1// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#if V8_TARGET_ARCH_X87
8
9#include "src/x87/lithium-codegen-x87.h"
10#include "src/ic.h"
11#include "src/code-stubs.h"
12#include "src/deoptimizer.h"
13#include "src/stub-cache.h"
14#include "src/codegen.h"
15#include "src/hydrogen-osr.h"
16
17namespace v8 {
18namespace internal {
19
20
21// When invoking builtins, we need to record the safepoint in the middle of
22// the invoke instruction sequence generated by the macro assembler.
23class SafepointGenerator V8_FINAL : public CallWrapper {
24 public:
25  SafepointGenerator(LCodeGen* codegen,
26                     LPointerMap* pointers,
27                     Safepoint::DeoptMode mode)
28      : codegen_(codegen),
29        pointers_(pointers),
30        deopt_mode_(mode) {}
31  virtual ~SafepointGenerator() {}
32
33  virtual void BeforeCall(int call_size) const V8_OVERRIDE {}
34
35  virtual void AfterCall() const V8_OVERRIDE {
36    codegen_->RecordSafepoint(pointers_, deopt_mode_);
37  }
38
39 private:
40  LCodeGen* codegen_;
41  LPointerMap* pointers_;
42  Safepoint::DeoptMode deopt_mode_;
43};
44
45
46#define __ masm()->
47
48bool LCodeGen::GenerateCode() {
49  LPhase phase("Z_Code generation", chunk());
50  ASSERT(is_unused());
51  status_ = GENERATING;
52
53  // Open a frame scope to indicate that there is a frame on the stack.  The
54  // MANUAL indicates that the scope shouldn't actually generate code to set up
55  // the frame (that is done in GeneratePrologue).
56  FrameScope frame_scope(masm_, StackFrame::MANUAL);
57
58  support_aligned_spilled_doubles_ = info()->IsOptimizing();
59
60  dynamic_frame_alignment_ = info()->IsOptimizing() &&
61      ((chunk()->num_double_slots() > 2 &&
62        !chunk()->graph()->is_recursive()) ||
63       !info()->osr_ast_id().IsNone());
64
65  return GeneratePrologue() &&
66      GenerateBody() &&
67      GenerateDeferredCode() &&
68      GenerateJumpTable() &&
69      GenerateSafepointTable();
70}
71
72
73void LCodeGen::FinishCode(Handle<Code> code) {
74  ASSERT(is_done());
75  code->set_stack_slots(GetStackSlotCount());
76  code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
77  if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
78  PopulateDeoptimizationData(code);
79  if (!info()->IsStub()) {
80    Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
81  }
82}
83
84
85#ifdef _MSC_VER
86void LCodeGen::MakeSureStackPagesMapped(int offset) {
87  const int kPageSize = 4 * KB;
88  for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
89    __ mov(Operand(esp, offset), eax);
90  }
91}
92#endif
93
94
95bool LCodeGen::GeneratePrologue() {
96  ASSERT(is_generating());
97
98  if (info()->IsOptimizing()) {
99    ProfileEntryHookStub::MaybeCallEntryHook(masm_);
100
101#ifdef DEBUG
102    if (strlen(FLAG_stop_at) > 0 &&
103        info_->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
104      __ int3();
105    }
106#endif
107
108    // Sloppy mode functions and builtins need to replace the receiver with the
109    // global proxy when called as functions (without an explicit receiver
110    // object).
111    if (info_->this_has_uses() &&
112        info_->strict_mode() == SLOPPY &&
113        !info_->is_native()) {
114      Label ok;
115      // +1 for return address.
116      int receiver_offset = (scope()->num_parameters() + 1) * kPointerSize;
117      __ mov(ecx, Operand(esp, receiver_offset));
118
119      __ cmp(ecx, isolate()->factory()->undefined_value());
120      __ j(not_equal, &ok, Label::kNear);
121
122      __ mov(ecx, GlobalObjectOperand());
123      __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset));
124
125      __ mov(Operand(esp, receiver_offset), ecx);
126
127      __ bind(&ok);
128    }
129
130    if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
131      // Move state of dynamic frame alignment into edx.
132      __ Move(edx, Immediate(kNoAlignmentPadding));
133
134      Label do_not_pad, align_loop;
135      STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
136      // Align esp + 4 to a multiple of 2 * kPointerSize.
137      __ test(esp, Immediate(kPointerSize));
138      __ j(not_zero, &do_not_pad, Label::kNear);
139      __ push(Immediate(0));
140      __ mov(ebx, esp);
141      __ mov(edx, Immediate(kAlignmentPaddingPushed));
142      // Copy arguments, receiver, and return address.
143      __ mov(ecx, Immediate(scope()->num_parameters() + 2));
144
145      __ bind(&align_loop);
146      __ mov(eax, Operand(ebx, 1 * kPointerSize));
147      __ mov(Operand(ebx, 0), eax);
148      __ add(Operand(ebx), Immediate(kPointerSize));
149      __ dec(ecx);
150      __ j(not_zero, &align_loop, Label::kNear);
151      __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
152      __ bind(&do_not_pad);
153    }
154  }
155
156  info()->set_prologue_offset(masm_->pc_offset());
157  if (NeedsEagerFrame()) {
158    ASSERT(!frame_is_built_);
159    frame_is_built_ = true;
160    if (info()->IsStub()) {
161      __ StubPrologue();
162    } else {
163      __ Prologue(info()->IsCodePreAgingActive());
164    }
165    info()->AddNoFrameRange(0, masm_->pc_offset());
166  }
167
168  if (info()->IsOptimizing() &&
169      dynamic_frame_alignment_ &&
170      FLAG_debug_code) {
171    __ test(esp, Immediate(kPointerSize));
172    __ Assert(zero, kFrameIsExpectedToBeAligned);
173  }
174
175  // Reserve space for the stack slots needed by the code.
176  int slots = GetStackSlotCount();
177  ASSERT(slots != 0 || !info()->IsOptimizing());
178  if (slots > 0) {
179    if (slots == 1) {
180      if (dynamic_frame_alignment_) {
181        __ push(edx);
182      } else {
183        __ push(Immediate(kNoAlignmentPadding));
184      }
185    } else {
186      if (FLAG_debug_code) {
187        __ sub(Operand(esp), Immediate(slots * kPointerSize));
188#ifdef _MSC_VER
189        MakeSureStackPagesMapped(slots * kPointerSize);
190#endif
191        __ push(eax);
192        __ mov(Operand(eax), Immediate(slots));
193        Label loop;
194        __ bind(&loop);
195        __ mov(MemOperand(esp, eax, times_4, 0),
196               Immediate(kSlotsZapValue));
197        __ dec(eax);
198        __ j(not_zero, &loop);
199        __ pop(eax);
200      } else {
201        __ sub(Operand(esp), Immediate(slots * kPointerSize));
202#ifdef _MSC_VER
203        MakeSureStackPagesMapped(slots * kPointerSize);
204#endif
205      }
206
207      if (support_aligned_spilled_doubles_) {
208        Comment(";;; Store dynamic frame alignment tag for spilled doubles");
209        // Store dynamic frame alignment state in the first local.
210        int offset = JavaScriptFrameConstants::kDynamicAlignmentStateOffset;
211        if (dynamic_frame_alignment_) {
212          __ mov(Operand(ebp, offset), edx);
213        } else {
214          __ mov(Operand(ebp, offset), Immediate(kNoAlignmentPadding));
215        }
216      }
217    }
218  }
219
220  // Possibly allocate a local context.
221  int heap_slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
222  if (heap_slots > 0) {
223    Comment(";;; Allocate local context");
224    bool need_write_barrier = true;
225    // Argument to NewContext is the function, which is still in edi.
226    if (heap_slots <= FastNewContextStub::kMaximumSlots) {
227      FastNewContextStub stub(isolate(), heap_slots);
228      __ CallStub(&stub);
229      // Result of FastNewContextStub is always in new space.
230      need_write_barrier = false;
231    } else {
232      __ push(edi);
233      __ CallRuntime(Runtime::kHiddenNewFunctionContext, 1);
234    }
235    RecordSafepoint(Safepoint::kNoLazyDeopt);
236    // Context is returned in eax.  It replaces the context passed to us.
237    // It's saved in the stack and kept live in esi.
238    __ mov(esi, eax);
239    __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
240
241    // Copy parameters into context if necessary.
242    int num_parameters = scope()->num_parameters();
243    for (int i = 0; i < num_parameters; i++) {
244      Variable* var = scope()->parameter(i);
245      if (var->IsContextSlot()) {
246        int parameter_offset = StandardFrameConstants::kCallerSPOffset +
247            (num_parameters - 1 - i) * kPointerSize;
248        // Load parameter from stack.
249        __ mov(eax, Operand(ebp, parameter_offset));
250        // Store it in the context.
251        int context_offset = Context::SlotOffset(var->index());
252        __ mov(Operand(esi, context_offset), eax);
253        // Update the write barrier. This clobbers eax and ebx.
254        if (need_write_barrier) {
255          __ RecordWriteContextSlot(esi,
256                                    context_offset,
257                                    eax,
258                                    ebx);
259        } else if (FLAG_debug_code) {
260          Label done;
261          __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
262          __ Abort(kExpectedNewSpaceObject);
263          __ bind(&done);
264        }
265      }
266    }
267    Comment(";;; End allocate local context");
268  }
269
270  // Trace the call.
271  if (FLAG_trace && info()->IsOptimizing()) {
272    // We have not executed any compiled code yet, so esi still holds the
273    // incoming context.
274    __ CallRuntime(Runtime::kTraceEnter, 0);
275  }
276  return !is_aborted();
277}
278
279
280void LCodeGen::GenerateOsrPrologue() {
281  // Generate the OSR entry prologue at the first unknown OSR value, or if there
282  // are none, at the OSR entrypoint instruction.
283  if (osr_pc_offset_ >= 0) return;
284
285  osr_pc_offset_ = masm()->pc_offset();
286
287    // Move state of dynamic frame alignment into edx.
288  __ Move(edx, Immediate(kNoAlignmentPadding));
289
290  if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
291    Label do_not_pad, align_loop;
292    // Align ebp + 4 to a multiple of 2 * kPointerSize.
293    __ test(ebp, Immediate(kPointerSize));
294    __ j(zero, &do_not_pad, Label::kNear);
295    __ push(Immediate(0));
296    __ mov(ebx, esp);
297    __ mov(edx, Immediate(kAlignmentPaddingPushed));
298
299    // Move all parts of the frame over one word. The frame consists of:
300    // unoptimized frame slots, alignment state, context, frame pointer, return
301    // address, receiver, and the arguments.
302    __ mov(ecx, Immediate(scope()->num_parameters() +
303           5 + graph()->osr()->UnoptimizedFrameSlots()));
304
305    __ bind(&align_loop);
306    __ mov(eax, Operand(ebx, 1 * kPointerSize));
307    __ mov(Operand(ebx, 0), eax);
308    __ add(Operand(ebx), Immediate(kPointerSize));
309    __ dec(ecx);
310    __ j(not_zero, &align_loop, Label::kNear);
311    __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
312    __ sub(Operand(ebp), Immediate(kPointerSize));
313    __ bind(&do_not_pad);
314  }
315
316  // Save the first local, which is overwritten by the alignment state.
317  Operand alignment_loc = MemOperand(ebp, -3 * kPointerSize);
318  __ push(alignment_loc);
319
320  // Set the dynamic frame alignment state.
321  __ mov(alignment_loc, edx);
322
323  // Adjust the frame size, subsuming the unoptimized frame into the
324  // optimized frame.
325  int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
326  ASSERT(slots >= 1);
327  __ sub(esp, Immediate((slots - 1) * kPointerSize));
328}
329
330
331void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
332  if (instr->IsCall()) {
333    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
334  }
335  if (!instr->IsLazyBailout() && !instr->IsGap()) {
336    safepoints_.BumpLastLazySafepointIndex();
337  }
338  FlushX87StackIfNecessary(instr);
339}
340
341
342void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
343  if (instr->IsGoto()) {
344    x87_stack_.LeavingBlock(current_block_, LGoto::cast(instr));
345  } else if (FLAG_debug_code && FLAG_enable_slow_asserts &&
346             !instr->IsGap() && !instr->IsReturn()) {
347    if (instr->ClobbersDoubleRegisters(isolate())) {
348      if (instr->HasDoubleRegisterResult()) {
349        ASSERT_EQ(1, x87_stack_.depth());
350      } else {
351        ASSERT_EQ(0, x87_stack_.depth());
352      }
353    }
354    __ VerifyX87StackDepth(x87_stack_.depth());
355  }
356}
357
358
359bool LCodeGen::GenerateJumpTable() {
360  Label needs_frame;
361  if (jump_table_.length() > 0) {
362    Comment(";;; -------------------- Jump table --------------------");
363  }
364  for (int i = 0; i < jump_table_.length(); i++) {
365    __ bind(&jump_table_[i].label);
366    Address entry = jump_table_[i].address;
367    Deoptimizer::BailoutType type = jump_table_[i].bailout_type;
368    int id = Deoptimizer::GetDeoptimizationId(isolate(), entry, type);
369    if (id == Deoptimizer::kNotDeoptimizationEntry) {
370      Comment(";;; jump table entry %d.", i);
371    } else {
372      Comment(";;; jump table entry %d: deoptimization bailout %d.", i, id);
373    }
374    if (jump_table_[i].needs_frame) {
375      ASSERT(!info()->saves_caller_doubles());
376      __ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
377      if (needs_frame.is_bound()) {
378        __ jmp(&needs_frame);
379      } else {
380        __ bind(&needs_frame);
381        __ push(MemOperand(ebp, StandardFrameConstants::kContextOffset));
382        // This variant of deopt can only be used with stubs. Since we don't
383        // have a function pointer to install in the stack frame that we're
384        // building, install a special marker there instead.
385        ASSERT(info()->IsStub());
386        __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
387        // Push a PC inside the function so that the deopt code can find where
388        // the deopt comes from. It doesn't have to be the precise return
389        // address of a "calling" LAZY deopt, it only has to be somewhere
390        // inside the code body.
391        Label push_approx_pc;
392        __ call(&push_approx_pc);
393        __ bind(&push_approx_pc);
394        // Push the continuation which was stashed were the ebp should
395        // be. Replace it with the saved ebp.
396        __ push(MemOperand(esp, 3 * kPointerSize));
397        __ mov(MemOperand(esp, 4 * kPointerSize), ebp);
398        __ lea(ebp, MemOperand(esp, 4 * kPointerSize));
399        __ ret(0);  // Call the continuation without clobbering registers.
400      }
401    } else {
402      __ call(entry, RelocInfo::RUNTIME_ENTRY);
403    }
404  }
405  return !is_aborted();
406}
407
408
409bool LCodeGen::GenerateDeferredCode() {
410  ASSERT(is_generating());
411  if (deferred_.length() > 0) {
412    for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
413      LDeferredCode* code = deferred_[i];
414      X87Stack copy(code->x87_stack());
415      x87_stack_ = copy;
416
417      HValue* value =
418          instructions_->at(code->instruction_index())->hydrogen_value();
419      RecordAndWritePosition(
420          chunk()->graph()->SourcePositionToScriptPosition(value->position()));
421
422      Comment(";;; <@%d,#%d> "
423              "-------------------- Deferred %s --------------------",
424              code->instruction_index(),
425              code->instr()->hydrogen_value()->id(),
426              code->instr()->Mnemonic());
427      __ bind(code->entry());
428      if (NeedsDeferredFrame()) {
429        Comment(";;; Build frame");
430        ASSERT(!frame_is_built_);
431        ASSERT(info()->IsStub());
432        frame_is_built_ = true;
433        // Build the frame in such a way that esi isn't trashed.
434        __ push(ebp);  // Caller's frame pointer.
435        __ push(Operand(ebp, StandardFrameConstants::kContextOffset));
436        __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
437        __ lea(ebp, Operand(esp, 2 * kPointerSize));
438        Comment(";;; Deferred code");
439      }
440      code->Generate();
441      if (NeedsDeferredFrame()) {
442        __ bind(code->done());
443        Comment(";;; Destroy frame");
444        ASSERT(frame_is_built_);
445        frame_is_built_ = false;
446        __ mov(esp, ebp);
447        __ pop(ebp);
448      }
449      __ jmp(code->exit());
450    }
451  }
452
453  // Deferred code is the last part of the instruction sequence. Mark
454  // the generated code as done unless we bailed out.
455  if (!is_aborted()) status_ = DONE;
456  return !is_aborted();
457}
458
459
460bool LCodeGen::GenerateSafepointTable() {
461  ASSERT(is_done());
462  if (!info()->IsStub()) {
463    // For lazy deoptimization we need space to patch a call after every call.
464    // Ensure there is always space for such patching, even if the code ends
465    // in a call.
466    int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
467    while (masm()->pc_offset() < target_offset) {
468      masm()->nop();
469    }
470  }
471  safepoints_.Emit(masm(), GetStackSlotCount());
472  return !is_aborted();
473}
474
475
476Register LCodeGen::ToRegister(int index) const {
477  return Register::FromAllocationIndex(index);
478}
479
480
481X87Register LCodeGen::ToX87Register(int index) const {
482  return X87Register::FromAllocationIndex(index);
483}
484
485
486void LCodeGen::X87LoadForUsage(X87Register reg) {
487  ASSERT(x87_stack_.Contains(reg));
488  x87_stack_.Fxch(reg);
489  x87_stack_.pop();
490}
491
492
493void LCodeGen::X87LoadForUsage(X87Register reg1, X87Register reg2) {
494  ASSERT(x87_stack_.Contains(reg1));
495  ASSERT(x87_stack_.Contains(reg2));
496  x87_stack_.Fxch(reg1, 1);
497  x87_stack_.Fxch(reg2);
498  x87_stack_.pop();
499  x87_stack_.pop();
500}
501
502
503void LCodeGen::X87Stack::Fxch(X87Register reg, int other_slot) {
504  ASSERT(is_mutable_);
505  ASSERT(Contains(reg) && stack_depth_ > other_slot);
506  int i  = ArrayIndex(reg);
507  int st = st2idx(i);
508  if (st != other_slot) {
509    int other_i = st2idx(other_slot);
510    X87Register other = stack_[other_i];
511    stack_[other_i]   = reg;
512    stack_[i]         = other;
513    if (st == 0) {
514      __ fxch(other_slot);
515    } else if (other_slot == 0) {
516      __ fxch(st);
517    } else {
518      __ fxch(st);
519      __ fxch(other_slot);
520      __ fxch(st);
521    }
522  }
523}
524
525
526int LCodeGen::X87Stack::st2idx(int pos) {
527  return stack_depth_ - pos - 1;
528}
529
530
531int LCodeGen::X87Stack::ArrayIndex(X87Register reg) {
532  for (int i = 0; i < stack_depth_; i++) {
533    if (stack_[i].is(reg)) return i;
534  }
535  UNREACHABLE();
536  return -1;
537}
538
539
540bool LCodeGen::X87Stack::Contains(X87Register reg) {
541  for (int i = 0; i < stack_depth_; i++) {
542    if (stack_[i].is(reg)) return true;
543  }
544  return false;
545}
546
547
548void LCodeGen::X87Stack::Free(X87Register reg) {
549  ASSERT(is_mutable_);
550  ASSERT(Contains(reg));
551  int i  = ArrayIndex(reg);
552  int st = st2idx(i);
553  if (st > 0) {
554    // keep track of how fstp(i) changes the order of elements
555    int tos_i = st2idx(0);
556    stack_[i] = stack_[tos_i];
557  }
558  pop();
559  __ fstp(st);
560}
561
562
563void LCodeGen::X87Mov(X87Register dst, Operand src, X87OperandType opts) {
564  if (x87_stack_.Contains(dst)) {
565    x87_stack_.Fxch(dst);
566    __ fstp(0);
567  } else {
568    x87_stack_.push(dst);
569  }
570  X87Fld(src, opts);
571}
572
573
574void LCodeGen::X87Fld(Operand src, X87OperandType opts) {
575  ASSERT(!src.is_reg_only());
576  switch (opts) {
577    case kX87DoubleOperand:
578      __ fld_d(src);
579      break;
580    case kX87FloatOperand:
581      __ fld_s(src);
582      break;
583    case kX87IntOperand:
584      __ fild_s(src);
585      break;
586    default:
587      UNREACHABLE();
588  }
589}
590
591
592void LCodeGen::X87Mov(Operand dst, X87Register src, X87OperandType opts) {
593  ASSERT(!dst.is_reg_only());
594  x87_stack_.Fxch(src);
595  switch (opts) {
596    case kX87DoubleOperand:
597      __ fst_d(dst);
598      break;
599    case kX87IntOperand:
600      __ fist_s(dst);
601      break;
602    default:
603      UNREACHABLE();
604  }
605}
606
607
608void LCodeGen::X87Stack::PrepareToWrite(X87Register reg) {
609  ASSERT(is_mutable_);
610  if (Contains(reg)) {
611    Free(reg);
612  }
613  // Mark this register as the next register to write to
614  stack_[stack_depth_] = reg;
615}
616
617
618void LCodeGen::X87Stack::CommitWrite(X87Register reg) {
619  ASSERT(is_mutable_);
620  // Assert the reg is prepared to write, but not on the virtual stack yet
621  ASSERT(!Contains(reg) && stack_[stack_depth_].is(reg) &&
622      stack_depth_ < X87Register::kMaxNumAllocatableRegisters);
623  stack_depth_++;
624}
625
626
627void LCodeGen::X87PrepareBinaryOp(
628    X87Register left, X87Register right, X87Register result) {
629  // You need to use DefineSameAsFirst for x87 instructions
630  ASSERT(result.is(left));
631  x87_stack_.Fxch(right, 1);
632  x87_stack_.Fxch(left);
633}
634
635
636void LCodeGen::X87Stack::FlushIfNecessary(LInstruction* instr, LCodeGen* cgen) {
637  if (stack_depth_ > 0 && instr->ClobbersDoubleRegisters(isolate())) {
638    bool double_inputs = instr->HasDoubleRegisterInput();
639
640    // Flush stack from tos down, since FreeX87() will mess with tos
641    for (int i = stack_depth_-1; i >= 0; i--) {
642      X87Register reg = stack_[i];
643      // Skip registers which contain the inputs for the next instruction
644      // when flushing the stack
645      if (double_inputs && instr->IsDoubleInput(reg, cgen)) {
646        continue;
647      }
648      Free(reg);
649      if (i < stack_depth_-1) i++;
650    }
651  }
652  if (instr->IsReturn()) {
653    while (stack_depth_ > 0) {
654      __ fstp(0);
655      stack_depth_--;
656    }
657    if (FLAG_debug_code && FLAG_enable_slow_asserts) __ VerifyX87StackDepth(0);
658  }
659}
660
661
662void LCodeGen::X87Stack::LeavingBlock(int current_block_id, LGoto* goto_instr) {
663  ASSERT(stack_depth_ <= 1);
664  // If ever used for new stubs producing two pairs of doubles joined into two
665  // phis this assert hits. That situation is not handled, since the two stacks
666  // might have st0 and st1 swapped.
667  if (current_block_id + 1 != goto_instr->block_id()) {
668    // If we have a value on the x87 stack on leaving a block, it must be a
669    // phi input. If the next block we compile is not the join block, we have
670    // to discard the stack state.
671    stack_depth_ = 0;
672  }
673}
674
675
676void LCodeGen::EmitFlushX87ForDeopt() {
677  // The deoptimizer does not support X87 Registers. But as long as we
678  // deopt from a stub its not a problem, since we will re-materialize the
679  // original stub inputs, which can't be double registers.
