1/*
2*******************************************************************************
3* Copyright (C) 2010-2014, International Business Machines
4* Corporation and others.  All Rights Reserved.
5*******************************************************************************
6* collationiterator.cpp
7*
8* created on: 2010oct27
9* created by: Markus W. Scherer
10*/
11
12#include "utypeinfo.h"  // for 'typeid' to work
13
14#include "unicode/utypes.h"
15
16#if !UCONFIG_NO_COLLATION
17
18#include "unicode/ucharstrie.h"
19#include "unicode/ustringtrie.h"
20#include "charstr.h"
21#include "cmemory.h"
22#include "collation.h"
23#include "collationdata.h"
24#include "collationfcd.h"
25#include "collationiterator.h"
26#include "normalizer2impl.h"
27#include "uassert.h"
28#include "uvectr32.h"
29
30U_NAMESPACE_BEGIN
31
32CollationIterator::CEBuffer::~CEBuffer() {}
33
34UBool
35CollationIterator::CEBuffer::ensureAppendCapacity(int32_t appCap, UErrorCode &errorCode) {
36    int32_t capacity = buffer.getCapacity();
37    if((length + appCap) <= capacity) { return TRUE; }
38    if(U_FAILURE(errorCode)) { return FALSE; }
39    do {
40        if(capacity < 1000) {
41            capacity *= 4;
42        } else {
43            capacity *= 2;
44        }
45    } while(capacity < (length + appCap));
46    int64_t *p = buffer.resize(capacity, length);
47    if(p == NULL) {
48        errorCode = U_MEMORY_ALLOCATION_ERROR;
49        return FALSE;
50    }
51    return TRUE;
52}
53
54// State of combining marks skipped in discontiguous contraction.
55// We create a state object on first use and keep it around deactivated between uses.
56class SkippedState : public UMemory {
57public:
58    // Born active but empty.
59    SkippedState() : pos(0), skipLengthAtMatch(0) {}
60    void clear() {
61        oldBuffer.remove();
62        pos = 0;
63        // The newBuffer is reset by setFirstSkipped().
64    }
65
66    UBool isEmpty() const { return oldBuffer.isEmpty(); }
67
68    UBool hasNext() const { return pos < oldBuffer.length(); }
69
70    // Requires hasNext().
71    UChar32 next() {
72        UChar32 c = oldBuffer.char32At(pos);
73        pos += U16_LENGTH(c);
74        return c;
75    }
76
77    // Accounts for one more input code point read beyond the end of the marks buffer.
78    void incBeyond() {
79        U_ASSERT(!hasNext());
80        ++pos;
81    }
82
83    // Goes backward through the skipped-marks buffer.
84    // Returns the number of code points read beyond the skipped marks
85    // that need to be backtracked through normal input.
86    int32_t backwardNumCodePoints(int32_t n) {
87        int32_t length = oldBuffer.length();
88        int32_t beyond = pos - length;
89        if(beyond > 0) {
90            if(beyond >= n) {
91                // Not back far enough to re-enter the oldBuffer.
92                pos -= n;
93                return n;
94            } else {
95                // Back out all beyond-oldBuffer code points and re-enter the buffer.
96                pos = oldBuffer.moveIndex32(length, beyond - n);
97                return beyond;
98            }
99        } else {
100            // Go backwards from inside the oldBuffer.
101            pos = oldBuffer.moveIndex32(pos, -n);
102            return 0;
103        }
104    }
105
106    void setFirstSkipped(UChar32 c) {
107        skipLengthAtMatch = 0;
108        newBuffer.setTo(c);
109    }
110
111    void skip(UChar32 c) {
112        newBuffer.append(c);
113    }
114
115    void recordMatch() { skipLengthAtMatch = newBuffer.length(); }
116
117    // Replaces the characters we consumed with the newly skipped ones.
118    void replaceMatch() {
119        // Note: UnicodeString.replace() pins pos to at most length().
120        oldBuffer.replace(0, pos, newBuffer, 0, skipLengthAtMatch);
121        pos = 0;
122    }
123
124    void saveTrieState(const UCharsTrie &trie) { trie.saveState(state); }
125    void resetToTrieState(UCharsTrie &trie) const { trie.resetToState(state); }
126
127private:
128    // Combining marks skipped in previous discontiguous-contraction matching.
129    // After that discontiguous contraction was completed, we start reading them from here.
130    UnicodeString oldBuffer;
131    // Combining marks newly skipped in current discontiguous-contraction matching.
132    // These might have been read from the normal text or from the oldBuffer.
133    UnicodeString newBuffer;
134    // Reading index in oldBuffer,
135    // or counter for how many code points have been read beyond oldBuffer (pos-oldBuffer.length()).
136    int32_t pos;
137    // newBuffer.length() at the time of the last matching character.
138    // When a partial match fails, we back out skipped and partial-matching input characters.
139    int32_t skipLengthAtMatch;
140    // We save the trie state before we attempt to match a character,
141    // so that we can skip it and try the next one.
