1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
5// research report written by Ming Gu and Stanley C.Eisenstat
6// The code variable names correspond to the names they used in their
7// report
8//
9// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
10// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
11// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
12// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
13//
14// Source Code Form is subject to the terms of the Mozilla
15// Public License v. 2.0. If a copy of the MPL was not distributed
16// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
17
18#ifndef EIGEN_BDCSVD_H
19#define EIGEN_BDCSVD_H
20
21#define EPSILON 0.0000000000000001
22
23#define ALGOSWAP 32
24
25namespace Eigen {
26/** \ingroup SVD_Module
27 *
28 *
29 * \class BDCSVD
30 *
31 * \brief class Bidiagonal Divide and Conquer SVD
32 *
33 * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
34 * We plan to have a very similar interface to JacobiSVD on this class.
35 * It should be used to speed up the calcul of SVD for big matrices.
36 */
37template<typename _MatrixType>
38class BDCSVD : public SVDBase<_MatrixType>
39{
40  typedef SVDBase<_MatrixType> Base;
41
42public:
43  using Base::rows;
44  using Base::cols;
45
46  typedef _MatrixType MatrixType;
47  typedef typename MatrixType::Scalar Scalar;
48  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
49  typedef typename MatrixType::Index Index;
50  enum {
51    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
52    ColsAtCompileTime = MatrixType::ColsAtCompileTime,
53    DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime),
54    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
55    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
56    MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime),
57    MatrixOptions = MatrixType::Options
58  };
59
60  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
61		 MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
62  MatrixUType;
63  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime,
64		 MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
65  MatrixVType;
66  typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
67  typedef typename internal::plain_row_type<MatrixType>::type RowType;
68  typedef typename internal::plain_col_type<MatrixType>::type ColType;
69  typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
70  typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
71  typedef Matrix<RealScalar, Dynamic, 1> VectorType;
72
73  /** \brief Default Constructor.
74   *
75   * The default constructor is useful in cases in which the user intends to
76   * perform decompositions via BDCSVD::compute(const MatrixType&).
77   */
78  BDCSVD()
79    : SVDBase<_MatrixType>::SVDBase(),
80      algoswap(ALGOSWAP)
81  {}
82
83
84  /** \brief Default Constructor with memory preallocation
85   *
86   * Like the default constructor but with preallocation of the internal data
87   * according to the specified problem size.
88   * \sa BDCSVD()
89   */
90  BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
91    : SVDBase<_MatrixType>::SVDBase(),
92      algoswap(ALGOSWAP)
93  {
94    allocate(rows, cols, computationOptions);
95  }
96
97  /** \brief Constructor performing the decomposition of given matrix.
98   *
99   * \param matrix the matrix to decompose
100   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
101   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
102   *                           #ComputeFullV, #ComputeThinV.
103   *
104   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
105   * available with the (non - default) FullPivHouseholderQR preconditioner.
106   */
107  BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
108    : SVDBase<_MatrixType>::SVDBase(),
109      algoswap(ALGOSWAP)
110  {
111    compute(matrix, computationOptions);
112  }
113
114  ~BDCSVD()
115  {
116  }
117  /** \brief Method performing the decomposition of given matrix using custom options.
118   *
119   * \param matrix the matrix to decompose
120   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
121   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU,
122   *                           #ComputeFullV, #ComputeThinV.
123   *
124   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
125   * available with the (non - default) FullPivHouseholderQR preconditioner.
126   */
127  SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);
128
129  /** \brief Method performing the decomposition of given matrix using current options.
130   *
131   * \param matrix the matrix to decompose
132   *
133   * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
134   */
135  SVDBase<MatrixType>& compute(const MatrixType& matrix)
136  {
137    return compute(matrix, this->m_computationOptions);
138  }
139
140  void setSwitchSize(int s)
141  {
142    eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 4");
143    algoswap = s;
144  }
145
146
147  /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
148   *
149   * \param b the right - hand - side of the equation to solve.
150   *
151   * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
152   *
153   * \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving.