680  ASSERT(info()->IsStub());
681  if (FLAG_debug_code && FLAG_enable_slow_asserts) {
682    __ pushfd();
683    __ VerifyX87StackDepth(x87_stack_.depth());
684    __ popfd();
685  }
686  for (int i = 0; i < x87_stack_.depth(); i++) __ fstp(0);
687}
688
689
690Register LCodeGen::ToRegister(LOperand* op) const {
691  ASSERT(op->IsRegister());
692  return ToRegister(op->index());
693}
694
695
696X87Register LCodeGen::ToX87Register(LOperand* op) const {
697  ASSERT(op->IsDoubleRegister());
698  return ToX87Register(op->index());
699}
700
701
702int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
703  return ToRepresentation(op, Representation::Integer32());
704}
705
706
707int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
708                                   const Representation& r) const {
709  HConstant* constant = chunk_->LookupConstant(op);
710  int32_t value = constant->Integer32Value();
711  if (r.IsInteger32()) return value;
712  ASSERT(r.IsSmiOrTagged());
713  return reinterpret_cast<int32_t>(Smi::FromInt(value));
714}
715
716
717Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
718  HConstant* constant = chunk_->LookupConstant(op);
719  ASSERT(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
720  return constant->handle(isolate());
721}
722
723
724double LCodeGen::ToDouble(LConstantOperand* op) const {
725  HConstant* constant = chunk_->LookupConstant(op);
726  ASSERT(constant->HasDoubleValue());
727  return constant->DoubleValue();
728}
729
730
731ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
732  HConstant* constant = chunk_->LookupConstant(op);
733  ASSERT(constant->HasExternalReferenceValue());
734  return constant->ExternalReferenceValue();
735}
736
737
738bool LCodeGen::IsInteger32(LConstantOperand* op) const {
739  return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
740}
741
742
743bool LCodeGen::IsSmi(LConstantOperand* op) const {
744  return chunk_->LookupLiteralRepresentation(op).IsSmi();
745}
746
747
748static int ArgumentsOffsetWithoutFrame(int index) {
749  ASSERT(index < 0);
750  return -(index + 1) * kPointerSize + kPCOnStackSize;
751}
752
753
754Operand LCodeGen::ToOperand(LOperand* op) const {
755  if (op->IsRegister()) return Operand(ToRegister(op));
756  ASSERT(!op->IsDoubleRegister());
757  ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
758  if (NeedsEagerFrame()) {
759    return Operand(ebp, StackSlotOffset(op->index()));
760  } else {
761    // Retrieve parameter without eager stack-frame relative to the
762    // stack-pointer.
763    return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
764  }
765}
766
767
768Operand LCodeGen::HighOperand(LOperand* op) {
769  ASSERT(op->IsDoubleStackSlot());
770  if (NeedsEagerFrame()) {
771    return Operand(ebp, StackSlotOffset(op->index()) + kPointerSize);
772  } else {
773    // Retrieve parameter without eager stack-frame relative to the
774    // stack-pointer.
775    return Operand(
776        esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
777  }
778}
779
780
781void LCodeGen::WriteTranslation(LEnvironment* environment,
782                                Translation* translation) {
783  if (environment == NULL) return;
784
785  // The translation includes one command per value in the environment.
786  int translation_size = environment->translation_size();
787  // The output frame height does not include the parameters.
788  int height = translation_size - environment->parameter_count();
789
790  WriteTranslation(environment->outer(), translation);
791  bool has_closure_id = !info()->closure().is_null() &&
792      !info()->closure().is_identical_to(environment->closure());
793  int closure_id = has_closure_id
794      ? DefineDeoptimizationLiteral(environment->closure())
795      : Translation::kSelfLiteralId;
796  switch (environment->frame_type()) {
797    case JS_FUNCTION:
798      translation->BeginJSFrame(environment->ast_id(), closure_id, height);
799      break;
800    case JS_CONSTRUCT:
801      translation->BeginConstructStubFrame(closure_id, translation_size);
802      break;
803    case JS_GETTER:
804      ASSERT(translation_size == 1);
805      ASSERT(height == 0);
806      translation->BeginGetterStubFrame(closure_id);
807      break;
808    case JS_SETTER:
809      ASSERT(translation_size == 2);
810      ASSERT(height == 0);
811      translation->BeginSetterStubFrame(closure_id);
812      break;
813    case ARGUMENTS_ADAPTOR:
814      translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
815      break;
816    case STUB:
817      translation->BeginCompiledStubFrame();
818      break;
819    default:
820      UNREACHABLE();
821  }
822
823  int object_index = 0;
824  int dematerialized_index = 0;
825  for (int i = 0; i < translation_size; ++i) {
826    LOperand* value = environment->values()->at(i);
827    AddToTranslation(environment,
828                     translation,
829                     value,
830                     environment->HasTaggedValueAt(i),
831                     environment->HasUint32ValueAt(i),
832                     &object_index,
833                     &dematerialized_index);
834  }
835}
836
837
838void LCodeGen::AddToTranslation(LEnvironment* environment,
839                                Translation* translation,
840                                LOperand* op,
841                                bool is_tagged,
842                                bool is_uint32,
843                                int* object_index_pointer,
844                                int* dematerialized_index_pointer) {
845  if (op == LEnvironment::materialization_marker()) {
846    int object_index = (*object_index_pointer)++;
847    if (environment->ObjectIsDuplicateAt(object_index)) {
848      int dupe_of = environment->ObjectDuplicateOfAt(object_index);
849      translation->DuplicateObject(dupe_of);
850      return;
851    }
852    int object_length = environment->ObjectLengthAt(object_index);
853    if (environment->ObjectIsArgumentsAt(object_index)) {
854      translation->BeginArgumentsObject(object_length);
855    } else {
856      translation->BeginCapturedObject(object_length);
857    }
858    int dematerialized_index = *dematerialized_index_pointer;
859    int env_offset = environment->translation_size() + dematerialized_index;
860    *dematerialized_index_pointer += object_length;
861    for (int i = 0; i < object_length; ++i) {
862      LOperand* value = environment->values()->at(env_offset + i);
863      AddToTranslation(environment,
864                       translation,
865                       value,
866                       environment->HasTaggedValueAt(env_offset + i),
867                       environment->HasUint32ValueAt(env_offset + i),
868                       object_index_pointer,
869                       dematerialized_index_pointer);
870    }
871    return;
872  }
873
874  if (op->IsStackSlot()) {
875    if (is_tagged) {
876      translation->StoreStackSlot(op->index());
877    } else if (is_uint32) {
878      translation->StoreUint32StackSlot(op->index());
879    } else {
880      translation->StoreInt32StackSlot(op->index());
881    }
882  } else if (op->IsDoubleStackSlot()) {
883    translation->StoreDoubleStackSlot(op->index());
884  } else if (op->IsRegister()) {
885    Register reg = ToRegister(op);
886    if (is_tagged) {
887      translation->StoreRegister(reg);
888    } else if (is_uint32) {
889      translation->StoreUint32Register(reg);
890    } else {
891      translation->StoreInt32Register(reg);
892    }
893  } else if (op->IsConstantOperand()) {
894    HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
895    int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
896    translation->StoreLiteral(src_index);
897  } else {
898    UNREACHABLE();
899  }
900}
901
902
903void LCodeGen::CallCodeGeneric(Handle<Code> code,
904                               RelocInfo::Mode mode,
905                               LInstruction* instr,
906                               SafepointMode safepoint_mode) {
907  ASSERT(instr != NULL);
908  __ call(code, mode);
909  RecordSafepointWithLazyDeopt(instr, safepoint_mode);
910
911  // Signal that we don't inline smi code before these stubs in the
912  // optimizing code generator.
913  if (code->kind() == Code::BINARY_OP_IC ||
914      code->kind() == Code::COMPARE_IC) {
915    __ nop();
916  }
917}
918
919
920void LCodeGen::CallCode(Handle<Code> code,
921                        RelocInfo::Mode mode,
922                        LInstruction* instr) {
923  CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
924}
925
926
927void LCodeGen::CallRuntime(const Runtime::Function* fun,
928                           int argc,
929                           LInstruction* instr) {
930  ASSERT(instr != NULL);
931  ASSERT(instr->HasPointerMap());
932
933  __ CallRuntime(fun, argc);
934
935  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
936
937  ASSERT(info()->is_calling());
938}
939
940
941void LCodeGen::LoadContextFromDeferred(LOperand* context) {
942  if (context->IsRegister()) {
943    if (!ToRegister(context).is(esi)) {
944      __ mov(esi, ToRegister(context));
945    }
946  } else if (context->IsStackSlot()) {
947    __ mov(esi, ToOperand(context));
948  } else if (context->IsConstantOperand()) {
949    HConstant* constant =
950        chunk_->LookupConstant(LConstantOperand::cast(context));
951    __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
952  } else {
953    UNREACHABLE();
954  }
955}
956
957void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
958                                       int argc,
959                                       LInstruction* instr,
960                                       LOperand* context) {
961  LoadContextFromDeferred(context);
962
963  __ CallRuntime(id);
964  RecordSafepointWithRegisters(
965      instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
966
967  ASSERT(info()->is_calling());
968}
969
970
971void LCodeGen::RegisterEnvironmentForDeoptimization(
972    LEnvironment* environment, Safepoint::DeoptMode mode) {
973  environment->set_has_been_used();
974  if (!environment->HasBeenRegistered()) {
975    // Physical stack frame layout:
976    // -x ............. -4  0 ..................................... y
977    // [incoming arguments] [spill slots] [pushed outgoing arguments]
978
979    // Layout of the environment:
980    // 0 ..................................................... size-1
981    // [parameters] [locals] [expression stack including arguments]
982
983    // Layout of the translation:
984    // 0 ........................................................ size - 1 + 4
985    // [expression stack including arguments] [locals] [4 words] [parameters]
986    // |>------------  translation_size ------------<|
987
988    int frame_count = 0;
989    int jsframe_count = 0;
990    for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
991      ++frame_count;
992      if (e->frame_type() == JS_FUNCTION) {
993        ++jsframe_count;
994      }
995    }
996    Translation translation(&translations_, frame_count, jsframe_count, zone());
997    WriteTranslation(environment, &translation);
998    int deoptimization_index = deoptimizations_.length();
999    int pc_offset = masm()->pc_offset();
1000    environment->Register(deoptimization_index,
1001                          translation.index(),
1002                          (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
1003    deoptimizations_.Add(environment, zone());
1004  }
1005}
1006
1007
1008void LCodeGen::DeoptimizeIf(Condition cc,
1009                            LEnvironment* environment,
1010                            Deoptimizer::BailoutType bailout_type) {
1011  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
1012  ASSERT(environment->HasBeenRegistered());
1013  int id = environment->deoptimization_index();
1014  ASSERT(info()->IsOptimizing() || info()->IsStub());
1015  Address entry =
1016      Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
1017  if (entry == NULL) {
1018    Abort(kBailoutWasNotPrepared);
1019    return;
1020  }
1021
1022  if (DeoptEveryNTimes()) {
1023    ExternalReference count = ExternalReference::stress_deopt_count(isolate());
1024    Label no_deopt;
1025    __ pushfd();
1026    __ push(eax);
1027    __ mov(eax, Operand::StaticVariable(count));
1028    __ sub(eax, Immediate(1));
1029    __ j(not_zero, &no_deopt, Label::kNear);
1030    if (FLAG_trap_on_deopt) __ int3();
1031    __ mov(eax, Immediate(FLAG_deopt_every_n_times));
1032    __ mov(Operand::StaticVariable(count), eax);
1033    __ pop(eax);
1034    __ popfd();
1035    ASSERT(frame_is_built_);
1036    __ call(entry, RelocInfo::RUNTIME_ENTRY);
1037    __ bind(&no_deopt);
1038    __ mov(Operand::StaticVariable(count), eax);
1039    __ pop(eax);
1040    __ popfd();
1041  }
1042
1043  // Before Instructions which can deopt, we normally flush the x87 stack. But
1044  // we can have inputs or outputs of the current instruction on the stack,
1045  // thus we need to flush them here from the physical stack to leave it in a
1046  // consistent state.
1047  if (x87_stack_.depth() > 0) {
1048    Label done;
1049    if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
1050    EmitFlushX87ForDeopt();
1051    __ bind(&done);
1052  }
1053
1054  if (info()->ShouldTrapOnDeopt()) {
1055    Label done;
1056    if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
1057    __ int3();
1058    __ bind(&done);
1059  }
1060
1061  ASSERT(info()->IsStub() || frame_is_built_);
1062  if (cc == no_condition && frame_is_built_) {
1063    __ call(entry, RelocInfo::RUNTIME_ENTRY);
1064  } else {
1065    // We often have several deopts to the same entry, reuse the last
1066    // jump entry if this is the case.
1067    if (jump_table_.is_empty() ||
1068        jump_table_.last().address != entry ||
1069        jump_table_.last().needs_frame != !frame_is_built_ ||
1070        jump_table_.last().bailout_type != bailout_type) {
1071      Deoptimizer::JumpTableEntry table_entry(entry,
1072                                              bailout_type,
1073                                              !frame_is_built_);
1074      jump_table_.Add(table_entry, zone());
1075    }
1076    if (cc == no_condition) {
1077      __ jmp(&jump_table_.last().label);
1078    } else {
1079      __ j(cc, &jump_table_.last().label);
1080    }
1081  }
1082}
1083
1084
1085void LCodeGen::DeoptimizeIf(Condition cc,
1086                            LEnvironment* environment) {
1087  Deoptimizer::BailoutType bailout_type = info()->IsStub()
1088      ? Deoptimizer::LAZY
1089      : Deoptimizer::EAGER;
1090  DeoptimizeIf(cc, environment, bailout_type);
1091}
1092
1093
1094void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
1095  int length = deoptimizations_.length();
1096  if (length == 0) return;
1097  Handle<DeoptimizationInputData> data =
1098      DeoptimizationInputData::New(isolate(), length, TENURED);
1099
1100  Handle<ByteArray> translations =
1101      translations_.CreateByteArray(isolate()->factory());
1102  data->SetTranslationByteArray(*translations);
1103  data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
1104  data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
1105  if (info_->IsOptimizing()) {
1106    // Reference to shared function info does not change between phases.
1107    AllowDeferredHandleDereference allow_handle_dereference;
1108    data->SetSharedFunctionInfo(*info_->shared_info());
1109  } else {
1110    data->SetSharedFunctionInfo(Smi::FromInt(0));
1111  }
1112
1113  Handle<FixedArray> literals =
1114      factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
1115  { AllowDeferredHandleDereference copy_handles;
1116    for (int i = 0; i < deoptimization_literals_.length(); i++) {
1117      literals->set(i, *deoptimization_literals_[i]);
1118    }
1119    data->SetLiteralArray(*literals);
1120  }
1121
1122  data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
1123  data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
1124
1125  // Populate the deoptimization entries.
1126  for (int i = 0; i < length; i++) {
1127    LEnvironment* env = deoptimizations_[i];
1128    data->SetAstId(i, env->ast_id());
1129    data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
1130    data->SetArgumentsStackHeight(i,
1131                                  Smi::FromInt(env->arguments_stack_height()));
1132    data->SetPc(i, Smi::FromInt(env->pc_offset()));
1133  }
1134  code->set_deoptimization_data(*data);
1135}
1136
1137
1138int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
1139  int result = deoptimization_literals_.length();
1140  for (int i = 0; i < deoptimization_literals_.length(); ++i) {
1141    if (deoptimization_literals_[i].is_identical_to(literal)) return i;
1142  }
1143  deoptimization_literals_.Add(literal, zone());
1144  return result;
1145}
1146
1147
1148void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
1149  ASSERT(deoptimization_literals_.length() == 0);
1150
1151  const ZoneList<Handle<JSFunction> >* inlined_closures =
1152      chunk()->inlined_closures();
1153
1154  for (int i = 0, length = inlined_closures->length();
1155       i < length;
1156       i++) {
1157    DefineDeoptimizationLiteral(inlined_closures->at(i));
1158  }
1159
1160  inlined_function_count_ = deoptimization_literals_.length();
1161}
1162
1163
1164void LCodeGen::RecordSafepointWithLazyDeopt(
1165    LInstruction* instr, SafepointMode safepoint_mode) {
1166  if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
1167    RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
1168  } else {
1169    ASSERT(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
1170    RecordSafepointWithRegisters(
1171        instr->pointer_map(), 0, Safepoint::kLazyDeopt);
1172  }
1173}
1174
1175
1176void LCodeGen::RecordSafepoint(
1177    LPointerMap* pointers,
1178    Safepoint::Kind kind,
1179    int arguments,
1180    Safepoint::DeoptMode deopt_mode) {
1181  ASSERT(kind == expected_safepoint_kind_);
1182  const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
1183  Safepoint safepoint =
1184      safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
1185  for (int i = 0; i < operands->length(); i++) {
1186    LOperand* pointer = operands->at(i);
1187    if (pointer->IsStackSlot()) {
1188      safepoint.DefinePointerSlot(pointer->index(), zone());
1189    } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
1190      safepoint.DefinePointerRegister(ToRegister(pointer), zone());
1191    }
1192  }
1193}
1194
1195
1196void LCodeGen::RecordSafepoint(LPointerMap* pointers,
1197                               Safepoint::DeoptMode mode) {
1198  RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
1199}
1200
1201
1202void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
1203  LPointerMap empty_pointers(zone());
1204  RecordSafepoint(&empty_pointers, mode);
1205}
1206
1207
1208void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
1209                                            int arguments,
1210                                            Safepoint::DeoptMode mode) {
1211  RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
1212}
1213
1214
1215void LCodeGen::RecordAndWritePosition(int position) {
1216  if (position == RelocInfo::kNoPosition) return;
1217  masm()->positions_recorder()->RecordPosition(position);
1218  masm()->positions_recorder()->WriteRecordedPositions();
1219}
1220
1221
1222static const char* LabelType(LLabel* label) {
1223  if (label->is_loop_header()) return " (loop header)";
1224  if (label->is_osr_entry()) return " (OSR entry)";
1225  return "";
1226}
1227
1228
1229void LCodeGen::DoLabel(LLabel* label) {
1230  Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
1231          current_instruction_,
1232          label->hydrogen_value()->id(),
1233          label->block_id(),
1234          LabelType(label));
1235  __ bind(label->label());
1236  current_block_ = label->block_id();
1237  DoGap(label);
1238}
1239
1240
1241void LCodeGen::DoParallelMove(LParallelMove* move) {
1242  resolver_.Resolve(move);
1243}
1244
1245
1246void LCodeGen::DoGap(LGap* gap) {
1247  for (int i = LGap::FIRST_INNER_POSITION;
1248       i <= LGap::LAST_INNER_POSITION;
1249       i++) {
1250    LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1251    LParallelMove* move = gap->GetParallelMove(inner_pos);
1252    if (move != NULL) DoParallelMove(move);
1253  }
1254}
1255
1256
1257void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
1258  DoGap(instr);
1259}
1260
1261
1262void LCodeGen::DoParameter(LParameter* instr) {
1263  // Nothing to do.
1264}
1265
1266
1267void LCodeGen::DoCallStub(LCallStub* instr) {
1268  ASSERT(ToRegister(instr->context()).is(esi));
1269  ASSERT(ToRegister(instr->result()).is(eax));
1270  switch (instr->hydrogen()->major_key()) {
1271    case CodeStub::RegExpExec: {
1272      RegExpExecStub stub(isolate());
1273      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1274      break;
1275    }
1276    case CodeStub::SubString: {
1277      SubStringStub stub(isolate());
1278      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1279      break;
1280    }
1281    case CodeStub::StringCompare: {
1282      StringCompareStub stub(isolate());
1283      CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
1284      break;
1285    }
1286    default:
1287      UNREACHABLE();
1288  }
1289}
1290
1291
1292void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
1293  GenerateOsrPrologue();
1294}
1295
1296
1297void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
1298  Register dividend = ToRegister(instr->dividend());
1299  int32_t divisor = instr->divisor();
1300  ASSERT(dividend.is(ToRegister(instr->result())));
1301
1302  // Theoretically, a variation of the branch-free code for integer division by
1303  // a power of 2 (calculating the remainder via an additional multiplication
1304  // (which gets simplified to an 'and') and subtraction) should be faster, and
1305  // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
1306  // indicate that positive dividends are heavily favored, so the branching
1307  // version performs better.
1308  HMod* hmod = instr->hydrogen();
1309  int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1310  Label dividend_is_not_negative, done;
1311  if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
1312    __ test(dividend, dividend);
1313    __ j(not_sign, &dividend_is_not_negative, Label::kNear);
1314    // Note that this is correct even for kMinInt operands.
1315    __ neg(dividend);
1316    __ and_(dividend, mask);
1317    __ neg(dividend);
1318    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1319      DeoptimizeIf(zero, instr->environment());
1320    }
1321    __ jmp(&done, Label::kNear);
1322  }
1323
1324  __ bind(&dividend_is_not_negative);
1325  __ and_(dividend, mask);
1326  __ bind(&done);
1327}
1328
1329
1330void LCodeGen::DoModByConstI(LModByConstI* instr) {
1331  Register dividend = ToRegister(instr->dividend());
1332  int32_t divisor = instr->divisor();
1333  ASSERT(ToRegister(instr->result()).is(eax));
1334
1335  if (divisor == 0) {
1336    DeoptimizeIf(no_condition, instr->environment());
1337    return;
1338  }
1339
1340  __ TruncatingDiv(dividend, Abs(divisor));
1341  __ imul(edx, edx, Abs(divisor));
1342  __ mov(eax, dividend);
1343  __ sub(eax, edx);
1344
1345  // Check for negative zero.
1346  HMod* hmod = instr->hydrogen();
1347  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1348    Label remainder_not_zero;
1349    __ j(not_zero, &remainder_not_zero, Label::kNear);
1350    __ cmp(dividend, Immediate(0));
1351    DeoptimizeIf(less, instr->environment());
1352    __ bind(&remainder_not_zero);
1353  }
1354}
1355
1356
1357void LCodeGen::DoModI(LModI* instr) {
1358  HMod* hmod = instr->hydrogen();
1359
1360  Register left_reg = ToRegister(instr->left());
1361  ASSERT(left_reg.is(eax));
1362  Register right_reg = ToRegister(instr->right());
1363  ASSERT(!right_reg.is(eax));
1364  ASSERT(!right_reg.is(edx));
1365  Register result_reg = ToRegister(instr->result());
1366  ASSERT(result_reg.is(edx));
1367
1368  Label done;
1369  // Check for x % 0, idiv would signal a divide error. We have to
1370  // deopt in this case because we can't return a NaN.
1371  if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
1372    __ test(right_reg, Operand(right_reg));
1373    DeoptimizeIf(zero, instr->environment());
1374  }
1375
1376  // Check for kMinInt % -1, idiv would signal a divide error. We
1377  // have to deopt if we care about -0, because we can't return that.
1378  if (hmod->CheckFlag(HValue::kCanOverflow)) {
1379    Label no_overflow_possible;
1380    __ cmp(left_reg, kMinInt);
1381    __ j(not_equal, &no_overflow_possible, Label::kNear);
1382    __ cmp(right_reg, -1);
1383    if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1384      DeoptimizeIf(equal, instr->environment());
1385    } else {
1386      __ j(not_equal, &no_overflow_possible, Label::kNear);
1387      __ Move(result_reg, Immediate(0));
1388      __ jmp(&done, Label::kNear);
1389    }
1390    __ bind(&no_overflow_possible);
1391  }
1392
1393  // Sign extend dividend in eax into edx:eax.
1394  __ cdq();
1395
1396  // If we care about -0, test if the dividend is <0 and the result is 0.
1397  if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1398    Label positive_left;
1399    __ test(left_reg, Operand(left_reg));
1400    __ j(not_sign, &positive_left, Label::kNear);
1401    __ idiv(right_reg);
1402    __ test(result_reg, Operand(result_reg));
1403    DeoptimizeIf(zero, instr->environment());
1404    __ jmp(&done, Label::kNear);
1405    __ bind(&positive_left);
1406  }
1407  __ idiv(right_reg);
1408  __ bind(&done);
1409}
1410
1411
1412void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1413  Register dividend = ToRegister(instr->dividend());
1414  int32_t divisor = instr->divisor();
1415  Register result = ToRegister(instr->result());
1416  ASSERT(divisor == kMinInt || IsPowerOf2(Abs(divisor)));
1417  ASSERT(!result.is(dividend));
1418
1419  // Check for (0 / -x) that will produce negative zero.
1420  HDiv* hdiv = instr->hydrogen();
1421  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1422    __ test(dividend, dividend);
1423    DeoptimizeIf(zero, instr->environment());
1424  }
1425  // Check for (kMinInt / -1).
1426  if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1427    __ cmp(dividend, kMinInt);
1428    DeoptimizeIf(zero, instr->environment());
1429  }
1430  // Deoptimize if remainder will not be 0.
1431  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1432      divisor != 1 && divisor != -1) {
1433    int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1434    __ test(dividend, Immediate(mask));
1435    DeoptimizeIf(not_zero, instr->environment());
1436  }
1437  __ Move(result, dividend);
1438  int32_t shift = WhichPowerOf2Abs(divisor);
1439  if (shift > 0) {
1440    // The arithmetic shift is always OK, the 'if' is an optimization only.
1441    if (shift > 1) __ sar(result, 31);
1442    __ shr(result, 32 - shift);
1443    __ add(result, dividend);
1444    __ sar(result, shift);
1445  }
1446  if (divisor < 0) __ neg(result);
1447}
1448
1449
1450void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1451  Register dividend = ToRegister(instr->dividend());
1452  int32_t divisor = instr->divisor();
1453  ASSERT(ToRegister(instr->result()).is(edx));
1454
1455  if (divisor == 0) {
1456    DeoptimizeIf(no_condition, instr->environment());
1457    return;
1458  }
1459
1460  // Check for (0 / -x) that will produce negative zero.
