1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5
6
7#include "src/v8.h"
8
9#if V8_TARGET_ARCH_MIPS
10
11#include "src/codegen.h"
12#include "src/debug.h"
13#include "src/deoptimizer.h"
14#include "src/full-codegen.h"
15#include "src/runtime.h"
16#include "src/stub-cache.h"
17
18namespace v8 {
19namespace internal {
20
21
22#define __ ACCESS_MASM(masm)
23
24
25void Builtins::Generate_Adaptor(MacroAssembler* masm,
26                                CFunctionId id,
27                                BuiltinExtraArguments extra_args) {
28  // ----------- S t a t e -------------
29  //  -- a0                 : number of arguments excluding receiver
30  //  -- a1                 : called function (only guaranteed when
31  //  --                      extra_args requires it)
32  //  -- cp                 : context
33  //  -- sp[0]              : last argument
34  //  -- ...
35  //  -- sp[4 * (argc - 1)] : first argument
36  //  -- sp[4 * agrc]       : receiver
37  // -----------------------------------
38
39  // Insert extra arguments.
40  int num_extra_args = 0;
41  if (extra_args == NEEDS_CALLED_FUNCTION) {
42    num_extra_args = 1;
43    __ push(a1);
44  } else {
45    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
46  }
47
48  // JumpToExternalReference expects s0 to contain the number of arguments
49  // including the receiver and the extra arguments.
50  __ Addu(s0, a0, num_extra_args + 1);
51  __ sll(s1, s0, kPointerSizeLog2);
52  __ Subu(s1, s1, kPointerSize);
53  __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
54}
55
56
57// Load the built-in InternalArray function from the current context.
58static void GenerateLoadInternalArrayFunction(MacroAssembler* masm,
59                                              Register result) {
60  // Load the native context.
61
62  __ lw(result,
63        MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
64  __ lw(result,
65        FieldMemOperand(result, GlobalObject::kNativeContextOffset));
66  // Load the InternalArray function from the native context.
67  __ lw(result,
68         MemOperand(result,
69                    Context::SlotOffset(
70                        Context::INTERNAL_ARRAY_FUNCTION_INDEX)));
71}
72
73
74// Load the built-in Array function from the current context.
75static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
76  // Load the native context.
77
78  __ lw(result,
79        MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
80  __ lw(result,
81        FieldMemOperand(result, GlobalObject::kNativeContextOffset));
82  // Load the Array function from the native context.
83  __ lw(result,
84        MemOperand(result,
85                   Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
86}
87
88
89void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
90  // ----------- S t a t e -------------
91  //  -- a0     : number of arguments
92  //  -- ra     : return address
93  //  -- sp[...]: constructor arguments
94  // -----------------------------------
95  Label generic_array_code, one_or_more_arguments, two_or_more_arguments;
96
97  // Get the InternalArray function.
98  GenerateLoadInternalArrayFunction(masm, a1);
99
100  if (FLAG_debug_code) {
101    // Initial map for the builtin InternalArray functions should be maps.
102    __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
103    __ SmiTst(a2, t0);
104    __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction,
105              t0, Operand(zero_reg));
106    __ GetObjectType(a2, a3, t0);
107    __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction,
108              t0, Operand(MAP_TYPE));
109  }
110
111  // Run the native code for the InternalArray function called as a normal
112  // function.
113  // Tail call a stub.
114  InternalArrayConstructorStub stub(masm->isolate());
115  __ TailCallStub(&stub);
116}
117
118
119void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
120  // ----------- S t a t e -------------
121  //  -- a0     : number of arguments
122  //  -- ra     : return address
123  //  -- sp[...]: constructor arguments
124  // -----------------------------------
125  Label generic_array_code;
126
127  // Get the Array function.
128  GenerateLoadArrayFunction(masm, a1);
129
130  if (FLAG_debug_code) {
131    // Initial map for the builtin Array functions should be maps.
132    __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
133    __ SmiTst(a2, t0);
134    __ Assert(ne, kUnexpectedInitialMapForArrayFunction1,
135              t0, Operand(zero_reg));
136    __ GetObjectType(a2, a3, t0);
137    __ Assert(eq, kUnexpectedInitialMapForArrayFunction2,
138              t0, Operand(MAP_TYPE));
139  }
140
141  // Run the native code for the Array function called as a normal function.
142  // Tail call a stub.
143  __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
144  ArrayConstructorStub stub(masm->isolate());
145  __ TailCallStub(&stub);
146}
147
148
149void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
150  // ----------- S t a t e -------------
151  //  -- a0                     : number of arguments
152  //  -- a1                     : constructor function
153  //  -- ra                     : return address
154  //  -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
155  //  -- sp[argc * 4]           : receiver
156  // -----------------------------------
157  Counters* counters = masm->isolate()->counters();
158  __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
159
160  Register function = a1;
161  if (FLAG_debug_code) {
162    __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
163    __ Assert(eq, kUnexpectedStringFunction, function, Operand(a2));
164  }
165
166  // Load the first arguments in a0 and get rid of the rest.
167  Label no_arguments;
168  __ Branch(&no_arguments, eq, a0, Operand(zero_reg));
169  // First args = sp[(argc - 1) * 4].
170  __ Subu(a0, a0, Operand(1));
171  __ sll(a0, a0, kPointerSizeLog2);
172  __ Addu(sp, a0, sp);
173  __ lw(a0, MemOperand(sp));
174  // sp now point to args[0], drop args[0] + receiver.
175  __ Drop(2);
176
177  Register argument = a2;
178  Label not_cached, argument_is_string;
179  __ LookupNumberStringCache(a0,        // Input.
180                             argument,  // Result.
181                             a3,        // Scratch.
182                             t0,        // Scratch.
183                             t1,        // Scratch.
184                             &not_cached);
185  __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0);
186  __ bind(&argument_is_string);
187
188  // ----------- S t a t e -------------
189  //  -- a2     : argument converted to string
190  //  -- a1     : constructor function
191  //  -- ra     : return address
192  // -----------------------------------
193
194  Label gc_required;
195  __ Allocate(JSValue::kSize,
196              v0,  // Result.
197              a3,  // Scratch.
198              t0,  // Scratch.
199              &gc_required,
200              TAG_OBJECT);
201
202  // Initialising the String Object.
203  Register map = a3;
204  __ LoadGlobalFunctionInitialMap(function, map, t0);
205  if (FLAG_debug_code) {
206    __ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset));
207    __ Assert(eq, kUnexpectedStringWrapperInstanceSize,
208        t0, Operand(JSValue::kSize >> kPointerSizeLog2));
209    __ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
210    __ Assert(eq, kUnexpectedUnusedPropertiesOfStringWrapper,
211        t0, Operand(zero_reg));
212  }
213  __ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset));
214
215  __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
216  __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
217  __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
218
219  __ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset));
220
221  // Ensure the object is fully initialized.
222  STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
223
224  __ Ret();
225
226  // The argument was not found in the number to string cache. Check
227  // if it's a string already before calling the conversion builtin.
228  Label convert_argument;
229  __ bind(&not_cached);
230  __ JumpIfSmi(a0, &convert_argument);
231
232  // Is it a String?
