1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SelectionDAGBuilder.h"
15#include "SDNodeDbgValue.h"
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/Optional.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/ConstantFolding.h"
22#include "llvm/Analysis/ValueTracking.h"
23#include "llvm/CodeGen/Analysis.h"
24#include "llvm/CodeGen/FastISel.h"
25#include "llvm/CodeGen/FunctionLoweringInfo.h"
26#include "llvm/CodeGen/GCMetadata.h"
27#include "llvm/CodeGen/GCStrategy.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineFunction.h"
30#include "llvm/CodeGen/MachineInstrBuilder.h"
31#include "llvm/CodeGen/MachineJumpTableInfo.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/StackMaps.h"
36#include "llvm/IR/CallingConv.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DataLayout.h"
39#include "llvm/IR/DebugInfo.h"
40#include "llvm/IR/DerivedTypes.h"
41#include "llvm/IR/Function.h"
42#include "llvm/IR/GlobalVariable.h"
43#include "llvm/IR/InlineAsm.h"
44#include "llvm/IR/Instructions.h"
45#include "llvm/IR/IntrinsicInst.h"
46#include "llvm/IR/Intrinsics.h"
47#include "llvm/IR/LLVMContext.h"
48#include "llvm/IR/Module.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/MathExtras.h"
53#include "llvm/Support/raw_ostream.h"
54#include "llvm/Target/TargetFrameLowering.h"
55#include "llvm/Target/TargetInstrInfo.h"
56#include "llvm/Target/TargetIntrinsicInfo.h"
57#include "llvm/Target/TargetLibraryInfo.h"
58#include "llvm/Target/TargetLowering.h"
59#include "llvm/Target/TargetOptions.h"
60#include "llvm/Target/TargetSelectionDAGInfo.h"
61#include <algorithm>
62using namespace llvm;
63
64#define DEBUG_TYPE "isel"
65
66/// LimitFloatPrecision - Generate low-precision inline sequences for
67/// some float libcalls (6, 8 or 12 bits).
68static unsigned LimitFloatPrecision;
69
70static cl::opt<unsigned, true>
71LimitFPPrecision("limit-float-precision",
72                 cl::desc("Generate low-precision inline sequences "
73                          "for some float libcalls"),
74                 cl::location(LimitFloatPrecision),
75                 cl::init(0));
76
77// Limit the width of DAG chains. This is important in general to prevent
78// prevent DAG-based analysis from blowing up. For example, alias analysis and
79// load clustering may not complete in reasonable time. It is difficult to
80// recognize and avoid this situation within each individual analysis, and
81// future analyses are likely to have the same behavior. Limiting DAG width is
82// the safe approach, and will be especially important with global DAGs.
83//
84// MaxParallelChains default is arbitrarily high to avoid affecting
85// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
86// sequence over this should have been converted to llvm.memcpy by the
87// frontend. It easy to induce this behavior with .ll code such as:
88// %buffer = alloca [4096 x i8]
89// %data = load [4096 x i8]* %argPtr
90// store [4096 x i8] %data, [4096 x i8]* %buffer
91static const unsigned MaxParallelChains = 64;
92
93static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
94                                      const SDValue *Parts, unsigned NumParts,
95                                      MVT PartVT, EVT ValueVT, const Value *V);
96
97/// getCopyFromParts - Create a value that contains the specified legal parts
98/// combined into the value they represent.  If the parts combine to a type
99/// larger then ValueVT then AssertOp can be used to specify whether the extra
100/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
101/// (ISD::AssertSext).
102static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
103                                const SDValue *Parts,
104                                unsigned NumParts, MVT PartVT, EVT ValueVT,
105                                const Value *V,
106                                ISD::NodeType AssertOp = ISD::DELETED_NODE) {
107  if (ValueVT.isVector())
108    return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
109                                  PartVT, ValueVT, V);
110
111  assert(NumParts > 0 && "No parts to assemble!");
112  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
113  SDValue Val = Parts[0];
114
115  if (NumParts > 1) {
116    // Assemble the value from multiple parts.
117    if (ValueVT.isInteger()) {
118      unsigned PartBits = PartVT.getSizeInBits();
119      unsigned ValueBits = ValueVT.getSizeInBits();
120
121      // Assemble the power of 2 part.
122      unsigned RoundParts = NumParts & (NumParts - 1) ?
123        1 << Log2_32(NumParts) : NumParts;
124      unsigned RoundBits = PartBits * RoundParts;
125      EVT RoundVT = RoundBits == ValueBits ?
126        ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
127      SDValue Lo, Hi;
128
129      EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
130
131      if (RoundParts > 2) {
132        Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
133                              PartVT, HalfVT, V);
134        Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
135                              RoundParts / 2, PartVT, HalfVT, V);
136      } else {
137        Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
138        Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
139      }
140
141      if (TLI.isBigEndian())
142        std::swap(Lo, Hi);
143
144      Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
145
146      if (RoundParts < NumParts) {
147        // Assemble the trailing non-power-of-2 part.
148        unsigned OddParts = NumParts - RoundParts;
149        EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
150        Hi = getCopyFromParts(DAG, DL,
151                              Parts + RoundParts, OddParts, PartVT, OddVT, V);
152
153        // Combine the round and odd parts.
154        Lo = Val;
155        if (TLI.isBigEndian())
156          std::swap(Lo, Hi);
157        EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
158        Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
159        Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
160                         DAG.getConstant(Lo.getValueType().getSizeInBits(),
161                                         TLI.getPointerTy()));
162        Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
163        Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
164      }
165    } else if (PartVT.isFloatingPoint()) {
166      // FP split into multiple FP parts (for ppcf128)
167      assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
168             "Unexpected split");
169      SDValue Lo, Hi;
170      Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
171      Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
172      if (TLI.hasBigEndianPartOrdering(ValueVT))
173        std::swap(Lo, Hi);
174      Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
175    } else {
176      // FP split into integer parts (soft fp)
177      assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
178             !PartVT.isVector() && "Unexpected split");
179      EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
180      Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
181    }
182  }
183
184  // There is now one part, held in Val.  Correct it to match ValueVT.
185  EVT PartEVT = Val.getValueType();
186
187  if (PartEVT == ValueVT)
188    return Val;
189
190  if (PartEVT.isInteger() && ValueVT.isInteger()) {
191    if (ValueVT.bitsLT(PartEVT)) {
192      // For a truncate, see if we have any information to
193      // indicate whether the truncated bits will always be
194      // zero or sign-extension.
195      if (AssertOp != ISD::DELETED_NODE)
196        Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
197                          DAG.getValueType(ValueVT));
198      return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
199    }
200    return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
201  }
202
203  if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
204    // FP_ROUND's are always exact here.
205    if (ValueVT.bitsLT(Val.getValueType()))
206      return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
207                         DAG.getTargetConstant(1, TLI.getPointerTy()));
208
209    return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
210  }
211
212  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
213    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
214
215  llvm_unreachable("Unknown mismatch!");
216}
217
218static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
219                                              const Twine &ErrMsg) {
220  const Instruction *I = dyn_cast_or_null<Instruction>(V);
221  if (!V)
222    return Ctx.emitError(ErrMsg);
223
224  const char *AsmError = ", possible invalid constraint for vector type";
225  if (const CallInst *CI = dyn_cast<CallInst>(I))
226    if (isa<InlineAsm>(CI->getCalledValue()))
227      return Ctx.emitError(I, ErrMsg + AsmError);
228
229  return Ctx.emitError(I, ErrMsg);
230}
231
232/// getCopyFromPartsVector - Create a value that contains the specified legal
233/// parts combined into the value they represent.  If the parts combine to a
234/// type larger then ValueVT then AssertOp can be used to specify whether the
235/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
236/// ValueVT (ISD::AssertSext).
237static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
238                                      const SDValue *Parts, unsigned NumParts,
239                                      MVT PartVT, EVT ValueVT, const Value *V) {
240  assert(ValueVT.isVector() && "Not a vector value");
241  assert(NumParts > 0 && "No parts to assemble!");
242  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
243  SDValue Val = Parts[0];
244
245  // Handle a multi-element vector.
246  if (NumParts > 1) {
247    EVT IntermediateVT;
248    MVT RegisterVT;
249    unsigned NumIntermediates;
250    unsigned NumRegs =
251    TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
252                               NumIntermediates, RegisterVT);
253    assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
254    NumParts = NumRegs; // Silence a compiler warning.
255    assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
256    assert(RegisterVT == Parts[0].getSimpleValueType() &&
257           "Part type doesn't match part!");
258
259    // Assemble the parts into intermediate operands.
260    SmallVector<SDValue, 8> Ops(NumIntermediates);
261    if (NumIntermediates == NumParts) {
262      // If the register was not expanded, truncate or copy the value,
263      // as appropriate.
264      for (unsigned i = 0; i != NumParts; ++i)
265        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
266                                  PartVT, IntermediateVT, V);
267    } else if (NumParts > 0) {
268      // If the intermediate type was expanded, build the intermediate
269      // operands from the parts.
270      assert(NumParts % NumIntermediates == 0 &&
271             "Must expand into a divisible number of parts!");
272      unsigned Factor = NumParts / NumIntermediates;
273      for (unsigned i = 0; i != NumIntermediates; ++i)
274        Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
275                                  PartVT, IntermediateVT, V);
276    }
277
278    // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
279    // intermediate operands.
280    Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
281                                                : ISD::BUILD_VECTOR,
282                      DL, ValueVT, Ops);
283  }
284
285  // There is now one part, held in Val.  Correct it to match ValueVT.
286  EVT PartEVT = Val.getValueType();
287
288  if (PartEVT == ValueVT)
289    return Val;
290
291  if (PartEVT.isVector()) {
292    // If the element type of the source/dest vectors are the same, but the
293    // parts vector has more elements than the value vector, then we have a
294    // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
295    // elements we want.
296    if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
297      assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
298             "Cannot narrow, it would be a lossy transformation");
299      return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
300                         DAG.getConstant(0, TLI.getVectorIdxTy()));
301    }
302
303    // Vector/Vector bitcast.
304    if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
305      return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306
307    assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
308      "Cannot handle this kind of promotion");
309    // Promoted vector extract
310    bool Smaller = ValueVT.bitsLE(PartEVT);
311    return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
312                       DL, ValueVT, Val);
313
314  }
315
316  // Trivial bitcast if the types are the same size and the destination
317  // vector type is legal.
318  if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
319      TLI.isTypeLegal(ValueVT))
320    return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
321
322  // Handle cases such as i8 -> <1 x i1>
323  if (ValueVT.getVectorNumElements() != 1) {
324    diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
325                                      "non-trivial scalar-to-vector conversion");
326    return DAG.getUNDEF(ValueVT);
327  }
328
329  if (ValueVT.getVectorNumElements() == 1 &&
330      ValueVT.getVectorElementType() != PartEVT) {
331    bool Smaller = ValueVT.bitsLE(PartEVT);
332    Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
333                       DL, ValueVT.getScalarType(), Val);
334  }
335
336  return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
337}
338
339static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
340                                 SDValue Val, SDValue *Parts, unsigned NumParts,
341                                 MVT PartVT, const Value *V);
342
343/// getCopyToParts - Create a series of nodes that contain the specified value
344/// split into legal parts.  If the parts contain more bits than Val, then, for
345/// integers, ExtendKind can be used to specify how to generate the extra bits.
346static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
347                           SDValue Val, SDValue *Parts, unsigned NumParts,
348                           MVT PartVT, const Value *V,
349                           ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
350  EVT ValueVT = Val.getValueType();
351
352  // Handle the vector case separately.
353  if (ValueVT.isVector())
354    return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
355
356  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
357  unsigned PartBits = PartVT.getSizeInBits();
358  unsigned OrigNumParts = NumParts;
359  assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
360
361  if (NumParts == 0)
362    return;
363
364  assert(!ValueVT.isVector() && "Vector case handled elsewhere");
365  EVT PartEVT = PartVT;
366  if (PartEVT == ValueVT) {
367    assert(NumParts == 1 && "No-op copy with multiple parts!");
368    Parts[0] = Val;
369    return;
370  }
371
372  if (NumParts * PartBits > ValueVT.getSizeInBits()) {
373    // If the parts cover more bits than the value has, promote the value.