1461  HDiv* hdiv = instr->hydrogen();
1462  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1463    __ test(dividend, dividend);
1464    DeoptimizeIf(zero, instr->environment());
1465  }
1466
1467  __ TruncatingDiv(dividend, Abs(divisor));
1468  if (divisor < 0) __ neg(edx);
1469
1470  if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1471    __ mov(eax, edx);
1472    __ imul(eax, eax, divisor);
1473    __ sub(eax, dividend);
1474    DeoptimizeIf(not_equal, instr->environment());
1475  }
1476}
1477
1478
1479// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
1480void LCodeGen::DoDivI(LDivI* instr) {
1481  HBinaryOperation* hdiv = instr->hydrogen();
1482  Register dividend = ToRegister(instr->dividend());
1483  Register divisor = ToRegister(instr->divisor());
1484  Register remainder = ToRegister(instr->temp());
1485  ASSERT(dividend.is(eax));
1486  ASSERT(remainder.is(edx));
1487  ASSERT(ToRegister(instr->result()).is(eax));
1488  ASSERT(!divisor.is(eax));
1489  ASSERT(!divisor.is(edx));
1490
1491  // Check for x / 0.
1492  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1493    __ test(divisor, divisor);
1494    DeoptimizeIf(zero, instr->environment());
1495  }
1496
1497  // Check for (0 / -x) that will produce negative zero.
1498  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1499    Label dividend_not_zero;
1500    __ test(dividend, dividend);
1501    __ j(not_zero, &dividend_not_zero, Label::kNear);
1502    __ test(divisor, divisor);
1503    DeoptimizeIf(sign, instr->environment());
1504    __ bind(&dividend_not_zero);
1505  }
1506
1507  // Check for (kMinInt / -1).
1508  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1509    Label dividend_not_min_int;
1510    __ cmp(dividend, kMinInt);
1511    __ j(not_zero, &dividend_not_min_int, Label::kNear);
1512    __ cmp(divisor, -1);
1513    DeoptimizeIf(zero, instr->environment());
1514    __ bind(&dividend_not_min_int);
1515  }
1516
1517  // Sign extend to edx (= remainder).
1518  __ cdq();
1519  __ idiv(divisor);
1520
1521  if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1522    // Deoptimize if remainder is not 0.
1523    __ test(remainder, remainder);
1524    DeoptimizeIf(not_zero, instr->environment());
1525  }
1526}
1527
1528
1529void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1530  Register dividend = ToRegister(instr->dividend());
1531  int32_t divisor = instr->divisor();
1532  ASSERT(dividend.is(ToRegister(instr->result())));
1533
1534  // If the divisor is positive, things are easy: There can be no deopts and we
1535  // can simply do an arithmetic right shift.
1536  if (divisor == 1) return;
1537  int32_t shift = WhichPowerOf2Abs(divisor);
1538  if (divisor > 1) {
1539    __ sar(dividend, shift);
1540    return;
1541  }
1542
1543  // If the divisor is negative, we have to negate and handle edge cases.
1544  __ neg(dividend);
1545  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1546    DeoptimizeIf(zero, instr->environment());
1547  }
1548
1549  // Dividing by -1 is basically negation, unless we overflow.
1550  if (divisor == -1) {
1551    if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1552      DeoptimizeIf(overflow, instr->environment());
1553    }
1554    return;
1555  }
1556
1557  // If the negation could not overflow, simply shifting is OK.
1558  if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1559    __ sar(dividend, shift);
1560    return;
1561  }
1562
1563  Label not_kmin_int, done;
1564  __ j(no_overflow, &not_kmin_int, Label::kNear);
1565  __ mov(dividend, Immediate(kMinInt / divisor));
1566  __ jmp(&done, Label::kNear);
1567  __ bind(&not_kmin_int);
1568  __ sar(dividend, shift);
1569  __ bind(&done);
1570}
1571
1572
1573void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1574  Register dividend = ToRegister(instr->dividend());
1575  int32_t divisor = instr->divisor();
1576  ASSERT(ToRegister(instr->result()).is(edx));
1577
1578  if (divisor == 0) {
1579    DeoptimizeIf(no_condition, instr->environment());
1580    return;
1581  }
1582
1583  // Check for (0 / -x) that will produce negative zero.
1584  HMathFloorOfDiv* hdiv = instr->hydrogen();
1585  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1586    __ test(dividend, dividend);
1587    DeoptimizeIf(zero, instr->environment());
1588  }
1589
1590  // Easy case: We need no dynamic check for the dividend and the flooring
1591  // division is the same as the truncating division.
1592  if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1593      (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1594    __ TruncatingDiv(dividend, Abs(divisor));
1595    if (divisor < 0) __ neg(edx);
1596    return;
1597  }
1598
1599  // In the general case we may need to adjust before and after the truncating
1600  // division to get a flooring division.
1601  Register temp = ToRegister(instr->temp3());
1602  ASSERT(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
1603  Label needs_adjustment, done;
1604  __ cmp(dividend, Immediate(0));
1605  __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
1606  __ TruncatingDiv(dividend, Abs(divisor));
1607  if (divisor < 0) __ neg(edx);
1608  __ jmp(&done, Label::kNear);
1609  __ bind(&needs_adjustment);
1610  __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
1611  __ TruncatingDiv(temp, Abs(divisor));
1612  if (divisor < 0) __ neg(edx);
1613  __ dec(edx);
1614  __ bind(&done);
1615}
1616
1617
1618// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
1619void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1620  HBinaryOperation* hdiv = instr->hydrogen();
1621  Register dividend = ToRegister(instr->dividend());
1622  Register divisor = ToRegister(instr->divisor());
1623  Register remainder = ToRegister(instr->temp());
1624  Register result = ToRegister(instr->result());
1625  ASSERT(dividend.is(eax));
1626  ASSERT(remainder.is(edx));
1627  ASSERT(result.is(eax));
1628  ASSERT(!divisor.is(eax));
1629  ASSERT(!divisor.is(edx));
1630
1631  // Check for x / 0.
1632  if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1633    __ test(divisor, divisor);
1634    DeoptimizeIf(zero, instr->environment());
1635  }
1636
1637  // Check for (0 / -x) that will produce negative zero.
1638  if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1639    Label dividend_not_zero;
1640    __ test(dividend, dividend);
1641    __ j(not_zero, &dividend_not_zero, Label::kNear);
1642    __ test(divisor, divisor);
1643    DeoptimizeIf(sign, instr->environment());
1644    __ bind(&dividend_not_zero);
1645  }
1646
1647  // Check for (kMinInt / -1).
1648  if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1649    Label dividend_not_min_int;
1650    __ cmp(dividend, kMinInt);
1651    __ j(not_zero, &dividend_not_min_int, Label::kNear);
1652    __ cmp(divisor, -1);
1653    DeoptimizeIf(zero, instr->environment());
1654    __ bind(&dividend_not_min_int);
1655  }
1656
1657  // Sign extend to edx (= remainder).
1658  __ cdq();
1659  __ idiv(divisor);
1660
1661  Label done;
1662  __ test(remainder, remainder);
1663  __ j(zero, &done, Label::kNear);
1664  __ xor_(remainder, divisor);
1665  __ sar(remainder, 31);
1666  __ add(result, remainder);
1667  __ bind(&done);
1668}
1669
1670
1671void LCodeGen::DoMulI(LMulI* instr) {
1672  Register left = ToRegister(instr->left());
1673  LOperand* right = instr->right();
1674
1675  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1676    __ mov(ToRegister(instr->temp()), left);
1677  }
1678
1679  if (right->IsConstantOperand()) {
1680    // Try strength reductions on the multiplication.
1681    // All replacement instructions are at most as long as the imul
1682    // and have better latency.
1683    int constant = ToInteger32(LConstantOperand::cast(right));
1684    if (constant == -1) {
1685      __ neg(left);
1686    } else if (constant == 0) {
1687      __ xor_(left, Operand(left));
1688    } else if (constant == 2) {
1689      __ add(left, Operand(left));
1690    } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1691      // If we know that the multiplication can't overflow, it's safe to
1692      // use instructions that don't set the overflow flag for the
1693      // multiplication.
1694      switch (constant) {
1695        case 1:
1696          // Do nothing.
1697          break;
1698        case 3:
1699          __ lea(left, Operand(left, left, times_2, 0));
1700          break;
1701        case 4:
1702          __ shl(left, 2);
1703          break;
1704        case 5:
1705          __ lea(left, Operand(left, left, times_4, 0));
1706          break;
1707        case 8:
1708          __ shl(left, 3);
1709          break;
1710        case 9:
1711          __ lea(left, Operand(left, left, times_8, 0));
1712          break;
1713        case 16:
1714          __ shl(left, 4);
1715          break;
1716        default:
1717          __ imul(left, left, constant);
1718          break;
1719      }
1720    } else {
1721      __ imul(left, left, constant);
1722    }
1723  } else {
1724    if (instr->hydrogen()->representation().IsSmi()) {
1725      __ SmiUntag(left);
1726    }
1727    __ imul(left, ToOperand(right));
1728  }
1729
1730  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1731    DeoptimizeIf(overflow, instr->environment());
1732  }
1733
1734  if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1735    // Bail out if the result is supposed to be negative zero.
1736    Label done;
1737    __ test(left, Operand(left));
1738    __ j(not_zero, &done, Label::kNear);
1739    if (right->IsConstantOperand()) {
1740      if (ToInteger32(LConstantOperand::cast(right)) < 0) {
1741        DeoptimizeIf(no_condition, instr->environment());
1742      } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
1743        __ cmp(ToRegister(instr->temp()), Immediate(0));
1744        DeoptimizeIf(less, instr->environment());
1745      }
1746    } else {
1747      // Test the non-zero operand for negative sign.
1748      __ or_(ToRegister(instr->temp()), ToOperand(right));
1749      DeoptimizeIf(sign, instr->environment());
1750    }
1751    __ bind(&done);
1752  }
1753}
1754
1755
1756void LCodeGen::DoBitI(LBitI* instr) {
1757  LOperand* left = instr->left();
1758  LOperand* right = instr->right();
1759  ASSERT(left->Equals(instr->result()));
1760  ASSERT(left->IsRegister());
1761
1762  if (right->IsConstantOperand()) {
1763    int32_t right_operand =
1764        ToRepresentation(LConstantOperand::cast(right),
1765                         instr->hydrogen()->representation());
1766    switch (instr->op()) {
1767      case Token::BIT_AND:
1768        __ and_(ToRegister(left), right_operand);
1769        break;
1770      case Token::BIT_OR:
1771        __ or_(ToRegister(left), right_operand);
1772        break;
1773      case Token::BIT_XOR:
1774        if (right_operand == int32_t(~0)) {
1775          __ not_(ToRegister(left));
1776        } else {
1777          __ xor_(ToRegister(left), right_operand);
1778        }
1779        break;
1780      default:
1781        UNREACHABLE();
1782        break;
1783    }
1784  } else {
1785    switch (instr->op()) {
1786      case Token::BIT_AND:
1787        __ and_(ToRegister(left), ToOperand(right));
1788        break;
1789      case Token::BIT_OR:
1790        __ or_(ToRegister(left), ToOperand(right));
1791        break;
1792      case Token::BIT_XOR:
1793        __ xor_(ToRegister(left), ToOperand(right));
1794        break;
1795      default:
1796        UNREACHABLE();
1797        break;
1798    }
1799  }
1800}
1801
1802
1803void LCodeGen::DoShiftI(LShiftI* instr) {
1804  LOperand* left = instr->left();
1805  LOperand* right = instr->right();
1806  ASSERT(left->Equals(instr->result()));
1807  ASSERT(left->IsRegister());
1808  if (right->IsRegister()) {
1809    ASSERT(ToRegister(right).is(ecx));
1810
1811    switch (instr->op()) {
1812      case Token::ROR:
1813        __ ror_cl(ToRegister(left));
1814        if (instr->can_deopt()) {
1815          __ test(ToRegister(left), ToRegister(left));
1816          DeoptimizeIf(sign, instr->environment());
1817        }
1818        break;
1819      case Token::SAR:
1820        __ sar_cl(ToRegister(left));
1821        break;
1822      case Token::SHR:
1823        __ shr_cl(ToRegister(left));
1824        if (instr->can_deopt()) {
1825          __ test(ToRegister(left), ToRegister(left));
1826          DeoptimizeIf(sign, instr->environment());
1827        }
1828        break;
1829      case Token::SHL:
1830        __ shl_cl(ToRegister(left));
1831        break;
1832      default:
1833        UNREACHABLE();
1834        break;
1835    }
1836  } else {
1837    int value = ToInteger32(LConstantOperand::cast(right));
1838    uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1839    switch (instr->op()) {
1840      case Token::ROR:
1841        if (shift_count == 0 && instr->can_deopt()) {
1842          __ test(ToRegister(left), ToRegister(left));
1843          DeoptimizeIf(sign, instr->environment());
1844        } else {
1845          __ ror(ToRegister(left), shift_count);
1846        }
1847        break;
1848      case Token::SAR:
1849        if (shift_count != 0) {
1850          __ sar(ToRegister(left), shift_count);
1851        }
1852        break;
1853      case Token::SHR:
1854        if (shift_count != 0) {
1855          __ shr(ToRegister(left), shift_count);
1856        } else if (instr->can_deopt()) {
1857          __ test(ToRegister(left), ToRegister(left));
1858          DeoptimizeIf(sign, instr->environment());
1859        }
1860        break;
1861      case Token::SHL:
1862        if (shift_count != 0) {
1863          if (instr->hydrogen_value()->representation().IsSmi() &&
1864              instr->can_deopt()) {
1865            if (shift_count != 1) {
1866              __ shl(ToRegister(left), shift_count - 1);
1867            }
1868            __ SmiTag(ToRegister(left));
1869            DeoptimizeIf(overflow, instr->environment());
1870          } else {
1871            __ shl(ToRegister(left), shift_count);
1872          }
1873        }
1874        break;
1875      default:
1876        UNREACHABLE();
1877        break;
1878    }
1879  }
1880}
1881
1882
1883void LCodeGen::DoSubI(LSubI* instr) {
1884  LOperand* left = instr->left();
1885  LOperand* right = instr->right();
1886  ASSERT(left->Equals(instr->result()));
1887
1888  if (right->IsConstantOperand()) {
1889    __ sub(ToOperand(left),
1890           ToImmediate(right, instr->hydrogen()->representation()));
1891  } else {
1892    __ sub(ToRegister(left), ToOperand(right));
1893  }
1894  if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1895    DeoptimizeIf(overflow, instr->environment());
1896  }
1897}
1898
1899
1900void LCodeGen::DoConstantI(LConstantI* instr) {
1901  __ Move(ToRegister(instr->result()), Immediate(instr->value()));
1902}
1903
1904
1905void LCodeGen::DoConstantS(LConstantS* instr) {
1906  __ Move(ToRegister(instr->result()), Immediate(instr->value()));
1907}
1908
1909
1910void LCodeGen::DoConstantD(LConstantD* instr) {
1911  double v = instr->value();
1912  uint64_t int_val = BitCast<uint64_t, double>(v);
1913  int32_t lower = static_cast<int32_t>(int_val);
1914  int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
1915  ASSERT(instr->result()->IsDoubleRegister());
1916
1917  __ push(Immediate(upper));
1918  __ push(Immediate(lower));
1919  X87Register reg = ToX87Register(instr->result());
1920  X87Mov(reg, Operand(esp, 0));
1921  __ add(Operand(esp), Immediate(kDoubleSize));
1922}
1923
1924
1925void LCodeGen::DoConstantE(LConstantE* instr) {
1926  __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
1927}
1928
1929
1930void LCodeGen::DoConstantT(LConstantT* instr) {
1931  Register reg = ToRegister(instr->result());
1932  Handle<Object> object = instr->value(isolate());
1933  AllowDeferredHandleDereference smi_check;
1934  __ LoadObject(reg, object);
1935}
1936
1937
1938void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
1939  Register result = ToRegister(instr->result());
1940  Register map = ToRegister(instr->value());
1941  __ EnumLength(result, map);
1942}
1943
1944
1945void LCodeGen::DoDateField(LDateField* instr) {
1946  Register object = ToRegister(instr->date());
1947  Register result = ToRegister(instr->result());
1948  Register scratch = ToRegister(instr->temp());
1949  Smi* index = instr->index();
1950  Label runtime, done;
1951  ASSERT(object.is(result));
1952  ASSERT(object.is(eax));
1953
1954  __ test(object, Immediate(kSmiTagMask));
1955  DeoptimizeIf(zero, instr->environment());
1956  __ CmpObjectType(object, JS_DATE_TYPE, scratch);
1957  DeoptimizeIf(not_equal, instr->environment());
1958
1959  if (index->value() == 0) {
1960    __ mov(result, FieldOperand(object, JSDate::kValueOffset));
1961  } else {
1962    if (index->value() < JSDate::kFirstUncachedField) {
1963      ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
1964      __ mov(scratch, Operand::StaticVariable(stamp));
1965      __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
1966      __ j(not_equal, &runtime, Label::kNear);
1967      __ mov(result, FieldOperand(object, JSDate::kValueOffset +
1968                                          kPointerSize * index->value()));
1969      __ jmp(&done, Label::kNear);
1970    }
1971    __ bind(&runtime);
1972    __ PrepareCallCFunction(2, scratch);
1973    __ mov(Operand(esp, 0), object);
1974    __ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
1975    __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
1976    __ bind(&done);
1977  }
1978}
1979
1980
1981Operand LCodeGen::BuildSeqStringOperand(Register string,
1982                                        LOperand* index,
1983                                        String::Encoding encoding) {
1984  if (index->IsConstantOperand()) {
1985    int offset = ToRepresentation(LConstantOperand::cast(index),
1986                                  Representation::Integer32());
1987    if (encoding == String::TWO_BYTE_ENCODING) {
1988      offset *= kUC16Size;
1989    }
1990    STATIC_ASSERT(kCharSize == 1);
1991    return FieldOperand(string, SeqString::kHeaderSize + offset);
1992  }
1993  return FieldOperand(
1994      string, ToRegister(index),
1995      encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
1996      SeqString::kHeaderSize);
1997}
1998
1999
2000void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
2001  String::Encoding encoding = instr->hydrogen()->encoding();
2002  Register result = ToRegister(instr->result());
2003  Register string = ToRegister(instr->string());
2004
2005  if (FLAG_debug_code) {
2006    __ push(string);
2007    __ mov(string, FieldOperand(string, HeapObject::kMapOffset));
2008    __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
2009
2010    __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
2011    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
2012    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
2013    __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
2014                             ? one_byte_seq_type : two_byte_seq_type));
2015    __ Check(equal, kUnexpectedStringType);
2016    __ pop(string);
2017  }
2018
2019  Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
2020  if (encoding == String::ONE_BYTE_ENCODING) {
2021    __ movzx_b(result, operand);
2022  } else {
2023    __ movzx_w(result, operand);
2024  }
2025}
2026
2027
2028void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
2029  String::Encoding encoding = instr->hydrogen()->encoding();
2030  Register string = ToRegister(instr->string());
2031
2032  if (FLAG_debug_code) {
2033    Register value = ToRegister(instr->value());
2034    Register index = ToRegister(instr->index());
2035    static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
2036    static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
2037    int encoding_mask =
2038        instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
2039        ? one_byte_seq_type : two_byte_seq_type;
2040    __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
2041  }
2042
2043  Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
2044  if (instr->value()->IsConstantOperand()) {
2045    int value = ToRepresentation(LConstantOperand::cast(instr->value()),
2046                                 Representation::Integer32());
2047    ASSERT_LE(0, value);
2048    if (encoding == String::ONE_BYTE_ENCODING) {
2049      ASSERT_LE(value, String::kMaxOneByteCharCode);
2050      __ mov_b(operand, static_cast<int8_t>(value));
2051    } else {
2052      ASSERT_LE(value, String::kMaxUtf16CodeUnit);
2053      __ mov_w(operand, static_cast<int16_t>(value));
2054    }
2055  } else {
2056    Register value = ToRegister(instr->value());
2057    if (encoding == String::ONE_BYTE_ENCODING) {
2058      __ mov_b(operand, value);
2059    } else {
2060      __ mov_w(operand, value);
2061    }
2062  }
2063}
2064
2065
2066void LCodeGen::DoAddI(LAddI* instr) {
2067  LOperand* left = instr->left();
2068  LOperand* right = instr->right();
2069
2070  if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
2071    if (right->IsConstantOperand()) {
2072      int32_t offset = ToRepresentation(LConstantOperand::cast(right),
2073                                        instr->hydrogen()->representation());
2074      __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
2075    } else {
2076      Operand address(ToRegister(left), ToRegister(right), times_1, 0);
2077      __ lea(ToRegister(instr->result()), address);
2078    }
2079  } else {
2080    if (right->IsConstantOperand()) {
2081      __ add(ToOperand(left),
2082             ToImmediate(right, instr->hydrogen()->representation()));
2083    } else {
2084      __ add(ToRegister(left), ToOperand(right));
2085    }
2086    if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
2087      DeoptimizeIf(overflow, instr->environment());
2088    }
2089  }
2090}
2091
2092
2093void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
2094  LOperand* left = instr->left();
2095  LOperand* right = instr->right();
2096  ASSERT(left->Equals(instr->result()));
2097  HMathMinMax::Operation operation = instr->hydrogen()->operation();
2098  if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
2099    Label return_left;
2100    Condition condition = (operation == HMathMinMax::kMathMin)
2101        ? less_equal
2102        : greater_equal;
2103    if (right->IsConstantOperand()) {
2104      Operand left_op = ToOperand(left);
2105      Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
2106                                        instr->hydrogen()->representation());
2107      __ cmp(left_op, immediate);
2108      __ j(condition, &return_left, Label::kNear);
2109      __ mov(left_op, immediate);
2110    } else {
2111      Register left_reg = ToRegister(left);
2112      Operand right_op = ToOperand(right);
2113      __ cmp(left_reg, right_op);
2114      __ j(condition, &return_left, Label::kNear);
2115      __ mov(left_reg, right_op);
2116    }
2117    __ bind(&return_left);
2118  } else {
2119    // TODO(weiliang) use X87 for double representation.
2120    UNIMPLEMENTED();
2121  }
2122}
2123
2124
2125void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
2126  X87Register left = ToX87Register(instr->left());
2127  X87Register right = ToX87Register(instr->right());
2128  X87Register result = ToX87Register(instr->result());
2129  if (instr->op() != Token::MOD) {
2130    X87PrepareBinaryOp(left, right, result);
2131  }
2132  switch (instr->op()) {
2133    case Token::ADD:
2134      __ fadd_i(1);
2135      break;
2136    case Token::SUB:
2137      __ fsub_i(1);
2138      break;
2139    case Token::MUL:
2140      __ fmul_i(1);
2141      break;
2142    case Token::DIV:
2143      __ fdiv_i(1);
2144      break;
2145    case Token::MOD: {
2146      // Pass two doubles as arguments on the stack.
2147      __ PrepareCallCFunction(4, eax);
2148      X87Mov(Operand(esp, 1 * kDoubleSize), right);
2149      X87Mov(Operand(esp, 0), left);
2150      X87Free(right);
2151      ASSERT(left.is(result));
2152      X87PrepareToWrite(result);
2153      __ CallCFunction(
2154          ExternalReference::mod_two_doubles_operation(isolate()),
2155          4);
2156
2157      // Return value is in st(0) on ia32.