142    UCharsTrie::State state;
143};
144
145CollationIterator::CollationIterator(const CollationIterator &other)
146        : UObject(other),
147          trie(other.trie),
148          data(other.data),
149          cesIndex(other.cesIndex),
150          skipped(NULL),
151          numCpFwd(other.numCpFwd),
152          isNumeric(other.isNumeric) {
153    UErrorCode errorCode = U_ZERO_ERROR;
154    int32_t length = other.ceBuffer.length;
155    if(length > 0 && ceBuffer.ensureAppendCapacity(length, errorCode)) {
156        for(int32_t i = 0; i < length; ++i) {
157            ceBuffer.set(i, other.ceBuffer.get(i));
158        }
159        ceBuffer.length = length;
160    } else {
161        cesIndex = 0;
162    }
163}
164
165CollationIterator::~CollationIterator() {
166    delete skipped;
167}
168
169UBool
170CollationIterator::operator==(const CollationIterator &other) const {
171    // Subclasses: Call this method and then add more specific checks.
172    // Compare the iterator state but not the collation data (trie & data fields):
173    // Assume that the caller compares the data.
174    // Ignore skipped since that should be unused between calls to nextCE().
175    // (It only stays around to avoid another memory allocation.)
176    if(!(typeid(*this) == typeid(other) &&
177            ceBuffer.length == other.ceBuffer.length &&
178            cesIndex == other.cesIndex &&
179            numCpFwd == other.numCpFwd &&
180            isNumeric == other.isNumeric)) {
181        return FALSE;
182    }
183    for(int32_t i = 0; i < ceBuffer.length; ++i) {
184        if(ceBuffer.get(i) != other.ceBuffer.get(i)) { return FALSE; }
185    }
186    return TRUE;
187}
188
189void
190CollationIterator::reset() {
191    cesIndex = ceBuffer.length = 0;
192    if(skipped != NULL) { skipped->clear(); }
193}
194
195int32_t
196CollationIterator::fetchCEs(UErrorCode &errorCode) {
197    while(U_SUCCESS(errorCode) && nextCE(errorCode) != Collation::NO_CE) {
198        // No need to loop for each expansion CE.
199        cesIndex = ceBuffer.length;
200    }
201    return ceBuffer.length;
202}
203
204uint32_t
205CollationIterator::handleNextCE32(UChar32 &c, UErrorCode &errorCode) {
206    c = nextCodePoint(errorCode);
207    return (c < 0) ? Collation::FALLBACK_CE32 : data->getCE32(c);
208}
209
210UChar
211CollationIterator::handleGetTrailSurrogate() {
212    return 0;
213}
214
215UBool
216CollationIterator::foundNULTerminator() {
217    return FALSE;
218}
219
220UBool
221CollationIterator::forbidSurrogateCodePoints() const {
222    return FALSE;
223}
224
225uint32_t
226CollationIterator::getDataCE32(UChar32 c) const {
227    return data->getCE32(c);
228}
229
230uint32_t
231CollationIterator::getCE32FromBuilderData(uint32_t /*ce32*/, UErrorCode &errorCode) {
232    if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; }
233    return 0;
234}
235
236int64_t
237CollationIterator::nextCEFromCE32(const CollationData *d, UChar32 c, uint32_t ce32,
238                                  UErrorCode &errorCode) {
239    --ceBuffer.length;  // Undo ceBuffer.incLength().
240    appendCEsFromCE32(d, c, ce32, TRUE, errorCode);
241    if(U_SUCCESS(errorCode)) {
242        return ceBuffer.get(cesIndex++);
243    } else {
244        return Collation::NO_CE_PRIMARY;
245    }
246}
247
248void
249CollationIterator::appendCEsFromCE32(const CollationData *d, UChar32 c, uint32_t ce32,
250                                     UBool forward, UErrorCode &errorCode) {
251    while(Collation::isSpecialCE32(ce32)) {
252        switch(Collation::tagFromCE32(ce32)) {
253        case Collation::FALLBACK_TAG:
254        case Collation::RESERVED_TAG_3:
255            if(U_SUCCESS(errorCode)) { errorCode = U_INTERNAL_PROGRAM_ERROR; }
256            return;
257        case Collation::LONG_PRIMARY_TAG:
258            ceBuffer.append(Collation::ceFromLongPrimaryCE32(ce32), errorCode);
259            return;
260        case Collation::LONG_SECONDARY_TAG:
261            ceBuffer.append(Collation::ceFromLongSecondaryCE32(ce32), errorCode);
262            return;
263        case Collation::LATIN_EXPANSION_TAG:
264            if(ceBuffer.ensureAppendCapacity(2, errorCode)) {
265                ceBuffer.set(ceBuffer.length, Collation::latinCE0FromCE32(ce32));
266                ceBuffer.set(ceBuffer.length + 1, Collation::latinCE1FromCE32(ce32));
267                ceBuffer.length += 2;
268            }
269            return;
270        case Collation::EXPANSION32_TAG: {
271            const uint32_t *ce32s = d->ce32s + Collation::indexFromCE32(ce32);
272            int32_t length = Collation::lengthFromCE32(ce32);
273            if(ceBuffer.ensureAppendCapacity(length, errorCode)) {
274                do {
275                    ceBuffer.appendUnsafe(Collation::ceFromCE32(*ce32s++));
276                } while(--length > 0);
277            }