233  __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
234  __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
235  STATIC_ASSERT(kNotStringTag != 0);
236  __ And(t0, a3, Operand(kIsNotStringMask));
237  __ Branch(&convert_argument, ne, t0, Operand(zero_reg));
238  __ mov(argument, a0);
239  __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
240  __ Branch(&argument_is_string);
241
242  // Invoke the conversion builtin and put the result into a2.
243  __ bind(&convert_argument);
244  __ push(function);  // Preserve the function.
245  __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
246  {
247    FrameScope scope(masm, StackFrame::INTERNAL);
248    __ push(a0);
249    __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
250  }
251  __ pop(function);
252  __ mov(argument, v0);
253  __ Branch(&argument_is_string);
254
255  // Load the empty string into a2, remove the receiver from the
256  // stack, and jump back to the case where the argument is a string.
257  __ bind(&no_arguments);
258  __ LoadRoot(argument, Heap::kempty_stringRootIndex);
259  __ Drop(1);
260  __ Branch(&argument_is_string);
261
262  // At this point the argument is already a string. Call runtime to
263  // create a string wrapper.
264  __ bind(&gc_required);
265  __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0);
266  {
267    FrameScope scope(masm, StackFrame::INTERNAL);
268    __ push(argument);
269    __ CallRuntime(Runtime::kNewStringWrapper, 1);
270  }
271  __ Ret();
272}
273
274
275static void CallRuntimePassFunction(
276    MacroAssembler* masm, Runtime::FunctionId function_id) {
277  FrameScope scope(masm, StackFrame::INTERNAL);
278  // Push a copy of the function onto the stack.
279  // Push call kind information and function as parameter to the runtime call.
280  __ Push(a1, a1);
281
282  __ CallRuntime(function_id, 1);
283  // Restore call kind information and receiver.
284  __ Pop(a1);
285}
286
287
288static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
289  __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
290  __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCodeOffset));
291  __ Addu(at, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
292  __ Jump(at);
293}
294
295
296static void GenerateTailCallToReturnedCode(MacroAssembler* masm) {
297  __ Addu(at, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
298  __ Jump(at);
299}
300
301
302void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) {
303  // Checking whether the queued function is ready for install is optional,
304  // since we come across interrupts and stack checks elsewhere.  However,
305  // not checking may delay installing ready functions, and always checking
306  // would be quite expensive.  A good compromise is to first check against
307  // stack limit as a cue for an interrupt signal.
308  Label ok;
309  __ LoadRoot(t0, Heap::kStackLimitRootIndex);
310  __ Branch(&ok, hs, sp, Operand(t0));
311
312  CallRuntimePassFunction(masm, Runtime::kHiddenTryInstallOptimizedCode);
313  GenerateTailCallToReturnedCode(masm);
314
315  __ bind(&ok);
316  GenerateTailCallToSharedCode(masm);
317}
318
319
320static void Generate_JSConstructStubHelper(MacroAssembler* masm,
321                                           bool is_api_function,
322                                           bool create_memento) {
323  // ----------- S t a t e -------------
324  //  -- a0     : number of arguments
325  //  -- a1     : constructor function
326  //  -- a2     : allocation site or undefined
327  //  -- ra     : return address
328  //  -- sp[...]: constructor arguments
329  // -----------------------------------
330
331  // Should never create mementos for api functions.
332  ASSERT(!is_api_function || !create_memento);
333
334  Isolate* isolate = masm->isolate();
335
336  // ----------- S t a t e -------------
337  //  -- a0     : number of arguments
338  //  -- a1     : constructor function
339  //  -- ra     : return address
340  //  -- sp[...]: constructor arguments
341  // -----------------------------------
342
343  // Enter a construct frame.
344  {
345    FrameScope scope(masm, StackFrame::CONSTRUCT);
346
347    if (create_memento) {
348      __ AssertUndefinedOrAllocationSite(a2, a3);
349      __ push(a2);
350    }
351
352    // Preserve the two incoming parameters on the stack.
353    __ sll(a0, a0, kSmiTagSize);  // Tag arguments count.
354    __ MultiPushReversed(a0.bit() | a1.bit());
355
356    Label rt_call, allocated;
357    // Try to allocate the object without transitioning into C code. If any of
358    // the preconditions is not met, the code bails out to the runtime call.
359    if (FLAG_inline_new) {
360      Label undo_allocation;
361      ExternalReference debug_step_in_fp =
362          ExternalReference::debug_step_in_fp_address(isolate);
363      __ li(a2, Operand(debug_step_in_fp));
364      __ lw(a2, MemOperand(a2));
365      __ Branch(&rt_call, ne, a2, Operand(zero_reg));
366
367      // Load the initial map and verify that it is in fact a map.
368      // a1: constructor function
369      __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
370      __ JumpIfSmi(a2, &rt_call);
371      __ GetObjectType(a2, a3, t4);
372      __ Branch(&rt_call, ne, t4, Operand(MAP_TYPE));
373
374      // Check that the constructor is not constructing a JSFunction (see
375      // comments in Runtime_NewObject in runtime.cc). In which case the
376      // initial map's instance type would be JS_FUNCTION_TYPE.
377      // a1: constructor function
378      // a2: initial map
379      __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
380      __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE));
381
382      if (!is_api_function) {
383        Label allocate;
384        MemOperand bit_field3 = FieldMemOperand(a2, Map::kBitField3Offset);
385        // Check if slack tracking is enabled.
386        __ lw(t0, bit_field3);
387        __ DecodeField<Map::ConstructionCount>(t2, t0);
388        __ Branch(&allocate, eq, t2, Operand(JSFunction::kNoSlackTracking));
389        // Decrease generous allocation count.
390        __ Subu(t0, t0, Operand(1 << Map::ConstructionCount::kShift));
391        __ Branch(USE_DELAY_SLOT,
392            &allocate, ne, t2, Operand(JSFunction::kFinishSlackTracking));
393        __ sw(t0, bit_field3);  // In delay slot.
394
395        __ Push(a1, a2, a1);  // a1 = Constructor.
396        __ CallRuntime(Runtime::kHiddenFinalizeInstanceSize, 1);
397
398        __ Pop(a1, a2);
399        // Slack tracking counter is kNoSlackTracking after runtime call.
400        ASSERT(JSFunction::kNoSlackTracking == 0);
401        __ mov(t2, zero_reg);
402
403        __ bind(&allocate);
404      }
405
406      // Now allocate the JSObject on the heap.
407      // a1: constructor function
408      // a2: initial map
409      __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
410      if (create_memento) {
411        __ Addu(a3, a3, Operand(AllocationMemento::kSize / kPointerSize));
412      }
413
414      __ Allocate(a3, t4, t5, t6, &rt_call, SIZE_IN_WORDS);
415
416      // Allocated the JSObject, now initialize the fields. Map is set to
417      // initial map and properties and elements are set to empty fixed array.
418      // a1: constructor function
419      // a2: initial map
420      // a3: object size (not including memento if create_memento)
421      // t4: JSObject (not tagged)
422      __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex);
423      __ mov(t5, t4);
424      __ sw(a2, MemOperand(t5, JSObject::kMapOffset));
425      __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset));
426      __ sw(t6, MemOperand(t5, JSObject::kElementsOffset));
427      __ Addu(t5, t5, Operand(3*kPointerSize));
428      ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
429      ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
430      ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
431
432      // Fill all the in-object properties with appropriate filler.