154   * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
155   */
156  template<typename Rhs>
157  inline const internal::solve_retval<BDCSVD, Rhs>
158  solve(const MatrixBase<Rhs>& b) const
159  {
160    eigen_assert(this->m_isInitialized && "BDCSVD is not initialized.");
161    eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() &&
162		 "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
163    return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived());
164  }
165
166
167  const MatrixUType& matrixU() const
168  {
169    eigen_assert(this->m_isInitialized && "SVD is not initialized.");
170    if (isTranspose){
171      eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?");
172      return this->m_matrixV;
173    }
174    else
175    {
176      eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
177      return this->m_matrixU;
178    }
179
180  }
181
182
183  const MatrixVType& matrixV() const
184  {
185    eigen_assert(this->m_isInitialized && "SVD is not initialized.");
186    if (isTranspose){
187      eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?");
188      return this->m_matrixU;
189    }
190    else
191    {
192      eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
193      return this->m_matrixV;
194    }
195  }
196
197private:
198  void allocate(Index rows, Index cols, unsigned int computationOptions);
199  void divide (Index firstCol, Index lastCol, Index firstRowW,
200	       Index firstColW, Index shift);
201  void deflation43(Index firstCol, Index shift, Index i, Index size);
202  void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
203  void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
204  void copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX houseHolderV);
205
206protected:
207  MatrixXr m_naiveU, m_naiveV;
208  MatrixXr m_computed;
209  Index nRec;
210  int algoswap;
211  bool isTranspose, compU, compV;
212
213}; //end class BDCSVD
214
215
216// Methode to allocate ans initialize matrix and attributs
217template<typename MatrixType>
218void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
219{
220  isTranspose = (cols > rows);
221  if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
222  m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
223  if (isTranspose){
224    compU = this->computeU();
225    compV = this->computeV();
226  }
227  else
228  {
229    compV = this->computeU();
230    compU = this->computeV();
231  }
232  if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
233  else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
234
235  if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
236
237
238  //should be changed for a cleaner implementation
239  if (isTranspose){
240    bool aux;
241    if (this->computeU()||this->computeV()){
242      aux = this->m_computeFullU;
243      this->m_computeFullU = this->m_computeFullV;
244      this->m_computeFullV = aux;
245      aux = this->m_computeThinU;
246      this->m_computeThinU = this->m_computeThinV;
247      this->m_computeThinV = aux;
248    }
249  }
250}// end allocate
251
252// Methode which compute the BDCSVD for the int
253template<>
254SVDBase<Matrix<int, Dynamic, Dynamic> >&
255BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
256  allocate(matrix.rows(), matrix.cols(), computationOptions);
257  this->m_nonzeroSingularValues = 0;
258  m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
259  for (int i=0; i<this->m_diagSize; i++)   {
260    this->m_singularValues.coeffRef(i) = 0;
261  }
262  if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
263  if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols());
264  this->m_isInitialized = true;
265  return *this;
266}
267
268
269// Methode which compute the BDCSVD
270template<typename MatrixType>
271SVDBase<MatrixType>&
272BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions)
273{
274  allocate(matrix.rows(), matrix.cols(), computationOptions);
275  using std::abs;
276
277  //**** step 1 Bidiagonalization  isTranspose = (matrix.cols()>matrix.rows()) ;
278  MatrixType copy;
279  if (isTranspose) copy = matrix.adjoint();
280  else copy = matrix;
281
282  internal::UpperBidiagonalization<MatrixX > bid(copy);
283
284  //**** step 2 Divide
285  // this is ugly and has to be redone (care of complex cast)
286  MatrixXr temp;
287  temp = bid.bidiagonal().toDenseMatrix().transpose();
288  m_computed.setZero();
289  for (int i=0; i<this->m_diagSize - 1; i++)   {
290    m_computed(i, i) = temp(i, i);
291    m_computed(i + 1, i) = temp(i + 1, i);
292  }
293  m_computed(this->m_diagSize - 1, this->m_diagSize - 1) = temp(this->m_diagSize - 1, this->m_diagSize - 1);
294  divide(0, this->m_diagSize - 1, 0, 0, 0);
295
296  //**** step 3 copy
297  for (int i=0; i<this->m_diagSize; i++)   {
298    RealScalar a = abs(m_computed.coeff(i, i));
299    this->m_singularValues.coeffRef(i) = a;
300    if (a == 0){
301      this->m_nonzeroSingularValues = i;
302      break;
303    }
304    else  if (i == this->m_diagSize - 1)
305    {
306      this->m_nonzeroSingularValues = i + 1;
307      break;
308    }
309  }
310  copyUV(m_naiveV, m_naiveU, bid.householderU(), bid.householderV());
311  this->m_isInitialized = true;
312  return *this;
313}// end compute
314
315
316template<typename MatrixType>
317void BDCSVD<MatrixType>::copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX householderV){
318  if (this->computeU()){
319    MatrixX temp = MatrixX::Zero(naiveU.rows(), naiveU.cols());
320    temp.real() = naiveU;
321    if (this->m_computeThinU){
322      this->m_matrixU = MatrixX::Identity(householderU.cols(), this->m_nonzeroSingularValues );
323      this->m_matrixU.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues) =
324	temp.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues);
325      this->m_matrixU = householderU * this->m_matrixU ;
326    }
327    else
328    {
329      this->m_matrixU = MatrixX::Identity(householderU.cols(), householderU.cols());
330      this->m_matrixU.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
331      this->m_matrixU = householderU * this->m_matrixU ;
332    }
333  }
334  if (this->computeV()){
335    MatrixX temp = MatrixX::Zero(naiveV.rows(), naiveV.cols());
336    temp.real() = naiveV;
337    if (this->m_computeThinV){
338      this->m_matrixV = MatrixX::Identity(householderV.cols(),this->m_nonzeroSingularValues );
339      this->m_matrixV.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues) =
340	temp.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues);
341      this->m_matrixV = householderV * this->m_matrixV ;
342    }
343    else
344    {
345      this->m_matrixV = MatrixX::Identity(householderV.cols(), householderV.cols());
346      this->m_matrixV.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
347      this->m_matrixV = householderV * this->m_matrixV;
348    }
349  }
350}
351
352// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the
353// place of the submatrix we are currently working on.