278            return;
279        }
280        case Collation::EXPANSION_TAG: {
281            const int64_t *ces = d->ces + Collation::indexFromCE32(ce32);
282            int32_t length = Collation::lengthFromCE32(ce32);
283            if(ceBuffer.ensureAppendCapacity(length, errorCode)) {
284                do {
285                    ceBuffer.appendUnsafe(*ces++);
286                } while(--length > 0);
287            }
288            return;
289        }
290        case Collation::BUILDER_DATA_TAG:
291            ce32 = getCE32FromBuilderData(ce32, errorCode);
292            if(U_FAILURE(errorCode)) { return; }
293            if(ce32 == Collation::FALLBACK_CE32) {
294                d = data->base;
295                ce32 = d->getCE32(c);
296            }
297            break;
298        case Collation::PREFIX_TAG:
299            if(forward) { backwardNumCodePoints(1, errorCode); }
300            ce32 = getCE32FromPrefix(d, ce32, errorCode);
301            if(forward) { forwardNumCodePoints(1, errorCode); }
302            break;
303        case Collation::CONTRACTION_TAG: {
304            const UChar *p = d->contexts + Collation::indexFromCE32(ce32);
305            uint32_t defaultCE32 = CollationData::readCE32(p);  // Default if no suffix match.
306            if(!forward) {
307                // Backward contractions are handled by previousCEUnsafe().
308                // c has contractions but they were not found.
309                ce32 = defaultCE32;
310                break;
311            }
312            UChar32 nextCp;
313            if(skipped == NULL && numCpFwd < 0) {
314                // Some portion of nextCE32FromContraction() pulled out here as an ASCII fast path,
315                // avoiding the function call and the nextSkippedCodePoint() overhead.
316                nextCp = nextCodePoint(errorCode);
317                if(nextCp < 0) {
318                    // No more text.
319                    ce32 = defaultCE32;
320                    break;
321                } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 &&
322                        !CollationFCD::mayHaveLccc(nextCp)) {
323                    // All contraction suffixes start with characters with lccc!=0
324                    // but the next code point has lccc==0.
325                    backwardNumCodePoints(1, errorCode);
326                    ce32 = defaultCE32;
327                    break;
328                }
329            } else {
330                nextCp = nextSkippedCodePoint(errorCode);
331                if(nextCp < 0) {
332                    // No more text.
333                    ce32 = defaultCE32;
334                    break;
335                } else if((ce32 & Collation::CONTRACT_NEXT_CCC) != 0 &&
336                        !CollationFCD::mayHaveLccc(nextCp)) {
337                    // All contraction suffixes start with characters with lccc!=0
338                    // but the next code point has lccc==0.
339                    backwardNumSkipped(1, errorCode);
340                    ce32 = defaultCE32;
341                    break;
342                }
343            }
344            ce32 = nextCE32FromContraction(d, ce32, p + 2, defaultCE32, nextCp, errorCode);
345            if(ce32 == Collation::NO_CE32) {
346                // CEs from a discontiguous contraction plus the skipped combining marks
347                // have been appended already.
348                return;
349            }
350            break;
351        }
352        case Collation::DIGIT_TAG:
353            if(isNumeric) {
354                appendNumericCEs(ce32, forward, errorCode);
355                return;
356            } else {
357                // Fetch the non-numeric-collation CE32 and continue.
358                ce32 = d->ce32s[Collation::indexFromCE32(ce32)];
359                break;
360            }
361        case Collation::U0000_TAG:
362            U_ASSERT(c == 0);
363            if(forward && foundNULTerminator()) {
364                // Handle NUL-termination. (Not needed in Java.)
365                ceBuffer.append(Collation::NO_CE, errorCode);
366                return;
367            } else {
368                // Fetch the normal ce32 for U+0000 and continue.
369                ce32 = d->ce32s[0];
370                break;
371            }
372        case Collation::HANGUL_TAG: {
373            const uint32_t *jamoCE32s = d->jamoCE32s;
374            c -= Hangul::HANGUL_BASE;
375            UChar32 t = c % Hangul::JAMO_T_COUNT;
376            c /= Hangul::JAMO_T_COUNT;
377            UChar32 v = c % Hangul::JAMO_V_COUNT;
378            c /= Hangul::JAMO_V_COUNT;
379            if((ce32 & Collation::HANGUL_NO_SPECIAL_JAMO) != 0) {
380                // None of the Jamo CE32s are isSpecialCE32().
381                // Avoid recursive function calls and per-Jamo tests.