433      // a1: constructor function
434      // a2: initial map
435      // a3: object size (in words, including memento if create_memento)
436      // t4: JSObject (not tagged)
437      // t5: First in-object property of JSObject (not tagged)
438      // t2: slack tracking counter (non-API function case)
439      ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
440
441      // Use t7 to hold undefined, which is used in several places below.
442      __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
443
444      if (!is_api_function) {
445        Label no_inobject_slack_tracking;
446
447        // Check if slack tracking is enabled.
448        __ Branch(&no_inobject_slack_tracking,
449            eq, t2, Operand(JSFunction::kNoSlackTracking));
450
451        // Allocate object with a slack.
452        __ lbu(a0, FieldMemOperand(a2, Map::kPreAllocatedPropertyFieldsOffset));
453        __ sll(at, a0, kPointerSizeLog2);
454        __ addu(a0, t5, at);
455        // a0: offset of first field after pre-allocated fields
456        if (FLAG_debug_code) {
457          __ sll(at, a3, kPointerSizeLog2);
458          __ Addu(t6, t4, Operand(at));   // End of object.
459          __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields,
460              a0, Operand(t6));
461        }
462        __ InitializeFieldsWithFiller(t5, a0, t7);
463        // To allow for truncation.
464        __ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex);
465        // Fill the remaining fields with one pointer filler map.
466
467        __ bind(&no_inobject_slack_tracking);
468      }
469
470      if (create_memento) {
471        __ Subu(a0, a3, Operand(AllocationMemento::kSize / kPointerSize));
472        __ sll(a0, a0, kPointerSizeLog2);
473        __ Addu(a0, t4, Operand(a0));  // End of object.
474        __ InitializeFieldsWithFiller(t5, a0, t7);
475
476        // Fill in memento fields.
477        // t5: points to the allocated but uninitialized memento.
478        __ LoadRoot(t7, Heap::kAllocationMementoMapRootIndex);
479        ASSERT_EQ(0 * kPointerSize, AllocationMemento::kMapOffset);
480        __ sw(t7, MemOperand(t5));
481        __ Addu(t5, t5, kPointerSize);
482        // Load the AllocationSite.
483        __ lw(t7, MemOperand(sp, 2 * kPointerSize));
484        ASSERT_EQ(1 * kPointerSize, AllocationMemento::kAllocationSiteOffset);
485        __ sw(t7, MemOperand(t5));
486        __ Addu(t5, t5, kPointerSize);
487      } else {
488        __ sll(at, a3, kPointerSizeLog2);
489        __ Addu(a0, t4, Operand(at));  // End of object.
490        __ InitializeFieldsWithFiller(t5, a0, t7);
491      }
492
493      // Add the object tag to make the JSObject real, so that we can continue
494      // and jump into the continuation code at any time from now on. Any
495      // failures need to undo the allocation, so that the heap is in a
496      // consistent state and verifiable.
497      __ Addu(t4, t4, Operand(kHeapObjectTag));
498
499      // Check if a non-empty properties array is needed. Continue with
500      // allocated object if not fall through to runtime call if it is.
501      // a1: constructor function
502      // t4: JSObject
503      // t5: start of next object (not tagged)
504      __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
505      // The field instance sizes contains both pre-allocated property fields
506      // and in-object properties.
507      __ lbu(t6, FieldMemOperand(a2, Map::kPreAllocatedPropertyFieldsOffset));
508      __ Addu(a3, a3, Operand(t6));
509      __ lbu(t6, FieldMemOperand(a2, Map::kInObjectPropertiesOffset));
510      __ subu(a3, a3, t6);
511
512      // Done if no extra properties are to be allocated.
513      __ Branch(&allocated, eq, a3, Operand(zero_reg));
514      __ Assert(greater_equal, kPropertyAllocationCountFailed,
515          a3, Operand(zero_reg));
516
517      // Scale the number of elements by pointer size and add the header for
518      // FixedArrays to the start of the next object calculation from above.
519      // a1: constructor
520      // a3: number of elements in properties array
521      // t4: JSObject
522      // t5: start of next object
523      __ Addu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize));
524      __ Allocate(
525          a0,
526          t5,
527          t6,
528          a2,
529          &undo_allocation,
530          static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
531
532      // Initialize the FixedArray.
533      // a1: constructor
534      // a3: number of elements in properties array (untagged)
535      // t4: JSObject
536      // t5: start of next object
537      __ LoadRoot(t6, Heap::kFixedArrayMapRootIndex);
538      __ mov(a2, t5);
539      __ sw(t6, MemOperand(a2, JSObject::kMapOffset));
540      __ sll(a0, a3, kSmiTagSize);
541      __ sw(a0, MemOperand(a2, FixedArray::kLengthOffset));
542      __ Addu(a2, a2, Operand(2 * kPointerSize));
543
544      ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
545      ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
546
547      // Initialize the fields to undefined.
548      // a1: constructor
549      // a2: First element of FixedArray (not tagged)
550      // a3: number of elements in properties array
551      // t4: JSObject
552      // t5: FixedArray (not tagged)
553      __ sll(t3, a3, kPointerSizeLog2);
554      __ addu(t6, a2, t3);  // End of object.
555      ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
556      { Label loop, entry;
557        if (!is_api_function || create_memento) {
558          __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
559        } else if (FLAG_debug_code) {
560          __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
561          __ Assert(eq, kUndefinedValueNotLoaded, t7, Operand(t2));
562        }
563        __ jmp(&entry);
564        __ bind(&loop);
565        __ sw(t7, MemOperand(a2));
566        __ addiu(a2, a2, kPointerSize);
567        __ bind(&entry);
568        __ Branch(&loop, less, a2, Operand(t6));
569      }
570
571      // Store the initialized FixedArray into the properties field of
572      // the JSObject.
573      // a1: constructor function
574      // t4: JSObject
575      // t5: FixedArray (not tagged)
576      __ Addu(t5, t5, Operand(kHeapObjectTag));  // Add the heap tag.
577      __ sw(t5, FieldMemOperand(t4, JSObject::kPropertiesOffset));
578
579      // Continue with JSObject being successfully allocated.
580      // a1: constructor function
581      // a4: JSObject
582      __ jmp(&allocated);
583
584      // Undo the setting of the new top so that the heap is verifiable. For
585      // example, the map's unused properties potentially do not match the
586      // allocated objects unused properties.
587      // t4: JSObject (previous new top)
588      __ bind(&undo_allocation);
589      __ UndoAllocationInNewSpace(t4, t5);
590    }
591
592    // Allocate the new receiver object using the runtime call.
593    // a1: constructor function
594    __ bind(&rt_call);
595    if (create_memento) {
596      // Get the cell or allocation site.
597      __ lw(a2, MemOperand(sp, 2 * kPointerSize));
598      __ push(a2);
599    }
600
601    __ push(a1);  // Argument for Runtime_NewObject.
