1/*
2 *******************************************************************************
3 * Implementation of (2^1+,2) cuckoo hashing, where 2^1+ indicates that each
4 * hash bucket contains 2^n cells, for n >= 1, and 2 indicates that two hash
5 * functions are employed.  The original cuckoo hashing algorithm was described
6 * in:
7 *
8 *   Pagh, R., F.F. Rodler (2004) Cuckoo Hashing.  Journal of Algorithms
9 *     51(2):122-144.
10 *
11 * Generalization of cuckoo hashing was discussed in:
12 *
13 *   Erlingsson, U., M. Manasse, F. McSherry (2006) A cool and practical
14 *     alternative to traditional hash tables.  In Proceedings of the 7th
15 *     Workshop on Distributed Data and Structures (WDAS'06), Santa Clara, CA,
16 *     January 2006.
17 *
18 * This implementation uses precisely two hash functions because that is the
19 * fewest that can work, and supporting multiple hashes is an implementation
20 * burden.  Here is a reproduction of Figure 1 from Erlingsson et al. (2006)
21 * that shows approximate expected maximum load factors for various
22 * configurations:
23 *
24 *           |         #cells/bucket         |
25 *   #hashes |   1   |   2   |   4   |   8   |
26 *   --------+-------+-------+-------+-------+
27 *         1 | 0.006 | 0.006 | 0.03  | 0.12  |
28 *         2 | 0.49  | 0.86  |>0.93< |>0.96< |
29 *         3 | 0.91  | 0.97  | 0.98  | 0.999 |
30 *         4 | 0.97  | 0.99  | 0.999 |       |
31 *
32 * The number of cells per bucket is chosen such that a bucket fits in one cache
33 * line.  So, on 32- and 64-bit systems, we use (8,2) and (4,2) cuckoo hashing,
34 * respectively.
35 *
36 ******************************************************************************/
37#define	JEMALLOC_CKH_C_
38#include "jemalloc/internal/jemalloc_internal.h"
39
40/******************************************************************************/
41/* Function prototypes for non-inline static functions. */
42
43static bool	ckh_grow(ckh_t *ckh);
44static void	ckh_shrink(ckh_t *ckh);
45
46/******************************************************************************/
47
48/*
49 * Search bucket for key and return the cell number if found; SIZE_T_MAX
50 * otherwise.
51 */
52JEMALLOC_INLINE_C size_t
53ckh_bucket_search(ckh_t *ckh, size_t bucket, const void *key)
54{
55	ckhc_t *cell;
56	unsigned i;
57
58	for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
59		cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
60		if (cell->key != NULL && ckh->keycomp(key, cell->key))
61			return ((bucket << LG_CKH_BUCKET_CELLS) + i);
62	}
63
64	return (SIZE_T_MAX);
65}
66
67/*
68 * Search table for key and return cell number if found; SIZE_T_MAX otherwise.
69 */
70JEMALLOC_INLINE_C size_t
71ckh_isearch(ckh_t *ckh, const void *key)
72{
73	size_t hashes[2], bucket, cell;
74
75	assert(ckh != NULL);
76
77	ckh->hash(key, hashes);
78
79	/* Search primary bucket. */
80	bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
81	cell = ckh_bucket_search(ckh, bucket, key);
82	if (cell != SIZE_T_MAX)
83		return (cell);
84
85	/* Search secondary bucket. */
86	bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
87	cell = ckh_bucket_search(ckh, bucket, key);
88	return (cell);
89}
90
91JEMALLOC_INLINE_C bool
92ckh_try_bucket_insert(ckh_t *ckh, size_t bucket, const void *key,
93    const void *data)
94{
95	ckhc_t *cell;
96	unsigned offset, i;
97
98	/*
99	 * Cycle through the cells in the bucket, starting at a random position.
100	 * The randomness avoids worst-case search overhead as buckets fill up.
101	 */
102	prng32(offset, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C);
103	for (i = 0; i < (ZU(1) << LG_CKH_BUCKET_CELLS); i++) {
104		cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) +
105		    ((i + offset) & ((ZU(1) << LG_CKH_BUCKET_CELLS) - 1))];
106		if (cell->key == NULL) {
107			cell->key = key;
108			cell->data = data;
109			ckh->count++;
110			return (false);
111		}
112	}
113
114	return (true);
115}
116
117/*
118 * No space is available in bucket.  Randomly evict an item, then try to find an
119 * alternate location for that item.  Iteratively repeat this
120 * eviction/relocation procedure until either success or detection of an
121 * eviction/relocation bucket cycle.