382                if(ceBuffer.ensureAppendCapacity(t == 0 ? 2 : 3, errorCode)) {
383                    ceBuffer.set(ceBuffer.length, Collation::ceFromCE32(jamoCE32s[c]));
384                    ceBuffer.set(ceBuffer.length + 1, Collation::ceFromCE32(jamoCE32s[19 + v]));
385                    ceBuffer.length += 2;
386                    if(t != 0) {
387                        ceBuffer.appendUnsafe(Collation::ceFromCE32(jamoCE32s[39 + t]));
388                    }
389                }
390                return;
391            } else {
392                // We should not need to compute each Jamo code point.
393                // In particular, there should be no offset or implicit ce32.
394                appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[c], forward, errorCode);
395                appendCEsFromCE32(d, U_SENTINEL, jamoCE32s[19 + v], forward, errorCode);
396                if(t == 0) { return; }
397                // offset 39 = 19 + 21 - 1:
398                // 19 = JAMO_L_COUNT
399                // 21 = JAMO_T_COUNT
400                // -1 = omit t==0
401                ce32 = jamoCE32s[39 + t];
402                c = U_SENTINEL;
403                break;
404            }
405        }
406        case Collation::LEAD_SURROGATE_TAG: {
407            U_ASSERT(forward);  // Backward iteration should never see lead surrogate code _unit_ data.
408            U_ASSERT(U16_IS_LEAD(c));
409            UChar trail;
410            if(U16_IS_TRAIL(trail = handleGetTrailSurrogate())) {
411                c = U16_GET_SUPPLEMENTARY(c, trail);
412                ce32 &= Collation::LEAD_TYPE_MASK;
413                if(ce32 == Collation::LEAD_ALL_UNASSIGNED) {
414                    ce32 = Collation::UNASSIGNED_CE32;  // unassigned-implicit
415                } else if(ce32 == Collation::LEAD_ALL_FALLBACK ||
416                        (ce32 = d->getCE32FromSupplementary(c)) == Collation::FALLBACK_CE32) {
417                    // fall back to the base data
418                    d = d->base;
419                    ce32 = d->getCE32FromSupplementary(c);
420                }
421            } else {
422                // c is an unpaired surrogate.
423                ce32 = Collation::UNASSIGNED_CE32;
424            }
425            break;
426        }
427        case Collation::OFFSET_TAG:
428            U_ASSERT(c >= 0);
429            ceBuffer.append(d->getCEFromOffsetCE32(c, ce32), errorCode);
430            return;
431        case Collation::IMPLICIT_TAG:
432            U_ASSERT(c >= 0);
433            if(U_IS_SURROGATE(c) && forbidSurrogateCodePoints()) {
434                ce32 = Collation::FFFD_CE32;
435                break;
436            } else {
437                ceBuffer.append(Collation::unassignedCEFromCodePoint(c), errorCode);
438                return;
439            }
440        }
441    }
442    ceBuffer.append(Collation::ceFromSimpleCE32(ce32), errorCode);
443}
444
445uint32_t
446CollationIterator::getCE32FromPrefix(const CollationData *d, uint32_t ce32,
447                                     UErrorCode &errorCode) {
448    const UChar *p = d->contexts + Collation::indexFromCE32(ce32);
449    ce32 = CollationData::readCE32(p);  // Default if no prefix match.
450    p += 2;
451    // Number of code points read before the original code point.
452    int32_t lookBehind = 0;
453    UCharsTrie prefixes(p);
454    for(;;) {
455        UChar32 c = previousCodePoint(errorCode);
456        if(c < 0) { break; }
457        ++lookBehind;
458        UStringTrieResult match = prefixes.nextForCodePoint(c);
459        if(USTRINGTRIE_HAS_VALUE(match)) {
460            ce32 = (uint32_t)prefixes.getValue();
461        }
462        if(!USTRINGTRIE_HAS_NEXT(match)) { break; }
463    }
464    forwardNumCodePoints(lookBehind, errorCode);
465    return ce32;
466}
467
468UChar32
469CollationIterator::nextSkippedCodePoint(UErrorCode &errorCode) {
470    if(skipped != NULL && skipped->hasNext()) { return skipped->next(); }
471    if(numCpFwd == 0) { return U_SENTINEL; }
472    UChar32 c = nextCodePoint(errorCode);
473    if(skipped != NULL && !skipped->isEmpty() && c >= 0) { skipped->incBeyond(); }
474    if(numCpFwd > 0 && c >= 0) { --numCpFwd; }
475    return c;
476}
477
478void
479CollationIterator::backwardNumSkipped(int32_t n, UErrorCode &errorCode) {
480    if(skipped != NULL && !skipped->isEmpty()) {
481        n = skipped->backwardNumCodePoints(n);
482    }
483    backwardNumCodePoints(n, errorCode);
484    if(numCpFwd >= 0) { numCpFwd += n; }
485}
486
487uint32_t
488CollationIterator::nextCE32FromContraction(const CollationData *d, uint32_t contractionCE32,
489                                           const UChar *p, uint32_t ce32, UChar32 c,
490                                           UErrorCode &errorCode) {
491    // c: next code point after the original one
492
493    // Number of code points read beyond the original code point.
494    // Needed for discontiguous contraction matching.