602    if (create_memento) {
603      __ CallRuntime(Runtime::kHiddenNewObjectWithAllocationSite, 2);
604    } else {
605      __ CallRuntime(Runtime::kHiddenNewObject, 1);
606    }
607    __ mov(t4, v0);
608
609    // If we ended up using the runtime, and we want a memento, then the
610    // runtime call made it for us, and we shouldn't do create count
611    // increment.
612    Label count_incremented;
613    if (create_memento) {
614      __ jmp(&count_incremented);
615    }
616
617    // Receiver for constructor call allocated.
618    // t4: JSObject
619    __ bind(&allocated);
620
621    if (create_memento) {
622      __ lw(a2, MemOperand(sp, kPointerSize * 2));
623      __ LoadRoot(t5, Heap::kUndefinedValueRootIndex);
624      __ Branch(&count_incremented, eq, a2, Operand(t5));
625      // a2 is an AllocationSite. We are creating a memento from it, so we
626      // need to increment the memento create count.
627      __ lw(a3, FieldMemOperand(a2,
628                                AllocationSite::kPretenureCreateCountOffset));
629      __ Addu(a3, a3, Operand(Smi::FromInt(1)));
630      __ sw(a3, FieldMemOperand(a2,
631                                AllocationSite::kPretenureCreateCountOffset));
632      __ bind(&count_incremented);
633    }
634
635    __ Push(t4, t4);
636
637    // Reload the number of arguments from the stack.
638    // sp[0]: receiver
639    // sp[1]: receiver
640    // sp[2]: constructor function
641    // sp[3]: number of arguments (smi-tagged)
642    __ lw(a1, MemOperand(sp, 2 * kPointerSize));
643    __ lw(a3, MemOperand(sp, 3 * kPointerSize));
644
645    // Set up pointer to last argument.
646    __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
647
648    // Set up number of arguments for function call below.
649    __ srl(a0, a3, kSmiTagSize);
650
651    // Copy arguments and receiver to the expression stack.
652    // a0: number of arguments
653    // a1: constructor function
654    // a2: address of last argument (caller sp)
655    // a3: number of arguments (smi-tagged)
656    // sp[0]: receiver
657    // sp[1]: receiver
658    // sp[2]: constructor function
659    // sp[3]: number of arguments (smi-tagged)
660    Label loop, entry;
661    __ jmp(&entry);
662    __ bind(&loop);
663    __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
664    __ Addu(t0, a2, Operand(t0));
665    __ lw(t1, MemOperand(t0));
666    __ push(t1);
667    __ bind(&entry);
668    __ Addu(a3, a3, Operand(-2));
669    __ Branch(&loop, greater_equal, a3, Operand(zero_reg));
670
671    // Call the function.
672    // a0: number of arguments
673    // a1: constructor function
674    if (is_api_function) {
675      __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
676      Handle<Code> code =
677          masm->isolate()->builtins()->HandleApiCallConstruct();
678      __ Call(code, RelocInfo::CODE_TARGET);
679    } else {
680      ParameterCount actual(a0);
681      __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
682    }
683
684    // Store offset of return address for deoptimizer.
685    if (!is_api_function) {
686      masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
687    }
688
689    // Restore context from the frame.
690    __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
691
692    // If the result is an object (in the ECMA sense), we should get rid
693    // of the receiver and use the result; see ECMA-262 section 13.2.2-7
694    // on page 74.
695    Label use_receiver, exit;
696
697    // If the result is a smi, it is *not* an object in the ECMA sense.
698    // v0: result
699    // sp[0]: receiver (newly allocated object)
700    // sp[1]: constructor function
701    // sp[2]: number of arguments (smi-tagged)
702    __ JumpIfSmi(v0, &use_receiver);
703
704    // If the type of the result (stored in its map) is less than
705    // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
706    __ GetObjectType(v0, a1, a3);
707    __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
708
709    // Throw away the result of the constructor invocation and use the
710    // on-stack receiver as the result.
711    __ bind(&use_receiver);
712    __ lw(v0, MemOperand(sp));
713
714    // Remove receiver from the stack, remove caller arguments, and
715    // return.
716    __ bind(&exit);
717    // v0: result
718    // sp[0]: receiver (newly allocated object)
719    // sp[1]: constructor function
720    // sp[2]: number of arguments (smi-tagged)
721    __ lw(a1, MemOperand(sp, 2 * kPointerSize));
722
723    // Leave construct frame.
724  }
725
726  __ sll(t0, a1, kPointerSizeLog2 - 1);
727  __ Addu(sp, sp, t0);
728  __ Addu(sp, sp, kPointerSize);
729  __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
730  __ Ret();
731}
732
733
734void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
735  Generate_JSConstructStubHelper(masm, false, FLAG_pretenuring_call_new);
736}
737
738
739void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
740  Generate_JSConstructStubHelper(masm, true, false);
741}
742
743
744static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
745                                             bool is_construct) {
746  // Called from JSEntryStub::GenerateBody
747
748  // ----------- S t a t e -------------
749  //  -- a0: code entry
750  //  -- a1: function
751  //  -- a2: receiver_pointer
752  //  -- a3: argc
753  //  -- s0: argv
754  // -----------------------------------
755  ProfileEntryHookStub::MaybeCallEntryHook(masm);
756
757  // Clear the context before we push it when entering the JS frame.
758  __ mov(cp, zero_reg);
759
760  // Enter an internal frame.
761  {
762    FrameScope scope(masm, StackFrame::INTERNAL);
763
764    // Set up the context from the function argument.
765    __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
766
767    // Push the function and the receiver onto the stack.
768    __ Push(a1, a2);
769
770    // Copy arguments to the stack in a loop.
771    // a3: argc
772    // s0: argv, i.e. points to first arg
773    Label loop, entry;
774    __ sll(t0, a3, kPointerSizeLog2);
775    __ addu(t2, s0, t0);
776    __ b(&entry);
777    __ nop();   // Branch delay slot nop.
778    // t2 points past last arg.
779    __ bind(&loop);
780    __ lw(t0, MemOperand(s0));  // Read next parameter.
781    __ addiu(s0, s0, kPointerSize);
782    __ lw(t0, MemOperand(t0));  // Dereference handle.
783    __ push(t0);  // Push parameter.
784    __ bind(&entry);
785    __ Branch(&loop, ne, s0, Operand(t2));
786
787    // Initialize all JavaScript callee-saved registers, since they will be seen
788    // by the garbage collector as part of handlers.
789    __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
790    __ mov(s1, t0);
791    __ mov(s2, t0);
792    __ mov(s3, t0);
793    __ mov(s4, t0);
794    __ mov(s5, t0);
795    // s6 holds the root address. Do not clobber.
796    // s7 is cp. Do not init.
797
798    // Invoke the code and pass argc as a0.
799    __ mov(a0, a3);
800    if (is_construct) {
801      // No type feedback cell is available
802      __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
803      CallConstructStub stub(masm->isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
804      __ CallStub(&stub);
805    } else {
806      ParameterCount actual(a0);
807      __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
808    }
809
810    // Leave internal frame.