354
355//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
356//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU;
357// lastCol + 1 - firstCol is the size of the submatrix.
358//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
359//@param firstRowW : Same as firstRowW with the column.
360//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
361// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
362template<typename MatrixType>
363void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
364				 Index firstColW, Index shift)
365{
366  // requires nbRows = nbCols + 1;
367  using std::pow;
368  using std::sqrt;
369  using std::abs;
370  const Index n = lastCol - firstCol + 1;
371  const Index k = n/2;
372  RealScalar alphaK;
373  RealScalar betaK;
374  RealScalar r0;
375  RealScalar lambda, phi, c0, s0;
376  MatrixXr l, f;
377  // We use the other algorithm which is more efficient for small
378  // matrices.
379  if (n < algoswap){
380    JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n),
381			  ComputeFullU | (ComputeFullV * compV)) ;
382    if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
383    else
384    {
385      m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
386      m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
387    }
388    if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
389    m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
390    for (int i=0; i<n; i++)
391    {
392      m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
393    }
394    return;
395  }
396  // We use the divide and conquer algorithm
397  alphaK =  m_computed(firstCol + k, firstCol + k);
398  betaK = m_computed(firstCol + k + 1, firstCol + k);
399  // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
400  // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the
401  // right submatrix before the left one.
402  divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
403  divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
404  if (compU)
405  {
406    lambda = m_naiveU(firstCol + k, firstCol + k);
407    phi = m_naiveU(firstCol + k + 1, lastCol + 1);
408  }
409  else
410  {
411    lambda = m_naiveU(1, firstCol + k);
412    phi = m_naiveU(0, lastCol + 1);
413  }
414  r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
415	    + abs(betaK * phi) * abs(betaK * phi));
416  if (compU)
417  {
418    l = m_naiveU.row(firstCol + k).segment(firstCol, k);
419    f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
420  }
421  else
422  {
423    l = m_naiveU.row(1).segment(firstCol, k);
424    f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
425  }
426  if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
427  if (r0 == 0)
428  {
429    c0 = 1;
430    s0 = 0;
431  }
432  else
433  {
434    c0 = alphaK * lambda / r0;
435    s0 = betaK * phi / r0;
436  }
437  if (compU)
438  {
439    MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
440    // we shiftW Q1 to the right
441    for (Index i = firstCol + k - 1; i >= firstCol; i--)
442    {
443      m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
444    }
445    // we shift q1 at the left with a factor c0
446    m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
447    // last column = q1 * - s0
448    m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
449    // first column = q2 * s0
450    m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) <<
451      m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0;
452    // q2 *= c0
453    m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
454  }
455  else
456  {
457    RealScalar q1 = (m_naiveU(0, firstCol + k));
458    // we shift Q1 to the right
459    for (Index i = firstCol + k - 1; i >= firstCol; i--)
460    {
461      m_naiveU(0, i + 1) = m_naiveU(0, i);
462    }
463    // we shift q1 at the left with a factor c0
464    m_naiveU(0, firstCol) = (q1 * c0);
465    // last column = q1 * - s0
466    m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
467    // first column = q2 * s0
468    m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0;
469    // q2 *= c0
470    m_naiveU(1, lastCol + 1) *= c0;
471    m_naiveU.row(1).segment(firstCol + 1, k).setZero();
472    m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
473  }
474  m_computed(firstCol + shift, firstCol + shift) = r0;
475  m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
476  m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();
477
478
479  // the line below do the deflation of the matrix for the third part of the algorithm