374    if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
375      assert(NumParts == 1 && "Do not know what to promote to!");
376      Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
377    } else {
378      assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
379             ValueVT.isInteger() &&
380             "Unknown mismatch!");
381      ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
382      Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
383      if (PartVT == MVT::x86mmx)
384        Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
385    }
386  } else if (PartBits == ValueVT.getSizeInBits()) {
387    // Different types of the same size.
388    assert(NumParts == 1 && PartEVT != ValueVT);
389    Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
390  } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
391    // If the parts cover less bits than value has, truncate the value.
392    assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
393           ValueVT.isInteger() &&
394           "Unknown mismatch!");
395    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
396    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
397    if (PartVT == MVT::x86mmx)
398      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
399  }
400
401  // The value may have changed - recompute ValueVT.
402  ValueVT = Val.getValueType();
403  assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
404         "Failed to tile the value with PartVT!");
405
406  if (NumParts == 1) {
407    if (PartEVT != ValueVT)
408      diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
409                                        "scalar-to-vector conversion failed");
410
411    Parts[0] = Val;
412    return;
413  }
414
415  // Expand the value into multiple parts.
416  if (NumParts & (NumParts - 1)) {
417    // The number of parts is not a power of 2.  Split off and copy the tail.
418    assert(PartVT.isInteger() && ValueVT.isInteger() &&
419           "Do not know what to expand to!");
420    unsigned RoundParts = 1 << Log2_32(NumParts);
421    unsigned RoundBits = RoundParts * PartBits;
422    unsigned OddParts = NumParts - RoundParts;
423    SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
424                                 DAG.getIntPtrConstant(RoundBits));
425    getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
426
427    if (TLI.isBigEndian())
428      // The odd parts were reversed by getCopyToParts - unreverse them.
429      std::reverse(Parts + RoundParts, Parts + NumParts);
430
431    NumParts = RoundParts;
432    ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
433    Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
434  }
435
436  // The number of parts is a power of 2.  Repeatedly bisect the value using
437  // EXTRACT_ELEMENT.
438  Parts[0] = DAG.getNode(ISD::BITCAST, DL,
439                         EVT::getIntegerVT(*DAG.getContext(),
440                                           ValueVT.getSizeInBits()),
441                         Val);
442
443  for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
444    for (unsigned i = 0; i < NumParts; i += StepSize) {
445      unsigned ThisBits = StepSize * PartBits / 2;
446      EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
447      SDValue &Part0 = Parts[i];
448      SDValue &Part1 = Parts[i+StepSize/2];
449
450      Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
451                          ThisVT, Part0, DAG.getIntPtrConstant(1));
452      Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
453                          ThisVT, Part0, DAG.getIntPtrConstant(0));
454
455      if (ThisBits == PartBits && ThisVT != PartVT) {
456        Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
457        Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
458      }
459    }
460  }
461
462  if (TLI.isBigEndian())
463    std::reverse(Parts, Parts + OrigNumParts);
464}
465
466
467/// getCopyToPartsVector - Create a series of nodes that contain the specified
468/// value split into legal parts.
469static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
470                                 SDValue Val, SDValue *Parts, unsigned NumParts,
471                                 MVT PartVT, const Value *V) {
472  EVT ValueVT = Val.getValueType();
473  assert(ValueVT.isVector() && "Not a vector");
474  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
475
476  if (NumParts == 1) {
477    EVT PartEVT = PartVT;
478    if (PartEVT == ValueVT) {
479      // Nothing to do.
480    } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
481      // Bitconvert vector->vector case.
482      Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
483    } else if (PartVT.isVector() &&
484               PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
485               PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
486      EVT ElementVT = PartVT.getVectorElementType();
487      // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
488      // undef elements.
489      SmallVector<SDValue, 16> Ops;
490      for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
491        Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
492                                  ElementVT, Val, DAG.getConstant(i,
493                                                  TLI.getVectorIdxTy())));
494
495      for (unsigned i = ValueVT.getVectorNumElements(),
496           e = PartVT.getVectorNumElements(); i != e; ++i)
497        Ops.push_back(DAG.getUNDEF(ElementVT));
498
499      Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
500
501      // FIXME: Use CONCAT for 2x -> 4x.
502
503      //SDValue UndefElts = DAG.getUNDEF(VectorTy);
504      //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
505    } else if (PartVT.isVector() &&
506               PartEVT.getVectorElementType().bitsGE(
507                 ValueVT.getVectorElementType()) &&
508               PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
509
510      // Promoted vector extract
511      bool Smaller = PartEVT.bitsLE(ValueVT);
512      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
513                        DL, PartVT, Val);
514    } else{
515      // Vector -> scalar conversion.
516      assert(ValueVT.getVectorNumElements() == 1 &&
517             "Only trivial vector-to-scalar conversions should get here!");
518      Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
519                        PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
520
521      bool Smaller = ValueVT.bitsLE(PartVT);
522      Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
523                         DL, PartVT, Val);
524    }
525
526    Parts[0] = Val;
527    return;
528  }
529
530  // Handle a multi-element vector.
531  EVT IntermediateVT;
532  MVT RegisterVT;
533  unsigned NumIntermediates;
534  unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
535                                                IntermediateVT,
536                                                NumIntermediates, RegisterVT);
537  unsigned NumElements = ValueVT.getVectorNumElements();
538
539  assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
540  NumParts = NumRegs; // Silence a compiler warning.
541  assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
542
543  // Split the vector into intermediate operands.
544  SmallVector<SDValue, 8> Ops(NumIntermediates);
545  for (unsigned i = 0; i != NumIntermediates; ++i) {
546    if (IntermediateVT.isVector())
547      Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
548                           IntermediateVT, Val,
549                   DAG.getConstant(i * (NumElements / NumIntermediates),
550                                   TLI.getVectorIdxTy()));
551    else
552      Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
553                           IntermediateVT, Val,
554                           DAG.getConstant(i, TLI.getVectorIdxTy()));
555  }
556
557  // Split the intermediate operands into legal parts.
558  if (NumParts == NumIntermediates) {
559    // If the register was not expanded, promote or copy the value,
560    // as appropriate.
561    for (unsigned i = 0; i != NumParts; ++i)
562      getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
563  } else if (NumParts > 0) {
564    // If the intermediate type was expanded, split each the value into
565    // legal parts.
566    assert(NumParts % NumIntermediates == 0 &&
567           "Must expand into a divisible number of parts!");
568    unsigned Factor = NumParts / NumIntermediates;
569    for (unsigned i = 0; i != NumIntermediates; ++i)
570      getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
571  }
572}
573
574namespace {
575  /// RegsForValue - This struct represents the registers (physical or virtual)
576  /// that a particular set of values is assigned, and the type information
577  /// about the value. The most common situation is to represent one value at a
578  /// time, but struct or array values are handled element-wise as multiple
579  /// values.  The splitting of aggregates is performed recursively, so that we
580  /// never have aggregate-typed registers. The values at this point do not
581  /// necessarily have legal types, so each value may require one or more
582  /// registers of some legal type.
583  ///
584  struct RegsForValue {
585    /// ValueVTs - The value types of the values, which may not be legal, and
586    /// may need be promoted or synthesized from one or more registers.
587    ///
588    SmallVector<EVT, 4> ValueVTs;
589
590    /// RegVTs - The value types of the registers. This is the same size as
591    /// ValueVTs and it records, for each value, what the type of the assigned
592    /// register or registers are. (Individual values are never synthesized
593    /// from more than one type of register.)
594    ///
595    /// With virtual registers, the contents of RegVTs is redundant with TLI's
596    /// getRegisterType member function, however when with physical registers
597    /// it is necessary to have a separate record of the types.
598    ///
599    SmallVector<MVT, 4> RegVTs;
600
601    /// Regs - This list holds the registers assigned to the values.
602    /// Each legal or promoted value requires one register, and each
603    /// expanded value requires multiple registers.
604    ///
605    SmallVector<unsigned, 4> Regs;
606
607    RegsForValue() {}
608
609    RegsForValue(const SmallVector<unsigned, 4> &regs,
610                 MVT regvt, EVT valuevt)
611      : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
612
613    RegsForValue(LLVMContext &Context, const TargetLowering &tli,
614                 unsigned Reg, Type *Ty) {
615      ComputeValueVTs(tli, Ty, ValueVTs);
616
617      for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
618        EVT ValueVT = ValueVTs[Value];
619        unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
620        MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
621        for (unsigned i = 0; i != NumRegs; ++i)
622          Regs.push_back(Reg + i);
623        RegVTs.push_back(RegisterVT);
624        Reg += NumRegs;
625      }
626    }
627
628    /// append - Add the specified values to this one.
629    void append(const RegsForValue &RHS) {
630      ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
631      RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
632      Regs.append(RHS.Regs.begin(), RHS.Regs.end());
633    }
634
635    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
636    /// this value and returns the result as a ValueVTs value.  This uses
637    /// Chain/Flag as the input and updates them for the output Chain/Flag.
638    /// If the Flag pointer is NULL, no flag is used.
639    SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
640                            SDLoc dl,
641                            SDValue &Chain, SDValue *Flag,
642                            const Value *V = nullptr) const;
643
644    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
645    /// specified value into the registers specified by this object.  This uses
646    /// Chain/Flag as the input and updates them for the output Chain/Flag.
647    /// If the Flag pointer is NULL, no flag is used.
648    void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
649                       SDValue &Chain, SDValue *Flag, const Value *V) const;
650
651    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
652    /// operand list.  This adds the code marker, matching input operand index
653    /// (if applicable), and includes the number of values added into it.
654    void AddInlineAsmOperands(unsigned Kind,
655                              bool HasMatching, unsigned MatchingIdx,
656                              SelectionDAG &DAG,
657                              std::vector<SDValue> &Ops) const;
658  };
659}
660
661/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
662/// this value and returns the result as a ValueVT value.  This uses
663/// Chain/Flag as the input and updates them for the output Chain/Flag.
664/// If the Flag pointer is NULL, no flag is used.
665SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
666                                      FunctionLoweringInfo &FuncInfo,
667                                      SDLoc dl,
668                                      SDValue &Chain, SDValue *Flag,
669                                      const Value *V) const {
670  // A Value with type {} or [0 x %t] needs no registers.
671  if (ValueVTs.empty())
672    return SDValue();
673
674  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
675
676  // Assemble the legal parts into the final values.
677  SmallVector<SDValue, 4> Values(ValueVTs.size());
678  SmallVector<SDValue, 8> Parts;
679  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
680    // Copy the legal parts from the registers.
681    EVT ValueVT = ValueVTs[Value];
682    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
683    MVT RegisterVT = RegVTs[Value];
684
685    Parts.resize(NumRegs);
686    for (unsigned i = 0; i != NumRegs; ++i) {
687      SDValue P;
688      if (!Flag) {
689        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
690      } else {
691        P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
692        *Flag = P.getValue(2);
693      }
694
695      Chain = P.getValue(1);
696      Parts[i] = P;
697
698      // If the source register was virtual and if we know something about it,
699      // add an assert node.
700      if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
701          !RegisterVT.isInteger() || RegisterVT.isVector())
702        continue;
703
704      const FunctionLoweringInfo::LiveOutInfo *LOI =
705        FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
706      if (!LOI)
707        continue;
708
709      unsigned RegSize = RegisterVT.getSizeInBits();
710      unsigned NumSignBits = LOI->NumSignBits;
711      unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
712
713      if (NumZeroBits == RegSize) {
714        // The current value is a zero.
715        // Explicitly express that as it would be easier for
716        // optimizations to kick in.
717        Parts[i] = DAG.getConstant(0, RegisterVT);
718        continue;
719      }
720
721      // FIXME: We capture more information than the dag can represent.  For
722      // now, just use the tightest assertzext/assertsext possible.
723      bool isSExt = true;
724      EVT FromVT(MVT::Other);
725      if (NumSignBits == RegSize)
726        isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
727      else if (NumZeroBits >= RegSize-1)
728        isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
729      else if (NumSignBits > RegSize-8)
730        isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
731      else if (NumZeroBits >= RegSize-8)
732        isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
733      else if (NumSignBits > RegSize-16)
734        isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
735      else if (NumZeroBits >= RegSize-16)
736        isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
737      else if (NumSignBits > RegSize-32)
738        isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
739      else if (NumZeroBits >= RegSize-32)
740        isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
741      else
742        continue;
743
744      // Add an assertion node.