811  }
812
813  __ Jump(ra);
814}
815
816
817void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
818  Generate_JSEntryTrampolineHelper(masm, false);
819}
820
821
822void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
823  Generate_JSEntryTrampolineHelper(masm, true);
824}
825
826
827void Builtins::Generate_CompileUnoptimized(MacroAssembler* masm) {
828  CallRuntimePassFunction(masm, Runtime::kHiddenCompileUnoptimized);
829  GenerateTailCallToReturnedCode(masm);
830}
831
832
833static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) {
834  FrameScope scope(masm, StackFrame::INTERNAL);
835  // Push a copy of the function onto the stack.
836  // Push function as parameter to the runtime call.
837  __ Push(a1, a1);
838  // Whether to compile in a background thread.
839  __ Push(masm->isolate()->factory()->ToBoolean(concurrent));
840
841  __ CallRuntime(Runtime::kHiddenCompileOptimized, 2);
842  // Restore receiver.
843  __ Pop(a1);
844}
845
846
847void Builtins::Generate_CompileOptimized(MacroAssembler* masm) {
848  CallCompileOptimized(masm, false);
849  GenerateTailCallToReturnedCode(masm);
850}
851
852
853void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) {
854  CallCompileOptimized(masm, true);
855  GenerateTailCallToReturnedCode(masm);
856}
857
858
859
860static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
861  // For now, we are relying on the fact that make_code_young doesn't do any
862  // garbage collection which allows us to save/restore the registers without
863  // worrying about which of them contain pointers. We also don't build an
864  // internal frame to make the code faster, since we shouldn't have to do stack
865  // crawls in MakeCodeYoung. This seems a bit fragile.
866
867  // Set a0 to point to the head of the PlatformCodeAge sequence.
868  __ Subu(a0, a0,
869      Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
870
871  // The following registers must be saved and restored when calling through to
872  // the runtime:
873  //   a0 - contains return address (beginning of patch sequence)
874  //   a1 - isolate
875  RegList saved_regs =
876      (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
877  FrameScope scope(masm, StackFrame::MANUAL);
878  __ MultiPush(saved_regs);
879  __ PrepareCallCFunction(2, 0, a2);
880  __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
881  __ CallCFunction(
882      ExternalReference::get_make_code_young_function(masm->isolate()), 2);
883  __ MultiPop(saved_regs);
884  __ Jump(a0);
885}
886
887#define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
888void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
889    MacroAssembler* masm) {                                  \
890  GenerateMakeCodeYoungAgainCommon(masm);                    \
891}                                                            \
892void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
893    MacroAssembler* masm) {                                  \
894  GenerateMakeCodeYoungAgainCommon(masm);                    \
895}
896CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
897#undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
898
899
900void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
901  // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
902  // that make_code_young doesn't do any garbage collection which allows us to
903  // save/restore the registers without worrying about which of them contain
904  // pointers.
905
906  // Set a0 to point to the head of the PlatformCodeAge sequence.
907  __ Subu(a0, a0,
908      Operand(kNoCodeAgeSequenceLength - Assembler::kInstrSize));
909
910  // The following registers must be saved and restored when calling through to
911  // the runtime:
912  //   a0 - contains return address (beginning of patch sequence)
913  //   a1 - isolate
914  RegList saved_regs =
915      (a0.bit() | a1.bit() | ra.bit() | fp.bit()) & ~sp.bit();
916  FrameScope scope(masm, StackFrame::MANUAL);
917  __ MultiPush(saved_regs);
918  __ PrepareCallCFunction(2, 0, a2);
919  __ li(a1, Operand(ExternalReference::isolate_address(masm->isolate())));
920  __ CallCFunction(
921      ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
922      2);
923  __ MultiPop(saved_regs);
924
925  // Perform prologue operations usually performed by the young code stub.
926  __ Push(ra, fp, cp, a1);
927  __ Addu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
928
929  // Jump to point after the code-age stub.
930  __ Addu(a0, a0, Operand(kNoCodeAgeSequenceLength));
931  __ Jump(a0);
932}
933
934
935void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
936  GenerateMakeCodeYoungAgainCommon(masm);
937}
938
939
940static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
941                                             SaveFPRegsMode save_doubles) {
942  {
943    FrameScope scope(masm, StackFrame::INTERNAL);
944
945    // Preserve registers across notification, this is important for compiled
946    // stubs that tail call the runtime on deopts passing their parameters in
947    // registers.
948    __ MultiPush(kJSCallerSaved | kCalleeSaved);
949    // Pass the function and deoptimization type to the runtime system.
950    __ CallRuntime(Runtime::kHiddenNotifyStubFailure, 0, save_doubles);
951    __ MultiPop(kJSCallerSaved | kCalleeSaved);
952  }
953
954  __ Addu(sp, sp, Operand(kPointerSize));  // Ignore state
955  __ Jump(ra);  // Jump to miss handler
956}
957
958
959void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
960  Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
961}
962
963
964void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
965  Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
966}
967
968
969static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
970                                             Deoptimizer::BailoutType type) {
971  {
972    FrameScope scope(masm, StackFrame::INTERNAL);
973    // Pass the function and deoptimization type to the runtime system.
974    __ li(a0, Operand(Smi::FromInt(static_cast<int>(type))));
975    __ push(a0);
976    __ CallRuntime(Runtime::kHiddenNotifyDeoptimized, 1);
977  }
978
979  // Get the full codegen state from the stack and untag it -> t2.
980  __ lw(t2, MemOperand(sp, 0 * kPointerSize));
981  __ SmiUntag(t2);
982  // Switch on the state.
983  Label with_tos_register, unknown_state;
984  __ Branch(&with_tos_register,
985            ne, t2, Operand(FullCodeGenerator::NO_REGISTERS));
986  __ Ret(USE_DELAY_SLOT);
987  // Safe to fill delay slot Addu will emit one instruction.
988  __ Addu(sp, sp, Operand(1 * kPointerSize));  // Remove state.
989
990  __ bind(&with_tos_register);
991  __ lw(v0, MemOperand(sp, 1 * kPointerSize));
992  __ Branch(&unknown_state, ne, t2, Operand(FullCodeGenerator::TOS_REG));
993
994  __ Ret(USE_DELAY_SLOT);
995  // Safe to fill delay slot Addu will emit one instruction.
996  __ Addu(sp, sp, Operand(2 * kPointerSize));  // Remove state.
997
998  __ bind(&unknown_state);
999  __ stop("no cases left");
1000}
1001
1002
1003void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1004  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
1005}
1006
1007
1008void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
1009  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
1010}
1011
1012
1013void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
1014  Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
1015}
1016
1017
1018void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1019  // Lookup the function in the JavaScript frame.
1020  __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
1021  {
1022    FrameScope scope(masm, StackFrame::INTERNAL);
1023    // Pass function as argument.
1024    __ push(a0);
1025    __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
1026  }
1027
1028  // If the code object is null, just return to the unoptimized code.
1029  __ Ret(eq, v0, Operand(Smi::FromInt(0)));
1030
1031  // Load deoptimization data from the code object.
1032  // <deopt_data> = <code>[#deoptimization_data_offset]
1033  __ lw(a1, MemOperand(v0, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1034
1035  // Load the OSR entrypoint offset from the deoptimization data.