122 */
123JEMALLOC_INLINE_C bool
124ckh_evict_reloc_insert(ckh_t *ckh, size_t argbucket, void const **argkey,
125    void const **argdata)
126{
127	const void *key, *data, *tkey, *tdata;
128	ckhc_t *cell;
129	size_t hashes[2], bucket, tbucket;
130	unsigned i;
131
132	bucket = argbucket;
133	key = *argkey;
134	data = *argdata;
135	while (true) {
136		/*
137		 * Choose a random item within the bucket to evict.  This is
138		 * critical to correct function, because without (eventually)
139		 * evicting all items within a bucket during iteration, it
140		 * would be possible to get stuck in an infinite loop if there
141		 * were an item for which both hashes indicated the same
142		 * bucket.
143		 */
144		prng32(i, LG_CKH_BUCKET_CELLS, ckh->prng_state, CKH_A, CKH_C);
145		cell = &ckh->tab[(bucket << LG_CKH_BUCKET_CELLS) + i];
146		assert(cell->key != NULL);
147
148		/* Swap cell->{key,data} and {key,data} (evict). */
149		tkey = cell->key; tdata = cell->data;
150		cell->key = key; cell->data = data;
151		key = tkey; data = tdata;
152
153#ifdef CKH_COUNT
154		ckh->nrelocs++;
155#endif
156
157		/* Find the alternate bucket for the evicted item. */
158		ckh->hash(key, hashes);
159		tbucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
160		if (tbucket == bucket) {
161			tbucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets)
162			    - 1);
163			/*
164			 * It may be that (tbucket == bucket) still, if the
165			 * item's hashes both indicate this bucket.  However,
166			 * we are guaranteed to eventually escape this bucket
167			 * during iteration, assuming pseudo-random item
168			 * selection (true randomness would make infinite
169			 * looping a remote possibility).  The reason we can
170			 * never get trapped forever is that there are two
171			 * cases:
172			 *
173			 * 1) This bucket == argbucket, so we will quickly
174			 *    detect an eviction cycle and terminate.
175			 * 2) An item was evicted to this bucket from another,
176			 *    which means that at least one item in this bucket
177			 *    has hashes that indicate distinct buckets.
178			 */
179		}
180		/* Check for a cycle. */
181		if (tbucket == argbucket) {
182			*argkey = key;
183			*argdata = data;
184			return (true);
185		}
186
187		bucket = tbucket;
188		if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
189			return (false);
190	}
191}
192
193JEMALLOC_INLINE_C bool
194ckh_try_insert(ckh_t *ckh, void const**argkey, void const**argdata)
195{
196	size_t hashes[2], bucket;
197	const void *key = *argkey;
198	const void *data = *argdata;
199
200	ckh->hash(key, hashes);
201
202	/* Try to insert in primary bucket. */
203	bucket = hashes[0] & ((ZU(1) << ckh->lg_curbuckets) - 1);
204	if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
205		return (false);
206
207	/* Try to insert in secondary bucket. */
208	bucket = hashes[1] & ((ZU(1) << ckh->lg_curbuckets) - 1);
209	if (ckh_try_bucket_insert(ckh, bucket, key, data) == false)
210		return (false);
211
212	/*
213	 * Try to find a place for this item via iterative eviction/relocation.
214	 */
215	return (ckh_evict_reloc_insert(ckh, bucket, argkey, argdata));
216}
217
218/*
219 * Try to rebuild the hash table from scratch by inserting all items from the
220 * old table into the new.
221 */
222JEMALLOC_INLINE_C bool
223ckh_rebuild(ckh_t *ckh, ckhc_t *aTab)
224{
225	size_t count, i, nins;
226	const void *key, *data;
227
228	count = ckh->count;
229	ckh->count = 0;
230	for (i = nins = 0; nins < count; i++) {
231		if (aTab[i].key != NULL) {
232			key = aTab[i].key;
233			data = aTab[i].data;
234			if (ckh_try_insert(ckh, &key, &data)) {
235				ckh->count = count;
236				return (true);
237			}
238			nins++;
239		}
240	}
241
242	return (false);
243}
244
245static bool
246ckh_grow(ckh_t *ckh)
247{
248	bool ret;
249	ckhc_t *tab, *ttab;
250	size_t lg_curcells;
251	unsigned lg_prevbuckets;
252
253#ifdef CKH_COUNT
254	ckh->ngrows++;
255#endif
256
257	/*
258	 * It is possible (though unlikely, given well behaved hashes) that the
259	 * table will have to be doubled more than once in order to create a
260	 * usable table.