2158      X87CommitWrite(result);
2159      break;
2160    }
2161    default:
2162      UNREACHABLE();
2163      break;
2164  }
2165}
2166
2167
2168void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
2169  ASSERT(ToRegister(instr->context()).is(esi));
2170  ASSERT(ToRegister(instr->left()).is(edx));
2171  ASSERT(ToRegister(instr->right()).is(eax));
2172  ASSERT(ToRegister(instr->result()).is(eax));
2173
2174  BinaryOpICStub stub(isolate(), instr->op(), NO_OVERWRITE);
2175  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2176}
2177
2178
2179template<class InstrType>
2180void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
2181  int left_block = instr->TrueDestination(chunk_);
2182  int right_block = instr->FalseDestination(chunk_);
2183
2184  int next_block = GetNextEmittedBlock();
2185
2186  if (right_block == left_block || cc == no_condition) {
2187    EmitGoto(left_block);
2188  } else if (left_block == next_block) {
2189    __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
2190  } else if (right_block == next_block) {
2191    __ j(cc, chunk_->GetAssemblyLabel(left_block));
2192  } else {
2193    __ j(cc, chunk_->GetAssemblyLabel(left_block));
2194    __ jmp(chunk_->GetAssemblyLabel(right_block));
2195  }
2196}
2197
2198
2199template<class InstrType>
2200void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
2201  int false_block = instr->FalseDestination(chunk_);
2202  if (cc == no_condition) {
2203    __ jmp(chunk_->GetAssemblyLabel(false_block));
2204  } else {
2205    __ j(cc, chunk_->GetAssemblyLabel(false_block));
2206  }
2207}
2208
2209
2210void LCodeGen::DoBranch(LBranch* instr) {
2211  Representation r = instr->hydrogen()->value()->representation();
2212  if (r.IsSmiOrInteger32()) {
2213    Register reg = ToRegister(instr->value());
2214    __ test(reg, Operand(reg));
2215    EmitBranch(instr, not_zero);
2216  } else if (r.IsDouble()) {
2217    UNREACHABLE();
2218  } else {
2219    ASSERT(r.IsTagged());
2220    Register reg = ToRegister(instr->value());
2221    HType type = instr->hydrogen()->value()->type();
2222    if (type.IsBoolean()) {
2223      ASSERT(!info()->IsStub());
2224      __ cmp(reg, factory()->true_value());
2225      EmitBranch(instr, equal);
2226    } else if (type.IsSmi()) {
2227      ASSERT(!info()->IsStub());
2228      __ test(reg, Operand(reg));
2229      EmitBranch(instr, not_equal);
2230    } else if (type.IsJSArray()) {
2231      ASSERT(!info()->IsStub());
2232      EmitBranch(instr, no_condition);
2233    } else if (type.IsHeapNumber()) {
2234      UNREACHABLE();
2235    } else if (type.IsString()) {
2236      ASSERT(!info()->IsStub());
2237      __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2238      EmitBranch(instr, not_equal);
2239    } else {
2240      ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2241      if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2242
2243      if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2244        // undefined -> false.
2245        __ cmp(reg, factory()->undefined_value());
2246        __ j(equal, instr->FalseLabel(chunk_));
2247      }
2248      if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2249        // true -> true.
2250        __ cmp(reg, factory()->true_value());
2251        __ j(equal, instr->TrueLabel(chunk_));
2252        // false -> false.
2253        __ cmp(reg, factory()->false_value());
2254        __ j(equal, instr->FalseLabel(chunk_));
2255      }
2256      if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2257        // 'null' -> false.
2258        __ cmp(reg, factory()->null_value());
2259        __ j(equal, instr->FalseLabel(chunk_));
2260      }
2261
2262      if (expected.Contains(ToBooleanStub::SMI)) {
2263        // Smis: 0 -> false, all other -> true.
2264        __ test(reg, Operand(reg));
2265        __ j(equal, instr->FalseLabel(chunk_));
2266        __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2267      } else if (expected.NeedsMap()) {
2268        // If we need a map later and have a Smi -> deopt.
2269        __ test(reg, Immediate(kSmiTagMask));
2270        DeoptimizeIf(zero, instr->environment());
2271      }
2272
2273      Register map = no_reg;  // Keep the compiler happy.
2274      if (expected.NeedsMap()) {
2275        map = ToRegister(instr->temp());
2276        ASSERT(!map.is(reg));
2277        __ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
2278
2279        if (expected.CanBeUndetectable()) {
2280          // Undetectable -> false.
2281          __ test_b(FieldOperand(map, Map::kBitFieldOffset),
2282                    1 << Map::kIsUndetectable);
2283          __ j(not_zero, instr->FalseLabel(chunk_));
2284        }
2285      }
2286
2287      if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2288        // spec object -> true.
2289        __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
2290        __ j(above_equal, instr->TrueLabel(chunk_));
2291      }
2292
2293      if (expected.Contains(ToBooleanStub::STRING)) {
2294        // String value -> false iff empty.
2295        Label not_string;
2296        __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2297        __ j(above_equal, &not_string, Label::kNear);
2298        __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2299        __ j(not_zero, instr->TrueLabel(chunk_));
2300        __ jmp(instr->FalseLabel(chunk_));
2301        __ bind(&not_string);
2302      }
2303
2304      if (expected.Contains(ToBooleanStub::SYMBOL)) {
2305        // Symbol value -> true.
2306        __ CmpInstanceType(map, SYMBOL_TYPE);
2307        __ j(equal, instr->TrueLabel(chunk_));
2308      }
2309
2310      if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2311        // heap number -> false iff +0, -0, or NaN.
2312        Label not_heap_number;
2313        __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
2314               factory()->heap_number_map());
2315        __ j(not_equal, &not_heap_number, Label::kNear);
2316        __ fldz();
2317        __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
2318        __ FCmp();
2319        __ j(zero, instr->FalseLabel(chunk_));
2320        __ jmp(instr->TrueLabel(chunk_));
2321        __ bind(&not_heap_number);
2322      }
2323
2324      if (!expected.IsGeneric()) {
2325        // We've seen something for the first time -> deopt.
2326        // This can only happen if we are not generic already.
2327        DeoptimizeIf(no_condition, instr->environment());
2328      }
2329    }
2330  }
2331}
2332
2333
2334void LCodeGen::EmitGoto(int block) {
2335  if (!IsNextEmittedBlock(block)) {
2336    __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
2337  }
2338}
2339
2340
2341void LCodeGen::DoClobberDoubles(LClobberDoubles* instr) {
2342}
2343
2344
2345void LCodeGen::DoGoto(LGoto* instr) {
2346  EmitGoto(instr->block_id());
2347}
2348
2349
2350Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2351  Condition cond = no_condition;
2352  switch (op) {
2353    case Token::EQ:
2354    case Token::EQ_STRICT:
2355      cond = equal;
2356      break;
2357    case Token::NE:
2358    case Token::NE_STRICT:
2359      cond = not_equal;
2360      break;
2361    case Token::LT:
2362      cond = is_unsigned ? below : less;
2363      break;
2364    case Token::GT:
2365      cond = is_unsigned ? above : greater;
2366      break;
2367    case Token::LTE:
2368      cond = is_unsigned ? below_equal : less_equal;
2369      break;
2370    case Token::GTE:
2371      cond = is_unsigned ? above_equal : greater_equal;
2372      break;
2373    case Token::IN:
2374    case Token::INSTANCEOF:
2375    default:
2376      UNREACHABLE();
2377  }
2378  return cond;
2379}
2380
2381
2382void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2383  LOperand* left = instr->left();
2384  LOperand* right = instr->right();
2385  bool is_unsigned =
2386      instr->is_double() ||
2387      instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2388      instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2389  Condition cc = TokenToCondition(instr->op(), is_unsigned);
2390
2391  if (left->IsConstantOperand() && right->IsConstantOperand()) {
2392    // We can statically evaluate the comparison.
2393    double left_val = ToDouble(LConstantOperand::cast(left));
2394    double right_val = ToDouble(LConstantOperand::cast(right));
2395    int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2396        instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2397    EmitGoto(next_block);
2398  } else {
2399    if (instr->is_double()) {
2400      X87LoadForUsage(ToX87Register(right), ToX87Register(left));
2401      __ FCmp();
2402      // Don't base result on EFLAGS when a NaN is involved. Instead
2403      // jump to the false block.
2404      __ j(parity_even, instr->FalseLabel(chunk_));
2405    } else {
2406      if (right->IsConstantOperand()) {
2407        __ cmp(ToOperand(left),
2408               ToImmediate(right, instr->hydrogen()->representation()));
2409      } else if (left->IsConstantOperand()) {
2410        __ cmp(ToOperand(right),
2411               ToImmediate(left, instr->hydrogen()->representation()));
2412        // We commuted the operands, so commute the condition.
2413        cc = CommuteCondition(cc);
2414      } else {
2415        __ cmp(ToRegister(left), ToOperand(right));
2416      }
2417    }
2418    EmitBranch(instr, cc);
2419  }
2420}
2421
2422
2423void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2424  Register left = ToRegister(instr->left());
2425
2426  if (instr->right()->IsConstantOperand()) {
2427    Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
2428    __ CmpObject(left, right);
2429  } else {
2430    Operand right = ToOperand(instr->right());
2431    __ cmp(left, right);
2432  }
2433  EmitBranch(instr, equal);
2434}
2435
2436
2437void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2438  if (instr->hydrogen()->representation().IsTagged()) {
2439    Register input_reg = ToRegister(instr->object());
2440    __ cmp(input_reg, factory()->the_hole_value());
2441    EmitBranch(instr, equal);
2442    return;
2443  }
2444
2445  // Put the value to the top of stack
2446  X87Register src = ToX87Register(instr->object());
2447  X87LoadForUsage(src);
2448  __ fld(0);
2449  __ fld(0);
2450  __ FCmp();
2451  Label ok;
2452  __ j(parity_even, &ok, Label::kNear);
2453  __ fstp(0);
2454  EmitFalseBranch(instr, no_condition);
2455  __ bind(&ok);
2456
2457
2458  __ sub(esp, Immediate(kDoubleSize));
2459  __ fstp_d(MemOperand(esp, 0));
2460
2461  __ add(esp, Immediate(kDoubleSize));
2462  int offset = sizeof(kHoleNanUpper32);
2463  __ cmp(MemOperand(esp, -offset), Immediate(kHoleNanUpper32));
2464  EmitBranch(instr, equal);
2465}
2466
2467
2468void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2469  Representation rep = instr->hydrogen()->value()->representation();
2470  ASSERT(!rep.IsInteger32());
2471
2472  if (rep.IsDouble()) {
2473    UNREACHABLE();
2474  } else {
2475    Register value = ToRegister(instr->value());
2476    Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
2477    __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
2478    __ cmp(FieldOperand(value, HeapNumber::kExponentOffset),
2479           Immediate(0x1));
2480    EmitFalseBranch(instr, no_overflow);
2481    __ cmp(FieldOperand(value, HeapNumber::kMantissaOffset),
2482           Immediate(0x00000000));
2483    EmitBranch(instr, equal);
2484  }
2485}
2486
2487
2488Condition LCodeGen::EmitIsObject(Register input,
2489                                 Register temp1,
2490                                 Label* is_not_object,
2491                                 Label* is_object) {
2492  __ JumpIfSmi(input, is_not_object);
2493
2494  __ cmp(input, isolate()->factory()->null_value());
2495  __ j(equal, is_object);
2496
2497  __ mov(temp1, FieldOperand(input, HeapObject::kMapOffset));
2498  // Undetectable objects behave like undefined.
2499  __ test_b(FieldOperand(temp1, Map::kBitFieldOffset),
2500            1 << Map::kIsUndetectable);
2501  __ j(not_zero, is_not_object);
2502
2503  __ movzx_b(temp1, FieldOperand(temp1, Map::kInstanceTypeOffset));
2504  __ cmp(temp1, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE);
2505  __ j(below, is_not_object);
2506  __ cmp(temp1, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
2507  return below_equal;
2508}
2509
2510
2511void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
2512  Register reg = ToRegister(instr->value());
2513  Register temp = ToRegister(instr->temp());
2514
2515  Condition true_cond = EmitIsObject(
2516      reg, temp, instr->FalseLabel(chunk_), instr->TrueLabel(chunk_));
2517
2518  EmitBranch(instr, true_cond);
2519}
2520
2521
2522Condition LCodeGen::EmitIsString(Register input,
2523                                 Register temp1,
2524                                 Label* is_not_string,
2525                                 SmiCheck check_needed = INLINE_SMI_CHECK) {
2526  if (check_needed == INLINE_SMI_CHECK) {
2527    __ JumpIfSmi(input, is_not_string);
2528  }
2529
2530  Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
2531
2532  return cond;
2533}
2534
2535
2536void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2537  Register reg = ToRegister(instr->value());
2538  Register temp = ToRegister(instr->temp());
2539
2540  SmiCheck check_needed =
2541      instr->hydrogen()->value()->type().IsHeapObject()
2542          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2543
2544  Condition true_cond = EmitIsString(
2545      reg, temp, instr->FalseLabel(chunk_), check_needed);
2546
2547  EmitBranch(instr, true_cond);
2548}
2549
2550
2551void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2552  Operand input = ToOperand(instr->value());
2553
2554  __ test(input, Immediate(kSmiTagMask));
2555  EmitBranch(instr, zero);
2556}
2557
2558
2559void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2560  Register input = ToRegister(instr->value());
2561  Register temp = ToRegister(instr->temp());
2562
2563  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2564    STATIC_ASSERT(kSmiTag == 0);
2565    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2566  }
2567  __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
2568  __ test_b(FieldOperand(temp, Map::kBitFieldOffset),
2569            1 << Map::kIsUndetectable);
2570  EmitBranch(instr, not_zero);
2571}
2572
2573
2574static Condition ComputeCompareCondition(Token::Value op) {
2575  switch (op) {
2576    case Token::EQ_STRICT:
2577    case Token::EQ:
2578      return equal;
2579    case Token::LT:
2580      return less;
2581    case Token::GT:
2582      return greater;
2583    case Token::LTE:
2584      return less_equal;
2585    case Token::GTE:
2586      return greater_equal;
2587    default:
2588      UNREACHABLE();
2589      return no_condition;
2590  }
2591}
2592
2593
2594void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2595  Token::Value op = instr->op();
2596
2597  Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
2598  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2599
2600  Condition condition = ComputeCompareCondition(op);
2601  __ test(eax, Operand(eax));
2602
2603  EmitBranch(instr, condition);
2604}
2605
2606
2607static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2608  InstanceType from = instr->from();
2609  InstanceType to = instr->to();
2610  if (from == FIRST_TYPE) return to;
2611  ASSERT(from == to || to == LAST_TYPE);
2612  return from;
2613}
2614
2615
2616static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2617  InstanceType from = instr->from();
2618  InstanceType to = instr->to();
2619  if (from == to) return equal;
2620  if (to == LAST_TYPE) return above_equal;
2621  if (from == FIRST_TYPE) return below_equal;
2622  UNREACHABLE();
2623  return equal;
2624}
2625
2626
2627void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2628  Register input = ToRegister(instr->value());
2629  Register temp = ToRegister(instr->temp());
2630
2631  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2632    __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2633  }
2634
2635  __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
2636  EmitBranch(instr, BranchCondition(instr->hydrogen()));
2637}
2638
2639
2640void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2641  Register input = ToRegister(instr->value());
2642  Register result = ToRegister(instr->result());
2643
2644  __ AssertString(input);
2645
2646  __ mov(result, FieldOperand(input, String::kHashFieldOffset));
2647  __ IndexFromHash(result, result);
2648}
2649
2650
2651void LCodeGen::DoHasCachedArrayIndexAndBranch(
2652    LHasCachedArrayIndexAndBranch* instr) {
2653  Register input = ToRegister(instr->value());
2654
2655  __ test(FieldOperand(input, String::kHashFieldOffset),
2656          Immediate(String::kContainsCachedArrayIndexMask));
2657  EmitBranch(instr, equal);
2658}
2659
2660
2661// Branches to a label or falls through with the answer in the z flag.  Trashes
2662// the temp registers, but not the input.
2663void LCodeGen::EmitClassOfTest(Label* is_true,
2664                               Label* is_false,
2665                               Handle<String>class_name,
2666                               Register input,
2667                               Register temp,
2668                               Register temp2) {
2669  ASSERT(!input.is(temp));
2670  ASSERT(!input.is(temp2));
2671  ASSERT(!temp.is(temp2));
2672  __ JumpIfSmi(input, is_false);
2673
2674  if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Function"))) {
2675    // Assuming the following assertions, we can use the same compares to test
2676    // for both being a function type and being in the object type range.
2677    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2678    STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2679                  FIRST_SPEC_OBJECT_TYPE + 1);
2680    STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2681                  LAST_SPEC_OBJECT_TYPE - 1);
2682    STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2683    __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
2684    __ j(below, is_false);
2685    __ j(equal, is_true);
2686    __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE);
2687    __ j(equal, is_true);
2688  } else {
2689    // Faster code path to avoid two compares: subtract lower bound from the
2690    // actual type and do a signed compare with the width of the type range.
2691    __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
2692    __ movzx_b(temp2, FieldOperand(temp, Map::kInstanceTypeOffset));
2693    __ sub(Operand(temp2), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2694    __ cmp(Operand(temp2), Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
2695                                     FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
2696    __ j(above, is_false);
2697  }
2698
2699  // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2700  // Check if the constructor in the map is a function.
2701  __ mov(temp, FieldOperand(temp, Map::kConstructorOffset));
2702  // Objects with a non-function constructor have class 'Object'.
2703  __ CmpObjectType(temp, JS_FUNCTION_TYPE, temp2);
2704  if (class_name->IsOneByteEqualTo(STATIC_ASCII_VECTOR("Object"))) {
2705    __ j(not_equal, is_true);
2706  } else {
2707    __ j(not_equal, is_false);
2708  }
2709
2710  // temp now contains the constructor function. Grab the
2711  // instance class name from there.
2712  __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2713  __ mov(temp, FieldOperand(temp,
2714                            SharedFunctionInfo::kInstanceClassNameOffset));
2715  // The class name we are testing against is internalized since it's a literal.
2716  // The name in the constructor is internalized because of the way the context
2717  // is booted.  This routine isn't expected to work for random API-created
2718  // classes and it doesn't have to because you can't access it with natives
2719  // syntax.  Since both sides are internalized it is sufficient to use an
2720  // identity comparison.
2721  __ cmp(temp, class_name);
2722  // End with the answer in the z flag.
2723}
2724
2725
2726void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2727  Register input = ToRegister(instr->value());
2728  Register temp = ToRegister(instr->temp());
2729  Register temp2 = ToRegister(instr->temp2());
2730
2731  Handle<String> class_name = instr->hydrogen()->class_name();
2732
2733  EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2734      class_name, input, temp, temp2);
2735
2736  EmitBranch(instr, equal);
2737}
2738
2739
2740void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2741  Register reg = ToRegister(instr->value());
2742  __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
2743  EmitBranch(instr, equal);
2744}
2745
2746
2747void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2748  // Object and function are in fixed registers defined by the stub.
2749  ASSERT(ToRegister(instr->context()).is(esi));
2750  InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
2751  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2752
2753  Label true_value, done;
2754  __ test(eax, Operand(eax));
2755  __ j(zero, &true_value, Label::kNear);
2756  __ mov(ToRegister(instr->result()), factory()->false_value());
2757  __ jmp(&done, Label::kNear);
2758  __ bind(&true_value);
2759  __ mov(ToRegister(instr->result()), factory()->true_value());
2760  __ bind(&done);
2761}
2762
2763
2764void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
2765  class DeferredInstanceOfKnownGlobal V8_FINAL : public LDeferredCode {
2766   public:
2767    DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
2768                                  LInstanceOfKnownGlobal* instr,
2769                                  const X87Stack& x87_stack)
2770        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
2771    virtual void Generate() V8_OVERRIDE {
2772      codegen()->DoDeferredInstanceOfKnownGlobal(instr_, &map_check_);
2773    }
2774    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
2775    Label* map_check() { return &map_check_; }
2776   private:
2777    LInstanceOfKnownGlobal* instr_;
2778    Label map_check_;
2779  };
2780
2781  DeferredInstanceOfKnownGlobal* deferred;
2782  deferred = new(zone()) DeferredInstanceOfKnownGlobal(this, instr, x87_stack_);
2783
2784  Label done, false_result;
2785  Register object = ToRegister(instr->value());
2786  Register temp = ToRegister(instr->temp());
2787
2788  // A Smi is not an instance of anything.
2789  __ JumpIfSmi(object, &false_result, Label::kNear);
2790
2791  // This is the inlined call site instanceof cache. The two occurences of the
2792  // hole value will be patched to the last map/result pair generated by the
2793  // instanceof stub.
2794  Label cache_miss;
2795  Register map = ToRegister(instr->temp());
2796  __ mov(map, FieldOperand(object, HeapObject::kMapOffset));
2797  __ bind(deferred->map_check());  // Label for calculating code patching.
2798  Handle<Cell> cache_cell = factory()->NewCell(factory()->the_hole_value());
2799  __ cmp(map, Operand::ForCell(cache_cell));  // Patched to cached map.
2800  __ j(not_equal, &cache_miss, Label::kNear);
2801  __ mov(eax, factory()->the_hole_value());  // Patched to either true or false.
2802  __ jmp(&done, Label::kNear);
2803
2804  // The inlined call site cache did not match. Check for null and string
2805  // before calling the deferred code.
2806  __ bind(&cache_miss);
2807  // Null is not an instance of anything.
2808  __ cmp(object, factory()->null_value());
2809  __ j(equal, &false_result, Label::kNear);
2810
2811  // String values are not instances of anything.
2812  Condition is_string = masm_->IsObjectStringType(object, temp, temp);
2813  __ j(is_string, &false_result, Label::kNear);
2814
2815  // Go to the deferred code.
2816  __ jmp(deferred->entry());
2817
2818  __ bind(&false_result);
2819  __ mov(ToRegister(instr->result()), factory()->false_value());
2820
2821  // Here result has either true or false. Deferred code also produces true or
2822  // false object.
2823  __ bind(deferred->exit());
2824  __ bind(&done);
2825}
2826
2827
2828void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr,
2829                                               Label* map_check) {
2830  PushSafepointRegistersScope scope(this);
2831
2832  InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
2833  flags = static_cast<InstanceofStub::Flags>(
2834      flags | InstanceofStub::kArgsInRegisters);
2835  flags = static_cast<InstanceofStub::Flags>(
2836      flags | InstanceofStub::kCallSiteInlineCheck);
2837  flags = static_cast<InstanceofStub::Flags>(
2838      flags | InstanceofStub::kReturnTrueFalseObject);
2839  InstanceofStub stub(isolate(), flags);
2840
2841  // Get the temp register reserved by the instruction. This needs to be a
2842  // register which is pushed last by PushSafepointRegisters as top of the
2843  // stack is used to pass the offset to the location of the map check to
2844  // the stub.
2845  Register temp = ToRegister(instr->temp());
2846  ASSERT(MacroAssembler::SafepointRegisterStackIndex(temp) == 0);
2847  __ LoadHeapObject(InstanceofStub::right(), instr->function());
2848  static const int kAdditionalDelta = 13;
2849  int delta = masm_->SizeOfCodeGeneratedSince(map_check) + kAdditionalDelta;
2850  __ mov(temp, Immediate(delta));
2851  __ StoreToSafepointRegisterSlot(temp, temp);
2852  CallCodeGeneric(stub.GetCode(),
2853                  RelocInfo::CODE_TARGET,
2854                  instr,
2855                  RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
2856  // Get the deoptimization index of the LLazyBailout-environment that
2857  // corresponds to this instruction.
2858  LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
2859  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2860
2861  // Put the result value into the eax slot and restore all registers.
2862  __ StoreToSafepointRegisterSlot(eax, eax);
2863}
2864
2865
2866void LCodeGen::DoCmpT(LCmpT* instr) {
2867  Token::Value op = instr->op();
2868
2869  Handle<Code> ic = CompareIC::GetUninitialized(isolate(), op);
2870  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2871
2872  Condition condition = ComputeCompareCondition(op);
2873  Label true_value, done;
2874  __ test(eax, Operand(eax));
2875  __ j(condition, &true_value, Label::kNear);
2876  __ mov(ToRegister(instr->result()), factory()->false_value());
2877  __ jmp(&done, Label::kNear);
2878  __ bind(&true_value);
2879  __ mov(ToRegister(instr->result()), factory()->true_value());
2880  __ bind(&done);
2881}
2882
2883
2884void LCodeGen::EmitReturn(LReturn* instr, bool dynamic_frame_alignment) {
2885  int extra_value_count = dynamic_frame_alignment ? 2 : 1;
2886
2887  if (instr->has_constant_parameter_count()) {
2888    int parameter_count = ToInteger32(instr->constant_parameter_count());
2889    if (dynamic_frame_alignment && FLAG_debug_code) {
2890      __ cmp(Operand(esp,
2891                     (parameter_count + extra_value_count) * kPointerSize),
2892             Immediate(kAlignmentZapValue));
2893      __ Assert(equal, kExpectedAlignmentMarker);
2894    }
2895    __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
2896  } else {
2897    Register reg = ToRegister(instr->parameter_count());
2898    // The argument count parameter is a smi
2899    __ SmiUntag(reg);
2900    Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
2901    if (dynamic_frame_alignment && FLAG_debug_code) {
2902      ASSERT(extra_value_count == 2);
2903      __ cmp(Operand(esp, reg, times_pointer_size,
2904                     extra_value_count * kPointerSize),
2905             Immediate(kAlignmentZapValue));
2906      __ Assert(equal, kExpectedAlignmentMarker);
2907    }
2908
2909    // emit code to restore stack based on instr->parameter_count()
2910    __ pop(return_addr_reg);  // save return address
2911    if (dynamic_frame_alignment) {
2912      __ inc(reg);  // 1 more for alignment
2913    }
2914    __ shl(reg, kPointerSizeLog2);
2915    __ add(esp, reg);
2916    __ jmp(return_addr_reg);
2917  }
2918}
2919
2920
2921void LCodeGen::DoReturn(LReturn* instr) {
2922  if (FLAG_trace && info()->IsOptimizing()) {
2923    // Preserve the return value on the stack and rely on the runtime call
2924    // to return the value in the same register.  We're leaving the code
2925    // managed by the register allocator and tearing down the frame, it's
2926    // safe to write to the context register.