1036  // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1037  __ lw(a1, MemOperand(a1, FixedArray::OffsetOfElementAt(
1038      DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
1039  __ SmiUntag(a1);
1040
1041  // Compute the target address = code_obj + header_size + osr_offset
1042  // <entry_addr> = <code_obj> + #header_size + <osr_offset>
1043  __ addu(v0, v0, a1);
1044  __ addiu(ra, v0, Code::kHeaderSize - kHeapObjectTag);
1045
1046  // And "return" to the OSR entry point of the function.
1047  __ Ret();
1048}
1049
1050
1051void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
1052  // We check the stack limit as indicator that recompilation might be done.
1053  Label ok;
1054  __ LoadRoot(at, Heap::kStackLimitRootIndex);
1055  __ Branch(&ok, hs, sp, Operand(at));
1056  {
1057    FrameScope scope(masm, StackFrame::INTERNAL);
1058    __ CallRuntime(Runtime::kHiddenStackGuard, 0);
1059  }
1060  __ Jump(masm->isolate()->builtins()->OnStackReplacement(),
1061          RelocInfo::CODE_TARGET);
1062
1063  __ bind(&ok);
1064  __ Ret();
1065}
1066
1067
1068void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
1069  // 1. Make sure we have at least one argument.
1070  // a0: actual number of arguments
1071  { Label done;
1072    __ Branch(&done, ne, a0, Operand(zero_reg));
1073    __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
1074    __ push(t2);
1075    __ Addu(a0, a0, Operand(1));
1076    __ bind(&done);
1077  }
1078
1079  // 2. Get the function to call (passed as receiver) from the stack, check
1080  //    if it is a function.
1081  // a0: actual number of arguments
1082  Label slow, non_function;
1083  __ sll(at, a0, kPointerSizeLog2);
1084  __ addu(at, sp, at);
1085  __ lw(a1, MemOperand(at));
1086  __ JumpIfSmi(a1, &non_function);
1087  __ GetObjectType(a1, a2, a2);
1088  __ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
1089
1090  // 3a. Patch the first argument if necessary when calling a function.
1091  // a0: actual number of arguments
1092  // a1: function
1093  Label shift_arguments;
1094  __ li(t0, Operand(0, RelocInfo::NONE32));  // Indicate regular JS_FUNCTION.
1095  { Label convert_to_object, use_global_receiver, patch_receiver;
1096    // Change context eagerly in case we need the global receiver.
1097    __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1098
1099    // Do not transform the receiver for strict mode functions.
1100    __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1101    __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
1102    __ And(t3, a3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1103                                 kSmiTagSize)));
1104    __ Branch(&shift_arguments, ne, t3, Operand(zero_reg));
1105
1106    // Do not transform the receiver for native (Compilerhints already in a3).
1107    __ And(t3, a3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
1108    __ Branch(&shift_arguments, ne, t3, Operand(zero_reg));
1109
1110    // Compute the receiver in sloppy mode.
1111    // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2).
1112    __ sll(at, a0, kPointerSizeLog2);
1113    __ addu(a2, sp, at);
1114    __ lw(a2, MemOperand(a2, -kPointerSize));
1115    // a0: actual number of arguments
1116    // a1: function
1117    // a2: first argument
1118    __ JumpIfSmi(a2, &convert_to_object, t2);
1119
1120    __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
1121    __ Branch(&use_global_receiver, eq, a2, Operand(a3));
1122    __ LoadRoot(a3, Heap::kNullValueRootIndex);
1123    __ Branch(&use_global_receiver, eq, a2, Operand(a3));
1124
1125    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1126    __ GetObjectType(a2, a3, a3);
1127    __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
1128
1129    __ bind(&convert_to_object);
1130    // Enter an internal frame in order to preserve argument count.
1131    {
1132      FrameScope scope(masm, StackFrame::INTERNAL);
1133      __ sll(a0, a0, kSmiTagSize);  // Smi tagged.
1134      __ Push(a0, a2);
1135      __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1136      __ mov(a2, v0);
1137
1138      __ pop(a0);
1139      __ sra(a0, a0, kSmiTagSize);  // Un-tag.
1140      // Leave internal frame.
1141    }
1142    // Restore the function to a1, and the flag to t0.
1143    __ sll(at, a0, kPointerSizeLog2);
1144    __ addu(at, sp, at);
1145    __ lw(a1, MemOperand(at));
1146    __ li(t0, Operand(0, RelocInfo::NONE32));
1147    __ Branch(&patch_receiver);
1148
1149    __ bind(&use_global_receiver);
1150    __ lw(a2, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
1151    __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset));
1152
1153    __ bind(&patch_receiver);
1154    __ sll(at, a0, kPointerSizeLog2);
1155    __ addu(a3, sp, at);
1156    __ sw(a2, MemOperand(a3, -kPointerSize));
1157
1158    __ Branch(&shift_arguments);
1159  }
1160
1161  // 3b. Check for function proxy.
1162  __ bind(&slow);
1163  __ li(t0, Operand(1, RelocInfo::NONE32));  // Indicate function proxy.
1164  __ Branch(&shift_arguments, eq, a2, Operand(JS_FUNCTION_PROXY_TYPE));
1165
1166  __ bind(&non_function);
1167  __ li(t0, Operand(2, RelocInfo::NONE32));  // Indicate non-function.
1168
1169  // 3c. Patch the first argument when calling a non-function.  The
1170  //     CALL_NON_FUNCTION builtin expects the non-function callee as
1171  //     receiver, so overwrite the first argument which will ultimately
1172  //     become the receiver.
1173  // a0: actual number of arguments
1174  // a1: function
1175  // t0: call type (0: JS function, 1: function proxy, 2: non-function)
1176  __ sll(at, a0, kPointerSizeLog2);
1177  __ addu(a2, sp, at);
1178  __ sw(a1, MemOperand(a2, -kPointerSize));
1179
1180  // 4. Shift arguments and return address one slot down on the stack
1181  //    (overwriting the original receiver).  Adjust argument count to make
1182  //    the original first argument the new receiver.
1183  // a0: actual number of arguments
1184  // a1: function
1185  // t0: call type (0: JS function, 1: function proxy, 2: non-function)
1186  __ bind(&shift_arguments);
1187  { Label loop;
1188    // Calculate the copy start address (destination). Copy end address is sp.
1189    __ sll(at, a0, kPointerSizeLog2);
1190    __ addu(a2, sp, at);
1191
1192    __ bind(&loop);
1193    __ lw(at, MemOperand(a2, -kPointerSize));
1194    __ sw(at, MemOperand(a2));
1195    __ Subu(a2, a2, Operand(kPointerSize));
1196    __ Branch(&loop, ne, a2, Operand(sp));
1197    // Adjust the actual number of arguments and remove the top element
1198    // (which is a copy of the last argument).
1199    __ Subu(a0, a0, Operand(1));
1200    __ Pop();
1201  }
1202
1203  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
1204  //     or a function proxy via CALL_FUNCTION_PROXY.
1205  // a0: actual number of arguments
1206  // a1: function
1207  // t0: call type (0: JS function, 1: function proxy, 2: non-function)
1208  { Label function, non_proxy;
1209    __ Branch(&function, eq, t0, Operand(zero_reg));
1210    // Expected number of arguments is 0 for CALL_NON_FUNCTION.