495    int32_t lookAhead = 1;
496    // Number of code points read since the last match (initially only c).
497    int32_t sinceMatch = 1;
498    // Normally we only need a contiguous match,
499    // and therefore need not remember the suffixes state from before a mismatch for retrying.
500    // If we are already processing skipped combining marks, then we do track the state.
501    UCharsTrie suffixes(p);
502    if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); }
503    UStringTrieResult match = suffixes.firstForCodePoint(c);
504    for(;;) {
505        UChar32 nextCp;
506        if(USTRINGTRIE_HAS_VALUE(match)) {
507            ce32 = (uint32_t)suffixes.getValue();
508            if(!USTRINGTRIE_HAS_NEXT(match) || (c = nextSkippedCodePoint(errorCode)) < 0) {
509                return ce32;
510            }
511            if(skipped != NULL && !skipped->isEmpty()) { skipped->saveTrieState(suffixes); }
512            sinceMatch = 1;
513        } else if(match == USTRINGTRIE_NO_MATCH || (nextCp = nextSkippedCodePoint(errorCode)) < 0) {
514            // No match for c, or partial match (USTRINGTRIE_NO_VALUE) and no further text.
515            // Back up if necessary, and try a discontiguous contraction.
516            if((contractionCE32 & Collation::CONTRACT_TRAILING_CCC) != 0 &&
517                    // Discontiguous contraction matching extends an existing match.
518                    // If there is no match yet, then there is nothing to do.
519                    ((contractionCE32 & Collation::CONTRACT_SINGLE_CP_NO_MATCH) == 0 ||
520                        sinceMatch < lookAhead)) {
521                // The last character of at least one suffix has lccc!=0,
522                // allowing for discontiguous contractions.
523                // UCA S2.1.1 only processes non-starters immediately following
524                // "a match in the table" (sinceMatch=1).
525                if(sinceMatch > 1) {
526                    // Return to the state after the last match.
527                    // (Return to sinceMatch=0 and re-fetch the first partially-matched character.)
528                    backwardNumSkipped(sinceMatch, errorCode);
529                    c = nextSkippedCodePoint(errorCode);
530                    lookAhead -= sinceMatch - 1;
531                    sinceMatch = 1;
532                }
533                if(d->getFCD16(c) > 0xff) {
534                    return nextCE32FromDiscontiguousContraction(
535                        d, suffixes, ce32, lookAhead, c, errorCode);
536                }
537            }
538            break;
539        } else {
540            // Continue after partial match (USTRINGTRIE_NO_VALUE) for c.
541            // It does not have a result value, therefore it is not itself "a match in the table".
542            // If a partially-matched c has ccc!=0 then
543            // it might be skipped in discontiguous contraction.
544            c = nextCp;
545            ++sinceMatch;
546        }
547        ++lookAhead;
548        match = suffixes.nextForCodePoint(c);
549    }
550    backwardNumSkipped(sinceMatch, errorCode);
551    return ce32;
552}
553
554uint32_t
555CollationIterator::nextCE32FromDiscontiguousContraction(
556        const CollationData *d, UCharsTrie &suffixes, uint32_t ce32,
557        int32_t lookAhead, UChar32 c,
558        UErrorCode &errorCode) {
559    if(U_FAILURE(errorCode)) { return 0; }
560
561    // UCA section 3.3.2 Contractions:
562    // Contractions that end with non-starter characters
563    // are known as discontiguous contractions.
564    // ... discontiguous contractions must be detected in input text
565    // whenever the final sequence of non-starter characters could be rearranged
566    // so as to make a contiguous matching sequence that is canonically equivalent.
567
568    // UCA: http://www.unicode.org/reports/tr10/#S2.1
569    // S2.1 Find the longest initial substring S at each point that has a match in the table.
570    // S2.1.1 If there are any non-starters following S, process each non-starter C.
571    // S2.1.2 If C is not blocked from S, find if S + C has a match in the table.
572    //     Note: A non-starter in a string is called blocked
573    //     if there is another non-starter of the same canonical combining class or zero
574    //     between it and the last character of canonical combining class 0.
575    // S2.1.3 If there is a match, replace S by S + C, and remove C.
576
577    // First: Is a discontiguous contraction even possible?
578    uint16_t fcd16 = d->getFCD16(c);
579    U_ASSERT(fcd16 > 0xff);  // The caller checked this already, as a shortcut.
580    UChar32 nextCp = nextSkippedCodePoint(errorCode);
581    if(nextCp < 0) {
582        // No further text.
583        backwardNumSkipped(1, errorCode);
584        return ce32;
585    }
586    ++lookAhead;
587    uint8_t prevCC = (uint8_t)fcd16;
588    fcd16 = d->getFCD16(nextCp);
589    if(fcd16 <= 0xff) {
590        // The next code point after c is a starter (S2.1.1 "process each non-starter").
591        backwardNumSkipped(2, errorCode);
592        return ce32;
593    }
594
595    // We have read and matched (lookAhead-2) code points,
596    // read non-matching c and peeked ahead at nextCp.