2927    __ push(eax);
2928    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
2929    __ CallRuntime(Runtime::kTraceExit, 1);
2930  }
2931  if (dynamic_frame_alignment_) {
2932    // Fetch the state of the dynamic frame alignment.
2933    __ mov(edx, Operand(ebp,
2934      JavaScriptFrameConstants::kDynamicAlignmentStateOffset));
2935  }
2936  int no_frame_start = -1;
2937  if (NeedsEagerFrame()) {
2938    __ mov(esp, ebp);
2939    __ pop(ebp);
2940    no_frame_start = masm_->pc_offset();
2941  }
2942  if (dynamic_frame_alignment_) {
2943    Label no_padding;
2944    __ cmp(edx, Immediate(kNoAlignmentPadding));
2945    __ j(equal, &no_padding, Label::kNear);
2946
2947    EmitReturn(instr, true);
2948    __ bind(&no_padding);
2949  }
2950
2951  EmitReturn(instr, false);
2952  if (no_frame_start != -1) {
2953    info()->AddNoFrameRange(no_frame_start, masm_->pc_offset());
2954  }
2955}
2956
2957
2958void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
2959  Register result = ToRegister(instr->result());
2960  __ mov(result, Operand::ForCell(instr->hydrogen()->cell().handle()));
2961  if (instr->hydrogen()->RequiresHoleCheck()) {
2962    __ cmp(result, factory()->the_hole_value());
2963    DeoptimizeIf(equal, instr->environment());
2964  }
2965}
2966
2967
2968void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2969  ASSERT(ToRegister(instr->context()).is(esi));
2970  ASSERT(ToRegister(instr->global_object()).is(edx));
2971  ASSERT(ToRegister(instr->result()).is(eax));
2972
2973  __ mov(ecx, instr->name());
2974  ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
2975  Handle<Code> ic = LoadIC::initialize_stub(isolate(), mode);
2976  CallCode(ic, RelocInfo::CODE_TARGET, instr);
2977}
2978
2979
2980void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
2981  Register value = ToRegister(instr->value());
2982  Handle<PropertyCell> cell_handle = instr->hydrogen()->cell().handle();
2983
2984  // If the cell we are storing to contains the hole it could have
2985  // been deleted from the property dictionary. In that case, we need
2986  // to update the property details in the property dictionary to mark
2987  // it as no longer deleted. We deoptimize in that case.
2988  if (instr->hydrogen()->RequiresHoleCheck()) {
2989    __ cmp(Operand::ForCell(cell_handle), factory()->the_hole_value());
2990    DeoptimizeIf(equal, instr->environment());
2991  }
2992
2993  // Store the value.
2994  __ mov(Operand::ForCell(cell_handle), value);
2995  // Cells are always rescanned, so no write barrier here.
2996}
2997
2998
2999void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
3000  Register context = ToRegister(instr->context());
3001  Register result = ToRegister(instr->result());
3002  __ mov(result, ContextOperand(context, instr->slot_index()));
3003
3004  if (instr->hydrogen()->RequiresHoleCheck()) {
3005    __ cmp(result, factory()->the_hole_value());
3006    if (instr->hydrogen()->DeoptimizesOnHole()) {
3007      DeoptimizeIf(equal, instr->environment());
3008    } else {
3009      Label is_not_hole;
3010      __ j(not_equal, &is_not_hole, Label::kNear);
3011      __ mov(result, factory()->undefined_value());
3012      __ bind(&is_not_hole);
3013    }
3014  }
3015}
3016
3017
3018void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
3019  Register context = ToRegister(instr->context());
3020  Register value = ToRegister(instr->value());
3021
3022  Label skip_assignment;
3023
3024  Operand target = ContextOperand(context, instr->slot_index());
3025  if (instr->hydrogen()->RequiresHoleCheck()) {
3026    __ cmp(target, factory()->the_hole_value());
3027    if (instr->hydrogen()->DeoptimizesOnHole()) {
3028      DeoptimizeIf(equal, instr->environment());
3029    } else {
3030      __ j(not_equal, &skip_assignment, Label::kNear);
3031    }
3032  }
3033
3034  __ mov(target, value);
3035  if (instr->hydrogen()->NeedsWriteBarrier()) {
3036    SmiCheck check_needed =
3037        instr->hydrogen()->value()->type().IsHeapObject()
3038            ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3039    Register temp = ToRegister(instr->temp());
3040    int offset = Context::SlotOffset(instr->slot_index());
3041    __ RecordWriteContextSlot(context,
3042                              offset,
3043                              value,
3044                              temp,
3045                              EMIT_REMEMBERED_SET,
3046                              check_needed);
3047  }
3048
3049  __ bind(&skip_assignment);
3050}
3051
3052
3053void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3054  HObjectAccess access = instr->hydrogen()->access();
3055  int offset = access.offset();
3056
3057  if (access.IsExternalMemory()) {
3058    Register result = ToRegister(instr->result());
3059    MemOperand operand = instr->object()->IsConstantOperand()
3060        ? MemOperand::StaticVariable(ToExternalReference(
3061                LConstantOperand::cast(instr->object())))
3062        : MemOperand(ToRegister(instr->object()), offset);
3063    __ Load(result, operand, access.representation());
3064    return;
3065  }
3066
3067  Register object = ToRegister(instr->object());
3068  if (instr->hydrogen()->representation().IsDouble()) {
3069    X87Mov(ToX87Register(instr->result()), FieldOperand(object, offset));
3070    return;
3071  }
3072
3073  Register result = ToRegister(instr->result());
3074  if (!access.IsInobject()) {
3075    __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
3076    object = result;
3077  }
3078  __ Load(result, FieldOperand(object, offset), access.representation());
3079}
3080
3081
3082void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
3083  ASSERT(!operand->IsDoubleRegister());
3084  if (operand->IsConstantOperand()) {
3085    Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
3086    AllowDeferredHandleDereference smi_check;
3087    if (object->IsSmi()) {
3088      __ Push(Handle<Smi>::cast(object));
3089    } else {
3090      __ PushHeapObject(Handle<HeapObject>::cast(object));
3091    }
3092  } else if (operand->IsRegister()) {
3093    __ push(ToRegister(operand));
3094  } else {
3095    __ push(ToOperand(operand));
3096  }
3097}
3098
3099
3100void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3101  ASSERT(ToRegister(instr->context()).is(esi));
3102  ASSERT(ToRegister(instr->object()).is(edx));
3103  ASSERT(ToRegister(instr->result()).is(eax));
3104
3105  __ mov(ecx, instr->name());
3106  Handle<Code> ic = LoadIC::initialize_stub(isolate(), NOT_CONTEXTUAL);
3107  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3108}
3109
3110
3111void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3112  Register function = ToRegister(instr->function());
3113  Register temp = ToRegister(instr->temp());
3114  Register result = ToRegister(instr->result());
3115
3116  // Check that the function really is a function.
3117  __ CmpObjectType(function, JS_FUNCTION_TYPE, result);
3118  DeoptimizeIf(not_equal, instr->environment());
3119
3120  // Check whether the function has an instance prototype.
3121  Label non_instance;
3122  __ test_b(FieldOperand(result, Map::kBitFieldOffset),
3123            1 << Map::kHasNonInstancePrototype);
3124  __ j(not_zero, &non_instance, Label::kNear);
3125
3126  // Get the prototype or initial map from the function.
3127  __ mov(result,
3128         FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3129
3130  // Check that the function has a prototype or an initial map.
3131  __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
3132  DeoptimizeIf(equal, instr->environment());
3133
3134  // If the function does not have an initial map, we're done.
3135  Label done;
3136  __ CmpObjectType(result, MAP_TYPE, temp);
3137  __ j(not_equal, &done, Label::kNear);
3138
3139  // Get the prototype from the initial map.
3140  __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
3141  __ jmp(&done, Label::kNear);
3142
3143  // Non-instance prototype: Fetch prototype from constructor field
3144  // in the function's map.
3145  __ bind(&non_instance);
3146  __ mov(result, FieldOperand(result, Map::kConstructorOffset));
3147
3148  // All done.
3149  __ bind(&done);
3150}
3151
3152
3153void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3154  Register result = ToRegister(instr->result());
3155  __ LoadRoot(result, instr->index());
3156}
3157
3158
3159void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
3160  Register arguments = ToRegister(instr->arguments());
3161  Register result = ToRegister(instr->result());
3162  if (instr->length()->IsConstantOperand() &&
3163      instr->index()->IsConstantOperand()) {
3164    int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
3165    int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
3166    int index = (const_length - const_index) + 1;
3167    __ mov(result, Operand(arguments, index * kPointerSize));
3168  } else {
3169    Register length = ToRegister(instr->length());
3170    Operand index = ToOperand(instr->index());
3171    // There are two words between the frame pointer and the last argument.
3172    // Subtracting from length accounts for one of them add one more.
3173    __ sub(length, index);
3174    __ mov(result, Operand(arguments, length, times_4, kPointerSize));
3175  }
3176}
3177
3178
3179void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
3180  ElementsKind elements_kind = instr->elements_kind();
3181  LOperand* key = instr->key();
3182  if (!key->IsConstantOperand() &&
3183      ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
3184                                  elements_kind)) {
3185    __ SmiUntag(ToRegister(key));
3186  }
3187  Operand operand(BuildFastArrayOperand(
3188      instr->elements(),
3189      key,
3190      instr->hydrogen()->key()->representation(),
3191      elements_kind,
3192      instr->base_offset()));
3193  if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
3194      elements_kind == FLOAT32_ELEMENTS) {
3195    X87Mov(ToX87Register(instr->result()), operand, kX87FloatOperand);
3196  } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
3197             elements_kind == FLOAT64_ELEMENTS) {
3198    X87Mov(ToX87Register(instr->result()), operand);
3199  } else {
3200    Register result(ToRegister(instr->result()));
3201    switch (elements_kind) {
3202      case EXTERNAL_INT8_ELEMENTS:
3203      case INT8_ELEMENTS:
3204        __ movsx_b(result, operand);
3205        break;
3206      case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3207      case EXTERNAL_UINT8_ELEMENTS:
3208      case UINT8_ELEMENTS:
3209      case UINT8_CLAMPED_ELEMENTS:
3210        __ movzx_b(result, operand);
3211        break;
3212      case EXTERNAL_INT16_ELEMENTS:
3213      case INT16_ELEMENTS:
3214        __ movsx_w(result, operand);
3215        break;
3216      case EXTERNAL_UINT16_ELEMENTS:
3217      case UINT16_ELEMENTS:
3218        __ movzx_w(result, operand);
3219        break;
3220      case EXTERNAL_INT32_ELEMENTS:
3221      case INT32_ELEMENTS:
3222        __ mov(result, operand);
3223        break;
3224      case EXTERNAL_UINT32_ELEMENTS:
3225      case UINT32_ELEMENTS:
3226        __ mov(result, operand);
3227        if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3228          __ test(result, Operand(result));
3229          DeoptimizeIf(negative, instr->environment());
3230        }
3231        break;
3232      case EXTERNAL_FLOAT32_ELEMENTS:
3233      case EXTERNAL_FLOAT64_ELEMENTS:
3234      case FLOAT32_ELEMENTS:
3235      case FLOAT64_ELEMENTS:
3236      case FAST_SMI_ELEMENTS:
3237      case FAST_ELEMENTS:
3238      case FAST_DOUBLE_ELEMENTS:
3239      case FAST_HOLEY_SMI_ELEMENTS:
3240      case FAST_HOLEY_ELEMENTS:
3241      case FAST_HOLEY_DOUBLE_ELEMENTS:
3242      case DICTIONARY_ELEMENTS:
3243      case SLOPPY_ARGUMENTS_ELEMENTS:
3244        UNREACHABLE();
3245        break;
3246    }
3247  }
3248}
3249
3250
3251void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
3252  if (instr->hydrogen()->RequiresHoleCheck()) {
3253    Operand hole_check_operand = BuildFastArrayOperand(
3254        instr->elements(), instr->key(),
3255        instr->hydrogen()->key()->representation(),
3256        FAST_DOUBLE_ELEMENTS,
3257        instr->base_offset() + sizeof(kHoleNanLower32));
3258    __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
3259    DeoptimizeIf(equal, instr->environment());
3260  }
3261
3262  Operand double_load_operand = BuildFastArrayOperand(
3263      instr->elements(),
3264      instr->key(),
3265      instr->hydrogen()->key()->representation(),
3266      FAST_DOUBLE_ELEMENTS,
3267      instr->base_offset());
3268  X87Mov(ToX87Register(instr->result()), double_load_operand);
3269}
3270
3271
3272void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
3273  Register result = ToRegister(instr->result());
3274
3275  // Load the result.
3276  __ mov(result,
3277         BuildFastArrayOperand(instr->elements(),
3278                               instr->key(),
3279                               instr->hydrogen()->key()->representation(),
3280                               FAST_ELEMENTS,
3281                               instr->base_offset()));
3282
3283  // Check for the hole value.
3284  if (instr->hydrogen()->RequiresHoleCheck()) {
3285    if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
3286      __ test(result, Immediate(kSmiTagMask));
3287      DeoptimizeIf(not_equal, instr->environment());
3288    } else {
3289      __ cmp(result, factory()->the_hole_value());
3290      DeoptimizeIf(equal, instr->environment());
3291    }
3292  }
3293}
3294
3295
3296void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
3297  if (instr->is_typed_elements()) {
3298    DoLoadKeyedExternalArray(instr);
3299  } else if (instr->hydrogen()->representation().IsDouble()) {
3300    DoLoadKeyedFixedDoubleArray(instr);
3301  } else {
3302    DoLoadKeyedFixedArray(instr);
3303  }
3304}
3305
3306
3307Operand LCodeGen::BuildFastArrayOperand(
3308    LOperand* elements_pointer,
3309    LOperand* key,
3310    Representation key_representation,
3311    ElementsKind elements_kind,
3312    uint32_t base_offset) {
3313  Register elements_pointer_reg = ToRegister(elements_pointer);
3314  int element_shift_size = ElementsKindToShiftSize(elements_kind);
3315  int shift_size = element_shift_size;
3316  if (key->IsConstantOperand()) {
3317    int constant_value = ToInteger32(LConstantOperand::cast(key));
3318    if (constant_value & 0xF0000000) {
3319      Abort(kArrayIndexConstantValueTooBig);
3320    }
3321    return Operand(elements_pointer_reg,
3322                   ((constant_value) << shift_size)
3323                       + base_offset);
3324  } else {
3325    // Take the tag bit into account while computing the shift size.
3326    if (key_representation.IsSmi() && (shift_size >= 1)) {
3327      shift_size -= kSmiTagSize;
3328    }
3329    ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
3330    return Operand(elements_pointer_reg,
3331                   ToRegister(key),
3332                   scale_factor,
3333                   base_offset);
3334  }
3335}
3336
3337
3338void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3339  ASSERT(ToRegister(instr->context()).is(esi));
3340  ASSERT(ToRegister(instr->object()).is(edx));
3341  ASSERT(ToRegister(instr->key()).is(ecx));
3342
3343  Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
3344  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3345}
3346
3347
3348void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3349  Register result = ToRegister(instr->result());
3350
3351  if (instr->hydrogen()->from_inlined()) {
3352    __ lea(result, Operand(esp, -2 * kPointerSize));
3353  } else {
3354    // Check for arguments adapter frame.
3355    Label done, adapted;
3356    __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3357    __ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
3358    __ cmp(Operand(result),
3359           Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
3360    __ j(equal, &adapted, Label::kNear);
3361
3362    // No arguments adaptor frame.
3363    __ mov(result, Operand(ebp));
3364    __ jmp(&done, Label::kNear);
3365
3366    // Arguments adaptor frame present.
3367    __ bind(&adapted);
3368    __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3369
3370    // Result is the frame pointer for the frame if not adapted and for the real
3371    // frame below the adaptor frame if adapted.
3372    __ bind(&done);
3373  }
3374}
3375
3376
3377void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3378  Operand elem = ToOperand(instr->elements());
3379  Register result = ToRegister(instr->result());
3380
3381  Label done;
3382
3383  // If no arguments adaptor frame the number of arguments is fixed.
3384  __ cmp(ebp, elem);
3385  __ mov(result, Immediate(scope()->num_parameters()));
3386  __ j(equal, &done, Label::kNear);
3387
3388  // Arguments adaptor frame present. Get argument length from there.
3389  __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
3390  __ mov(result, Operand(result,
3391                         ArgumentsAdaptorFrameConstants::kLengthOffset));
3392  __ SmiUntag(result);
3393
3394  // Argument length is in result register.
3395  __ bind(&done);
3396}
3397
3398
3399void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3400  Register receiver = ToRegister(instr->receiver());
3401  Register function = ToRegister(instr->function());
3402
3403  // If the receiver is null or undefined, we have to pass the global
3404  // object as a receiver to normal functions. Values have to be
3405  // passed unchanged to builtins and strict-mode functions.
3406  Label receiver_ok, global_object;
3407  Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3408  Register scratch = ToRegister(instr->temp());
3409
3410  if (!instr->hydrogen()->known_function()) {
3411    // Do not transform the receiver to object for strict mode
3412    // functions.
3413    __ mov(scratch,
3414           FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
3415    __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
3416              1 << SharedFunctionInfo::kStrictModeBitWithinByte);
3417    __ j(not_equal, &receiver_ok, dist);
3418
3419    // Do not transform the receiver to object for builtins.
3420    __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
3421              1 << SharedFunctionInfo::kNativeBitWithinByte);
3422    __ j(not_equal, &receiver_ok, dist);
3423  }
3424
3425  // Normal function. Replace undefined or null with global receiver.
3426  __ cmp(receiver, factory()->null_value());
3427  __ j(equal, &global_object, Label::kNear);
3428  __ cmp(receiver, factory()->undefined_value());
3429  __ j(equal, &global_object, Label::kNear);
3430
3431  // The receiver should be a JS object.
3432  __ test(receiver, Immediate(kSmiTagMask));
3433  DeoptimizeIf(equal, instr->environment());
3434  __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch);
3435  DeoptimizeIf(below, instr->environment());
3436
3437  __ jmp(&receiver_ok, Label::kNear);
3438  __ bind(&global_object);
3439  __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
3440  const int global_offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
3441  __ mov(receiver, Operand(receiver, global_offset));
3442  const int receiver_offset = GlobalObject::kGlobalReceiverOffset;
3443  __ mov(receiver, FieldOperand(receiver, receiver_offset));
3444  __ bind(&receiver_ok);
3445}
3446
3447
3448void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3449  Register receiver = ToRegister(instr->receiver());
3450  Register function = ToRegister(instr->function());
3451  Register length = ToRegister(instr->length());
3452  Register elements = ToRegister(instr->elements());
3453  ASSERT(receiver.is(eax));  // Used for parameter count.
3454  ASSERT(function.is(edi));  // Required by InvokeFunction.
3455  ASSERT(ToRegister(instr->result()).is(eax));
3456
3457  // Copy the arguments to this function possibly from the
3458  // adaptor frame below it.
3459  const uint32_t kArgumentsLimit = 1 * KB;
3460  __ cmp(length, kArgumentsLimit);
3461  DeoptimizeIf(above, instr->environment());
3462
3463  __ push(receiver);
3464  __ mov(receiver, length);
3465
3466  // Loop through the arguments pushing them onto the execution
3467  // stack.
3468  Label invoke, loop;
3469  // length is a small non-negative integer, due to the test above.
3470  __ test(length, Operand(length));
3471  __ j(zero, &invoke, Label::kNear);
3472  __ bind(&loop);
3473  __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
3474  __ dec(length);
3475  __ j(not_zero, &loop);
3476
3477  // Invoke the function.
3478  __ bind(&invoke);
3479  ASSERT(instr->HasPointerMap());
3480  LPointerMap* pointers = instr->pointer_map();
3481  SafepointGenerator safepoint_generator(
3482      this, pointers, Safepoint::kLazyDeopt);
3483  ParameterCount actual(eax);
3484  __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
3485}
3486
3487
3488void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
3489  __ int3();
3490}
3491
3492
3493void LCodeGen::DoPushArgument(LPushArgument* instr) {
3494  LOperand* argument = instr->value();
3495  EmitPushTaggedOperand(argument);
3496}
3497
3498
3499void LCodeGen::DoDrop(LDrop* instr) {
3500  __ Drop(instr->count());
3501}
3502
3503
3504void LCodeGen::DoThisFunction(LThisFunction* instr) {
3505  Register result = ToRegister(instr->result());
3506  __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
3507}
3508
3509
3510void LCodeGen::DoContext(LContext* instr) {
3511  Register result = ToRegister(instr->result());
3512  if (info()->IsOptimizing()) {
3513    __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
3514  } else {
3515    // If there is no frame, the context must be in esi.
3516    ASSERT(result.is(esi));
3517  }
3518}
3519
3520
3521void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3522  ASSERT(ToRegister(instr->context()).is(esi));
3523  __ push(esi);  // The context is the first argument.
3524  __ push(Immediate(instr->hydrogen()->pairs()));
3525  __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
3526  CallRuntime(Runtime::kHiddenDeclareGlobals, 3, instr);
3527}
3528
3529
3530void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3531                                 int formal_parameter_count,
3532                                 int arity,
3533                                 LInstruction* instr,
3534                                 EDIState edi_state) {
3535  bool dont_adapt_arguments =
3536      formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3537  bool can_invoke_directly =
3538      dont_adapt_arguments || formal_parameter_count == arity;
3539
3540  if (can_invoke_directly) {
3541    if (edi_state == EDI_UNINITIALIZED) {
3542      __ LoadHeapObject(edi, function);
3543    }
3544
3545    // Change context.
3546    __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
3547
3548    // Set eax to arguments count if adaption is not needed. Assumes that eax
3549    // is available to write to at this point.
3550    if (dont_adapt_arguments) {
3551      __ mov(eax, arity);
3552    }
3553
3554    // Invoke function directly.
3555    if (function.is_identical_to(info()->closure())) {
3556      __ CallSelf();
3557    } else {
3558      __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
3559    }
3560    RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3561  } else {
3562    // We need to adapt arguments.
3563    LPointerMap* pointers = instr->pointer_map();
3564    SafepointGenerator generator(
3565        this, pointers, Safepoint::kLazyDeopt);
3566    ParameterCount count(arity);
3567    ParameterCount expected(formal_parameter_count);
3568    __ InvokeFunction(function, expected, count, CALL_FUNCTION, generator);
3569  }
3570}
3571
3572
3573void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3574  ASSERT(ToRegister(instr->result()).is(eax));
3575
3576  LPointerMap* pointers = instr->pointer_map();
3577  SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3578
3579  if (instr->target()->IsConstantOperand()) {
3580    LConstantOperand* target = LConstantOperand::cast(instr->target());
3581    Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3582    generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
3583    __ call(code, RelocInfo::CODE_TARGET);
3584  } else {
3585    ASSERT(instr->target()->IsRegister());
3586    Register target = ToRegister(instr->target());
3587    generator.BeforeCall(__ CallSize(Operand(target)));
3588    __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3589    __ call(target);
3590  }
3591  generator.AfterCall();
3592}
3593
3594
3595void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
3596  ASSERT(ToRegister(instr->function()).is(edi));
3597  ASSERT(ToRegister(instr->result()).is(eax));
3598
3599  if (instr->hydrogen()->pass_argument_count()) {
3600    __ mov(eax, instr->arity());
3601  }
3602
3603  // Change context.
3604  __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
3605
3606  bool is_self_call = false;
3607  if (instr->hydrogen()->function()->IsConstant()) {
3608    HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
3609    Handle<JSFunction> jsfun =
3610      Handle<JSFunction>::cast(fun_const->handle(isolate()));
3611    is_self_call = jsfun.is_identical_to(info()->closure());
3612  }
3613
3614  if (is_self_call) {
3615    __ CallSelf();
3616  } else {
3617    __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
3618  }
3619
3620  RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
3621}
3622
3623
3624void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3625  Register input_reg = ToRegister(instr->value());
3626  __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
3627         factory()->heap_number_map());
3628  DeoptimizeIf(not_equal, instr->environment());
3629
3630  Label slow, allocated, done;
3631  Register tmp = input_reg.is(eax) ? ecx : eax;
3632  Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
3633
3634  // Preserve the value of all registers.