745      assert(FromVT != MVT::Other);
746      Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
747                             RegisterVT, P, DAG.getValueType(FromVT));
748    }
749
750    Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
751                                     NumRegs, RegisterVT, ValueVT, V);
752    Part += NumRegs;
753    Parts.clear();
754  }
755
756  return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
757}
758
759/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
760/// specified value into the registers specified by this object.  This uses
761/// Chain/Flag as the input and updates them for the output Chain/Flag.
762/// If the Flag pointer is NULL, no flag is used.
763void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
764                                 SDValue &Chain, SDValue *Flag,
765                                 const Value *V) const {
766  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
767
768  // Get the list of the values's legal parts.
769  unsigned NumRegs = Regs.size();
770  SmallVector<SDValue, 8> Parts(NumRegs);
771  for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
772    EVT ValueVT = ValueVTs[Value];
773    unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
774    MVT RegisterVT = RegVTs[Value];
775    ISD::NodeType ExtendKind =
776      TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
777
778    getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
779                   &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
780    Part += NumParts;
781  }
782
783  // Copy the parts into the registers.
784  SmallVector<SDValue, 8> Chains(NumRegs);
785  for (unsigned i = 0; i != NumRegs; ++i) {
786    SDValue Part;
787    if (!Flag) {
788      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
789    } else {
790      Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
791      *Flag = Part.getValue(1);
792    }
793
794    Chains[i] = Part.getValue(0);
795  }
796
797  if (NumRegs == 1 || Flag)
798    // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
799    // flagged to it. That is the CopyToReg nodes and the user are considered
800    // a single scheduling unit. If we create a TokenFactor and return it as
801    // chain, then the TokenFactor is both a predecessor (operand) of the
802    // user as well as a successor (the TF operands are flagged to the user).
803    // c1, f1 = CopyToReg
804    // c2, f2 = CopyToReg
805    // c3     = TokenFactor c1, c2
806    // ...
807    //        = op c3, ..., f2
808    Chain = Chains[NumRegs-1];
809  else
810    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
811}
812
813/// AddInlineAsmOperands - Add this value to the specified inlineasm node
814/// operand list.  This adds the code marker and includes the number of
815/// values added into it.
816void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
817                                        unsigned MatchingIdx,
818                                        SelectionDAG &DAG,
819                                        std::vector<SDValue> &Ops) const {
820  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
821
822  unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
823  if (HasMatching)
824    Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
825  else if (!Regs.empty() &&
826           TargetRegisterInfo::isVirtualRegister(Regs.front())) {
827    // Put the register class of the virtual registers in the flag word.  That
828    // way, later passes can recompute register class constraints for inline
829    // assembly as well as normal instructions.
830    // Don't do this for tied operands that can use the regclass information
831    // from the def.
832    const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
833    const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
834    Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
835  }
836
837  SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
838  Ops.push_back(Res);
839
840  unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
841  for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
842    unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
843    MVT RegisterVT = RegVTs[Value];
844    for (unsigned i = 0; i != NumRegs; ++i) {
845      assert(Reg < Regs.size() && "Mismatch in # registers expected");
846      unsigned TheReg = Regs[Reg++];
847      Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
848
849      if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
850        // If we clobbered the stack pointer, MFI should know about it.
851        assert(DAG.getMachineFunction().getFrameInfo()->
852            hasInlineAsmWithSPAdjust());
853      }
854    }
855  }
856}
857
858void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
859                               const TargetLibraryInfo *li) {
860  AA = &aa;
861  GFI = gfi;
862  LibInfo = li;
863  DL = DAG.getTarget().getDataLayout();
864  Context = DAG.getContext();
865  LPadToCallSiteMap.clear();
866}
867
868/// clear - Clear out the current SelectionDAG and the associated
869/// state and prepare this SelectionDAGBuilder object to be used
870/// for a new block. This doesn't clear out information about
871/// additional blocks that are needed to complete switch lowering
872/// or PHI node updating; that information is cleared out as it is
873/// consumed.
874void SelectionDAGBuilder::clear() {
875  NodeMap.clear();
876  UnusedArgNodeMap.clear();
877  PendingLoads.clear();
878  PendingExports.clear();
879  CurInst = nullptr;
880  HasTailCall = false;
881  SDNodeOrder = LowestSDNodeOrder;
882}
883
884/// clearDanglingDebugInfo - Clear the dangling debug information
885/// map. This function is separated from the clear so that debug
886/// information that is dangling in a basic block can be properly
887/// resolved in a different basic block. This allows the
888/// SelectionDAG to resolve dangling debug information attached
889/// to PHI nodes.
890void SelectionDAGBuilder::clearDanglingDebugInfo() {
891  DanglingDebugInfoMap.clear();
892}
893
894/// getRoot - Return the current virtual root of the Selection DAG,
895/// flushing any PendingLoad items. This must be done before emitting
896/// a store or any other node that may need to be ordered after any
897/// prior load instructions.
898///
899SDValue SelectionDAGBuilder::getRoot() {
900  if (PendingLoads.empty())
901    return DAG.getRoot();
902
903  if (PendingLoads.size() == 1) {
904    SDValue Root = PendingLoads[0];
905    DAG.setRoot(Root);
906    PendingLoads.clear();
907    return Root;
908  }
909
910  // Otherwise, we have to make a token factor node.
911  SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
912                             PendingLoads);
913  PendingLoads.clear();
914  DAG.setRoot(Root);
915  return Root;
916}
917
918/// getControlRoot - Similar to getRoot, but instead of flushing all the
919/// PendingLoad items, flush all the PendingExports items. It is necessary
920/// to do this before emitting a terminator instruction.
921///
922SDValue SelectionDAGBuilder::getControlRoot() {
923  SDValue Root = DAG.getRoot();
924
925  if (PendingExports.empty())
926    return Root;
927
928  // Turn all of the CopyToReg chains into one factored node.
929  if (Root.getOpcode() != ISD::EntryToken) {
930    unsigned i = 0, e = PendingExports.size();
931    for (; i != e; ++i) {
932      assert(PendingExports[i].getNode()->getNumOperands() > 1);
933      if (PendingExports[i].getNode()->getOperand(0) == Root)
934        break;  // Don't add the root if we already indirectly depend on it.
935    }
936
937    if (i == e)
938      PendingExports.push_back(Root);
939  }
940
941  Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
942                     PendingExports);
943  PendingExports.clear();
944  DAG.setRoot(Root);
945  return Root;
946}
947
948void SelectionDAGBuilder::visit(const Instruction &I) {
949  // Set up outgoing PHI node register values before emitting the terminator.
950  if (isa<TerminatorInst>(&I))
951    HandlePHINodesInSuccessorBlocks(I.getParent());
952
953  ++SDNodeOrder;
954
955  CurInst = &I;
956
957  visit(I.getOpcode(), I);
958
959  if (!isa<TerminatorInst>(&I) && !HasTailCall)
960    CopyToExportRegsIfNeeded(&I);
961
962  CurInst = nullptr;
963}
964
965void SelectionDAGBuilder::visitPHI(const PHINode &) {
966  llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
967}
968
969void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
970  // Note: this doesn't use InstVisitor, because it has to work with
971  // ConstantExpr's in addition to instructions.
972  switch (Opcode) {
973  default: llvm_unreachable("Unknown instruction type encountered!");
974    // Build the switch statement using the Instruction.def file.
975#define HANDLE_INST(NUM, OPCODE, CLASS) \
976    case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
977#include "llvm/IR/Instruction.def"
978  }
979}
980
981// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
982// generate the debug data structures now that we've seen its definition.
983void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
984                                                   SDValue Val) {
985  DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
986  if (DDI.getDI()) {
987    const DbgValueInst *DI = DDI.getDI();
988    DebugLoc dl = DDI.getdl();
989    unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
990    MDNode *Variable = DI->getVariable();
991    uint64_t Offset = DI->getOffset();
992    // A dbg.value for an alloca is always indirect.
993    bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
994    SDDbgValue *SDV;
995    if (Val.getNode()) {
996      if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, Val)) {
997        SDV = DAG.getDbgValue(Variable, Val.getNode(),
998                              Val.getResNo(), IsIndirect,
999			      Offset, dl, DbgSDNodeOrder);
1000        DAG.AddDbgValue(SDV, Val.getNode(), false);
1001      }
1002    } else
1003      DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1004    DanglingDebugInfoMap[V] = DanglingDebugInfo();
1005  }
1006}
1007
1008/// getValue - Return an SDValue for the given Value.
1009SDValue SelectionDAGBuilder::getValue(const Value *V) {
1010  // If we already have an SDValue for this value, use it. It's important
1011  // to do this first, so that we don't create a CopyFromReg if we already
1012  // have a regular SDValue.
1013  SDValue &N = NodeMap[V];
1014  if (N.getNode()) return N;
1015
1016  // If there's a virtual register allocated and initialized for this
1017  // value, use it.
1018  DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1019  if (It != FuncInfo.ValueMap.end()) {
1020    unsigned InReg = It->second;
1021    RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1022                     InReg, V->getType());
1023    SDValue Chain = DAG.getEntryNode();
1024    N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1025    resolveDanglingDebugInfo(V, N);
1026    return N;
1027  }
1028
1029  // Otherwise create a new SDValue and remember it.
1030  SDValue Val = getValueImpl(V);
1031  NodeMap[V] = Val;
1032  resolveDanglingDebugInfo(V, Val);
1033  return Val;
1034}
1035
1036/// getNonRegisterValue - Return an SDValue for the given Value, but
1037/// don't look in FuncInfo.ValueMap for a virtual register.
1038SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1039  // If we already have an SDValue for this value, use it.
1040  SDValue &N = NodeMap[V];
1041  if (N.getNode()) return N;
1042
1043  // Otherwise create a new SDValue and remember it.
1044  SDValue Val = getValueImpl(V);
1045  NodeMap[V] = Val;
1046  resolveDanglingDebugInfo(V, Val);
1047  return Val;
1048}
1049
1050/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1051/// Create an SDValue for the given value.
1052SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1053  const TargetLowering *TLI = TM.getTargetLowering();
1054
1055  if (const Constant *C = dyn_cast<Constant>(V)) {
1056    EVT VT = TLI->getValueType(V->getType(), true);
1057
1058    if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1059      return DAG.getConstant(*CI, VT);
1060
1061    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1062      return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1063
1064    if (isa<ConstantPointerNull>(C)) {
1065      unsigned AS = V->getType()->getPointerAddressSpace();
1066      return DAG.getConstant(0, TLI->getPointerTy(AS));
1067    }
1068
1069    if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1070      return DAG.getConstantFP(*CFP, VT);
1071
1072    if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1073      return DAG.getUNDEF(VT);
1074
1075    if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1076      visit(CE->getOpcode(), *CE);
1077      SDValue N1 = NodeMap[V];
1078      assert(N1.getNode() && "visit didn't populate the NodeMap!");
1079      return N1;
1080    }
1081
1082    if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1083      SmallVector<SDValue, 4> Constants;
1084      for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1085           OI != OE; ++OI) {
1086        SDNode *Val = getValue(*OI).getNode();
1087        // If the operand is an empty aggregate, there are no values.
1088        if (!Val) continue;
1089        // Add each leaf value from the operand to the Constants list
1090        // to form a flattened list of all the values.
1091        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1092          Constants.push_back(SDValue(Val, i));
1093      }
1094
1095      return DAG.getMergeValues(Constants, getCurSDLoc());
1096    }
1097
1098    if (const ConstantDataSequential *CDS =
1099          dyn_cast<ConstantDataSequential>(C)) {
1100      SmallVector<SDValue, 4> Ops;
1101      for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1102        SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1103        // Add each leaf value from the operand to the Constants list
1104        // to form a flattened list of all the values.
