082  // Instruction generation.
1083  // We have 3 different kind of encoding layout on MIPS.
1084  // However due to many different types of objects encoded in the same fields
1085  // we have quite a few aliases for each mode.
1086  // Using the same structure to refer to Register and FPURegister would spare a
1087  // few aliases, but mixing both does not look clean to me.
1088  // Anyway we could surely implement this differently.
1089
1090  void GenInstrRegister(Opcode opcode,
1091                        Register rs,
1092                        Register rt,
1093                        Register rd,
1094                        uint16_t sa = 0,
1095                        SecondaryField func = NULLSF);
1096
1097  void GenInstrRegister(Opcode opcode,
1098                        Register rs,
1099                        Register rt,
1100                        uint16_t msb,
1101                        uint16_t lsb,
1102                        SecondaryField func);
1103
1104  void GenInstrRegister(Opcode opcode,
1105                        SecondaryField fmt,
1106                        FPURegister ft,
1107                        FPURegister fs,
1108                        FPURegister fd,
1109                        SecondaryField func = NULLSF);
1110
1111  void GenInstrRegister(Opcode opcode,
1112                        FPURegister fr,
1113                        FPURegister ft,
1114                        FPURegister fs,
1115                        FPURegister fd,
1116                        SecondaryField func = NULLSF);
1117
1118  void GenInstrRegister(Opcode opcode,
1119                        SecondaryField fmt,
1120                        Register rt,
1121                        FPURegister fs,
1122                        FPURegister fd,
1123                        SecondaryField func = NULLSF);
1124
1125  void GenInstrRegister(Opcode opcode,
1126                        SecondaryField fmt,
1127                        Register rt,
1128                        FPUControlRegister fs,
1129                        SecondaryField func = NULLSF);
1130
1131
1132  void GenInstrImmediate(Opcode opcode,
1133                         Register rs,
1134                         Register rt,
1135                         int32_t  j);
1136  void GenInstrImmediate(Opcode opcode,
1137                         Register rs,
1138                         SecondaryField SF,
1139                         int32_t  j);
1140  void GenInstrImmediate(Opcode opcode,
1141                         Register r1,
1142                         FPURegister r2,
1143                         int32_t  j);
1144
1145
1146  void GenInstrJump(Opcode opcode,
1147                     uint32_t address);
1148
1149  // Helpers.
1150  void LoadRegPlusOffsetToAt(const MemOperand& src);
1151
1152  // Labels.
1153  void print(Label* L);
1154  void bind_to(Label* L, int pos);
1155  void next(Label* L);
1156
1157  // One trampoline consists of:
1158  // - space for trampoline slots,
1159  // - space for labels.
1160  //
1161  // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
1162  // Space for trampoline slots preceeds space for labels. Each label is of one
1163  // instruction size, so total amount for labels is equal to
1164  // label_count *  kInstrSize.
1165  class Trampoline {
1166   public:
1167    Trampoline() {
1168      start_ = 0;
1169      next_slot_ = 0;
1170      free_slot_count_ = 0;
1171      end_ = 0;
1172    }
1173    Trampoline(int start, int slot_count) {
1174      start_ = start;
1175      next_slot_ = start;
1176      free_slot_count_ = slot_count;
1177      end_ = start + slot_count * kTrampolineSlotsSize;
1178    }
1179    int start() {
1180      return start_;
1181    }
1182    int end() {
1183      return end_;
1184    }
1185    int take_slot() {
1186      int trampoline_slot = kInvalidSlotPos;
1187      if (free_slot_count_ <= 0) {
1188        // We have run out of space on trampolines.
1189        // Make sure we fail in debug mode, so we become aware of each case
1190        // when this happens.
1191        ASSERT(0);
1192        // Internal exception will be caught.
1193      } else {
1194        trampoline_slot = next_slot_;
1195        free_slot_count_--;
1196        next_slot_ += kTrampolineSlotsSize;
1197      }
1198      return trampoline_slot;
1199    }
1200
1201   private:
1202    int start_;
1203    int end_;
1204    int next_slot_;
1205    int free_slot_count_;
1206  };
1207
1208  int32_t get_trampoline_entry(int32_t pos);
1209  int unbound_labels_count_;
1210  // If trampoline is emitted, generated code is becoming large. As this is
1211  // already a slow case which can possibly break our code generation for the
1212  // extreme case, we use this information to trigger different mode of
1213  // branch instruction generation, where we use jump instructions rather
1214  // than regular branch instructions.
1215  bool trampoline_emitted_;
1216  static const int kTrampolineSlotsSize = 4 * kInstrSize;
1217  static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
1218  static const int kInvalidSlotPos = -1;
1219
1220  Trampoline trampoline_;
1221  bool internal_trampoline_exception_;
1222
1223  friend class RegExpMacroAssemblerMIPS;
1224  friend class RelocInfo;
1225  friend class CodePatcher;
1226  friend class BlockTrampolinePoolScope;
1227
1228  PositionsRecorder positions_recorder_;
1229  friend class PositionsRecorder;
1230  friend class EnsureSpace;
1231};
1232
1233
1234class EnsureSpace BASE_EMBEDDED {
1235 public:
1236  explicit EnsureSpace(Assembler* assembler) {
1237    assembler->CheckBuffer();
1238  }
1239};
1240
1241} }  // namespace v8::internal
1242
1243#endif  // V8_ARM_ASSEMBLER_MIPS_H_
1244