597    // Return to the state before the mismatch and continue matching with nextCp.
598    if(skipped == NULL || skipped->isEmpty()) {
599        if(skipped == NULL) {
600            skipped = new SkippedState();
601            if(skipped == NULL) {
602                errorCode = U_MEMORY_ALLOCATION_ERROR;
603                return 0;
604            }
605        }
606        suffixes.reset();
607        if(lookAhead > 2) {
608            // Replay the partial match so far.
609            backwardNumCodePoints(lookAhead, errorCode);
610            suffixes.firstForCodePoint(nextCodePoint(errorCode));
611            for(int32_t i = 3; i < lookAhead; ++i) {
612                suffixes.nextForCodePoint(nextCodePoint(errorCode));
613            }
614            // Skip c (which did not match) and nextCp (which we will try now).
615            forwardNumCodePoints(2, errorCode);
616        }
617        skipped->saveTrieState(suffixes);
618    } else {
619        // Reset to the trie state before the failed match of c.
620        skipped->resetToTrieState(suffixes);
621    }
622
623    skipped->setFirstSkipped(c);
624    // Number of code points read since the last match (at this point: c and nextCp).
625    int32_t sinceMatch = 2;
626    c = nextCp;
627    for(;;) {
628        UStringTrieResult match;
629        // "If C is not blocked from S, find if S + C has a match in the table." (S2.1.2)
630        if(prevCC < (fcd16 >> 8) && USTRINGTRIE_HAS_VALUE(match = suffixes.nextForCodePoint(c))) {
631            // "If there is a match, replace S by S + C, and remove C." (S2.1.3)
632            // Keep prevCC unchanged.
633            ce32 = (uint32_t)suffixes.getValue();
634            sinceMatch = 0;
635            skipped->recordMatch();
636            if(!USTRINGTRIE_HAS_NEXT(match)) { break; }
637            skipped->saveTrieState(suffixes);
638        } else {
639            // No match for "S + C", skip C.
640            skipped->skip(c);
641            skipped->resetToTrieState(suffixes);
642            prevCC = (uint8_t)fcd16;
643        }
644        if((c = nextSkippedCodePoint(errorCode)) < 0) { break; }
645        ++sinceMatch;
646        fcd16 = d->getFCD16(c);
647        if(fcd16 <= 0xff) {
648            // The next code point after c is a starter (S2.1.1 "process each non-starter").
649            break;
650        }
651    }
652    backwardNumSkipped(sinceMatch, errorCode);
653    UBool isTopDiscontiguous = skipped->isEmpty();
654    skipped->replaceMatch();
655    if(isTopDiscontiguous && !skipped->isEmpty()) {
656        // We did get a match after skipping one or more combining marks,
657        // and we are not in a recursive discontiguous contraction.
658        // Append CEs from the contraction ce32
659        // and then from the combining marks that we skipped before the match.
660        c = U_SENTINEL;
661        for(;;) {
662            appendCEsFromCE32(d, c, ce32, TRUE, errorCode);
663            // Fetch CE32s for skipped combining marks from the normal data, with fallback,
664            // rather than from the CollationData where we found the contraction.
665            if(!skipped->hasNext()) { break; }
666            c = skipped->next();
667            ce32 = getDataCE32(c);
668            if(ce32 == Collation::FALLBACK_CE32) {
669                d = data->base;
670                ce32 = d->getCE32(c);
671            } else {
672                d = data;
673            }
674            // Note: A nested discontiguous-contraction match
675            // replaces consumed combining marks with newly skipped ones
676            // and resets the reading position to the beginning.
677        }
678        skipped->clear();
679        ce32 = Collation::NO_CE32;  // Signal to the caller that the result is in the ceBuffer.
680    }
681    return ce32;
682}
683
684void
685CollationIterator::appendNumericCEs(uint32_t ce32, UBool forward, UErrorCode &errorCode) {
686    // Collect digits.
687    CharString digits;
688    if(forward) {
689        for(;;) {
690            char digit = Collation::digitFromCE32(ce32);
691            digits.append(digit, errorCode);
692            if(numCpFwd == 0) { break; }
693            UChar32 c = nextCodePoint(errorCode);
694            if(c < 0) { break; }
695            ce32 = data->getCE32(c);
696            if(ce32 == Collation::FALLBACK_CE32) {
697                ce32 = data->base->getCE32(c);
698            }
699            if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) {
700                backwardNumCodePoints(1, errorCode);
701                break;
702            }
703            if(numCpFwd > 0) { --numCpFwd; }
704        }
705    } else {
706        for(;;) {
707            char digit = Collation::digitFromCE32(ce32);
708            digits.append(digit, errorCode);
709            UChar32 c = previousCodePoint(errorCode);
710            if(c < 0) { break; }
711            ce32 = data->getCE32(c);
712            if(ce32 == Collation::FALLBACK_CE32) {
713                ce32 = data->base->getCE32(c);
714            }
715            if(!Collation::hasCE32Tag(ce32, Collation::DIGIT_TAG)) {
716                forwardNumCodePoints(1, errorCode);
717                break;
718            }
719        }
720        // Reverse the digit string.