480  // Here the deflation is commented because the third part of the algorithm is not implemented
481  // the third part of the algorithm is a fast SVD on the matrix m_computed which works thanks to the deflation
482
483  deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);
484
485  // Third part of the algorithm, since the real third part of the algorithm is not implemeted we use a JacobiSVD
486  JacobiSVD<MatrixXr> res= JacobiSVD<MatrixXr>(m_computed.block(firstCol + shift, firstCol +shift, n + 1, n),
487					       ComputeFullU | (ComputeFullV * compV)) ;
488  if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= res.matrixU();
489  else m_naiveU.block(0, firstCol, 2, n + 1) *= res.matrixU();
490
491  if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= res.matrixV();
492  m_computed.block(firstCol + shift, firstCol + shift, n, n) << MatrixXr::Zero(n, n);
493  for (int i=0; i<n; i++)
494    m_computed(firstCol + shift + i, firstCol + shift +i) = res.singularValues().coeffRef(i);
495  // end of the third part
496
497
498}// end divide
499
500
501// page 12_13
502// i >= 1, di almost null and zi non null.
503// We use a rotation to zero out zi applied to the left of M
504template <typename MatrixType>
505void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
506  using std::abs;
507  using std::sqrt;
508  using std::pow;
509  RealScalar c = m_computed(firstCol + shift, firstCol + shift);
510  RealScalar s = m_computed(i, firstCol + shift);
511  RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
512  if (r == 0){
513    m_computed(i, i)=0;
514    return;
515  }
516  c/=r;
517  s/=r;
518  m_computed(firstCol + shift, firstCol + shift) = r;
519  m_computed(i, firstCol + shift) = 0;
520  m_computed(i, i) = 0;
521  if (compU){
522    m_naiveU.col(firstCol).segment(firstCol,size) =
523      c * m_naiveU.col(firstCol).segment(firstCol, size) -
524      s * m_naiveU.col(i).segment(firstCol, size) ;
525
526    m_naiveU.col(i).segment(firstCol, size) =
527      (c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) +
528      (s/c) * m_naiveU.col(firstCol).segment(firstCol,size);
529  }
530}// end deflation 43
531
532
533// page 13
534// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
535// We apply two rotations to have zj = 0;
536template <typename MatrixType>
537void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
538  using std::abs;
539  using std::sqrt;
540  using std::conj;
541  using std::pow;
542  RealScalar c = m_computed(firstColm, firstColm + j - 1);
543  RealScalar s = m_computed(firstColm, firstColm + i - 1);
544  RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
545  if (r==0){
546    m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
547    return;
548  }
549  c/=r;
550  s/=r;
551  m_computed(firstColm + i, firstColm) = r;
552  m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
553  m_computed(firstColm + j, firstColm) = 0;
554  if (compU){
555    m_naiveU.col(firstColu + i).segment(firstColu, size) =
556      c * m_naiveU.col(firstColu + i).segment(firstColu, size) -
557      s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;
558
559    m_naiveU.col(firstColu + j).segment(firstColu, size) =
560      (c + s*s/c) *  m_naiveU.col(firstColu + j).segment(firstColu, size) +
561      (s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
562  }
563  if (compV){
564    m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) =
565      c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) +
566      s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;
567
568    m_naiveV.col(firstColW + j).segment(firstRowW, size - 1)  =
569      (c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) -
570      (s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1);
571  }
572}// end deflation 44
573
574
575
576template <typename MatrixType>
577void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
578  //condition 4.1
579  RealScalar EPS = EPSILON * (std::max<RealScalar>(m_computed(firstCol + shift + 1, firstCol + shift + 1), m_computed(firstCol + k, firstCol + k)));
580  const Index length = lastCol + 1 - firstCol;
581  if (m_computed(firstCol + shift, firstCol + shift) < EPS){
582    m_computed(firstCol + shift, firstCol + shift) = EPS;
583  }
584  //condition 4.2
585  for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
586    if (std::abs(m_computed(i, firstCol + shift)) < EPS){
587      m_computed(i, firstCol + shift) = 0;
588    }
589  }
590
591  //condition 4.3