1211    __ mov(a2, zero_reg);
1212    __ Branch(&non_proxy, ne, t0, Operand(1));
1213
1214    __ push(a1);  // Re-add proxy object as additional argument.
1215    __ Addu(a0, a0, Operand(1));
1216    __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
1217    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1218            RelocInfo::CODE_TARGET);
1219
1220    __ bind(&non_proxy);
1221    __ GetBuiltinFunction(a1, Builtins::CALL_NON_FUNCTION);
1222    __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1223            RelocInfo::CODE_TARGET);
1224    __ bind(&function);
1225  }
1226
1227  // 5b. Get the code to call from the function and check that the number of
1228  //     expected arguments matches what we're providing.  If so, jump
1229  //     (tail-call) to the code in register edx without checking arguments.
1230  // a0: actual number of arguments
1231  // a1: function
1232  __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1233  __ lw(a2,
1234         FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
1235  __ sra(a2, a2, kSmiTagSize);
1236  // Check formal and actual parameter counts.
1237  __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1238          RelocInfo::CODE_TARGET, ne, a2, Operand(a0));
1239
1240  __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1241  ParameterCount expected(0);
1242  __ InvokeCode(a3, expected, expected, JUMP_FUNCTION, NullCallWrapper());
1243}
1244
1245
1246void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
1247  const int kIndexOffset    =
1248      StandardFrameConstants::kExpressionsOffset - (2 * kPointerSize);
1249  const int kLimitOffset    =
1250      StandardFrameConstants::kExpressionsOffset - (1 * kPointerSize);
1251  const int kArgsOffset     = 2 * kPointerSize;
1252  const int kRecvOffset     = 3 * kPointerSize;
1253  const int kFunctionOffset = 4 * kPointerSize;
1254
1255  {
1256    FrameScope frame_scope(masm, StackFrame::INTERNAL);
1257    __ lw(a0, MemOperand(fp, kFunctionOffset));  // Get the function.
1258    __ push(a0);
1259    __ lw(a0, MemOperand(fp, kArgsOffset));  // Get the args array.
1260    __ push(a0);
1261    // Returns (in v0) number of arguments to copy to stack as Smi.
1262    __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
1263
1264    // Check the stack for overflow. We are not trying to catch
1265    // interruptions (e.g. debug break and preemption) here, so the "real stack
1266    // limit" is checked.
1267    Label okay;
1268    __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
1269    // Make a2 the space we have left. The stack might already be overflowed
1270    // here which will cause a2 to become negative.
1271    __ subu(a2, sp, a2);
1272    // Check if the arguments will overflow the stack.
1273    __ sll(t3, v0, kPointerSizeLog2 - kSmiTagSize);
1274    __ Branch(&okay, gt, a2, Operand(t3));  // Signed comparison.
1275
1276    // Out of stack space.
1277    __ lw(a1, MemOperand(fp, kFunctionOffset));
1278    __ Push(a1, v0);
1279    __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
1280    // End of stack check.
1281
1282    // Push current limit and index.
1283    __ bind(&okay);
1284    __ mov(a1, zero_reg);
1285    __ Push(v0, a1);  // Limit and initial index.
1286
1287    // Get the receiver.
1288    __ lw(a0, MemOperand(fp, kRecvOffset));
1289
1290    // Check that the function is a JS function (otherwise it must be a proxy).
1291    Label push_receiver;
1292    __ lw(a1, MemOperand(fp, kFunctionOffset));
1293    __ GetObjectType(a1, a2, a2);
1294    __ Branch(&push_receiver, ne, a2, Operand(JS_FUNCTION_TYPE));
1295
1296    // Change context eagerly to get the right global object if necessary.
1297    __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
1298    // Load the shared function info while the function is still in a1.
1299    __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
1300
1301    // Compute the receiver.
1302    // Do not transform the receiver for strict mode functions.
1303    Label call_to_object, use_global_receiver;
1304    __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
1305    __ And(t3, a2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
1306                                 kSmiTagSize)));
1307    __ Branch(&push_receiver, ne, t3, Operand(zero_reg));
1308
1309    // Do not transform the receiver for native (Compilerhints already in a2).
1310    __ And(t3, a2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
1311    __ Branch(&push_receiver, ne, t3, Operand(zero_reg));
1312
1313    // Compute the receiver in sloppy mode.
1314    __ JumpIfSmi(a0, &call_to_object);
1315    __ LoadRoot(a1, Heap::kNullValueRootIndex);
1316    __ Branch(&use_global_receiver, eq, a0, Operand(a1));
1317    __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
1318    __ Branch(&use_global_receiver, eq, a0, Operand(a2));
1319
1320    // Check if the receiver is already a JavaScript object.
1321    // a0: receiver
1322    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
1323    __ GetObjectType(a0, a1, a1);
1324    __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
1325
1326    // Convert the receiver to a regular object.
1327    // a0: receiver
1328    __ bind(&call_to_object);
1329    __ push(a0);
1330    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
1331    __ mov(a0, v0);  // Put object in a0 to match other paths to push_receiver.
1332    __ Branch(&push_receiver);
1333
1334    __ bind(&use_global_receiver);
1335    __ lw(a0, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX));
1336    __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset));
1337
1338    // Push the receiver.
1339    // a0: receiver
1340    __ bind(&push_receiver);
1341    __ push(a0);
1342
1343    // Copy all arguments from the array to the stack.
1344    Label entry, loop;
1345    __ lw(a0, MemOperand(fp, kIndexOffset));
1346    __ Branch(&entry);
1347
1348    // Load the current argument from the arguments array and push it to the
1349    // stack.
1350    // a0: current argument index
1351    __ bind(&loop);
1352    __ lw(a1, MemOperand(fp, kArgsOffset));
1353    __ Push(a1, a0);
1354
1355    // Call the runtime to access the property in the arguments array.
1356    __ CallRuntime(Runtime::kGetProperty, 2);
1357    __ push(v0);
1358
1359    // Use inline caching to access the arguments.
1360    __ lw(a0, MemOperand(fp, kIndexOffset));
1361    __ Addu(a0, a0, Operand(1 << kSmiTagSize));
1362    __ sw(a0, MemOperand(fp, kIndexOffset));
1363
1364    // Test if the copy loop has finished copying all the elements from the
1365    // arguments object.
1366    __ bind(&entry);
1367    __ lw(a1, MemOperand(fp, kLimitOffset));
1368    __ Branch(&loop, ne, a0, Operand(a1));
1369
1370    // Call the function.
1371    Label call_proxy;
1372    ParameterCount actual(a0);
1373    __ sra(a0, a0, kSmiTagSize);
1374    __ lw(a1, MemOperand(fp, kFunctionOffset));
1375    __ GetObjectType(a1, a2, a2);
1376    __ Branch(&call_proxy, ne, a2, Operand(JS_FUNCTION_TYPE));
1377
1378    __ InvokeFunction(a1, actual, CALL_FUNCTION, NullCallWrapper());
1379
1380    frame_scope.GenerateLeaveFrame();
1381    __ Ret(USE_DELAY_SLOT);
1382    __ Addu(sp, sp, Operand(3 * kPointerSize));  // In delay slot.
1383
1384    // Call the function proxy.
1385    __ bind(&call_proxy);
1386    __ push(a1);  // Add function proxy as last argument.