3635  PushSafepointRegistersScope scope(this);
3636
3637  __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3638  // Check the sign of the argument. If the argument is positive, just
3639  // return it. We do not need to patch the stack since |input| and
3640  // |result| are the same register and |input| will be restored
3641  // unchanged by popping safepoint registers.
3642  __ test(tmp, Immediate(HeapNumber::kSignMask));
3643  __ j(zero, &done, Label::kNear);
3644
3645  __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
3646  __ jmp(&allocated, Label::kNear);
3647
3648  // Slow case: Call the runtime system to do the number allocation.
3649  __ bind(&slow);
3650  CallRuntimeFromDeferred(Runtime::kHiddenAllocateHeapNumber, 0,
3651                          instr, instr->context());
3652  // Set the pointer to the new heap number in tmp.
3653  if (!tmp.is(eax)) __ mov(tmp, eax);
3654  // Restore input_reg after call to runtime.
3655  __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
3656
3657  __ bind(&allocated);
3658  __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3659  __ and_(tmp2, ~HeapNumber::kSignMask);
3660  __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
3661  __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
3662  __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
3663  __ StoreToSafepointRegisterSlot(input_reg, tmp);
3664
3665  __ bind(&done);
3666}
3667
3668
3669void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3670  Register input_reg = ToRegister(instr->value());
3671  __ test(input_reg, Operand(input_reg));
3672  Label is_positive;
3673  __ j(not_sign, &is_positive, Label::kNear);
3674  __ neg(input_reg);  // Sets flags.
3675  DeoptimizeIf(negative, instr->environment());
3676  __ bind(&is_positive);
3677}
3678
3679
3680void LCodeGen::DoMathAbs(LMathAbs* instr) {
3681  // Class for deferred case.
3682  class DeferredMathAbsTaggedHeapNumber V8_FINAL : public LDeferredCode {
3683   public:
3684    DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
3685                                    LMathAbs* instr,
3686                                    const X87Stack& x87_stack)
3687        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
3688    virtual void Generate() V8_OVERRIDE {
3689      codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3690    }
3691    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
3692   private:
3693    LMathAbs* instr_;
3694  };
3695
3696  ASSERT(instr->value()->Equals(instr->result()));
3697  Representation r = instr->hydrogen()->value()->representation();
3698
3699  if (r.IsDouble()) {
3700    UNIMPLEMENTED();
3701  } else if (r.IsSmiOrInteger32()) {
3702    EmitIntegerMathAbs(instr);
3703  } else {  // Tagged case.
3704    DeferredMathAbsTaggedHeapNumber* deferred =
3705        new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr, x87_stack_);
3706    Register input_reg = ToRegister(instr->value());
3707    // Smi check.
3708    __ JumpIfNotSmi(input_reg, deferred->entry());
3709    EmitIntegerMathAbs(instr);
3710    __ bind(deferred->exit());
3711  }
3712}
3713
3714
3715void LCodeGen::DoMathFloor(LMathFloor* instr) {
3716  UNIMPLEMENTED();
3717}
3718
3719
3720void LCodeGen::DoMathRound(LMathRound* instr) {
3721  UNIMPLEMENTED();
3722}
3723
3724
3725void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3726  UNIMPLEMENTED();
3727}
3728
3729
3730void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3731  UNIMPLEMENTED();
3732}
3733
3734
3735void LCodeGen::DoPower(LPower* instr) {
3736  UNIMPLEMENTED();
3737}
3738
3739
3740void LCodeGen::DoMathLog(LMathLog* instr) {
3741  UNIMPLEMENTED();
3742}
3743
3744
3745void LCodeGen::DoMathClz32(LMathClz32* instr) {
3746  UNIMPLEMENTED();
3747}
3748
3749
3750void LCodeGen::DoMathExp(LMathExp* instr) {
3751  UNIMPLEMENTED();
3752}
3753
3754
3755void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3756  ASSERT(ToRegister(instr->context()).is(esi));
3757  ASSERT(ToRegister(instr->function()).is(edi));
3758  ASSERT(instr->HasPointerMap());
3759
3760  Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3761  if (known_function.is_null()) {
3762    LPointerMap* pointers = instr->pointer_map();
3763    SafepointGenerator generator(
3764        this, pointers, Safepoint::kLazyDeopt);
3765    ParameterCount count(instr->arity());
3766    __ InvokeFunction(edi, count, CALL_FUNCTION, generator);
3767  } else {
3768    CallKnownFunction(known_function,
3769                      instr->hydrogen()->formal_parameter_count(),
3770                      instr->arity(),
3771                      instr,
3772                      EDI_CONTAINS_TARGET);
3773  }
3774}
3775
3776
3777void LCodeGen::DoCallFunction(LCallFunction* instr) {
3778  ASSERT(ToRegister(instr->context()).is(esi));
3779  ASSERT(ToRegister(instr->function()).is(edi));
3780  ASSERT(ToRegister(instr->result()).is(eax));
3781
3782  int arity = instr->arity();
3783  CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
3784  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3785}
3786
3787
3788void LCodeGen::DoCallNew(LCallNew* instr) {
3789  ASSERT(ToRegister(instr->context()).is(esi));
3790  ASSERT(ToRegister(instr->constructor()).is(edi));
3791  ASSERT(ToRegister(instr->result()).is(eax));
3792
3793  // No cell in ebx for construct type feedback in optimized code
3794  __ mov(ebx, isolate()->factory()->undefined_value());
3795  CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
3796  __ Move(eax, Immediate(instr->arity()));
3797  CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3798}
3799
3800
3801void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3802  ASSERT(ToRegister(instr->context()).is(esi));
3803  ASSERT(ToRegister(instr->constructor()).is(edi));
3804  ASSERT(ToRegister(instr->result()).is(eax));
3805
3806  __ Move(eax, Immediate(instr->arity()));
3807  __ mov(ebx, isolate()->factory()->undefined_value());
3808  ElementsKind kind = instr->hydrogen()->elements_kind();
3809  AllocationSiteOverrideMode override_mode =
3810      (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3811          ? DISABLE_ALLOCATION_SITES
3812          : DONT_OVERRIDE;
3813
3814  if (instr->arity() == 0) {
3815    ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3816    CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3817  } else if (instr->arity() == 1) {
3818    Label done;
3819    if (IsFastPackedElementsKind(kind)) {
3820      Label packed_case;
3821      // We might need a change here
3822      // look at the first argument
3823      __ mov(ecx, Operand(esp, 0));
3824      __ test(ecx, ecx);
3825      __ j(zero, &packed_case, Label::kNear);
3826
3827      ElementsKind holey_kind = GetHoleyElementsKind(kind);
3828      ArraySingleArgumentConstructorStub stub(isolate(),
3829                                              holey_kind,
3830                                              override_mode);
3831      CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3832      __ jmp(&done, Label::kNear);
3833      __ bind(&packed_case);
3834    }
3835
3836    ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3837    CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3838    __ bind(&done);
3839  } else {
3840    ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
3841    CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
3842  }
3843}
3844
3845
3846void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3847  ASSERT(ToRegister(instr->context()).is(esi));
3848  CallRuntime(instr->function(), instr->arity(), instr);
3849}
3850
3851
3852void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3853  Register function = ToRegister(instr->function());
3854  Register code_object = ToRegister(instr->code_object());
3855  __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
3856  __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
3857}
3858
3859
3860void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3861  Register result = ToRegister(instr->result());
3862  Register base = ToRegister(instr->base_object());
3863  if (instr->offset()->IsConstantOperand()) {
3864    LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3865    __ lea(result, Operand(base, ToInteger32(offset)));
3866  } else {
3867    Register offset = ToRegister(instr->offset());
3868    __ lea(result, Operand(base, offset, times_1, 0));
3869  }
3870}
3871
3872
3873void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3874  Representation representation = instr->hydrogen()->field_representation();
3875
3876  HObjectAccess access = instr->hydrogen()->access();
3877  int offset = access.offset();
3878
3879  if (access.IsExternalMemory()) {
3880    ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3881    MemOperand operand = instr->object()->IsConstantOperand()
3882        ? MemOperand::StaticVariable(
3883            ToExternalReference(LConstantOperand::cast(instr->object())))
3884        : MemOperand(ToRegister(instr->object()), offset);
3885    if (instr->value()->IsConstantOperand()) {
3886      LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3887      __ mov(operand, Immediate(ToInteger32(operand_value)));
3888    } else {
3889      Register value = ToRegister(instr->value());
3890      __ Store(value, operand, representation);
3891    }
3892    return;
3893  }
3894
3895  Register object = ToRegister(instr->object());
3896  __ AssertNotSmi(object);
3897  ASSERT(!representation.IsSmi() ||
3898         !instr->value()->IsConstantOperand() ||
3899         IsSmi(LConstantOperand::cast(instr->value())));
3900  if (representation.IsDouble()) {
3901    ASSERT(access.IsInobject());
3902    ASSERT(!instr->hydrogen()->has_transition());
3903    ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3904    X87Register value = ToX87Register(instr->value());
3905    X87Mov(FieldOperand(object, offset), value);
3906    return;
3907  }
3908
3909  if (instr->hydrogen()->has_transition()) {
3910    Handle<Map> transition = instr->hydrogen()->transition_map();
3911    AddDeprecationDependency(transition);
3912    __ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
3913    if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
3914      Register temp = ToRegister(instr->temp());
3915      Register temp_map = ToRegister(instr->temp_map());
3916      __ mov(temp_map, transition);
3917      __ mov(FieldOperand(object, HeapObject::kMapOffset), temp_map);
3918      // Update the write barrier for the map field.
3919      __ RecordWriteForMap(object, transition, temp_map, temp);
3920    }
3921  }
3922
3923  // Do the store.
3924  Register write_register = object;
3925  if (!access.IsInobject()) {
3926    write_register = ToRegister(instr->temp());
3927    __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
3928  }
3929
3930  MemOperand operand = FieldOperand(write_register, offset);
3931  if (instr->value()->IsConstantOperand()) {
3932    LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3933    if (operand_value->IsRegister()) {
3934      Register value = ToRegister(operand_value);
3935      __ Store(value, operand, representation);
3936    } else if (representation.IsInteger32()) {
3937      Immediate immediate = ToImmediate(operand_value, representation);
3938      ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3939      __ mov(operand, immediate);
3940    } else {
3941      Handle<Object> handle_value = ToHandle(operand_value);
3942      ASSERT(!instr->hydrogen()->NeedsWriteBarrier());
3943      __ mov(operand, handle_value);
3944    }
3945  } else {
3946    Register value = ToRegister(instr->value());
3947    __ Store(value, operand, representation);
3948  }
3949
3950  if (instr->hydrogen()->NeedsWriteBarrier()) {
3951    Register value = ToRegister(instr->value());
3952    Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
3953    // Update the write barrier for the object for in-object properties.
3954    __ RecordWriteField(write_register,
3955                        offset,
3956                        value,
3957                        temp,
3958                        EMIT_REMEMBERED_SET,
3959                        instr->hydrogen()->SmiCheckForWriteBarrier(),
3960                        instr->hydrogen()->PointersToHereCheckForValue());
3961  }
3962}
3963
3964
3965void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3966  ASSERT(ToRegister(instr->context()).is(esi));
3967  ASSERT(ToRegister(instr->object()).is(edx));
3968  ASSERT(ToRegister(instr->value()).is(eax));
3969
3970  __ mov(ecx, instr->name());
3971  Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
3972  CallCode(ic, RelocInfo::CODE_TARGET, instr);
3973}
3974
3975
3976void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3977  Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
3978  if (instr->index()->IsConstantOperand()) {
3979    __ cmp(ToOperand(instr->length()),
3980           ToImmediate(LConstantOperand::cast(instr->index()),
3981                       instr->hydrogen()->length()->representation()));
3982    cc = CommuteCondition(cc);
3983  } else if (instr->length()->IsConstantOperand()) {
3984    __ cmp(ToOperand(instr->index()),
3985           ToImmediate(LConstantOperand::cast(instr->length()),
3986                       instr->hydrogen()->index()->representation()));
3987  } else {
3988    __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
3989  }
3990  if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3991    Label done;
3992    __ j(NegateCondition(cc), &done, Label::kNear);
3993    __ int3();
3994    __ bind(&done);
3995  } else {
3996    DeoptimizeIf(cc, instr->environment());
3997  }
3998}
3999
4000
4001void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
4002  ElementsKind elements_kind = instr->elements_kind();
4003  LOperand* key = instr->key();
4004  if (!key->IsConstantOperand() &&
4005      ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
4006                                  elements_kind)) {
4007    __ SmiUntag(ToRegister(key));
4008  }
4009  Operand operand(BuildFastArrayOperand(
4010      instr->elements(),
4011      key,
4012      instr->hydrogen()->key()->representation(),
4013      elements_kind,
4014      instr->base_offset()));
4015  if (elements_kind == EXTERNAL_FLOAT32_ELEMENTS ||
4016      elements_kind == FLOAT32_ELEMENTS) {
4017    __ fld(0);
4018    __ fstp_s(operand);
4019  } else if (elements_kind == EXTERNAL_FLOAT64_ELEMENTS ||
4020             elements_kind == FLOAT64_ELEMENTS) {
4021    X87Mov(operand, ToX87Register(instr->value()));
4022  } else {
4023    Register value = ToRegister(instr->value());
4024    switch (elements_kind) {
4025      case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
4026      case EXTERNAL_UINT8_ELEMENTS:
4027      case EXTERNAL_INT8_ELEMENTS:
4028      case UINT8_ELEMENTS:
4029      case INT8_ELEMENTS:
4030      case UINT8_CLAMPED_ELEMENTS:
4031        __ mov_b(operand, value);
4032        break;
4033      case EXTERNAL_INT16_ELEMENTS:
4034      case EXTERNAL_UINT16_ELEMENTS:
4035      case UINT16_ELEMENTS:
4036      case INT16_ELEMENTS:
4037        __ mov_w(operand, value);
4038        break;
4039      case EXTERNAL_INT32_ELEMENTS:
4040      case EXTERNAL_UINT32_ELEMENTS:
4041      case UINT32_ELEMENTS:
4042      case INT32_ELEMENTS:
4043        __ mov(operand, value);
4044        break;
4045      case EXTERNAL_FLOAT32_ELEMENTS:
4046      case EXTERNAL_FLOAT64_ELEMENTS:
4047      case FLOAT32_ELEMENTS:
4048      case FLOAT64_ELEMENTS:
4049      case FAST_SMI_ELEMENTS:
4050      case FAST_ELEMENTS:
4051      case FAST_DOUBLE_ELEMENTS:
4052      case FAST_HOLEY_SMI_ELEMENTS:
4053      case FAST_HOLEY_ELEMENTS:
4054      case FAST_HOLEY_DOUBLE_ELEMENTS:
4055      case DICTIONARY_ELEMENTS:
4056      case SLOPPY_ARGUMENTS_ELEMENTS:
4057        UNREACHABLE();
4058        break;
4059    }
4060  }
4061}
4062
4063
4064void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4065  ExternalReference canonical_nan_reference =
4066      ExternalReference::address_of_canonical_non_hole_nan();
4067  Operand double_store_operand = BuildFastArrayOperand(
4068      instr->elements(),
4069      instr->key(),
4070      instr->hydrogen()->key()->representation(),
4071      FAST_DOUBLE_ELEMENTS,
4072      instr->base_offset());
4073
4074  // Can't use SSE2 in the serializer
4075  if (instr->hydrogen()->IsConstantHoleStore()) {
4076    // This means we should store the (double) hole. No floating point
4077    // registers required.
4078    double nan_double = FixedDoubleArray::hole_nan_as_double();
4079    uint64_t int_val = BitCast<uint64_t, double>(nan_double);
4080    int32_t lower = static_cast<int32_t>(int_val);
4081    int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
4082
4083    __ mov(double_store_operand, Immediate(lower));
4084    Operand double_store_operand2 = BuildFastArrayOperand(
4085        instr->elements(),
4086        instr->key(),
4087        instr->hydrogen()->key()->representation(),
4088        FAST_DOUBLE_ELEMENTS,
4089        instr->base_offset() + kPointerSize);
4090    __ mov(double_store_operand2, Immediate(upper));
4091  } else {
4092    Label no_special_nan_handling;
4093    X87Register value = ToX87Register(instr->value());
4094    X87Fxch(value);
4095
4096    if (instr->NeedsCanonicalization()) {
4097      __ fld(0);
4098      __ fld(0);
4099      __ FCmp();
4100
4101      __ j(parity_odd, &no_special_nan_handling, Label::kNear);
4102      __ sub(esp, Immediate(kDoubleSize));
4103      __ fst_d(MemOperand(esp, 0));
4104      __ cmp(MemOperand(esp, sizeof(kHoleNanLower32)),
4105             Immediate(kHoleNanUpper32));
4106      __ add(esp, Immediate(kDoubleSize));
4107      Label canonicalize;
4108      __ j(not_equal, &canonicalize, Label::kNear);
4109      __ jmp(&no_special_nan_handling, Label::kNear);
4110      __ bind(&canonicalize);
4111      __ fstp(0);
4112      __ fld_d(Operand::StaticVariable(canonical_nan_reference));
4113    }
4114
4115    __ bind(&no_special_nan_handling);
4116    __ fst_d(double_store_operand);
4117  }
4118}
4119
4120
4121void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4122  Register elements = ToRegister(instr->elements());
4123  Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
4124
4125  Operand operand = BuildFastArrayOperand(
4126      instr->elements(),
4127      instr->key(),
4128      instr->hydrogen()->key()->representation(),
4129      FAST_ELEMENTS,
4130      instr->base_offset());
4131  if (instr->value()->IsRegister()) {
4132    __ mov(operand, ToRegister(instr->value()));
4133  } else {
4134    LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4135    if (IsSmi(operand_value)) {
4136      Immediate immediate = ToImmediate(operand_value, Representation::Smi());
4137      __ mov(operand, immediate);
4138    } else {
4139      ASSERT(!IsInteger32(operand_value));
4140      Handle<Object> handle_value = ToHandle(operand_value);
4141      __ mov(operand, handle_value);
4142    }
4143  }
4144
4145  if (instr->hydrogen()->NeedsWriteBarrier()) {
4146    ASSERT(instr->value()->IsRegister());
4147    Register value = ToRegister(instr->value());
4148    ASSERT(!instr->key()->IsConstantOperand());
4149    SmiCheck check_needed =
4150        instr->hydrogen()->value()->type().IsHeapObject()
4151          ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4152    // Compute address of modified element and store it into key register.
4153    __ lea(key, operand);
4154    __ RecordWrite(elements,
4155                   key,
4156                   value,
4157                   EMIT_REMEMBERED_SET,
4158                   check_needed,
4159                   instr->hydrogen()->PointersToHereCheckForValue());
4160  }
4161}
4162
4163
4164void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4165  // By cases...external, fast-double, fast
4166  if (instr->is_typed_elements()) {
4167    DoStoreKeyedExternalArray(instr);
4168  } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4169    DoStoreKeyedFixedDoubleArray(instr);
4170  } else {
4171    DoStoreKeyedFixedArray(instr);
4172  }
4173}
4174
4175
4176void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4177  ASSERT(ToRegister(instr->context()).is(esi));
4178  ASSERT(ToRegister(instr->object()).is(edx));
4179  ASSERT(ToRegister(instr->key()).is(ecx));
4180  ASSERT(ToRegister(instr->value()).is(eax));
4181
4182  Handle<Code> ic = instr->strict_mode() == STRICT
4183      ? isolate()->builtins()->KeyedStoreIC_Initialize_Strict()
4184      : isolate()->builtins()->KeyedStoreIC_Initialize();
4185  CallCode(ic, RelocInfo::CODE_TARGET, instr);
4186}
4187
4188
4189void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4190  Register object = ToRegister(instr->object());
4191  Register temp = ToRegister(instr->temp());
4192  Label no_memento_found;
4193  __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4194  DeoptimizeIf(equal, instr->environment());
4195  __ bind(&no_memento_found);
4196}
4197
4198
4199void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4200  Register object_reg = ToRegister(instr->object());
4201
4202  Handle<Map> from_map = instr->original_map();
4203  Handle<Map> to_map = instr->transitioned_map();
4204  ElementsKind from_kind = instr->from_kind();
4205  ElementsKind to_kind = instr->to_kind();
4206
4207  Label not_applicable;
4208  bool is_simple_map_transition =
4209      IsSimpleMapChangeTransition(from_kind, to_kind);
4210  Label::Distance branch_distance =
4211      is_simple_map_transition ? Label::kNear : Label::kFar;
4212  __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
4213  __ j(not_equal, &not_applicable, branch_distance);
4214  if (is_simple_map_transition) {
4215    Register new_map_reg = ToRegister(instr->new_map_temp());
4216    __ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
4217           Immediate(to_map));
4218    // Write barrier.
4219    ASSERT_NE(instr->temp(), NULL);
4220    __ RecordWriteForMap(object_reg, to_map, new_map_reg,
4221                         ToRegister(instr->temp()));
4222  } else {
4223    ASSERT(ToRegister(instr->context()).is(esi));
4224    ASSERT(object_reg.is(eax));
4225    PushSafepointRegistersScope scope(this);
4226    __ mov(ebx, to_map);
4227    bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4228    TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4229    __ CallStub(&stub);
4230    RecordSafepointWithLazyDeopt(instr,
4231        RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
4232  }
4233  __ bind(&not_applicable);
4234}
4235
4236
4237void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4238  class DeferredStringCharCodeAt V8_FINAL : public LDeferredCode {
4239   public:
4240    DeferredStringCharCodeAt(LCodeGen* codegen,
4241                             LStringCharCodeAt* instr,
4242                             const X87Stack& x87_stack)
4243        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4244    virtual void Generate() V8_OVERRIDE {
4245      codegen()->DoDeferredStringCharCodeAt(instr_);
4246    }
4247    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4248   private:
4249    LStringCharCodeAt* instr_;
4250  };
4251
4252  DeferredStringCharCodeAt* deferred =
4253      new(zone()) DeferredStringCharCodeAt(this, instr, x87_stack_);
4254
4255  StringCharLoadGenerator::Generate(masm(),
4256                                    factory(),
4257                                    ToRegister(instr->string()),
4258                                    ToRegister(instr->index()),
4259                                    ToRegister(instr->result()),
4260                                    deferred->entry());
4261  __ bind(deferred->exit());
4262}
4263
4264
4265void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4266  Register string = ToRegister(instr->string());
4267  Register result = ToRegister(instr->result());
4268
4269  // TODO(3095996): Get rid of this. For now, we need to make the
4270  // result register contain a valid pointer because it is already
4271  // contained in the register pointer map.
4272  __ Move(result, Immediate(0));
4273
4274  PushSafepointRegistersScope scope(this);
4275  __ push(string);
4276  // Push the index as a smi. This is safe because of the checks in
4277  // DoStringCharCodeAt above.
4278  STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
4279  if (instr->index()->IsConstantOperand()) {
4280    Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
4281                                      Representation::Smi());
4282    __ push(immediate);
4283  } else {
4284    Register index = ToRegister(instr->index());
4285    __ SmiTag(index);
4286    __ push(index);
4287  }
4288  CallRuntimeFromDeferred(Runtime::kHiddenStringCharCodeAt, 2,
4289                          instr, instr->context());
4290  __ AssertSmi(eax);
4291  __ SmiUntag(eax);
4292  __ StoreToSafepointRegisterSlot(result, eax);
4293}
4294
4295
4296void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4297  class DeferredStringCharFromCode V8_FINAL : public LDeferredCode {
4298   public:
4299    DeferredStringCharFromCode(LCodeGen* codegen,
4300                               LStringCharFromCode* instr,
4301                               const X87Stack& x87_stack)
4302        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4303    virtual void Generate() V8_OVERRIDE {
4304      codegen()->DoDeferredStringCharFromCode(instr_);
4305    }
4306    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4307   private:
4308    LStringCharFromCode* instr_;
4309  };
4310
4311  DeferredStringCharFromCode* deferred =
4312      new(zone()) DeferredStringCharFromCode(this, instr, x87_stack_);
4313
4314  ASSERT(instr->hydrogen()->value()->representation().IsInteger32());
4315  Register char_code = ToRegister(instr->char_code());
4316  Register result = ToRegister(instr->result());
4317  ASSERT(!char_code.is(result));
4318
4319  __ cmp(char_code, String::kMaxOneByteCharCode);
4320  __ j(above, deferred->entry());
4321  __ Move(result, Immediate(factory()->single_character_string_cache()));
4322  __ mov(result, FieldOperand(result,
4323                              char_code, times_pointer_size,
4324                              FixedArray::kHeaderSize));
4325  __ cmp(result, factory()->undefined_value());
4326  __ j(equal, deferred->entry());
4327  __ bind(deferred->exit());
4328}
4329
4330
4331void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4332  Register char_code = ToRegister(instr->char_code());
4333  Register result = ToRegister(instr->result());
4334
4335  // TODO(3095996): Get rid of this. For now, we need to make the
4336  // result register contain a valid pointer because it is already
4337  // contained in the register pointer map.