1105        for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1106          Ops.push_back(SDValue(Val, i));
1107      }
1108
1109      if (isa<ArrayType>(CDS->getType()))
1110        return DAG.getMergeValues(Ops, getCurSDLoc());
1111      return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1112                                      VT, Ops);
1113    }
1114
1115    if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1116      assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1117             "Unknown struct or array constant!");
1118
1119      SmallVector<EVT, 4> ValueVTs;
1120      ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1121      unsigned NumElts = ValueVTs.size();
1122      if (NumElts == 0)
1123        return SDValue(); // empty struct
1124      SmallVector<SDValue, 4> Constants(NumElts);
1125      for (unsigned i = 0; i != NumElts; ++i) {
1126        EVT EltVT = ValueVTs[i];
1127        if (isa<UndefValue>(C))
1128          Constants[i] = DAG.getUNDEF(EltVT);
1129        else if (EltVT.isFloatingPoint())
1130          Constants[i] = DAG.getConstantFP(0, EltVT);
1131        else
1132          Constants[i] = DAG.getConstant(0, EltVT);
1133      }
1134
1135      return DAG.getMergeValues(Constants, getCurSDLoc());
1136    }
1137
1138    if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1139      return DAG.getBlockAddress(BA, VT);
1140
1141    VectorType *VecTy = cast<VectorType>(V->getType());
1142    unsigned NumElements = VecTy->getNumElements();
1143
1144    // Now that we know the number and type of the elements, get that number of
1145    // elements into the Ops array based on what kind of constant it is.
1146    SmallVector<SDValue, 16> Ops;
1147    if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1148      for (unsigned i = 0; i != NumElements; ++i)
1149        Ops.push_back(getValue(CV->getOperand(i)));
1150    } else {
1151      assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1152      EVT EltVT = TLI->getValueType(VecTy->getElementType());
1153
1154      SDValue Op;
1155      if (EltVT.isFloatingPoint())
1156        Op = DAG.getConstantFP(0, EltVT);
1157      else
1158        Op = DAG.getConstant(0, EltVT);
1159      Ops.assign(NumElements, Op);
1160    }
1161
1162    // Create a BUILD_VECTOR node.
1163    return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1164  }
1165
1166  // If this is a static alloca, generate it as the frameindex instead of
1167  // computation.
1168  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1169    DenseMap<const AllocaInst*, int>::iterator SI =
1170      FuncInfo.StaticAllocaMap.find(AI);
1171    if (SI != FuncInfo.StaticAllocaMap.end())
1172      return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1173  }
1174
1175  // If this is an instruction which fast-isel has deferred, select it now.
1176  if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1177    unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1178    RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1179    SDValue Chain = DAG.getEntryNode();
1180    return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1181  }
1182
1183  llvm_unreachable("Can't get register for value!");
1184}
1185
1186void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1187  const TargetLowering *TLI = TM.getTargetLowering();
1188  SDValue Chain = getControlRoot();
1189  SmallVector<ISD::OutputArg, 8> Outs;
1190  SmallVector<SDValue, 8> OutVals;
1191
1192  if (!FuncInfo.CanLowerReturn) {
1193    unsigned DemoteReg = FuncInfo.DemoteRegister;
1194    const Function *F = I.getParent()->getParent();
1195
1196    // Emit a store of the return value through the virtual register.
1197    // Leave Outs empty so that LowerReturn won't try to load return
1198    // registers the usual way.
1199    SmallVector<EVT, 1> PtrValueVTs;
1200    ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1201                    PtrValueVTs);
1202
1203    SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1204    SDValue RetOp = getValue(I.getOperand(0));
1205
1206    SmallVector<EVT, 4> ValueVTs;
1207    SmallVector<uint64_t, 4> Offsets;
1208    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1209    unsigned NumValues = ValueVTs.size();
1210
1211    SmallVector<SDValue, 4> Chains(NumValues);
1212    for (unsigned i = 0; i != NumValues; ++i) {
1213      SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1214                                RetPtr.getValueType(), RetPtr,
1215                                DAG.getIntPtrConstant(Offsets[i]));
1216      Chains[i] =
1217        DAG.getStore(Chain, getCurSDLoc(),
1218                     SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1219                     // FIXME: better loc info would be nice.
1220                     Add, MachinePointerInfo(), false, false, 0);
1221    }
1222
1223    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1224                        MVT::Other, Chains);
1225  } else if (I.getNumOperands() != 0) {
1226    SmallVector<EVT, 4> ValueVTs;
1227    ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1228    unsigned NumValues = ValueVTs.size();
1229    if (NumValues) {
1230      SDValue RetOp = getValue(I.getOperand(0));
1231      for (unsigned j = 0, f = NumValues; j != f; ++j) {
1232        EVT VT = ValueVTs[j];
1233
1234        ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1235
1236        const Function *F = I.getParent()->getParent();
1237        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1238                                            Attribute::SExt))
1239          ExtendKind = ISD::SIGN_EXTEND;
1240        else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1241                                                 Attribute::ZExt))
1242          ExtendKind = ISD::ZERO_EXTEND;
1243
1244        if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1245          VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1246
1247        unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1248        MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1249        SmallVector<SDValue, 4> Parts(NumParts);
1250        getCopyToParts(DAG, getCurSDLoc(),
1251                       SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1252                       &Parts[0], NumParts, PartVT, &I, ExtendKind);
1253
1254        // 'inreg' on function refers to return value
1255        ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1256        if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1257                                            Attribute::InReg))
1258          Flags.setInReg();
1259
1260        // Propagate extension type if any
1261        if (ExtendKind == ISD::SIGN_EXTEND)
1262          Flags.setSExt();
1263        else if (ExtendKind == ISD::ZERO_EXTEND)
1264          Flags.setZExt();
1265
1266        for (unsigned i = 0; i < NumParts; ++i) {
1267          Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1268                                        VT, /*isfixed=*/true, 0, 0));
1269          OutVals.push_back(Parts[i]);
1270        }
1271      }
1272    }
1273  }
1274
1275  bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1276  CallingConv::ID CallConv =
1277    DAG.getMachineFunction().getFunction()->getCallingConv();
1278  Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1279                                              Outs, OutVals, getCurSDLoc(),
1280                                              DAG);
1281
1282  // Verify that the target's LowerReturn behaved as expected.
1283  assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1284         "LowerReturn didn't return a valid chain!");
1285
1286  // Update the DAG with the new chain value resulting from return lowering.
1287  DAG.setRoot(Chain);
1288}
1289
1290/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1291/// created for it, emit nodes to copy the value into the virtual
1292/// registers.
1293void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1294  // Skip empty types
1295  if (V->getType()->isEmptyTy())
1296    return;
1297
1298  DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1299  if (VMI != FuncInfo.ValueMap.end()) {
1300    assert(!V->use_empty() && "Unused value assigned virtual registers!");
1301    CopyValueToVirtualRegister(V, VMI->second);
1302  }
1303}
1304
1305/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1306/// the current basic block, add it to ValueMap now so that we'll get a
1307/// CopyTo/FromReg.
1308void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1309  // No need to export constants.
1310  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1311
1312  // Already exported?
1313  if (FuncInfo.isExportedInst(V)) return;
1314
1315  unsigned Reg = FuncInfo.InitializeRegForValue(V);
1316  CopyValueToVirtualRegister(V, Reg);
1317}
1318
1319bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1320                                                     const BasicBlock *FromBB) {
1321  // The operands of the setcc have to be in this block.  We don't know
1322  // how to export them from some other block.
1323  if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1324    // Can export from current BB.
1325    if (VI->getParent() == FromBB)
1326      return true;
1327
1328    // Is already exported, noop.
1329    return FuncInfo.isExportedInst(V);
1330  }
1331
1332  // If this is an argument, we can export it if the BB is the entry block or
1333  // if it is already exported.
1334  if (isa<Argument>(V)) {
1335    if (FromBB == &FromBB->getParent()->getEntryBlock())
1336      return true;
1337
1338    // Otherwise, can only export this if it is already exported.
1339    return FuncInfo.isExportedInst(V);
1340  }
1341
1342  // Otherwise, constants can always be exported.
1343  return true;
1344}
1345
1346/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1347uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1348                                            const MachineBasicBlock *Dst) const {
1349  BranchProbabilityInfo *BPI = FuncInfo.BPI;
1350  if (!BPI)
1351    return 0;
1352  const BasicBlock *SrcBB = Src->getBasicBlock();
1353  const BasicBlock *DstBB = Dst->getBasicBlock();
1354  return BPI->getEdgeWeight(SrcBB, DstBB);
1355}
1356
1357void SelectionDAGBuilder::
1358addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1359                       uint32_t Weight /* = 0 */) {
1360  if (!Weight)
1361    Weight = getEdgeWeight(Src, Dst);
1362  Src->addSuccessor(Dst, Weight);
1363}
1364
1365
1366static bool InBlock(const Value *V, const BasicBlock *BB) {
1367  if (const Instruction *I = dyn_cast<Instruction>(V))
1368    return I->getParent() == BB;
1369  return true;
1370}
1371
1372/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1373/// This function emits a branch and is used at the leaves of an OR or an
1374/// AND operator tree.
1375///
1376void
1377SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1378                                                  MachineBasicBlock *TBB,
1379                                                  MachineBasicBlock *FBB,
1380                                                  MachineBasicBlock *CurBB,
1381                                                  MachineBasicBlock *SwitchBB,
1382                                                  uint32_t TWeight,
1383                                                  uint32_t FWeight) {
1384  const BasicBlock *BB = CurBB->getBasicBlock();
1385
1386  // If the leaf of the tree is a comparison, merge the condition into
1387  // the caseblock.
1388  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1389    // The operands of the cmp have to be in this block.  We don't know
1390    // how to export them from some other block.  If this is the first block
1391    // of the sequence, no exporting is needed.
1392    if (CurBB == SwitchBB ||
1393        (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1394         isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1395      ISD::CondCode Condition;
1396      if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1397        Condition = getICmpCondCode(IC->getPredicate());
1398      } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1399        Condition = getFCmpCondCode(FC->getPredicate());
1400        if (TM.Options.NoNaNsFPMath)
1401          Condition = getFCmpCodeWithoutNaN(Condition);
1402      } else {
1403        Condition = ISD::SETEQ; // silence warning.
1404        llvm_unreachable("Unknown compare instruction");
1405      }
1406
1407      CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1408                   TBB, FBB, CurBB, TWeight, FWeight);
1409      SwitchCases.push_back(CB);
1410      return;
1411    }
1412  }
1413
1414  // Create a CaseBlock record representing this branch.
1415  CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1416               nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1417  SwitchCases.push_back(CB);
1418}
1419
1420/// Scale down both weights to fit into uint32_t.
1421static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1422  uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1423  uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1424  NewTrue = NewTrue / Scale;
1425  NewFalse = NewFalse / Scale;
1426}
1427
1428/// FindMergedConditions - If Cond is an expression like
1429void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1430                                               MachineBasicBlock *TBB,
1431                                               MachineBasicBlock *FBB,
1432                                               MachineBasicBlock *CurBB,
1433                                               MachineBasicBlock *SwitchBB,
1434                                               unsigned Opc, uint32_t TWeight,
1435                                               uint32_t FWeight) {
1436  // If this node is not part of the or/and tree, emit it as a branch.
1437  const Instruction *BOp = dyn_cast<Instruction>(Cond);
1438  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1439      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1440      BOp->getParent() != CurBB->getBasicBlock() ||
1441      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1442      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1443    EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1444                                 TWeight, FWeight);
1445    return;
1446  }
1447
1448  //  Create TmpBB after CurBB.
1449  MachineFunction::iterator BBI = CurBB;
1450  MachineFunction &MF = DAG.getMachineFunction();
1451  MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1452  CurBB->getParent()->insert(++BBI, TmpBB);
1453
1454  if (Opc == Instruction::Or) {
1455    // Codegen X | Y as:
1456    // BB1:
1457    //   jmp_if_X TBB
1458    //   jmp TmpBB
1459    // TmpBB:
1460    //   jmp_if_Y TBB
1461    //   jmp FBB
1462    //
1463
1464    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1465    // The requirement is that
1466    //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1467    //     = TrueProb for orignal BB.