261	 */
262	lg_prevbuckets = ckh->lg_curbuckets;
263	lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS;
264	while (true) {
265		size_t usize;
266
267		lg_curcells++;
268		usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
269		if (usize == 0) {
270			ret = true;
271			goto label_return;
272		}
273		tab = (ckhc_t *)ipalloc(usize, CACHELINE, true);
274		if (tab == NULL) {
275			ret = true;
276			goto label_return;
277		}
278		/* Swap in new table. */
279		ttab = ckh->tab;
280		ckh->tab = tab;
281		tab = ttab;
282		ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
283
284		if (ckh_rebuild(ckh, tab) == false) {
285			idalloc(tab);
286			break;
287		}
288
289		/* Rebuilding failed, so back out partially rebuilt table. */
290		idalloc(ckh->tab);
291		ckh->tab = tab;
292		ckh->lg_curbuckets = lg_prevbuckets;
293	}
294
295	ret = false;
296label_return:
297	return (ret);
298}
299
300static void
301ckh_shrink(ckh_t *ckh)
302{
303	ckhc_t *tab, *ttab;
304	size_t lg_curcells, usize;
305	unsigned lg_prevbuckets;
306
307	/*
308	 * It is possible (though unlikely, given well behaved hashes) that the
309	 * table rebuild will fail.
310	 */
311	lg_prevbuckets = ckh->lg_curbuckets;
312	lg_curcells = ckh->lg_curbuckets + LG_CKH_BUCKET_CELLS - 1;
313	usize = sa2u(sizeof(ckhc_t) << lg_curcells, CACHELINE);
314	if (usize == 0)
315		return;
316	tab = (ckhc_t *)ipalloc(usize, CACHELINE, true);
317	if (tab == NULL) {
318		/*
319		 * An OOM error isn't worth propagating, since it doesn't
320		 * prevent this or future operations from proceeding.
321		 */
322		return;
323	}
324	/* Swap in new table. */
325	ttab = ckh->tab;
326	ckh->tab = tab;
327	tab = ttab;
328	ckh->lg_curbuckets = lg_curcells - LG_CKH_BUCKET_CELLS;
329
330	if (ckh_rebuild(ckh, tab) == false) {
331		idalloc(tab);
332#ifdef CKH_COUNT
333		ckh->nshrinks++;
334#endif
335		return;
336	}
337
338	/* Rebuilding failed, so back out partially rebuilt table. */
339	idalloc(ckh->tab);
340	ckh->tab = tab;
341	ckh->lg_curbuckets = lg_prevbuckets;
342#ifdef CKH_COUNT
343	ckh->nshrinkfails++;
344#endif
345}
346
347bool
348ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash, ckh_keycomp_t *keycomp)
349{
350	bool ret;
351	size_t mincells, usize;
352	unsigned lg_mincells;
353
354	assert(minitems > 0);
355	assert(hash != NULL);
356	assert(keycomp != NULL);
357
358#ifdef CKH_COUNT
359	ckh->ngrows = 0;
360	ckh->nshrinks = 0;
361	ckh->nshrinkfails = 0;
362	ckh->ninserts = 0;
363	ckh->nrelocs = 0;
364#endif
365	ckh->prng_state = 42; /* Value doesn't really matter. */
366	ckh->count = 0;
367
368	/*
369	 * Find the minimum power of 2 that is large enough to fit aBaseCount
370	 * entries.  We are using (2+,2) cuckoo hashing, which has an expected
371	 * maximum load factor of at least ~0.86, so 0.75 is a conservative load
372	 * factor that will typically allow 2^aLgMinItems to fit without ever
373	 * growing the table.