4338  __ Move(result, Immediate(0));
4339
4340  PushSafepointRegistersScope scope(this);
4341  __ SmiTag(char_code);
4342  __ push(char_code);
4343  CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
4344  __ StoreToSafepointRegisterSlot(result, eax);
4345}
4346
4347
4348void LCodeGen::DoStringAdd(LStringAdd* instr) {
4349  ASSERT(ToRegister(instr->context()).is(esi));
4350  ASSERT(ToRegister(instr->left()).is(edx));
4351  ASSERT(ToRegister(instr->right()).is(eax));
4352  StringAddStub stub(isolate(),
4353                     instr->hydrogen()->flags(),
4354                     instr->hydrogen()->pretenure_flag());
4355  CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4356}
4357
4358
4359void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4360  LOperand* input = instr->value();
4361  LOperand* output = instr->result();
4362  ASSERT(input->IsRegister() || input->IsStackSlot());
4363  ASSERT(output->IsDoubleRegister());
4364  if (input->IsRegister()) {
4365    Register input_reg = ToRegister(input);
4366    __ push(input_reg);
4367    X87Mov(ToX87Register(output), Operand(esp, 0), kX87IntOperand);
4368    __ pop(input_reg);
4369  } else {
4370    X87Mov(ToX87Register(output), ToOperand(input), kX87IntOperand);
4371  }
4372}
4373
4374
4375void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4376  LOperand* input = instr->value();
4377  LOperand* output = instr->result();
4378  X87Register res = ToX87Register(output);
4379  X87PrepareToWrite(res);
4380  __ LoadUint32NoSSE2(ToRegister(input));
4381  X87CommitWrite(res);
4382}
4383
4384
4385void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4386  class DeferredNumberTagI V8_FINAL : public LDeferredCode {
4387   public:
4388    DeferredNumberTagI(LCodeGen* codegen,
4389                       LNumberTagI* instr,
4390                       const X87Stack& x87_stack)
4391        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4392    virtual void Generate() V8_OVERRIDE {
4393      codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
4394                                       SIGNED_INT32);
4395    }
4396    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4397   private:
4398    LNumberTagI* instr_;
4399  };
4400
4401  LOperand* input = instr->value();
4402  ASSERT(input->IsRegister() && input->Equals(instr->result()));
4403  Register reg = ToRegister(input);
4404
4405  DeferredNumberTagI* deferred =
4406      new(zone()) DeferredNumberTagI(this, instr, x87_stack_);
4407  __ SmiTag(reg);
4408  __ j(overflow, deferred->entry());
4409  __ bind(deferred->exit());
4410}
4411
4412
4413void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4414  class DeferredNumberTagU V8_FINAL : public LDeferredCode {
4415   public:
4416    DeferredNumberTagU(LCodeGen* codegen,
4417                       LNumberTagU* instr,
4418                       const X87Stack& x87_stack)
4419        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4420    virtual void Generate() V8_OVERRIDE {
4421      codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
4422                                       UNSIGNED_INT32);
4423    }
4424    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4425   private:
4426    LNumberTagU* instr_;
4427  };
4428
4429  LOperand* input = instr->value();
4430  ASSERT(input->IsRegister() && input->Equals(instr->result()));
4431  Register reg = ToRegister(input);
4432
4433  DeferredNumberTagU* deferred =
4434      new(zone()) DeferredNumberTagU(this, instr, x87_stack_);
4435  __ cmp(reg, Immediate(Smi::kMaxValue));
4436  __ j(above, deferred->entry());
4437  __ SmiTag(reg);
4438  __ bind(deferred->exit());
4439}
4440
4441
4442void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4443                                     LOperand* value,
4444                                     LOperand* temp,
4445                                     IntegerSignedness signedness) {
4446  Label done, slow;
4447  Register reg = ToRegister(value);
4448  Register tmp = ToRegister(temp);
4449
4450  if (signedness == SIGNED_INT32) {
4451    // There was overflow, so bits 30 and 31 of the original integer
4452    // disagree. Try to allocate a heap number in new space and store
4453    // the value in there. If that fails, call the runtime system.
4454    __ SmiUntag(reg);
4455    __ xor_(reg, 0x80000000);
4456    __ push(reg);
4457    __ fild_s(Operand(esp, 0));
4458    __ pop(reg);
4459  } else {
4460    // There's no fild variant for unsigned values, so zero-extend to a 64-bit
4461    // int manually.
4462    __ push(Immediate(0));
4463    __ push(reg);
4464    __ fild_d(Operand(esp, 0));
4465    __ pop(reg);
4466    __ pop(reg);
4467  }
4468
4469  if (FLAG_inline_new) {
4470    __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
4471    __ jmp(&done, Label::kNear);
4472  }
4473
4474  // Slow case: Call the runtime system to do the number allocation.
4475  __ bind(&slow);
4476  {
4477    // TODO(3095996): Put a valid pointer value in the stack slot where the
4478    // result register is stored, as this register is in the pointer map, but
4479    // contains an integer value.
4480    __ Move(reg, Immediate(0));
4481
4482    // Preserve the value of all registers.
4483    PushSafepointRegistersScope scope(this);
4484
4485    // NumberTagI and NumberTagD use the context from the frame, rather than
4486    // the environment's HContext or HInlinedContext value.
4487    // They only call Runtime::kHiddenAllocateHeapNumber.
4488    // The corresponding HChange instructions are added in a phase that does
4489    // not have easy access to the local context.
4490    __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4491    __ CallRuntime(Runtime::kHiddenAllocateHeapNumber);
4492    RecordSafepointWithRegisters(
4493        instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4494    __ StoreToSafepointRegisterSlot(reg, eax);
4495  }
4496
4497  __ bind(&done);
4498  __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
4499}
4500
4501
4502void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4503  class DeferredNumberTagD V8_FINAL : public LDeferredCode {
4504   public:
4505    DeferredNumberTagD(LCodeGen* codegen,
4506                       LNumberTagD* instr,
4507                       const X87Stack& x87_stack)
4508        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4509    virtual void Generate() V8_OVERRIDE {
4510      codegen()->DoDeferredNumberTagD(instr_);
4511    }
4512    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4513   private:
4514    LNumberTagD* instr_;
4515  };
4516
4517  Register reg = ToRegister(instr->result());
4518
4519  // Put the value to the top of stack
4520  X87Register src = ToX87Register(instr->value());
4521  X87LoadForUsage(src);
4522
4523  DeferredNumberTagD* deferred =
4524      new(zone()) DeferredNumberTagD(this, instr, x87_stack_);
4525  if (FLAG_inline_new) {
4526    Register tmp = ToRegister(instr->temp());
4527    __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
4528  } else {
4529    __ jmp(deferred->entry());
4530  }
4531  __ bind(deferred->exit());
4532  __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
4533}
4534
4535
4536void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4537  // TODO(3095996): Get rid of this. For now, we need to make the
4538  // result register contain a valid pointer because it is already
4539  // contained in the register pointer map.
4540  Register reg = ToRegister(instr->result());
4541  __ Move(reg, Immediate(0));
4542
4543  PushSafepointRegistersScope scope(this);
4544  // NumberTagI and NumberTagD use the context from the frame, rather than
4545  // the environment's HContext or HInlinedContext value.
4546  // They only call Runtime::kHiddenAllocateHeapNumber.
4547  // The corresponding HChange instructions are added in a phase that does
4548  // not have easy access to the local context.
4549  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
4550  __ CallRuntime(Runtime::kHiddenAllocateHeapNumber);
4551  RecordSafepointWithRegisters(
4552      instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4553  __ StoreToSafepointRegisterSlot(reg, eax);
4554}
4555
4556
4557void LCodeGen::DoSmiTag(LSmiTag* instr) {
4558  HChange* hchange = instr->hydrogen();
4559  Register input = ToRegister(instr->value());
4560  if (hchange->CheckFlag(HValue::kCanOverflow) &&
4561      hchange->value()->CheckFlag(HValue::kUint32)) {
4562    __ test(input, Immediate(0xc0000000));
4563    DeoptimizeIf(not_zero, instr->environment());
4564  }
4565  __ SmiTag(input);
4566  if (hchange->CheckFlag(HValue::kCanOverflow) &&
4567      !hchange->value()->CheckFlag(HValue::kUint32)) {
4568    DeoptimizeIf(overflow, instr->environment());
4569  }
4570}
4571
4572
4573void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4574  LOperand* input = instr->value();
4575  Register result = ToRegister(input);
4576  ASSERT(input->IsRegister() && input->Equals(instr->result()));
4577  if (instr->needs_check()) {
4578    __ test(result, Immediate(kSmiTagMask));
4579    DeoptimizeIf(not_zero, instr->environment());
4580  } else {
4581    __ AssertSmi(result);
4582  }
4583  __ SmiUntag(result);
4584}
4585
4586
4587void LCodeGen::EmitNumberUntagDNoSSE2(Register input_reg,
4588                                      Register temp_reg,
4589                                      X87Register res_reg,
4590                                      bool can_convert_undefined_to_nan,
4591                                      bool deoptimize_on_minus_zero,
4592                                      LEnvironment* env,
4593                                      NumberUntagDMode mode) {
4594  Label load_smi, done;
4595
4596  X87PrepareToWrite(res_reg);
4597  if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4598    // Smi check.
4599    __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
4600
4601    // Heap number map check.
4602    __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4603           factory()->heap_number_map());
4604    if (!can_convert_undefined_to_nan) {
4605      DeoptimizeIf(not_equal, env);
4606    } else {
4607      Label heap_number, convert;
4608      __ j(equal, &heap_number, Label::kNear);
4609
4610      // Convert undefined (or hole) to NaN.
4611      __ cmp(input_reg, factory()->undefined_value());
4612      DeoptimizeIf(not_equal, env);
4613
4614      __ bind(&convert);
4615      ExternalReference nan =
4616          ExternalReference::address_of_canonical_non_hole_nan();
4617      __ fld_d(Operand::StaticVariable(nan));
4618      __ jmp(&done, Label::kNear);
4619
4620      __ bind(&heap_number);
4621    }
4622    // Heap number to x87 conversion.
4623    __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
4624    if (deoptimize_on_minus_zero) {
4625      __ fldz();
4626      __ FCmp();
4627      __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
4628      __ j(not_zero, &done, Label::kNear);
4629
4630      // Use general purpose registers to check if we have -0.0
4631      __ mov(temp_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
4632      __ test(temp_reg, Immediate(HeapNumber::kSignMask));
4633      __ j(zero, &done, Label::kNear);
4634
4635      // Pop FPU stack before deoptimizing.
4636      __ fstp(0);
4637      DeoptimizeIf(not_zero, env);
4638    }
4639    __ jmp(&done, Label::kNear);
4640  } else {
4641    ASSERT(mode == NUMBER_CANDIDATE_IS_SMI);
4642  }
4643
4644  __ bind(&load_smi);
4645  // Clobbering a temp is faster than re-tagging the
4646  // input register since we avoid dependencies.
4647  __ mov(temp_reg, input_reg);
4648  __ SmiUntag(temp_reg);  // Untag smi before converting to float.
4649  __ push(temp_reg);
4650  __ fild_s(Operand(esp, 0));
4651  __ add(esp, Immediate(kPointerSize));
4652  __ bind(&done);
4653  X87CommitWrite(res_reg);
4654}
4655
4656
4657void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
4658  Register input_reg = ToRegister(instr->value());
4659
4660  // The input was optimistically untagged; revert it.
4661  STATIC_ASSERT(kSmiTagSize == 1);
4662  __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
4663
4664  if (instr->truncating()) {
4665    Label no_heap_number, check_bools, check_false;
4666
4667    // Heap number map check.
4668    __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4669           factory()->heap_number_map());
4670    __ j(not_equal, &no_heap_number, Label::kNear);
4671    __ TruncateHeapNumberToI(input_reg, input_reg);
4672    __ jmp(done);
4673
4674    __ bind(&no_heap_number);
4675    // Check for Oddballs. Undefined/False is converted to zero and True to one
4676    // for truncating conversions.
4677    __ cmp(input_reg, factory()->undefined_value());
4678    __ j(not_equal, &check_bools, Label::kNear);
4679    __ Move(input_reg, Immediate(0));
4680    __ jmp(done);
4681
4682    __ bind(&check_bools);
4683    __ cmp(input_reg, factory()->true_value());
4684    __ j(not_equal, &check_false, Label::kNear);
4685    __ Move(input_reg, Immediate(1));
4686    __ jmp(done);
4687
4688    __ bind(&check_false);
4689    __ cmp(input_reg, factory()->false_value());
4690    __ RecordComment("Deferred TaggedToI: cannot truncate");
4691    DeoptimizeIf(not_equal, instr->environment());
4692    __ Move(input_reg, Immediate(0));
4693  } else {
4694    Label bailout;
4695    __ TaggedToI(input_reg, input_reg,
4696                 instr->hydrogen()->GetMinusZeroMode(), &bailout);
4697    __ jmp(done);
4698    __ bind(&bailout);
4699    DeoptimizeIf(no_condition, instr->environment());
4700  }
4701}
4702
4703
4704void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4705  class DeferredTaggedToI V8_FINAL : public LDeferredCode {
4706   public:
4707    DeferredTaggedToI(LCodeGen* codegen,
4708                      LTaggedToI* instr,
4709                      const X87Stack& x87_stack)
4710        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
4711    virtual void Generate() V8_OVERRIDE {
4712      codegen()->DoDeferredTaggedToI(instr_, done());
4713    }
4714    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4715   private:
4716    LTaggedToI* instr_;
4717  };
4718
4719  LOperand* input = instr->value();
4720  ASSERT(input->IsRegister());
4721  Register input_reg = ToRegister(input);
4722  ASSERT(input_reg.is(ToRegister(instr->result())));
4723
4724  if (instr->hydrogen()->value()->representation().IsSmi()) {
4725    __ SmiUntag(input_reg);
4726  } else {
4727    DeferredTaggedToI* deferred =
4728        new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
4729    // Optimistically untag the input.
4730    // If the input is a HeapObject, SmiUntag will set the carry flag.
4731    STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
4732    __ SmiUntag(input_reg);
4733    // Branch to deferred code if the input was tagged.
4734    // The deferred code will take care of restoring the tag.
4735    __ j(carry, deferred->entry());
4736    __ bind(deferred->exit());
4737  }
4738}
4739
4740
4741void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4742  LOperand* input = instr->value();
4743  ASSERT(input->IsRegister());
4744  LOperand* temp = instr->temp();
4745  ASSERT(temp->IsRegister());
4746  LOperand* result = instr->result();
4747  ASSERT(result->IsDoubleRegister());
4748
4749  Register input_reg = ToRegister(input);
4750  bool deoptimize_on_minus_zero =
4751      instr->hydrogen()->deoptimize_on_minus_zero();
4752  Register temp_reg = ToRegister(temp);
4753
4754  HValue* value = instr->hydrogen()->value();
4755  NumberUntagDMode mode = value->representation().IsSmi()
4756      ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4757
4758  EmitNumberUntagDNoSSE2(input_reg,
4759                         temp_reg,
4760                         ToX87Register(result),
4761                         instr->hydrogen()->can_convert_undefined_to_nan(),
4762                         deoptimize_on_minus_zero,
4763                         instr->environment(),
4764                         mode);
4765}
4766
4767
4768void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4769  LOperand* input = instr->value();
4770  ASSERT(input->IsDoubleRegister());
4771  LOperand* result = instr->result();
4772  ASSERT(result->IsRegister());
4773  Register result_reg = ToRegister(result);
4774
4775  if (instr->truncating()) {
4776    X87Register input_reg = ToX87Register(input);
4777    X87Fxch(input_reg);
4778    __ TruncateX87TOSToI(result_reg);
4779  } else {
4780    Label bailout, done;
4781    X87Register input_reg = ToX87Register(input);
4782    X87Fxch(input_reg);
4783    __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
4784                 &bailout, Label::kNear);
4785    __ jmp(&done, Label::kNear);
4786    __ bind(&bailout);
4787    DeoptimizeIf(no_condition, instr->environment());
4788    __ bind(&done);
4789  }
4790}
4791
4792
4793void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4794  LOperand* input = instr->value();
4795  ASSERT(input->IsDoubleRegister());
4796  LOperand* result = instr->result();
4797  ASSERT(result->IsRegister());
4798  Register result_reg = ToRegister(result);
4799
4800  Label bailout, done;
4801  X87Register input_reg = ToX87Register(input);
4802  X87Fxch(input_reg);
4803  __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
4804      &bailout, Label::kNear);
4805  __ jmp(&done, Label::kNear);
4806  __ bind(&bailout);
4807  DeoptimizeIf(no_condition, instr->environment());
4808  __ bind(&done);
4809
4810  __ SmiTag(result_reg);
4811  DeoptimizeIf(overflow, instr->environment());
4812}
4813
4814
4815void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4816  LOperand* input = instr->value();
4817  __ test(ToOperand(input), Immediate(kSmiTagMask));
4818  DeoptimizeIf(not_zero, instr->environment());
4819}
4820
4821
4822void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4823  if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4824    LOperand* input = instr->value();
4825    __ test(ToOperand(input), Immediate(kSmiTagMask));
4826    DeoptimizeIf(zero, instr->environment());
4827  }
4828}
4829
4830
4831void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4832  Register input = ToRegister(instr->value());
4833  Register temp = ToRegister(instr->temp());
4834
4835  __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
4836
4837  if (instr->hydrogen()->is_interval_check()) {
4838    InstanceType first;
4839    InstanceType last;
4840    instr->hydrogen()->GetCheckInterval(&first, &last);
4841
4842    __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
4843            static_cast<int8_t>(first));
4844
4845    // If there is only one type in the interval check for equality.
4846    if (first == last) {
4847      DeoptimizeIf(not_equal, instr->environment());
4848    } else {
4849      DeoptimizeIf(below, instr->environment());
4850      // Omit check for the last type.
4851      if (last != LAST_TYPE) {
4852        __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
4853                static_cast<int8_t>(last));
4854        DeoptimizeIf(above, instr->environment());
4855      }
4856    }
4857  } else {
4858    uint8_t mask;
4859    uint8_t tag;
4860    instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4861
4862    if (IsPowerOf2(mask)) {
4863      ASSERT(tag == 0 || IsPowerOf2(tag));
4864      __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask);
4865      DeoptimizeIf(tag == 0 ? not_zero : zero, instr->environment());
4866    } else {
4867      __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
4868      __ and_(temp, mask);
4869      __ cmp(temp, tag);
4870      DeoptimizeIf(not_equal, instr->environment());
4871    }
4872  }
4873}
4874
4875
4876void LCodeGen::DoCheckValue(LCheckValue* instr) {
4877  Handle<HeapObject> object = instr->hydrogen()->object().handle();
4878  if (instr->hydrogen()->object_in_new_space()) {
4879    Register reg = ToRegister(instr->value());
4880    Handle<Cell> cell = isolate()->factory()->NewCell(object);
4881    __ cmp(reg, Operand::ForCell(cell));
4882  } else {
4883    Operand operand = ToOperand(instr->value());
4884    __ cmp(operand, object);
4885  }
4886  DeoptimizeIf(not_equal, instr->environment());
4887}
4888
4889
4890void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4891  {
4892    PushSafepointRegistersScope scope(this);
4893    __ push(object);
4894    __ xor_(esi, esi);
4895    __ CallRuntime(Runtime::kTryMigrateInstance);
4896    RecordSafepointWithRegisters(
4897        instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4898
4899    __ test(eax, Immediate(kSmiTagMask));
4900  }
4901  DeoptimizeIf(zero, instr->environment());
4902}
4903
4904
4905void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4906  class DeferredCheckMaps V8_FINAL : public LDeferredCode {
4907   public:
4908    DeferredCheckMaps(LCodeGen* codegen,
4909                      LCheckMaps* instr,
4910                      Register object,
4911                      const X87Stack& x87_stack)
4912        : LDeferredCode(codegen, x87_stack), instr_(instr), object_(object) {
4913      SetExit(check_maps());
4914    }
4915    virtual void Generate() V8_OVERRIDE {
4916      codegen()->DoDeferredInstanceMigration(instr_, object_);
4917    }
4918    Label* check_maps() { return &check_maps_; }
4919    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
4920   private:
4921    LCheckMaps* instr_;
4922    Label check_maps_;
4923    Register object_;
4924  };
4925
4926  if (instr->hydrogen()->IsStabilityCheck()) {
4927    const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4928    for (int i = 0; i < maps->size(); ++i) {
4929      AddStabilityDependency(maps->at(i).handle());
4930    }
4931    return;
4932  }
4933
4934  LOperand* input = instr->value();
4935  ASSERT(input->IsRegister());
4936  Register reg = ToRegister(input);
4937
4938  DeferredCheckMaps* deferred = NULL;
4939  if (instr->hydrogen()->HasMigrationTarget()) {
4940    deferred = new(zone()) DeferredCheckMaps(this, instr, reg, x87_stack_);
4941    __ bind(deferred->check_maps());
4942  }
4943
4944  const UniqueSet<Map>* maps = instr->hydrogen()->maps();
4945  Label success;
4946  for (int i = 0; i < maps->size() - 1; i++) {
4947    Handle<Map> map = maps->at(i).handle();
4948    __ CompareMap(reg, map);
4949    __ j(equal, &success, Label::kNear);
4950  }
4951
4952  Handle<Map> map = maps->at(maps->size() - 1).handle();
4953  __ CompareMap(reg, map);
4954  if (instr->hydrogen()->HasMigrationTarget()) {
4955    __ j(not_equal, deferred->entry());
4956  } else {
4957    DeoptimizeIf(not_equal, instr->environment());
4958  }
4959
4960  __ bind(&success);
4961}
4962
4963
4964void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
4965  UNREACHABLE();
4966}
4967
4968
4969void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
4970  ASSERT(instr->unclamped()->Equals(instr->result()));
4971  Register value_reg = ToRegister(instr->result());
4972  __ ClampUint8(value_reg);
4973}
4974
4975
4976void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) {
4977  Register input_reg = ToRegister(instr->unclamped());
4978  Register result_reg = ToRegister(instr->result());
4979  Register scratch = ToRegister(instr->scratch());
4980  Register scratch2 = ToRegister(instr->scratch2());
4981  Register scratch3 = ToRegister(instr->scratch3());
4982  Label is_smi, done, heap_number, valid_exponent,
4983      largest_value, zero_result, maybe_nan_or_infinity;
4984
4985  __ JumpIfSmi(input_reg, &is_smi);
4986
4987  // Check for heap number
4988  __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
4989         factory()->heap_number_map());
4990  __ j(equal, &heap_number, Label::kNear);
4991
4992  // Check for undefined. Undefined is converted to zero for clamping
4993  // conversions.
4994  __ cmp(input_reg, factory()->undefined_value());
4995  DeoptimizeIf(not_equal, instr->environment());
4996  __ jmp(&zero_result, Label::kNear);
4997
4998  // Heap number
4999  __ bind(&heap_number);
5000
5001  // Surprisingly, all of the hand-crafted bit-manipulations below are much
5002  // faster than the x86 FPU built-in instruction, especially since "banker's
5003  // rounding" would be additionally very expensive
5004
5005  // Get exponent word.
5006  __ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset));
5007  __ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
5008
5009  // Test for negative values --> clamp to zero
5010  __ test(scratch, scratch);
5011  __ j(negative, &zero_result, Label::kNear);
5012
5013  // Get exponent alone in scratch2.
5014  __ mov(scratch2, scratch);
5015  __ and_(scratch2, HeapNumber::kExponentMask);
5016  __ shr(scratch2, HeapNumber::kExponentShift);
5017  __ j(zero, &zero_result, Label::kNear);
5018  __ sub(scratch2, Immediate(HeapNumber::kExponentBias - 1));
5019  __ j(negative, &zero_result, Label::kNear);
5020
5021  const uint32_t non_int8_exponent = 7;
5022  __ cmp(scratch2, Immediate(non_int8_exponent + 1));
5023  // If the exponent is too big, check for special values.