1468    // Assuming the orignal weights are A and B, one choice is to set BB1's
1469    // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1470    // assumes that
1471    //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1472    // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1473    // TmpBB, but the math is more complicated.
1474
1475    uint64_t NewTrueWeight = TWeight;
1476    uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1477    ScaleWeights(NewTrueWeight, NewFalseWeight);
1478    // Emit the LHS condition.
1479    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1480                         NewTrueWeight, NewFalseWeight);
1481
1482    NewTrueWeight = TWeight;
1483    NewFalseWeight = 2 * (uint64_t)FWeight;
1484    ScaleWeights(NewTrueWeight, NewFalseWeight);
1485    // Emit the RHS condition into TmpBB.
1486    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1487                         NewTrueWeight, NewFalseWeight);
1488  } else {
1489    assert(Opc == Instruction::And && "Unknown merge op!");
1490    // Codegen X & Y as:
1491    // BB1:
1492    //   jmp_if_X TmpBB
1493    //   jmp FBB
1494    // TmpBB:
1495    //   jmp_if_Y TBB
1496    //   jmp FBB
1497    //
1498    //  This requires creation of TmpBB after CurBB.
1499
1500    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1501    // The requirement is that
1502    //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1503    //     = FalseProb for orignal BB.
1504    // Assuming the orignal weights are A and B, one choice is to set BB1's
1505    // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1506    // assumes that
1507    //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1508
1509    uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1510    uint64_t NewFalseWeight = FWeight;
1511    ScaleWeights(NewTrueWeight, NewFalseWeight);
1512    // Emit the LHS condition.
1513    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1514                         NewTrueWeight, NewFalseWeight);
1515
1516    NewTrueWeight = 2 * (uint64_t)TWeight;
1517    NewFalseWeight = FWeight;
1518    ScaleWeights(NewTrueWeight, NewFalseWeight);
1519    // Emit the RHS condition into TmpBB.
1520    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1521                         NewTrueWeight, NewFalseWeight);
1522  }
1523}
1524
1525/// If the set of cases should be emitted as a series of branches, return true.
1526/// If we should emit this as a bunch of and/or'd together conditions, return
1527/// false.
1528bool
1529SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1530  if (Cases.size() != 2) return true;
1531
1532  // If this is two comparisons of the same values or'd or and'd together, they
1533  // will get folded into a single comparison, so don't emit two blocks.
1534  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1535       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1536      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1537       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1538    return false;
1539  }
1540
1541  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1542  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1543  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1544      Cases[0].CC == Cases[1].CC &&
1545      isa<Constant>(Cases[0].CmpRHS) &&
1546      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1547    if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1548      return false;
1549    if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1550      return false;
1551  }
1552
1553  return true;
1554}
1555
1556void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1557  MachineBasicBlock *BrMBB = FuncInfo.MBB;
1558
1559  // Update machine-CFG edges.
1560  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1561
1562  // Figure out which block is immediately after the current one.
1563  MachineBasicBlock *NextBlock = nullptr;
1564  MachineFunction::iterator BBI = BrMBB;
1565  if (++BBI != FuncInfo.MF->end())
1566    NextBlock = BBI;
1567
1568  if (I.isUnconditional()) {
1569    // Update machine-CFG edges.
1570    BrMBB->addSuccessor(Succ0MBB);
1571
1572    // If this is not a fall-through branch or optimizations are switched off,
1573    // emit the branch.
1574    if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None)
1575      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1576                              MVT::Other, getControlRoot(),
1577                              DAG.getBasicBlock(Succ0MBB)));
1578
1579    return;
1580  }
1581
1582  // If this condition is one of the special cases we handle, do special stuff
1583  // now.
1584  const Value *CondVal = I.getCondition();
1585  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1586
1587  // If this is a series of conditions that are or'd or and'd together, emit
1588  // this as a sequence of branches instead of setcc's with and/or operations.
1589  // As long as jumps are not expensive, this should improve performance.
1590  // For example, instead of something like:
1591  //     cmp A, B
1592  //     C = seteq
1593  //     cmp D, E
1594  //     F = setle
1595  //     or C, F
1596  //     jnz foo
1597  // Emit:
1598  //     cmp A, B
1599  //     je foo
1600  //     cmp D, E
1601  //     jle foo
1602  //
1603  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1604    if (!TM.getTargetLowering()->isJumpExpensive() &&
1605        BOp->hasOneUse() &&
1606        (BOp->getOpcode() == Instruction::And ||
1607         BOp->getOpcode() == Instruction::Or)) {
1608      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1609                           BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1610                           getEdgeWeight(BrMBB, Succ1MBB));
1611      // If the compares in later blocks need to use values not currently
1612      // exported from this block, export them now.  This block should always
1613      // be the first entry.
1614      assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1615
1616      // Allow some cases to be rejected.
1617      if (ShouldEmitAsBranches(SwitchCases)) {
1618        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1619          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1620          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1621        }
1622
1623        // Emit the branch for this block.
1624        visitSwitchCase(SwitchCases[0], BrMBB);
1625        SwitchCases.erase(SwitchCases.begin());
1626        return;
1627      }
1628
1629      // Okay, we decided not to do this, remove any inserted MBB's and clear
1630      // SwitchCases.
1631      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1632        FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1633
1634      SwitchCases.clear();
1635    }
1636  }
1637
1638  // Create a CaseBlock record representing this branch.
1639  CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1640               nullptr, Succ0MBB, Succ1MBB, BrMBB);
1641
1642  // Use visitSwitchCase to actually insert the fast branch sequence for this
1643  // cond branch.
1644  visitSwitchCase(CB, BrMBB);
1645}
1646
1647/// visitSwitchCase - Emits the necessary code to represent a single node in
1648/// the binary search tree resulting from lowering a switch instruction.
1649void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1650                                          MachineBasicBlock *SwitchBB) {
1651  SDValue Cond;
1652  SDValue CondLHS = getValue(CB.CmpLHS);
1653  SDLoc dl = getCurSDLoc();
1654
1655  // Build the setcc now.
1656  if (!CB.CmpMHS) {
1657    // Fold "(X == true)" to X and "(X == false)" to !X to
1658    // handle common cases produced by branch lowering.
1659    if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1660        CB.CC == ISD::SETEQ)
1661      Cond = CondLHS;
1662    else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1663             CB.CC == ISD::SETEQ) {
1664      SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1665      Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1666    } else
1667      Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1668  } else {
1669    assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1670
1671    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1672    const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1673
1674    SDValue CmpOp = getValue(CB.CmpMHS);
1675    EVT VT = CmpOp.getValueType();
1676
1677    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1678      Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1679                          ISD::SETLE);
1680    } else {
1681      SDValue SUB = DAG.getNode(ISD::SUB, dl,
1682                                VT, CmpOp, DAG.getConstant(Low, VT));
1683      Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1684                          DAG.getConstant(High-Low, VT), ISD::SETULE);
1685    }
1686  }
1687
1688  // Update successor info
1689  addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1690  // TrueBB and FalseBB are always different unless the incoming IR is
1691  // degenerate. This only happens when running llc on weird IR.
1692  if (CB.TrueBB != CB.FalseBB)
1693    addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1694
1695  // Set NextBlock to be the MBB immediately after the current one, if any.
1696  // This is used to avoid emitting unnecessary branches to the next block.
1697  MachineBasicBlock *NextBlock = nullptr;
1698  MachineFunction::iterator BBI = SwitchBB;
1699  if (++BBI != FuncInfo.MF->end())
1700    NextBlock = BBI;
1701
1702  // If the lhs block is the next block, invert the condition so that we can
1703  // fall through to the lhs instead of the rhs block.
1704  if (CB.TrueBB == NextBlock) {
1705    std::swap(CB.TrueBB, CB.FalseBB);
1706    SDValue True = DAG.getConstant(1, Cond.getValueType());
1707    Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1708  }
1709
1710  SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1711                               MVT::Other, getControlRoot(), Cond,
1712                               DAG.getBasicBlock(CB.TrueBB));
1713
1714  // Insert the false branch. Do this even if it's a fall through branch,
1715  // this makes it easier to do DAG optimizations which require inverting
1716  // the branch condition.
1717  BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1718                       DAG.getBasicBlock(CB.FalseBB));
1719
1720  DAG.setRoot(BrCond);
1721}
1722
1723/// visitJumpTable - Emit JumpTable node in the current MBB
1724void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1725  // Emit the code for the jump table
1726  assert(JT.Reg != -1U && "Should lower JT Header first!");
1727  EVT PTy = TM.getTargetLowering()->getPointerTy();
1728  SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1729                                     JT.Reg, PTy);
1730  SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1731  SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1732                                    MVT::Other, Index.getValue(1),
1733                                    Table, Index);
1734  DAG.setRoot(BrJumpTable);
1735}
1736
1737/// visitJumpTableHeader - This function emits necessary code to produce index
1738/// in the JumpTable from switch case.
1739void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1740                                               JumpTableHeader &JTH,
1741                                               MachineBasicBlock *SwitchBB) {
1742  // Subtract the lowest switch case value from the value being switched on and
1743  // conditional branch to default mbb if the result is greater than the
1744  // difference between smallest and largest cases.
1745  SDValue SwitchOp = getValue(JTH.SValue);
1746  EVT VT = SwitchOp.getValueType();
1747  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1748                            DAG.getConstant(JTH.First, VT));
1749
1750  // The SDNode we just created, which holds the value being switched on minus
1751  // the smallest case value, needs to be copied to a virtual register so it
1752  // can be used as an index into the jump table in a subsequent basic block.
1753  // This value may be smaller or larger than the target's pointer type, and
1754  // therefore require extension or truncating.
1755  const TargetLowering *TLI = TM.getTargetLowering();
1756  SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1757
1758  unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1759  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1760                                    JumpTableReg, SwitchOp);
1761  JT.Reg = JumpTableReg;
1762
1763  // Emit the range check for the jump table, and branch to the default block
1764  // for the switch statement if the value being switched on exceeds the largest
1765  // case in the switch.
1766  SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1767                             TLI->getSetCCResultType(*DAG.getContext(),
1768                                                     Sub.getValueType()),
1769                             Sub,
1770                             DAG.getConstant(JTH.Last - JTH.First,VT),
1771                             ISD::SETUGT);
1772
1773  // Set NextBlock to be the MBB immediately after the current one, if any.
1774  // This is used to avoid emitting unnecessary branches to the next block.
1775  MachineBasicBlock *NextBlock = nullptr;
1776  MachineFunction::iterator BBI = SwitchBB;
1777
1778  if (++BBI != FuncInfo.MF->end())
1779    NextBlock = BBI;
1780
1781  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1782                               MVT::Other, CopyTo, CMP,
1783                               DAG.getBasicBlock(JT.Default));
1784
1785  if (JT.MBB != NextBlock)
1786    BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1787                         DAG.getBasicBlock(JT.MBB));
1788
1789  DAG.setRoot(BrCond);
1790}
1791
1792/// Codegen a new tail for a stack protector check ParentMBB which has had its
1793/// tail spliced into a stack protector check success bb.
1794///
1795/// For a high level explanation of how this fits into the stack protector
1796/// generation see the comment on the declaration of class
1797/// StackProtectorDescriptor.
1798void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1799                                                  MachineBasicBlock *ParentBB) {
1800
1801  // First create the loads to the guard/stack slot for the comparison.
1802  const TargetLowering *TLI = TM.getTargetLowering();
1803  EVT PtrTy = TLI->getPointerTy();
1804
1805  MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1806  int FI = MFI->getStackProtectorIndex();
1807
1808  const Value *IRGuard = SPD.getGuard();
1809  SDValue GuardPtr = getValue(IRGuard);
1810  SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1811
1812  unsigned Align =
1813    TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1814  SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1815                              GuardPtr, MachinePointerInfo(IRGuard, 0),
1816                              true, false, false, Align);
1817
1818  SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1819                                  StackSlotPtr,
1820                                  MachinePointerInfo::getFixedStack(FI),
1821                                  true, false, false, Align);
1822
1823  // Perform the comparison via a subtract/getsetcc.