592  for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
593    if (m_computed(i, i) < EPS){
594      deflation43(firstCol, shift, i, length);
595    }
596  }
597
598  //condition 4.4
599
600  Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
601  //we stock the final place of each line
602  Index *permutation = new Index[length];
603
604  for (Index p =1; p < length; p++) {
605    if (i> firstCol + shift + k){
606      permutation[p] = j;
607      j++;
608    } else if (j> lastCol + shift)
609    {
610      permutation[p] = i;
611      i++;
612    }
613    else
614    {
615      if (m_computed(i, i) < m_computed(j, j)){
616        permutation[p] = j;
617        j++;
618      }
619      else
620      {
621        permutation[p] = i;
622        i++;
623      }
624    }
625  }
626  //we do the permutation
627  RealScalar aux;
628  //we stock the current index of each col
629  //and the column of each index
630  Index *realInd = new Index[length];
631  Index *realCol = new Index[length];
632  for (int pos = 0; pos< length; pos++){
633    realCol[pos] = pos + firstCol + shift;
634    realInd[pos] = pos;
635  }
636  const Index Zero = firstCol + shift;
637  VectorType temp;
638  for (int i = 1; i < length - 1; i++){
639    const Index I = i + Zero;
640    const Index realI = realInd[i];
641    const Index j  = permutation[length - i] - Zero;
642    const Index J = realCol[j];
643
644    //diag displace
645    aux = m_computed(I, I);
646    m_computed(I, I) = m_computed(J, J);
647    m_computed(J, J) = aux;
648
649    //firstrow displace
650    aux = m_computed(I, Zero);
651    m_computed(I, Zero) = m_computed(J, Zero);
652    m_computed(J, Zero) = aux;
653
654    // change columns
655    if (compU) {
656      temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
657      m_naiveU.col(I - shift).segment(firstCol, length + 1) <<
658        m_naiveU.col(J - shift).segment(firstCol, length + 1);
659      m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
660    }
661    else
662    {
663      temp = m_naiveU.col(I - shift).segment(0, 2);
664      m_naiveU.col(I - shift).segment(0, 2) <<
665        m_naiveU.col(J - shift).segment(0, 2);
666      m_naiveU.col(J - shift).segment(0, 2) << temp;
667    }
668    if (compV) {
669      const Index CWI = I + firstColW - Zero;
670      const Index CWJ = J + firstColW - Zero;
671      temp = m_naiveV.col(CWI).segment(firstRowW, length);
672      m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
673      m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
674    }
675
676    //update real pos
677    realCol[realI] = J;
678    realCol[j] = I;
679    realInd[J - Zero] = realI;
680    realInd[I - Zero] = j;
681  }
682  for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
683    if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
684      deflation44(firstCol ,
685		  firstCol + shift,
686		  firstRowW,
687		  firstColW,
688		  i - Zero,
689		  i + 1 - Zero,
690		  length);
691    }
692  }
693  delete [] permutation;
694  delete [] realInd;
695  delete [] realCol;
696
697}//end deflation
698
699
700namespace internal{
701
702template<typename _MatrixType, typename Rhs>
703struct solve_retval<BDCSVD<_MatrixType>, Rhs>
704  : solve_retval_base<BDCSVD<_MatrixType>, Rhs>
705{
706  typedef BDCSVD<_MatrixType> BDCSVDType;
707  EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs)
708
709  template<typename Dest> void evalTo(Dest& dst) const
710  {
711    eigen_assert(rhs().rows() == dec().rows());
712    // A = U S V^*
713    // So A^{ - 1} = V S^{ - 1} U^*
714    Index diagSize = (std::min)(dec().rows(), dec().cols());
715    typename BDCSVDType::SingularValuesType invertedSingVals(diagSize);
716    Index nonzeroSingVals = dec().nonzeroSingularValues();
717    invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
718    invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
719
720    dst = dec().matrixV().leftCols(diagSize)
721      * invertedSingVals.asDiagonal()
722      * dec().matrixU().leftCols(diagSize).adjoint()
723      * rhs();
724    return;
725  }
726};
727
728} //end namespace internal
729
730  /** \svd_module
731   *
732   * \return the singular value decomposition of \c *this computed by
733   *  BDC Algorithm
734   *
735   * \sa class BDCSVD
736   */
737/*
738template<typename Derived>
739BDCSVD<typename MatrixBase<Derived>::PlainObject>
740MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
741{
742  return BDCSVD<PlainObject>(*this, computationOptions);
743}
744*/
745
746} // end namespace Eigen
747
748#endif
749