1387    __ Addu(a0, a0, Operand(1));
1388    __ li(a2, Operand(0, RelocInfo::NONE32));
1389    __ GetBuiltinFunction(a1, Builtins::CALL_FUNCTION_PROXY);
1390    __ Call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1391            RelocInfo::CODE_TARGET);
1392    // Tear down the internal frame and remove function, receiver and args.
1393  }
1394
1395  __ Ret(USE_DELAY_SLOT);
1396  __ Addu(sp, sp, Operand(3 * kPointerSize));  // In delay slot.
1397}
1398
1399
1400static void ArgumentAdaptorStackCheck(MacroAssembler* masm,
1401                                      Label* stack_overflow) {
1402  // ----------- S t a t e -------------
1403  //  -- a0 : actual number of arguments
1404  //  -- a1 : function (passed through to callee)
1405  //  -- a2 : expected number of arguments
1406  // -----------------------------------
1407  // Check the stack for overflow. We are not trying to catch
1408  // interruptions (e.g. debug break and preemption) here, so the "real stack
1409  // limit" is checked.
1410  __ LoadRoot(t1, Heap::kRealStackLimitRootIndex);
1411  // Make t1 the space we have left. The stack might already be overflowed
1412  // here which will cause t1 to become negative.
1413  __ subu(t1, sp, t1);
1414  // Check if the arguments will overflow the stack.
1415  __ sll(at, a2, kPointerSizeLog2);
1416  // Signed comparison.
1417  __ Branch(stack_overflow, le, t1, Operand(at));
1418}
1419
1420
1421static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1422  __ sll(a0, a0, kSmiTagSize);
1423  __ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1424  __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit());
1425  __ Addu(fp, sp,
1426      Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize));
1427}
1428
1429
1430static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1431  // ----------- S t a t e -------------
1432  //  -- v0 : result being passed through
1433  // -----------------------------------
1434  // Get the number of arguments passed (as a smi), tear down the frame and
1435  // then tear down the parameters.
1436  __ lw(a1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp +
1437                             kPointerSize)));
1438  __ mov(sp, fp);
1439  __ MultiPop(fp.bit() | ra.bit());
1440  __ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize);
1441  __ Addu(sp, sp, t0);
1442  // Adjust for the receiver.
1443  __ Addu(sp, sp, Operand(kPointerSize));
1444}
1445
1446
1447void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1448  // State setup as expected by MacroAssembler::InvokePrologue.
1449  // ----------- S t a t e -------------
1450  //  -- a0: actual arguments count
1451  //  -- a1: function (passed through to callee)
1452  //  -- a2: expected arguments count
1453  // -----------------------------------
1454
1455  Label stack_overflow;
1456  ArgumentAdaptorStackCheck(masm, &stack_overflow);
1457  Label invoke, dont_adapt_arguments;
1458
1459  Label enough, too_few;
1460  __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
1461  __ Branch(&dont_adapt_arguments, eq,
1462      a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
1463  // We use Uless as the number of argument should always be greater than 0.
1464  __ Branch(&too_few, Uless, a0, Operand(a2));
1465
1466  {  // Enough parameters: actual >= expected.
1467    // a0: actual number of arguments as a smi
1468    // a1: function
1469    // a2: expected number of arguments
1470    // a3: code entry to call
1471    __ bind(&enough);
1472    EnterArgumentsAdaptorFrame(masm);
1473
1474    // Calculate copy start address into a0 and copy end address into a2.
1475    __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
1476    __ Addu(a0, fp, a0);
1477    // Adjust for return address and receiver.
1478    __ Addu(a0, a0, Operand(2 * kPointerSize));
1479    // Compute copy end address.
1480    __ sll(a2, a2, kPointerSizeLog2);
1481    __ subu(a2, a0, a2);
1482
1483    // Copy the arguments (including the receiver) to the new stack frame.
1484    // a0: copy start address
1485    // a1: function
1486    // a2: copy end address
1487    // a3: code entry to call
1488
1489    Label copy;
1490    __ bind(&copy);
1491    __ lw(t0, MemOperand(a0));
1492    __ push(t0);
1493    __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a2));
1494    __ addiu(a0, a0, -kPointerSize);  // In delay slot.
1495
1496    __ jmp(&invoke);
1497  }
1498
1499  {  // Too few parameters: Actual < expected.
1500    __ bind(&too_few);
1501    EnterArgumentsAdaptorFrame(masm);
1502
1503    // Calculate copy start address into a0 and copy end address is fp.
1504    // a0: actual number of arguments as a smi
1505    // a1: function
1506    // a2: expected number of arguments
1507    // a3: code entry to call
1508    __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
1509    __ Addu(a0, fp, a0);
1510    // Adjust for return address and receiver.
1511    __ Addu(a0, a0, Operand(2 * kPointerSize));
1512    // Compute copy end address. Also adjust for return address.
1513    __ Addu(t3, fp, kPointerSize);
1514
1515    // Copy the arguments (including the receiver) to the new stack frame.
1516    // a0: copy start address
1517    // a1: function
1518    // a2: expected number of arguments
1519    // a3: code entry to call
1520    // t3: copy end address
1521    Label copy;
1522    __ bind(&copy);
1523    __ lw(t0, MemOperand(a0));  // Adjusted above for return addr and receiver.
1524    __ Subu(sp, sp, kPointerSize);
1525    __ Subu(a0, a0, kPointerSize);
1526    __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(t3));
1527    __ sw(t0, MemOperand(sp));  // In the delay slot.
1528
1529    // Fill the remaining expected arguments with undefined.
1530    // a1: function
1531    // a2: expected number of arguments
1532    // a3: code entry to call
1533    __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
1534    __ sll(t2, a2, kPointerSizeLog2);
1535    __ Subu(a2, fp, Operand(t2));
1536    // Adjust for frame.
1537    __ Subu(a2, a2, Operand(StandardFrameConstants::kFixedFrameSizeFromFp +
1538                            2 * kPointerSize));
1539
1540    Label fill;
1541    __ bind(&fill);
1542    __ Subu(sp, sp, kPointerSize);
1543    __ Branch(USE_DELAY_SLOT, &fill, ne, sp, Operand(a2));
1544    __ sw(t0, MemOperand(sp));
1545  }
1546
1547  // Call the entry point.
1548  __ bind(&invoke);
1549
1550  __ Call(a3);
1551
1552  // Store offset of return address for deoptimizer.
1553  masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1554
1555  // Exit frame and return.
1556  LeaveArgumentsAdaptorFrame(masm);
1557  __ Ret();
1558
1559
1560  // -------------------------------------------
1561  // Don't adapt arguments.
1562  // -------------------------------------------
1563  __ bind(&dont_adapt_arguments);
1564  __ Jump(a3);
1565
1566  __ bind(&stack_overflow);
1567  {
1568    FrameScope frame(masm, StackFrame::MANUAL);
1569    EnterArgumentsAdaptorFrame(masm);
1570    __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION);
1571    __ break_(0xCC);
1572  }
1573}
1574
1575
1576#undef __
1577
1578} }  // namespace v8::internal
1579
1580#endif  // V8_TARGET_ARCH_MIPS
1581