1824  EVT VT = Guard.getValueType();
1825  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1826
1827  SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1828                             TLI->getSetCCResultType(*DAG.getContext(),
1829                                                     Sub.getValueType()),
1830                             Sub, DAG.getConstant(0, VT),
1831                             ISD::SETNE);
1832
1833  // If the sub is not 0, then we know the guard/stackslot do not equal, so
1834  // branch to failure MBB.
1835  SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1836                               MVT::Other, StackSlot.getOperand(0),
1837                               Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1838  // Otherwise branch to success MBB.
1839  SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1840                           MVT::Other, BrCond,
1841                           DAG.getBasicBlock(SPD.getSuccessMBB()));
1842
1843  DAG.setRoot(Br);
1844}
1845
1846/// Codegen the failure basic block for a stack protector check.
1847///
1848/// A failure stack protector machine basic block consists simply of a call to
1849/// __stack_chk_fail().
1850///
1851/// For a high level explanation of how this fits into the stack protector
1852/// generation see the comment on the declaration of class
1853/// StackProtectorDescriptor.
1854void
1855SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1856  const TargetLowering *TLI = TM.getTargetLowering();
1857  SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1858                                   MVT::isVoid, nullptr, 0, false,
1859                                   getCurSDLoc(), false, false).second;
1860  DAG.setRoot(Chain);
1861}
1862
1863/// visitBitTestHeader - This function emits necessary code to produce value
1864/// suitable for "bit tests"
1865void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1866                                             MachineBasicBlock *SwitchBB) {
1867  // Subtract the minimum value
1868  SDValue SwitchOp = getValue(B.SValue);
1869  EVT VT = SwitchOp.getValueType();
1870  SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1871                            DAG.getConstant(B.First, VT));
1872
1873  // Check range
1874  const TargetLowering *TLI = TM.getTargetLowering();
1875  SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1876                                  TLI->getSetCCResultType(*DAG.getContext(),
1877                                                         Sub.getValueType()),
1878                                  Sub, DAG.getConstant(B.Range, VT),
1879                                  ISD::SETUGT);
1880
1881  // Determine the type of the test operands.
1882  bool UsePtrType = false;
1883  if (!TLI->isTypeLegal(VT))
1884    UsePtrType = true;
1885  else {
1886    for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1887      if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1888        // Switch table case range are encoded into series of masks.
1889        // Just use pointer type, it's guaranteed to fit.
1890        UsePtrType = true;
1891        break;
1892      }
1893  }
1894  if (UsePtrType) {
1895    VT = TLI->getPointerTy();
1896    Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1897  }
1898
1899  B.RegVT = VT.getSimpleVT();
1900  B.Reg = FuncInfo.CreateReg(B.RegVT);
1901  SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1902                                    B.Reg, Sub);
1903
1904  // Set NextBlock to be the MBB immediately after the current one, if any.
1905  // This is used to avoid emitting unnecessary branches to the next block.
1906  MachineBasicBlock *NextBlock = nullptr;
1907  MachineFunction::iterator BBI = SwitchBB;
1908  if (++BBI != FuncInfo.MF->end())
1909    NextBlock = BBI;
1910
1911  MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1912
1913  addSuccessorWithWeight(SwitchBB, B.Default);
1914  addSuccessorWithWeight(SwitchBB, MBB);
1915
1916  SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1917                                MVT::Other, CopyTo, RangeCmp,
1918                                DAG.getBasicBlock(B.Default));
1919
1920  if (MBB != NextBlock)
1921    BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1922                          DAG.getBasicBlock(MBB));
1923
1924  DAG.setRoot(BrRange);
1925}
1926
1927/// visitBitTestCase - this function produces one "bit test"
1928void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1929                                           MachineBasicBlock* NextMBB,
1930                                           uint32_t BranchWeightToNext,
1931                                           unsigned Reg,
1932                                           BitTestCase &B,
1933                                           MachineBasicBlock *SwitchBB) {
1934  MVT VT = BB.RegVT;
1935  SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1936                                       Reg, VT);
1937  SDValue Cmp;
1938  unsigned PopCount = CountPopulation_64(B.Mask);
1939  const TargetLowering *TLI = TM.getTargetLowering();
1940  if (PopCount == 1) {
1941    // Testing for a single bit; just compare the shift count with what it
1942    // would need to be to shift a 1 bit in that position.
1943    Cmp = DAG.getSetCC(getCurSDLoc(),
1944                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1945                       ShiftOp,
1946                       DAG.getConstant(countTrailingZeros(B.Mask), VT),
1947                       ISD::SETEQ);
1948  } else if (PopCount == BB.Range) {
1949    // There is only one zero bit in the range, test for it directly.
1950    Cmp = DAG.getSetCC(getCurSDLoc(),
1951                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1952                       ShiftOp,
1953                       DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1954                       ISD::SETNE);
1955  } else {
1956    // Make desired shift
1957    SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1958                                    DAG.getConstant(1, VT), ShiftOp);
1959
1960    // Emit bit tests and jumps
1961    SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1962                                VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1963    Cmp = DAG.getSetCC(getCurSDLoc(),
1964                       TLI->getSetCCResultType(*DAG.getContext(), VT),
1965                       AndOp, DAG.getConstant(0, VT),
1966                       ISD::SETNE);
1967  }
1968
1969  // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1970  addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1971  // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1972  addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1973
1974  SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1975                              MVT::Other, getControlRoot(),
1976                              Cmp, DAG.getBasicBlock(B.TargetBB));
1977
1978  // Set NextBlock to be the MBB immediately after the current one, if any.
1979  // This is used to avoid emitting unnecessary branches to the next block.
1980  MachineBasicBlock *NextBlock = nullptr;
1981  MachineFunction::iterator BBI = SwitchBB;
1982  if (++BBI != FuncInfo.MF->end())
1983    NextBlock = BBI;
1984
1985  if (NextMBB != NextBlock)
1986    BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1987                        DAG.getBasicBlock(NextMBB));
1988
1989  DAG.setRoot(BrAnd);
1990}
1991
1992void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1993  MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1994
1995  // Retrieve successors.
1996  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1997  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1998
1999  const Value *Callee(I.getCalledValue());
2000  const Function *Fn = dyn_cast<Function>(Callee);
2001  if (isa<InlineAsm>(Callee))
2002    visitInlineAsm(&I);
2003  else if (Fn && Fn->isIntrinsic()) {
2004    assert(Fn->getIntrinsicID() == Intrinsic::donothing);
2005    // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2006  } else
2007    LowerCallTo(&I, getValue(Callee), false, LandingPad);
2008
2009  // If the value of the invoke is used outside of its defining block, make it
2010  // available as a virtual register.
2011  CopyToExportRegsIfNeeded(&I);
2012
2013  // Update successor info
2014  addSuccessorWithWeight(InvokeMBB, Return);
2015  addSuccessorWithWeight(InvokeMBB, LandingPad);
2016
2017  // Drop into normal successor.
2018  DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2019                          MVT::Other, getControlRoot(),
2020                          DAG.getBasicBlock(Return)));
2021}
2022
2023void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2024  llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2025}
2026
2027void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2028  assert(FuncInfo.MBB->isLandingPad() &&
2029         "Call to landingpad not in landing pad!");
2030
2031  MachineBasicBlock *MBB = FuncInfo.MBB;
2032  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2033  AddLandingPadInfo(LP, MMI, MBB);
2034
2035  // If there aren't registers to copy the values into (e.g., during SjLj
2036  // exceptions), then don't bother to create these DAG nodes.
2037  const TargetLowering *TLI = TM.getTargetLowering();
2038  if (TLI->getExceptionPointerRegister() == 0 &&
2039      TLI->getExceptionSelectorRegister() == 0)
2040    return;
2041
2042  SmallVector<EVT, 2> ValueVTs;
2043  ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
2044  assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2045
2046  // Get the two live-in registers as SDValues. The physregs have already been
2047  // copied into virtual registers.
2048  SDValue Ops[2];
2049  Ops[0] = DAG.getZExtOrTrunc(
2050    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2051                       FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2052    getCurSDLoc(), ValueVTs[0]);
2053  Ops[1] = DAG.getZExtOrTrunc(
2054    DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2055                       FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2056    getCurSDLoc(), ValueVTs[1]);
2057
2058  // Merge into one.
2059  SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2060                            DAG.getVTList(ValueVTs), Ops);
2061  setValue(&LP, Res);
2062}
2063
2064/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2065/// small case ranges).
2066bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2067                                                 CaseRecVector& WorkList,
2068                                                 const Value* SV,
2069                                                 MachineBasicBlock *Default,
2070                                                 MachineBasicBlock *SwitchBB) {
2071  // Size is the number of Cases represented by this range.
2072  size_t Size = CR.Range.second - CR.Range.first;
2073  if (Size > 3)
2074    return false;
2075
2076  // Get the MachineFunction which holds the current MBB.  This is used when
2077  // inserting any additional MBBs necessary to represent the switch.
2078  MachineFunction *CurMF = FuncInfo.MF;
2079
2080  // Figure out which block is immediately after the current one.
2081  MachineBasicBlock *NextBlock = nullptr;
2082  MachineFunction::iterator BBI = CR.CaseBB;
2083
2084  if (++BBI != FuncInfo.MF->end())
2085    NextBlock = BBI;
2086
2087  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2088  // If any two of the cases has the same destination, and if one value
2089  // is the same as the other, but has one bit unset that the other has set,
2090  // use bit manipulation to do two compares at once.  For example:
2091  // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2092  // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2093  // TODO: Handle cases where CR.CaseBB != SwitchBB.
2094  if (Size == 2 && CR.CaseBB == SwitchBB) {
2095    Case &Small = *CR.Range.first;
2096    Case &Big = *(CR.Range.second-1);
2097
2098    if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2099      const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2100      const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2101
2102      // Check that there is only one bit different.
2103      if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2104          (SmallValue | BigValue) == BigValue) {
2105        // Isolate the common bit.
2106        APInt CommonBit = BigValue & ~SmallValue;
2107        assert((SmallValue | CommonBit) == BigValue &&
2108               CommonBit.countPopulation() == 1 && "Not a common bit?");
2109
2110        SDValue CondLHS = getValue(SV);
2111        EVT VT = CondLHS.getValueType();
2112        SDLoc DL = getCurSDLoc();
2113
2114        SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2115                                 DAG.getConstant(CommonBit, VT));
2116        SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2117                                    Or, DAG.getConstant(BigValue, VT),
2118                                    ISD::SETEQ);
2119
2120        // Update successor info.
2121        // Both Small and Big will jump to Small.BB, so we sum up the weights.
2122        addSuccessorWithWeight(SwitchBB, Small.BB,
2123                               Small.ExtraWeight + Big.ExtraWeight);
2124        addSuccessorWithWeight(SwitchBB, Default,
2125          // The default destination is the first successor in IR.
2126          BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2127
2128        // Insert the true branch.
2129        SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2130                                     getControlRoot(), Cond,
2131                                     DAG.getBasicBlock(Small.BB));
2132
2133        // Insert the false branch.
2134        BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2135                             DAG.getBasicBlock(Default));
2136
2137        DAG.setRoot(BrCond);
2138        return true;
2139      }
2140    }
2141  }
2142
2143  // Order cases by weight so the most likely case will be checked first.
2144  uint32_t UnhandledWeights = 0;
2145  if (BPI) {
2146    for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2147      uint32_t IWeight = I->ExtraWeight;
2148      UnhandledWeights += IWeight;
2149      for (CaseItr J = CR.Range.first; J < I; ++J) {
2150        uint32_t JWeight = J->ExtraWeight;
2151        if (IWeight > JWeight)
2152          std::swap(*I, *J);
2153      }
2154    }
2155  }
2156  // Rearrange the case blocks so that the last one falls through if possible.
2157  Case &BackCase = *(CR.Range.second-1);
2158  if (Size > 1 &&
2159      NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2160    // The last case block won't fall through into 'NextBlock' if we emit the
2161    // branches in this order.  See if rearranging a case value would help.
2162    // We start at the bottom as it's the case with the least weight.
2163    for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2164      if (I->BB == NextBlock) {
2165        std::swap(*I, BackCase);
2166        break;
2167      }
2168  }
2169
2170  // Create a CaseBlock record representing a conditional branch to
2171  // the Case's target mbb if the value being switched on SV is equal
2172  // to C.