721        char *p = digits.data();
722        char *q = p + digits.length() - 1;
723        while(p < q) {
724            char digit = *p;
725            *p++ = *q;
726            *q-- = digit;
727        }
728    }
729    if(U_FAILURE(errorCode)) { return; }
730    int32_t pos = 0;
731    do {
732        // Skip leading zeros.
733        while(pos < (digits.length() - 1) && digits[pos] == 0) { ++pos; }
734        // Write a sequence of CEs for at most 254 digits at a time.
735        int32_t segmentLength = digits.length() - pos;
736        if(segmentLength > 254) { segmentLength = 254; }
737        appendNumericSegmentCEs(digits.data() + pos, segmentLength, errorCode);
738        pos += segmentLength;
739    } while(U_SUCCESS(errorCode) && pos < digits.length());
740}
741
742void
743CollationIterator::appendNumericSegmentCEs(const char *digits, int32_t length, UErrorCode &errorCode) {
744    U_ASSERT(1 <= length && length <= 254);
745    U_ASSERT(length == 1 || digits[0] != 0);
746    uint32_t numericPrimary = data->numericPrimary;
747    // Note: We use primary byte values 2..255: digits are not compressible.
748    if(length <= 7) {
749        // Very dense encoding for small numbers.
750        int32_t value = digits[0];
751        for(int32_t i = 1; i < length; ++i) {
752            value = value * 10 + digits[i];
753        }
754        // Primary weight second byte values:
755        //     74 byte values   2.. 75 for small numbers in two-byte primary weights.
756        //     40 byte values  76..115 for medium numbers in three-byte primary weights.
757        //     16 byte values 116..131 for large numbers in four-byte primary weights.
758        //    124 byte values 132..255 for very large numbers with 4..127 digit pairs.
759        int32_t firstByte = 2;
760        int32_t numBytes = 74;
761        if(value < numBytes) {
762            // Two-byte primary for 0..73, good for day & month numbers etc.
763            uint32_t primary = numericPrimary | ((firstByte + value) << 16);
764            ceBuffer.append(Collation::makeCE(primary), errorCode);
765            return;
766        }
767        value -= numBytes;
768        firstByte += numBytes;
769        numBytes = 40;
770        if(value < numBytes * 254) {
771            // Three-byte primary for 74..10233=74+40*254-1, good for year numbers and more.
772            uint32_t primary = numericPrimary |
773                ((firstByte + value / 254) << 16) | ((2 + value % 254) << 8);
774            ceBuffer.append(Collation::makeCE(primary), errorCode);
775            return;
776        }
777        value -= numBytes * 254;
778        firstByte += numBytes;
779        numBytes = 16;
780        if(value < numBytes * 254 * 254) {
781            // Four-byte primary for 10234..1042489=10234+16*254*254-1.
782            uint32_t primary = numericPrimary | (2 + value % 254);
783            value /= 254;
784            primary |= (2 + value % 254) << 8;
785            value /= 254;
786            primary |= (firstByte + value % 254) << 16;
787            ceBuffer.append(Collation::makeCE(primary), errorCode);
788            return;
789        }
790        // original value > 1042489
791    }
792    U_ASSERT(length >= 7);
793
794    // The second primary byte value 132..255 indicates the number of digit pairs (4..127),
795    // then we generate primary bytes with those pairs.
796    // Omit trailing 00 pairs.
797    // Decrement the value for the last pair.
798
799    // Set the exponent. 4 pairs->132, 5 pairs->133, ..., 127 pairs->255.
800    int32_t numPairs = (length + 1) / 2;
801    uint32_t primary = numericPrimary | ((132 - 4 + numPairs) << 16);
802    // Find the length without trailing 00 pairs.
803    while(digits[length - 1] == 0 && digits[length - 2] == 0) {
804        length -= 2;
805    }
806    // Read the first pair.
807    uint32_t pair;
808    int32_t pos;
809    if(length & 1) {
810        // Only "half a pair" if we have an odd number of digits.
811        pair = digits[0];
812        pos = 1;
813    } else {
814        pair = digits[0] * 10 + digits[1];
815        pos = 2;
816    }
817    pair = 11 + 2 * pair;
818    // Add the pairs of digits between pos and length.
819    int32_t shift = 8;
820    while(pos < length) {
821        if(shift == 0) {
822            // Every three pairs/bytes we need to store a 4-byte-primary CE
823            // and start with a new CE with the '0' primary lead byte.
824            primary |= pair;
825            ceBuffer.append(Collation::makeCE(primary), errorCode);
826            primary = numericPrimary;
827            shift = 16;
828        } else {
829            primary |= pair << shift;
830            shift -= 8;
831        }
832        pair = 11 + 2 * (digits[pos] * 10 + digits[pos + 1]);
833        pos += 2;
834    }
835    primary |= (pair - 1) << shift;
836    ceBuffer.append(Collation::makeCE(primary), errorCode);
837}
838
839int64_t
840CollationIterator::previousCE(UVector32 &offsets, UErrorCode &errorCode) {
841    if(ceBuffer.length > 0) {
842        // Return the previous buffered CE.