5024  __ j(greater, &maybe_nan_or_infinity, Label::kNear);
5025
5026  __ bind(&valid_exponent);
5027  // Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent
5028  // < 7. The shift bias is the number of bits to shift the mantissa such that
5029  // with an exponent of 7 such the that top-most one is in bit 30, allowing
5030  // detection the rounding overflow of a 255.5 to 256 (bit 31 goes from 0 to
5031  // 1).
5032  int shift_bias = (30 - HeapNumber::kExponentShift) - 7 - 1;
5033  __ lea(result_reg, MemOperand(scratch2, shift_bias));
5034  // Here result_reg (ecx) is the shift, scratch is the exponent word.  Get the
5035  // top bits of the mantissa.
5036  __ and_(scratch, HeapNumber::kMantissaMask);
5037  // Put back the implicit 1 of the mantissa
5038  __ or_(scratch, 1 << HeapNumber::kExponentShift);
5039  // Shift up to round
5040  __ shl_cl(scratch);
5041  // Use "banker's rounding" to spec: If fractional part of number is 0.5, then
5042  // use the bit in the "ones" place and add it to the "halves" place, which has
5043  // the effect of rounding to even.
5044  __ mov(scratch2, scratch);
5045  const uint32_t one_half_bit_shift = 30 - sizeof(uint8_t) * 8;
5046  const uint32_t one_bit_shift = one_half_bit_shift + 1;
5047  __ and_(scratch2, Immediate((1 << one_bit_shift) - 1));
5048  __ cmp(scratch2, Immediate(1 << one_half_bit_shift));
5049  Label no_round;
5050  __ j(less, &no_round, Label::kNear);
5051  Label round_up;
5052  __ mov(scratch2, Immediate(1 << one_half_bit_shift));
5053  __ j(greater, &round_up, Label::kNear);
5054  __ test(scratch3, scratch3);
5055  __ j(not_zero, &round_up, Label::kNear);
5056  __ mov(scratch2, scratch);
5057  __ and_(scratch2, Immediate(1 << one_bit_shift));
5058  __ shr(scratch2, 1);
5059  __ bind(&round_up);
5060  __ add(scratch, scratch2);
5061  __ j(overflow, &largest_value, Label::kNear);
5062  __ bind(&no_round);
5063  __ shr(scratch, 23);
5064  __ mov(result_reg, scratch);
5065  __ jmp(&done, Label::kNear);
5066
5067  __ bind(&maybe_nan_or_infinity);
5068  // Check for NaN/Infinity, all other values map to 255
5069  __ cmp(scratch2, Immediate(HeapNumber::kInfinityOrNanExponent + 1));
5070  __ j(not_equal, &largest_value, Label::kNear);
5071
5072  // Check for NaN, which differs from Infinity in that at least one mantissa
5073  // bit is set.
5074  __ and_(scratch, HeapNumber::kMantissaMask);
5075  __ or_(scratch, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
5076  __ j(not_zero, &zero_result, Label::kNear);  // M!=0 --> NaN
5077  // Infinity -> Fall through to map to 255.
5078
5079  __ bind(&largest_value);
5080  __ mov(result_reg, Immediate(255));
5081  __ jmp(&done, Label::kNear);
5082
5083  __ bind(&zero_result);
5084  __ xor_(result_reg, result_reg);
5085  __ jmp(&done, Label::kNear);
5086
5087  // smi
5088  __ bind(&is_smi);
5089  if (!input_reg.is(result_reg)) {
5090    __ mov(result_reg, input_reg);
5091  }
5092  __ SmiUntag(result_reg);
5093  __ ClampUint8(result_reg);
5094  __ bind(&done);
5095}
5096
5097
5098void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5099  UNREACHABLE();
5100}
5101
5102
5103void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5104  UNREACHABLE();
5105}
5106
5107
5108void LCodeGen::DoAllocate(LAllocate* instr) {
5109  class DeferredAllocate V8_FINAL : public LDeferredCode {
5110   public:
5111    DeferredAllocate(LCodeGen* codegen,
5112                     LAllocate* instr,
5113                     const X87Stack& x87_stack)
5114        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
5115    virtual void Generate() V8_OVERRIDE {
5116      codegen()->DoDeferredAllocate(instr_);
5117    }
5118    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5119   private:
5120    LAllocate* instr_;
5121  };
5122
5123  DeferredAllocate* deferred =
5124      new(zone()) DeferredAllocate(this, instr, x87_stack_);
5125
5126  Register result = ToRegister(instr->result());
5127  Register temp = ToRegister(instr->temp());
5128
5129  // Allocate memory for the object.
5130  AllocationFlags flags = TAG_OBJECT;
5131  if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5132    flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5133  }
5134  if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5135    ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
5136    ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
5137    flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
5138  } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5139    ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
5140    flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
5141  }
5142
5143  if (instr->size()->IsConstantOperand()) {
5144    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5145    if (size <= Page::kMaxRegularHeapObjectSize) {
5146      __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5147    } else {
5148      __ jmp(deferred->entry());
5149    }
5150  } else {
5151    Register size = ToRegister(instr->size());
5152    __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5153  }
5154
5155  __ bind(deferred->exit());
5156
5157  if (instr->hydrogen()->MustPrefillWithFiller()) {
5158    if (instr->size()->IsConstantOperand()) {
5159      int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5160      __ mov(temp, (size / kPointerSize) - 1);
5161    } else {
5162      temp = ToRegister(instr->size());
5163      __ shr(temp, kPointerSizeLog2);
5164      __ dec(temp);
5165    }
5166    Label loop;
5167    __ bind(&loop);
5168    __ mov(FieldOperand(result, temp, times_pointer_size, 0),
5169        isolate()->factory()->one_pointer_filler_map());
5170    __ dec(temp);
5171    __ j(not_zero, &loop);
5172  }
5173}
5174
5175
5176void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5177  Register result = ToRegister(instr->result());
5178
5179  // TODO(3095996): Get rid of this. For now, we need to make the
5180  // result register contain a valid pointer because it is already
5181  // contained in the register pointer map.
5182  __ Move(result, Immediate(Smi::FromInt(0)));
5183
5184  PushSafepointRegistersScope scope(this);
5185  if (instr->size()->IsRegister()) {
5186    Register size = ToRegister(instr->size());
5187    ASSERT(!size.is(result));
5188    __ SmiTag(ToRegister(instr->size()));
5189    __ push(size);
5190  } else {
5191    int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5192    if (size >= 0 && size <= Smi::kMaxValue) {
5193      __ push(Immediate(Smi::FromInt(size)));
5194    } else {
5195      // We should never get here at runtime => abort
5196      __ int3();
5197      return;
5198    }
5199  }
5200
5201  int flags = AllocateDoubleAlignFlag::encode(
5202      instr->hydrogen()->MustAllocateDoubleAligned());
5203  if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
5204    ASSERT(!instr->hydrogen()->IsOldDataSpaceAllocation());
5205    ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
5206    flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
5207  } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
5208    ASSERT(!instr->hydrogen()->IsNewSpaceAllocation());
5209    flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
5210  } else {
5211    flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5212  }
5213  __ push(Immediate(Smi::FromInt(flags)));
5214
5215  CallRuntimeFromDeferred(
5216      Runtime::kHiddenAllocateInTargetSpace, 2, instr, instr->context());
5217  __ StoreToSafepointRegisterSlot(result, eax);
5218}
5219
5220
5221void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5222  ASSERT(ToRegister(instr->value()).is(eax));
5223  __ push(eax);
5224  CallRuntime(Runtime::kToFastProperties, 1, instr);
5225}
5226
5227
5228void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5229  ASSERT(ToRegister(instr->context()).is(esi));
5230  Label materialized;
5231  // Registers will be used as follows:
5232  // ecx = literals array.
5233  // ebx = regexp literal.
5234  // eax = regexp literal clone.
5235  // esi = context.
5236  int literal_offset =
5237      FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
5238  __ LoadHeapObject(ecx, instr->hydrogen()->literals());
5239  __ mov(ebx, FieldOperand(ecx, literal_offset));
5240  __ cmp(ebx, factory()->undefined_value());
5241  __ j(not_equal, &materialized, Label::kNear);
5242
5243  // Create regexp literal using runtime function
5244  // Result will be in eax.
5245  __ push(ecx);
5246  __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
5247  __ push(Immediate(instr->hydrogen()->pattern()));
5248  __ push(Immediate(instr->hydrogen()->flags()));
5249  CallRuntime(Runtime::kHiddenMaterializeRegExpLiteral, 4, instr);
5250  __ mov(ebx, eax);
5251
5252  __ bind(&materialized);
5253  int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5254  Label allocated, runtime_allocate;
5255  __ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
5256  __ jmp(&allocated, Label::kNear);
5257
5258  __ bind(&runtime_allocate);
5259  __ push(ebx);
5260  __ push(Immediate(Smi::FromInt(size)));
5261  CallRuntime(Runtime::kHiddenAllocateInNewSpace, 1, instr);
5262  __ pop(ebx);
5263
5264  __ bind(&allocated);
5265  // Copy the content into the newly allocated memory.
5266  // (Unroll copy loop once for better throughput).
5267  for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
5268    __ mov(edx, FieldOperand(ebx, i));
5269    __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
5270    __ mov(FieldOperand(eax, i), edx);
5271    __ mov(FieldOperand(eax, i + kPointerSize), ecx);
5272  }
5273  if ((size % (2 * kPointerSize)) != 0) {
5274    __ mov(edx, FieldOperand(ebx, size - kPointerSize));
5275    __ mov(FieldOperand(eax, size - kPointerSize), edx);
5276  }
5277}
5278
5279
5280void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
5281  ASSERT(ToRegister(instr->context()).is(esi));
5282  // Use the fast case closure allocation code that allocates in new
5283  // space for nested functions that don't need literals cloning.
5284  bool pretenure = instr->hydrogen()->pretenure();
5285  if (!pretenure && instr->hydrogen()->has_no_literals()) {
5286    FastNewClosureStub stub(isolate(),
5287                            instr->hydrogen()->strict_mode(),
5288                            instr->hydrogen()->is_generator());
5289    __ mov(ebx, Immediate(instr->hydrogen()->shared_info()));
5290    CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5291  } else {
5292    __ push(esi);
5293    __ push(Immediate(instr->hydrogen()->shared_info()));
5294    __ push(Immediate(pretenure ? factory()->true_value()
5295                                : factory()->false_value()));
5296    CallRuntime(Runtime::kHiddenNewClosure, 3, instr);
5297  }
5298}
5299
5300
5301void LCodeGen::DoTypeof(LTypeof* instr) {
5302  ASSERT(ToRegister(instr->context()).is(esi));
5303  LOperand* input = instr->value();
5304  EmitPushTaggedOperand(input);
5305  CallRuntime(Runtime::kTypeof, 1, instr);
5306}
5307
5308
5309void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5310  Register input = ToRegister(instr->value());
5311  Condition final_branch_condition = EmitTypeofIs(instr, input);
5312  if (final_branch_condition != no_condition) {
5313    EmitBranch(instr, final_branch_condition);
5314  }
5315}
5316
5317
5318Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
5319  Label* true_label = instr->TrueLabel(chunk_);
5320  Label* false_label = instr->FalseLabel(chunk_);
5321  Handle<String> type_name = instr->type_literal();
5322  int left_block = instr->TrueDestination(chunk_);
5323  int right_block = instr->FalseDestination(chunk_);
5324  int next_block = GetNextEmittedBlock();
5325
5326  Label::Distance true_distance = left_block == next_block ? Label::kNear
5327                                                           : Label::kFar;
5328  Label::Distance false_distance = right_block == next_block ? Label::kNear
5329                                                             : Label::kFar;
5330  Condition final_branch_condition = no_condition;
5331  if (String::Equals(type_name, factory()->number_string())) {
5332    __ JumpIfSmi(input, true_label, true_distance);
5333    __ cmp(FieldOperand(input, HeapObject::kMapOffset),
5334           factory()->heap_number_map());
5335    final_branch_condition = equal;
5336
5337  } else if (String::Equals(type_name, factory()->string_string())) {
5338    __ JumpIfSmi(input, false_label, false_distance);
5339    __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
5340    __ j(above_equal, false_label, false_distance);
5341    __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5342              1 << Map::kIsUndetectable);
5343    final_branch_condition = zero;
5344
5345  } else if (String::Equals(type_name, factory()->symbol_string())) {
5346    __ JumpIfSmi(input, false_label, false_distance);
5347    __ CmpObjectType(input, SYMBOL_TYPE, input);
5348    final_branch_condition = equal;
5349
5350  } else if (String::Equals(type_name, factory()->boolean_string())) {
5351    __ cmp(input, factory()->true_value());
5352    __ j(equal, true_label, true_distance);
5353    __ cmp(input, factory()->false_value());
5354    final_branch_condition = equal;
5355
5356  } else if (FLAG_harmony_typeof &&
5357             String::Equals(type_name, factory()->null_string())) {
5358    __ cmp(input, factory()->null_value());
5359    final_branch_condition = equal;
5360
5361  } else if (String::Equals(type_name, factory()->undefined_string())) {
5362    __ cmp(input, factory()->undefined_value());
5363    __ j(equal, true_label, true_distance);
5364    __ JumpIfSmi(input, false_label, false_distance);
5365    // Check for undetectable objects => true.
5366    __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
5367    __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5368              1 << Map::kIsUndetectable);
5369    final_branch_condition = not_zero;
5370
5371  } else if (String::Equals(type_name, factory()->function_string())) {
5372    STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5373    __ JumpIfSmi(input, false_label, false_distance);
5374    __ CmpObjectType(input, JS_FUNCTION_TYPE, input);
5375    __ j(equal, true_label, true_distance);
5376    __ CmpInstanceType(input, JS_FUNCTION_PROXY_TYPE);
5377    final_branch_condition = equal;
5378
5379  } else if (String::Equals(type_name, factory()->object_string())) {
5380    __ JumpIfSmi(input, false_label, false_distance);
5381    if (!FLAG_harmony_typeof) {
5382      __ cmp(input, factory()->null_value());
5383      __ j(equal, true_label, true_distance);
5384    }
5385    __ CmpObjectType(input, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, input);
5386    __ j(below, false_label, false_distance);
5387    __ CmpInstanceType(input, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
5388    __ j(above, false_label, false_distance);
5389    // Check for undetectable objects => false.
5390    __ test_b(FieldOperand(input, Map::kBitFieldOffset),
5391              1 << Map::kIsUndetectable);
5392    final_branch_condition = zero;
5393
5394  } else {
5395    __ jmp(false_label, false_distance);
5396  }
5397  return final_branch_condition;
5398}
5399
5400
5401void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
5402  Register temp = ToRegister(instr->temp());
5403
5404  EmitIsConstructCall(temp);
5405  EmitBranch(instr, equal);
5406}
5407
5408
5409void LCodeGen::EmitIsConstructCall(Register temp) {
5410  // Get the frame pointer for the calling frame.
5411  __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
5412
5413  // Skip the arguments adaptor frame if it exists.
5414  Label check_frame_marker;
5415  __ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
5416         Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
5417  __ j(not_equal, &check_frame_marker, Label::kNear);
5418  __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
5419
5420  // Check the marker in the calling frame.
5421  __ bind(&check_frame_marker);
5422  __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
5423         Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
5424}
5425
5426
5427void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5428  if (!info()->IsStub()) {
5429    // Ensure that we have enough space after the previous lazy-bailout
5430    // instruction for patching the code here.
5431    int current_pc = masm()->pc_offset();
5432    if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5433      int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5434      __ Nop(padding_size);
5435    }
5436  }
5437  last_lazy_deopt_pc_ = masm()->pc_offset();
5438}
5439
5440
5441void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5442  last_lazy_deopt_pc_ = masm()->pc_offset();
5443  ASSERT(instr->HasEnvironment());
5444  LEnvironment* env = instr->environment();
5445  RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5446  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5447}
5448
5449
5450void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5451  Deoptimizer::BailoutType type = instr->hydrogen()->type();
5452  // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5453  // needed return address), even though the implementation of LAZY and EAGER is
5454  // now identical. When LAZY is eventually completely folded into EAGER, remove
5455  // the special case below.
5456  if (info()->IsStub() && type == Deoptimizer::EAGER) {
5457    type = Deoptimizer::LAZY;
5458  }
5459  Comment(";;; deoptimize: %s", instr->hydrogen()->reason());
5460  DeoptimizeIf(no_condition, instr->environment(), type);
5461}
5462
5463
5464void LCodeGen::DoDummy(LDummy* instr) {
5465  // Nothing to see here, move on!
5466}
5467
5468
5469void LCodeGen::DoDummyUse(LDummyUse* instr) {
5470  // Nothing to see here, move on!
5471}
5472
5473
5474void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5475  PushSafepointRegistersScope scope(this);
5476  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
5477  __ CallRuntime(Runtime::kHiddenStackGuard);
5478  RecordSafepointWithLazyDeopt(
5479      instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5480  ASSERT(instr->HasEnvironment());
5481  LEnvironment* env = instr->environment();
5482  safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5483}
5484
5485
5486void LCodeGen::DoStackCheck(LStackCheck* instr) {
5487  class DeferredStackCheck V8_FINAL : public LDeferredCode {
5488   public:
5489    DeferredStackCheck(LCodeGen* codegen,
5490                       LStackCheck* instr,
5491                       const X87Stack& x87_stack)
5492        : LDeferredCode(codegen, x87_stack), instr_(instr) { }
5493    virtual void Generate() V8_OVERRIDE {
5494      codegen()->DoDeferredStackCheck(instr_);
5495    }
5496    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5497   private:
5498    LStackCheck* instr_;
5499  };
5500
5501  ASSERT(instr->HasEnvironment());
5502  LEnvironment* env = instr->environment();
5503  // There is no LLazyBailout instruction for stack-checks. We have to
5504  // prepare for lazy deoptimization explicitly here.
5505  if (instr->hydrogen()->is_function_entry()) {
5506    // Perform stack overflow check.
5507    Label done;
5508    ExternalReference stack_limit =
5509        ExternalReference::address_of_stack_limit(isolate());
5510    __ cmp(esp, Operand::StaticVariable(stack_limit));
5511    __ j(above_equal, &done, Label::kNear);
5512
5513    ASSERT(instr->context()->IsRegister());
5514    ASSERT(ToRegister(instr->context()).is(esi));
5515    CallCode(isolate()->builtins()->StackCheck(),
5516             RelocInfo::CODE_TARGET,
5517             instr);
5518    __ bind(&done);
5519  } else {
5520    ASSERT(instr->hydrogen()->is_backwards_branch());
5521    // Perform stack overflow check if this goto needs it before jumping.
5522    DeferredStackCheck* deferred_stack_check =
5523        new(zone()) DeferredStackCheck(this, instr, x87_stack_);
5524    ExternalReference stack_limit =
5525        ExternalReference::address_of_stack_limit(isolate());
5526    __ cmp(esp, Operand::StaticVariable(stack_limit));
5527    __ j(below, deferred_stack_check->entry());
5528    EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5529    __ bind(instr->done_label());
5530    deferred_stack_check->SetExit(instr->done_label());
5531    RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5532    // Don't record a deoptimization index for the safepoint here.
5533    // This will be done explicitly when emitting call and the safepoint in
5534    // the deferred code.
5535  }
5536}
5537
5538
5539void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5540  // This is a pseudo-instruction that ensures that the environment here is
5541  // properly registered for deoptimization and records the assembler's PC
5542  // offset.
5543  LEnvironment* environment = instr->environment();
5544
5545  // If the environment were already registered, we would have no way of
5546  // backpatching it with the spill slot operands.
5547  ASSERT(!environment->HasBeenRegistered());
5548  RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5549
5550  GenerateOsrPrologue();
5551}
5552
5553
5554void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5555  ASSERT(ToRegister(instr->context()).is(esi));
5556  __ cmp(eax, isolate()->factory()->undefined_value());
5557  DeoptimizeIf(equal, instr->environment());
5558
5559  __ cmp(eax, isolate()->factory()->null_value());
5560  DeoptimizeIf(equal, instr->environment());
5561
5562  __ test(eax, Immediate(kSmiTagMask));
5563  DeoptimizeIf(zero, instr->environment());
5564
5565  STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
5566  __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
5567  DeoptimizeIf(below_equal, instr->environment());
5568
5569  Label use_cache, call_runtime;
5570  __ CheckEnumCache(&call_runtime);
5571
5572  __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
5573  __ jmp(&use_cache, Label::kNear);
5574
5575  // Get the set of properties to enumerate.
5576  __ bind(&call_runtime);
5577  __ push(eax);
5578  CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
5579
5580  __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
5581         isolate()->factory()->meta_map());
5582  DeoptimizeIf(not_equal, instr->environment());
5583  __ bind(&use_cache);
5584}
5585
5586
5587void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5588  Register map = ToRegister(instr->map());
5589  Register result = ToRegister(instr->result());
5590  Label load_cache, done;
5591  __ EnumLength(result, map);
5592  __ cmp(result, Immediate(Smi::FromInt(0)));
5593  __ j(not_equal, &load_cache, Label::kNear);
5594  __ mov(result, isolate()->factory()->empty_fixed_array());
5595  __ jmp(&done, Label::kNear);
5596
5597  __ bind(&load_cache);
5598  __ LoadInstanceDescriptors(map, result);
5599  __ mov(result,
5600         FieldOperand(result, DescriptorArray::kEnumCacheOffset));
5601  __ mov(result,
5602         FieldOperand(result, FixedArray::SizeFor(instr->idx())));
5603  __ bind(&done);
5604  __ test(result, result);
5605  DeoptimizeIf(equal, instr->environment());
5606}
5607
5608
5609void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5610  Register object = ToRegister(instr->value());
5611  __ cmp(ToRegister(instr->map()),
5612         FieldOperand(object, HeapObject::kMapOffset));
5613  DeoptimizeIf(not_equal, instr->environment());
5614}
5615
5616
5617void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5618                                           Register object,
5619                                           Register index) {
5620  PushSafepointRegistersScope scope(this);
5621  __ push(object);
5622  __ push(index);
5623  __ xor_(esi, esi);
5624  __ CallRuntime(Runtime::kLoadMutableDouble);
5625  RecordSafepointWithRegisters(
5626      instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5627  __ StoreToSafepointRegisterSlot(object, eax);
5628}
5629
5630
5631void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5632  class DeferredLoadMutableDouble V8_FINAL : public LDeferredCode {
5633   public:
5634    DeferredLoadMutableDouble(LCodeGen* codegen,
5635                              LLoadFieldByIndex* instr,
5636                              Register object,
5637                              Register index,
5638                              const X87Stack& x87_stack)
5639        : LDeferredCode(codegen, x87_stack),
5640          instr_(instr),
5641          object_(object),
5642          index_(index) {
5643    }
5644    virtual void Generate() V8_OVERRIDE {
5645      codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
5646    }
5647    virtual LInstruction* instr() V8_OVERRIDE { return instr_; }
5648   private:
5649    LLoadFieldByIndex* instr_;
5650    Register object_;
5651    Register index_;
5652  };
5653
5654  Register object = ToRegister(instr->object());
5655  Register index = ToRegister(instr->index());
5656
5657  DeferredLoadMutableDouble* deferred;
5658  deferred = new(zone()) DeferredLoadMutableDouble(
5659      this, instr, object, index, x87_stack_);
5660
5661  Label out_of_object, done;
5662  __ test(index, Immediate(Smi::FromInt(1)));
5663  __ j(not_zero, deferred->entry());
5664
5665  __ sar(index, 1);
5666
5667  __ cmp(index, Immediate(0));
5668  __ j(less, &out_of_object, Label::kNear);
5669  __ mov(object, FieldOperand(object,
5670                              index,
5671                              times_half_pointer_size,
5672                              JSObject::kHeaderSize));
5673  __ jmp(&done, Label::kNear);
5674
5675  __ bind(&out_of_object);
5676  __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
5677  __ neg(index);
5678  // Index is now equal to out of object property index plus 1.
5679  __ mov(object, FieldOperand(object,
5680                              index,
5681                              times_half_pointer_size,
5682                              FixedArray::kHeaderSize - kPointerSize));
5683  __ bind(deferred->exit());
5684  __ bind(&done);
5685}
5686
5687
5688void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5689  Register context = ToRegister(instr->context());
5690  __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), context);
5691}
5692
5693
5694void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
5695  Handle<ScopeInfo> scope_info = instr->scope_info();
5696  __ Push(scope_info);
5697  __ push(ToRegister(instr->function()));
5698  CallRuntime(Runtime::kHiddenPushBlockContext, 2, instr);
5699  RecordSafepoint(Safepoint::kNoLazyDeopt);
5700}
5701
5702
5703#undef __
5704
5705} }  // namespace v8::internal
5706
5707#endif  // V8_TARGET_ARCH_X87
5708