2173  MachineBasicBlock *CurBlock = CR.CaseBB;
2174  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2175    MachineBasicBlock *FallThrough;
2176    if (I != E-1) {
2177      FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2178      CurMF->insert(BBI, FallThrough);
2179
2180      // Put SV in a virtual register to make it available from the new blocks.
2181      ExportFromCurrentBlock(SV);
2182    } else {
2183      // If the last case doesn't match, go to the default block.
2184      FallThrough = Default;
2185    }
2186
2187    const Value *RHS, *LHS, *MHS;
2188    ISD::CondCode CC;
2189    if (I->High == I->Low) {
2190      // This is just small small case range :) containing exactly 1 case
2191      CC = ISD::SETEQ;
2192      LHS = SV; RHS = I->High; MHS = nullptr;
2193    } else {
2194      CC = ISD::SETLE;
2195      LHS = I->Low; MHS = SV; RHS = I->High;
2196    }
2197
2198    // The false weight should be sum of all un-handled cases.
2199    UnhandledWeights -= I->ExtraWeight;
2200    CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2201                 /* me */ CurBlock,
2202                 /* trueweight */ I->ExtraWeight,
2203                 /* falseweight */ UnhandledWeights);
2204
2205    // If emitting the first comparison, just call visitSwitchCase to emit the
2206    // code into the current block.  Otherwise, push the CaseBlock onto the
2207    // vector to be later processed by SDISel, and insert the node's MBB
2208    // before the next MBB.
2209    if (CurBlock == SwitchBB)
2210      visitSwitchCase(CB, SwitchBB);
2211    else
2212      SwitchCases.push_back(CB);
2213
2214    CurBlock = FallThrough;
2215  }
2216
2217  return true;
2218}
2219
2220static inline bool areJTsAllowed(const TargetLowering &TLI) {
2221  return TLI.supportJumpTables() &&
2222          (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2223           TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2224}
2225
2226static APInt ComputeRange(const APInt &First, const APInt &Last) {
2227  uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2228  APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2229  return (LastExt - FirstExt + 1ULL);
2230}
2231
2232/// handleJTSwitchCase - Emit jumptable for current switch case range
2233bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2234                                             CaseRecVector &WorkList,
2235                                             const Value *SV,
2236                                             MachineBasicBlock *Default,
2237                                             MachineBasicBlock *SwitchBB) {
2238  Case& FrontCase = *CR.Range.first;
2239  Case& BackCase  = *(CR.Range.second-1);
2240
2241  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2242  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2243
2244  APInt TSize(First.getBitWidth(), 0);
2245  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2246    TSize += I->size();
2247
2248  const TargetLowering *TLI = TM.getTargetLowering();
2249  if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2250    return false;
2251
2252  APInt Range = ComputeRange(First, Last);
2253  // The density is TSize / Range. Require at least 40%.
2254  // It should not be possible for IntTSize to saturate for sane code, but make
2255  // sure we handle Range saturation correctly.
2256  uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2257  uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2258  if (IntTSize * 10 < IntRange * 4)
2259    return false;
2260
2261  DEBUG(dbgs() << "Lowering jump table\n"
2262               << "First entry: " << First << ". Last entry: " << Last << '\n'
2263               << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2264
2265  // Get the MachineFunction which holds the current MBB.  This is used when
2266  // inserting any additional MBBs necessary to represent the switch.
2267  MachineFunction *CurMF = FuncInfo.MF;
2268
2269  // Figure out which block is immediately after the current one.
2270  MachineFunction::iterator BBI = CR.CaseBB;
2271  ++BBI;
2272
2273  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2274
2275  // Create a new basic block to hold the code for loading the address
2276  // of the jump table, and jumping to it.  Update successor information;
2277  // we will either branch to the default case for the switch, or the jump
2278  // table.
2279  MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2280  CurMF->insert(BBI, JumpTableBB);
2281
2282  addSuccessorWithWeight(CR.CaseBB, Default);
2283  addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2284
2285  // Build a vector of destination BBs, corresponding to each target
2286  // of the jump table. If the value of the jump table slot corresponds to
2287  // a case statement, push the case's BB onto the vector, otherwise, push
2288  // the default BB.
2289  std::vector<MachineBasicBlock*> DestBBs;
2290  APInt TEI = First;
2291  for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2292    const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2293    const APInt &High = cast<ConstantInt>(I->High)->getValue();
2294
2295    if (Low.sle(TEI) && TEI.sle(High)) {
2296      DestBBs.push_back(I->BB);
2297      if (TEI==High)
2298        ++I;
2299    } else {
2300      DestBBs.push_back(Default);
2301    }
2302  }
2303
2304  // Calculate weight for each unique destination in CR.
2305  DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2306  if (FuncInfo.BPI)
2307    for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2308      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2309          DestWeights.find(I->BB);
2310      if (Itr != DestWeights.end())
2311        Itr->second += I->ExtraWeight;
2312      else
2313        DestWeights[I->BB] = I->ExtraWeight;
2314    }
2315
2316  // Update successor info. Add one edge to each unique successor.
2317  BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2318  for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2319         E = DestBBs.end(); I != E; ++I) {
2320    if (!SuccsHandled[(*I)->getNumber()]) {
2321      SuccsHandled[(*I)->getNumber()] = true;
2322      DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2323          DestWeights.find(*I);
2324      addSuccessorWithWeight(JumpTableBB, *I,
2325                             Itr != DestWeights.end() ? Itr->second : 0);
2326    }
2327  }
2328
2329  // Create a jump table index for this jump table.
2330  unsigned JTEncoding = TLI->getJumpTableEncoding();
2331  unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2332                       ->createJumpTableIndex(DestBBs);
2333
2334  // Set the jump table information so that we can codegen it as a second
2335  // MachineBasicBlock
2336  JumpTable JT(-1U, JTI, JumpTableBB, Default);
2337  JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2338  if (CR.CaseBB == SwitchBB)
2339    visitJumpTableHeader(JT, JTH, SwitchBB);
2340
2341  JTCases.push_back(JumpTableBlock(JTH, JT));
2342  return true;
2343}
2344
2345/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2346/// 2 subtrees.
2347bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2348                                                  CaseRecVector& WorkList,
2349                                                  const Value* SV,
2350                                                  MachineBasicBlock* Default,
2351                                                  MachineBasicBlock* SwitchBB) {
2352  // Get the MachineFunction which holds the current MBB.  This is used when
2353  // inserting any additional MBBs necessary to represent the switch.
2354  MachineFunction *CurMF = FuncInfo.MF;
2355
2356  // Figure out which block is immediately after the current one.
2357  MachineFunction::iterator BBI = CR.CaseBB;
2358  ++BBI;
2359
2360  Case& FrontCase = *CR.Range.first;
2361  Case& BackCase  = *(CR.Range.second-1);
2362  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2363
2364  // Size is the number of Cases represented by this range.
2365  unsigned Size = CR.Range.second - CR.Range.first;
2366
2367  const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2368  const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2369  double FMetric = 0;
2370  CaseItr Pivot = CR.Range.first + Size/2;
2371
2372  // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2373  // (heuristically) allow us to emit JumpTable's later.
2374  APInt TSize(First.getBitWidth(), 0);
2375  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2376       I!=E; ++I)
2377    TSize += I->size();
2378
2379  APInt LSize = FrontCase.size();
2380  APInt RSize = TSize-LSize;
2381  DEBUG(dbgs() << "Selecting best pivot: \n"
2382               << "First: " << First << ", Last: " << Last <<'\n'
2383               << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2384  for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2385       J!=E; ++I, ++J) {
2386    const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2387    const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2388    APInt Range = ComputeRange(LEnd, RBegin);
2389    assert((Range - 2ULL).isNonNegative() &&
2390           "Invalid case distance");
2391    // Use volatile double here to avoid excess precision issues on some hosts,
2392    // e.g. that use 80-bit X87 registers.
2393    volatile double LDensity =
2394       (double)LSize.roundToDouble() /
2395                           (LEnd - First + 1ULL).roundToDouble();
2396    volatile double RDensity =
2397      (double)RSize.roundToDouble() /
2398                           (Last - RBegin + 1ULL).roundToDouble();
2399    volatile double Metric = Range.logBase2()*(LDensity+RDensity);
2400    // Should always split in some non-trivial place
2401    DEBUG(dbgs() <<"=>Step\n"
2402                 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2403                 << "LDensity: " << LDensity
2404                 << ", RDensity: " << RDensity << '\n'
2405                 << "Metric: " << Metric << '\n');
2406    if (FMetric < Metric) {
2407      Pivot = J;
2408      FMetric = Metric;
2409      DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2410    }
2411
2412    LSize += J->size();
2413    RSize -= J->size();
2414  }
2415
2416  const TargetLowering *TLI = TM.getTargetLowering();
2417  if (areJTsAllowed(*TLI)) {
2418    // If our case is dense we *really* should handle it earlier!
2419    assert((FMetric > 0) && "Should handle dense range earlier!");
2420  } else {
2421    Pivot = CR.Range.first + Size/2;
2422  }
2423
2424  CaseRange LHSR(CR.Range.first, Pivot);
2425  CaseRange RHSR(Pivot, CR.Range.second);
2426  const Constant *C = Pivot->Low;
2427  MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2428
2429  // We know that we branch to the LHS if the Value being switched on is
2430  // less than the Pivot value, C.  We use this to optimize our binary
2431  // tree a bit, by recognizing that if SV is greater than or equal to the
2432  // LHS's Case Value, and that Case Value is exactly one less than the
2433  // Pivot's Value, then we can branch directly to the LHS's Target,
2434  // rather than creating a leaf node for it.
2435  if ((LHSR.second - LHSR.first) == 1 &&
2436      LHSR.first->High == CR.GE &&
2437      cast<ConstantInt>(C)->getValue() ==
2438      (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2439    TrueBB = LHSR.first->BB;
2440  } else {
2441    TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2442    CurMF->insert(BBI, TrueBB);
2443    WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2444
2445    // Put SV in a virtual register to make it available from the new blocks.
2446    ExportFromCurrentBlock(SV);
2447  }
2448
2449  // Similar to the optimization above, if the Value being switched on is
2450  // known to be less than the Constant CR.LT, and the current Case Value
2451  // is CR.LT - 1, then we can branch directly to the target block for
2452  // the current Case Value, rather than emitting a RHS leaf node for it.
2453  if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2454      cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2455      (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2456    FalseBB = RHSR.first->BB;
2457  } else {
2458    FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2459    CurMF->insert(BBI, FalseBB);
2460    WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2461
2462    // Put SV in a virtual register to make it available from the new blocks.
2463    ExportFromCurrentBlock(SV);
2464  }
2465
2466  // Create a CaseBlock record representing a conditional branch to
2467  // the LHS node if the value being switched on SV is less than C.
2468  // Otherwise, branch to LHS.
2469  CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2470
2471  if (CR.CaseBB == SwitchBB)
2472    visitSwitchCase(CB, SwitchBB);
2473  else
2474    SwitchCases.push_back(CB);
2475
2476  return true;
2477}
2478
2479/// handleBitTestsSwitchCase - if current case range has few destination and
2480/// range span less, than machine word bitwidth, encode case range into series
2481/// of masks and emit bit tests with these masks.
2482bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2483                                                   CaseRecVector& WorkList,
2484                                                   const Value* SV,
2485                                                   MachineBasicBlock* Default,
2486                                                   MachineBasicBlock* SwitchBB) {
2487  const TargetLowering *TLI = TM.getTargetLowering();
2488  EVT PTy = TLI->getPointerTy();
2489  unsigned IntPtrBits = PTy.getSizeInBits();
2490
2491  Case& FrontCase = *CR.Range.first;
2492  Case& BackCase  = *(CR.Range.second-1);
2493
2494  // Get the MachineFunction which holds the current MBB.  This is used when
2495  // inserting any additional MBBs necessary to represent the switch.
2496  MachineFunction *CurMF = FuncInfo.MF;
2497
2498  // If target does not have legal shift left, do not emit bit tests at all.