843        return ceBuffer.get(--ceBuffer.length);
844    }
845    offsets.removeAllElements();
846    int32_t limitOffset = getOffset();
847    UChar32 c = previousCodePoint(errorCode);
848    if(c < 0) { return Collation::NO_CE; }
849    if(data->isUnsafeBackward(c, isNumeric)) {
850        return previousCEUnsafe(c, offsets, errorCode);
851    }
852    // Simple, safe-backwards iteration:
853    // Get a CE going backwards, handle prefixes but no contractions.
854    uint32_t ce32 = data->getCE32(c);
855    const CollationData *d;
856    if(ce32 == Collation::FALLBACK_CE32) {
857        d = data->base;
858        ce32 = d->getCE32(c);
859    } else {
860        d = data;
861    }
862    if(Collation::isSimpleOrLongCE32(ce32)) {
863        return Collation::ceFromCE32(ce32);
864    }
865    appendCEsFromCE32(d, c, ce32, FALSE, errorCode);
866    if(U_SUCCESS(errorCode)) {
867        if(ceBuffer.length > 1) {
868            offsets.addElement(getOffset(), errorCode);
869            // For an expansion, the offset of each non-initial CE is the limit offset,
870            // consistent with forward iteration.
871            while(offsets.size() <= ceBuffer.length) {
872                offsets.addElement(limitOffset, errorCode);
873            };
874        }
875        return ceBuffer.get(--ceBuffer.length);
876    } else {
877        return Collation::NO_CE_PRIMARY;
878    }
879}
880
881int64_t
882CollationIterator::previousCEUnsafe(UChar32 c, UVector32 &offsets, UErrorCode &errorCode) {
883    // We just move through the input counting safe and unsafe code points
884    // without collecting the unsafe-backward substring into a buffer and
885    // switching to it.
886    // This is to keep the logic simple. Otherwise we would have to handle
887    // prefix matching going before the backward buffer, switching
888    // to iteration and back, etc.
889    // In the most important case of iterating over a normal string,
890    // reading from the string itself is already maximally fast.
891    // The only drawback there is that after getting the CEs we always
892    // skip backward to the safe character rather than switching out
893    // of a backwardBuffer.
894    // But this should not be the common case for previousCE(),
895    // and correctness and maintainability are more important than
896    // complex optimizations.
897    // Find the first safe character before c.
898    int32_t numBackward = 1;
899    while((c = previousCodePoint(errorCode)) >= 0) {
900        ++numBackward;
901        if(!data->isUnsafeBackward(c, isNumeric)) {
902            break;
903        }
904    }
905    // Set the forward iteration limit.
906    // Note: This counts code points.
907    // We cannot enforce a limit in the middle of a surrogate pair or similar.
908    numCpFwd = numBackward;
909    // Reset the forward iterator.
910    cesIndex = 0;
911    U_ASSERT(ceBuffer.length == 0);
912    // Go forward and collect the CEs.
913    int32_t offset = getOffset();
914    while(numCpFwd > 0) {
915        // nextCE() normally reads one code point.
916        // Contraction matching and digit specials read more and check numCpFwd.
917        --numCpFwd;
918        // Append one or more CEs to the ceBuffer.
919        (void)nextCE(errorCode);
920        U_ASSERT(U_FAILURE(errorCode) || ceBuffer.get(ceBuffer.length - 1) != Collation::NO_CE);
921        // No need to loop for getting each expansion CE from nextCE().
922        cesIndex = ceBuffer.length;
923        // However, we need to write an offset for each CE.
924        // This is for CollationElementIterator::getOffset() to return
925        // intermediate offsets from the unsafe-backwards segment.
926        U_ASSERT(offsets.size() < ceBuffer.length);
927        offsets.addElement(offset, errorCode);
928        // For an expansion, the offset of each non-initial CE is the limit offset,
929        // consistent with forward iteration.
930        offset = getOffset();
931        while(offsets.size() < ceBuffer.length) {
932            offsets.addElement(offset, errorCode);
933        };
934    }
935    U_ASSERT(offsets.size() == ceBuffer.length);
936    // End offset corresponding to just after the unsafe-backwards segment.
937    offsets.addElement(offset, errorCode);
938    // Reset the forward iteration limit
939    // and move backward to before the segment for which we fetched CEs.
940    numCpFwd = -1;
941    backwardNumCodePoints(numBackward, errorCode);
942    // Use the collected CEs and return the last one.
943    cesIndex = 0;  // Avoid cesIndex > ceBuffer.length when that gets decremented.
944    if(U_SUCCESS(errorCode)) {
945        return ceBuffer.get(--ceBuffer.length);
946    } else {
947        return Collation::NO_CE_PRIMARY;
948    }
949}
950
951U_NAMESPACE_END
952
953#endif  // !UCONFIG_NO_COLLATION
954