374	 */
375	assert(LG_CKH_BUCKET_CELLS > 0);
376	mincells = ((minitems + (3 - (minitems % 3))) / 3) << 2;
377	for (lg_mincells = LG_CKH_BUCKET_CELLS;
378	    (ZU(1) << lg_mincells) < mincells;
379	    lg_mincells++)
380		; /* Do nothing. */
381	ckh->lg_minbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
382	ckh->lg_curbuckets = lg_mincells - LG_CKH_BUCKET_CELLS;
383	ckh->hash = hash;
384	ckh->keycomp = keycomp;
385
386	usize = sa2u(sizeof(ckhc_t) << lg_mincells, CACHELINE);
387	if (usize == 0) {
388		ret = true;
389		goto label_return;
390	}
391	ckh->tab = (ckhc_t *)ipalloc(usize, CACHELINE, true);
392	if (ckh->tab == NULL) {
393		ret = true;
394		goto label_return;
395	}
396
397	ret = false;
398label_return:
399	return (ret);
400}
401
402void
403ckh_delete(ckh_t *ckh)
404{
405
406	assert(ckh != NULL);
407
408#ifdef CKH_VERBOSE
409	malloc_printf(
410	    "%s(%p): ngrows: %"PRIu64", nshrinks: %"PRIu64","
411	    " nshrinkfails: %"PRIu64", ninserts: %"PRIu64","
412	    " nrelocs: %"PRIu64"\n", __func__, ckh,
413	    (unsigned long long)ckh->ngrows,
414	    (unsigned long long)ckh->nshrinks,
415	    (unsigned long long)ckh->nshrinkfails,
416	    (unsigned long long)ckh->ninserts,
417	    (unsigned long long)ckh->nrelocs);
418#endif
419
420	idalloc(ckh->tab);
421	if (config_debug)
422		memset(ckh, 0x5a, sizeof(ckh_t));
423}
424
425size_t
426ckh_count(ckh_t *ckh)
427{
428
429	assert(ckh != NULL);
430
431	return (ckh->count);
432}
433
434bool
435ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data)
436{
437	size_t i, ncells;
438
439	for (i = *tabind, ncells = (ZU(1) << (ckh->lg_curbuckets +
440	    LG_CKH_BUCKET_CELLS)); i < ncells; i++) {
441		if (ckh->tab[i].key != NULL) {
442			if (key != NULL)
443				*key = (void *)ckh->tab[i].key;
444			if (data != NULL)
445				*data = (void *)ckh->tab[i].data;
446			*tabind = i + 1;
447			return (false);
448		}
449	}
450
451	return (true);
452}
453
454bool
455ckh_insert(ckh_t *ckh, const void *key, const void *data)
456{
457	bool ret;
458
459	assert(ckh != NULL);
460	assert(ckh_search(ckh, key, NULL, NULL));
461
462#ifdef CKH_COUNT
463	ckh->ninserts++;
464#endif
465
466	while (ckh_try_insert(ckh, &key, &data)) {
467		if (ckh_grow(ckh)) {
468			ret = true;
469			goto label_return;
470		}
471	}
472
473	ret = false;
474label_return:
475	return (ret);
476}
477
478bool
479ckh_remove(ckh_t *ckh, const void *searchkey, void **key, void **data)
480{
481	size_t cell;
482
483	assert(ckh != NULL);
484
485	cell = ckh_isearch(ckh, searchkey);
486	if (cell != SIZE_T_MAX) {
487		if (key != NULL)
488			*key = (void *)ckh->tab[cell].key;
489		if (data != NULL)
490			*data = (void *)ckh->tab[cell].data;
491		ckh->tab[cell].key = NULL;
492		ckh->tab[cell].data = NULL; /* Not necessary. */
493
494		ckh->count--;
495		/* Try to halve the table if it is less than 1/4 full. */
496		if (ckh->count < (ZU(1) << (ckh->lg_curbuckets
497		    + LG_CKH_BUCKET_CELLS - 2)) && ckh->lg_curbuckets
498		    > ckh->lg_minbuckets) {
499			/* Ignore error due to OOM. */
500			ckh_shrink(ckh);
501		}
502
503		return (false);
504	}
505
506	return (true);
507}
508
509bool
510ckh_search(ckh_t *ckh, const void *searchkey, void **key, void **data)
511{
512	size_t cell;
513
514	assert(ckh != NULL);
515
516	cell = ckh_isearch(ckh, searchkey);
517	if (cell != SIZE_T_MAX) {
518		if (key != NULL)
519			*key = (void *)ckh->tab[cell].key;
520		if (data != NULL)
521			*data = (void *)ckh->tab[cell].data;
522		return (false);
523	}
524
525	return (true);
526}
527
528void
529ckh_string_hash(const void *key, size_t r_hash[2])
530{
531
532	hash(key, strlen((const char *)key), 0x94122f33U, r_hash);
533}
534
535bool
536ckh_string_keycomp(const void *k1, const void *k2)
537{
538
539    assert(k1 != NULL);
540    assert(k2 != NULL);
541
542    return (strcmp((char *)k1, (char *)k2) ? false : true);
543}
544
545void
546ckh_pointer_hash(const void *key, size_t r_hash[2])
547{
548	union {
549		const void	*v;
550		size_t		i;
551	} u;
552
553	assert(sizeof(u.v) == sizeof(u.i));
554	u.v = key;
555	hash(&u.i, sizeof(u.i), 0xd983396eU, r_hash);
556}
557
558bool
559ckh_pointer_keycomp(const void *k1, const void *k2)
560{
561
562	return ((k1 == k2) ? true : false);
563}
564