2499  if (!TLI->isOperationLegal(ISD::SHL, PTy))
2500    return false;
2501
2502  size_t numCmps = 0;
2503  for (CaseItr I = CR.Range.first, E = CR.Range.second;
2504       I!=E; ++I) {
2505    // Single case counts one, case range - two.
2506    numCmps += (I->Low == I->High ? 1 : 2);
2507  }
2508
2509  // Count unique destinations
2510  SmallSet<MachineBasicBlock*, 4> Dests;
2511  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2512    Dests.insert(I->BB);
2513    if (Dests.size() > 3)
2514      // Don't bother the code below, if there are too much unique destinations
2515      return false;
2516  }
2517  DEBUG(dbgs() << "Total number of unique destinations: "
2518        << Dests.size() << '\n'
2519        << "Total number of comparisons: " << numCmps << '\n');
2520
2521  // Compute span of values.
2522  const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2523  const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2524  APInt cmpRange = maxValue - minValue;
2525
2526  DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2527               << "Low bound: " << minValue << '\n'
2528               << "High bound: " << maxValue << '\n');
2529
2530  if (cmpRange.uge(IntPtrBits) ||
2531      (!(Dests.size() == 1 && numCmps >= 3) &&
2532       !(Dests.size() == 2 && numCmps >= 5) &&
2533       !(Dests.size() >= 3 && numCmps >= 6)))
2534    return false;
2535
2536  DEBUG(dbgs() << "Emitting bit tests\n");
2537  APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2538
2539  // Optimize the case where all the case values fit in a
2540  // word without having to subtract minValue. In this case,
2541  // we can optimize away the subtraction.
2542  if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2543    cmpRange = maxValue;
2544  } else {
2545    lowBound = minValue;
2546  }
2547
2548  CaseBitsVector CasesBits;
2549  unsigned i, count = 0;
2550
2551  for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2552    MachineBasicBlock* Dest = I->BB;
2553    for (i = 0; i < count; ++i)
2554      if (Dest == CasesBits[i].BB)
2555        break;
2556
2557    if (i == count) {
2558      assert((count < 3) && "Too much destinations to test!");
2559      CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2560      count++;
2561    }
2562
2563    const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2564    const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2565
2566    uint64_t lo = (lowValue - lowBound).getZExtValue();
2567    uint64_t hi = (highValue - lowBound).getZExtValue();
2568    CasesBits[i].ExtraWeight += I->ExtraWeight;
2569
2570    for (uint64_t j = lo; j <= hi; j++) {
2571      CasesBits[i].Mask |=  1ULL << j;
2572      CasesBits[i].Bits++;
2573    }
2574
2575  }
2576  std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2577
2578  BitTestInfo BTC;
2579
2580  // Figure out which block is immediately after the current one.
2581  MachineFunction::iterator BBI = CR.CaseBB;
2582  ++BBI;
2583
2584  const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2585
2586  DEBUG(dbgs() << "Cases:\n");
2587  for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2588    DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2589                 << ", Bits: " << CasesBits[i].Bits
2590                 << ", BB: " << CasesBits[i].BB << '\n');
2591
2592    MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2593    CurMF->insert(BBI, CaseBB);
2594    BTC.push_back(BitTestCase(CasesBits[i].Mask,
2595                              CaseBB,
2596                              CasesBits[i].BB, CasesBits[i].ExtraWeight));
2597
2598    // Put SV in a virtual register to make it available from the new blocks.
2599    ExportFromCurrentBlock(SV);
2600  }
2601
2602  BitTestBlock BTB(lowBound, cmpRange, SV,
2603                   -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2604                   CR.CaseBB, Default, BTC);
2605
2606  if (CR.CaseBB == SwitchBB)
2607    visitBitTestHeader(BTB, SwitchBB);
2608
2609  BitTestCases.push_back(BTB);
2610
2611  return true;
2612}
2613
2614/// Clusterify - Transform simple list of Cases into list of CaseRange's
2615size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2616                                       const SwitchInst& SI) {
2617  size_t numCmps = 0;
2618
2619  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2620  // Start with "simple" cases
2621  for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2622       i != e; ++i) {
2623    const BasicBlock *SuccBB = i.getCaseSuccessor();
2624    MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2625
2626    uint32_t ExtraWeight =
2627      BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2628
2629    Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2630                         SMBB, ExtraWeight));
2631  }
2632  std::sort(Cases.begin(), Cases.end(), CaseCmp());
2633
2634  // Merge case into clusters
2635  if (Cases.size() >= 2)
2636    // Must recompute end() each iteration because it may be
2637    // invalidated by erase if we hold on to it
2638    for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
2639         J != Cases.end(); ) {
2640      const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2641      const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2642      MachineBasicBlock* nextBB = J->BB;
2643      MachineBasicBlock* currentBB = I->BB;
2644
2645      // If the two neighboring cases go to the same destination, merge them
2646      // into a single case.
2647      if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2648        I->High = J->High;
2649        I->ExtraWeight += J->ExtraWeight;
2650        J = Cases.erase(J);
2651      } else {
2652        I = J++;
2653      }
2654    }
2655
2656  for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2657    if (I->Low != I->High)
2658      // A range counts double, since it requires two compares.
2659      ++numCmps;
2660  }
2661
2662  return numCmps;
2663}
2664
2665void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2666                                           MachineBasicBlock *Last) {
2667  // Update JTCases.
2668  for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2669    if (JTCases[i].first.HeaderBB == First)
2670      JTCases[i].first.HeaderBB = Last;
2671
2672  // Update BitTestCases.
2673  for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2674    if (BitTestCases[i].Parent == First)
2675      BitTestCases[i].Parent = Last;
2676}
2677
2678void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2679  MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2680
2681  // Figure out which block is immediately after the current one.
2682  MachineBasicBlock *NextBlock = nullptr;
2683  MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2684
2685  // If there is only the default destination, branch to it if it is not the
2686  // next basic block.  Otherwise, just fall through.
2687  if (!SI.getNumCases()) {
2688    // Update machine-CFG edges.
2689
2690    // If this is not a fall-through branch, emit the branch.
2691    SwitchMBB->addSuccessor(Default);
2692    if (Default != NextBlock)
2693      DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2694                              MVT::Other, getControlRoot(),
2695                              DAG.getBasicBlock(Default)));
2696
2697    return;
2698  }
2699
2700  // If there are any non-default case statements, create a vector of Cases
2701  // representing each one, and sort the vector so that we can efficiently
2702  // create a binary search tree from them.
2703  CaseVector Cases;
2704  size_t numCmps = Clusterify(Cases, SI);
2705  DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2706               << ". Total compares: " << numCmps << '\n');
2707  (void)numCmps;
2708
2709  // Get the Value to be switched on and default basic blocks, which will be
2710  // inserted into CaseBlock records, representing basic blocks in the binary
2711  // search tree.
2712  const Value *SV = SI.getCondition();
2713
2714  // Push the initial CaseRec onto the worklist
2715  CaseRecVector WorkList;
2716  WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2717                             CaseRange(Cases.begin(),Cases.end())));
2718
2719  while (!WorkList.empty()) {
2720    // Grab a record representing a case range to process off the worklist
2721    CaseRec CR = WorkList.back();
2722    WorkList.pop_back();
2723
2724    if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2725      continue;
2726
2727    // If the range has few cases (two or less) emit a series of specific
2728    // tests.
2729    if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2730      continue;
2731
2732    // If the switch has more than N blocks, and is at least 40% dense, and the
2733    // target supports indirect branches, then emit a jump table rather than
2734    // lowering the switch to a binary tree of conditional branches.
2735    // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2736    if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2737      continue;
2738
2739    // Emit binary tree. We need to pick a pivot, and push left and right ranges
2740    // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2741    handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2742  }
2743}
2744
2745void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2746  MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2747
2748  // Update machine-CFG edges with unique successors.
2749  SmallSet<BasicBlock*, 32> Done;
2750  for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2751    BasicBlock *BB = I.getSuccessor(i);
2752    bool Inserted = Done.insert(BB);
2753    if (!Inserted)
2754        continue;
2755
2756    MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2757    addSuccessorWithWeight(IndirectBrMBB, Succ);
2758  }
2759
2760  DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2761                          MVT::Other, getControlRoot(),
2762                          getValue(I.getAddress())));
2763}
2764
2765void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2766  if (DAG.getTarget().Options.TrapUnreachable)
2767    DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2768}
2769
2770void SelectionDAGBuilder::visitFSub(const User &I) {
2771  // -0.0 - X --> fneg
2772  Type *Ty = I.getType();
2773  if (isa<Constant>(I.getOperand(0)) &&
2774      I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2775    SDValue Op2 = getValue(I.getOperand(1));
2776    setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2777                             Op2.getValueType(), Op2));
2778    return;
2779  }
2780
2781  visitBinary(I, ISD::FSUB);
2782}
2783
2784void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2785  SDValue Op1 = getValue(I.getOperand(0));
2786  SDValue Op2 = getValue(I.getOperand(1));
2787
2788  bool nuw = false;
2789  bool nsw = false;
2790  bool exact = false;
2791  if (const OverflowingBinaryOperator *OFBinOp =
2792          dyn_cast<const OverflowingBinaryOperator>(&I)) {
2793    nuw = OFBinOp->hasNoUnsignedWrap();
2794    nsw = OFBinOp->hasNoSignedWrap();
2795  }
2796  if (const PossiblyExactOperator *ExactOp =
2797          dyn_cast<const PossiblyExactOperator>(&I))
2798    exact = ExactOp->isExact();
2799
2800  SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2801                                     Op1, Op2, nuw, nsw, exact);
2802  setValue(&I, BinNodeValue);
2803}
2804
2805void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2806  SDValue Op1 = getValue(I.getOperand(0));
2807  SDValue Op2 = getValue(I.getOperand(1));
2808
2809  EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2810
2811  // Coerce the shift amount to the right type if we can.
2812  if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2813    unsigned ShiftSize = ShiftTy.getSizeInBits();
2814    unsigned Op2Size = Op2.getValueType().getSizeInBits();
2815    SDLoc DL = getCurSDLoc();
2816
2817    // If the operand is smaller than the shift count type, promote it.
2818    if (ShiftSize > Op2Size)
2819      Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2820
2821    // If the operand is larger than the shift count type but the shift
2822    // count type has enough bits to represent any shift value, truncate
2823    // it now. This is a common case and it exposes the truncate to
2824    // optimization early.
2825    else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2826      Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2827    // Otherwise we'll need to temporarily settle for some other convenient
2828    // type.  Type legalization will make adjustments once the shiftee is split.
2829    else
2830      Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2831  }
2832
2833  bool nuw = false;
2834  bool nsw = false;
2835  bool exact = false;
2836
2837  if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2838
2839    if (const OverflowingBinaryOperator *OFBinOp =
2840            dyn_cast<const OverflowingBinaryOperator>(&I)) {
2841      nuw = OFBinOp->hasNoUnsignedWrap();
2842      nsw = OFBinOp->hasNoSignedWrap();
2843    }
2844    if (const PossiblyExactOperator *ExactOp =
2845            dyn_cast<const PossiblyExactOperator>(&I))
2846      exact = ExactOp->isExact();
2847  }
2848
2849  SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2850                            nuw, nsw, exact);
2851  setValue(&I, Res);
2852}
2853
2854void SelectionDAGBuilder::visitSDiv(const User &I) {
2855  SDValue Op1 = getValue(I.getOperand(0));
2856  SDValue Op2 = getValue(I.getOperand(1));
2857
2858  // Turn exact SDivs into multiplications.
2859  // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2860  // exact bit.
2861  if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2862      !isa<ConstantSDNode>(Op1) &&
2863      isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2864    setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2865                                                        getCurSDLoc(), DAG));
2866  else
2867    setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2868                             Op1, Op2));
2869}
2870
2871void SelectionDAGBuilder::visitICmp(const User &I) {
2872  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2873  if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2874    predicate = IC->getPredicate();
2875  else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2876    predicate = ICmpInst::Predicate(IC->getPredicate());
2877  SDValue Op1 = getValue(I.getOperand(0));
2878  SDValue Op2 = getValue(I.getOperand(1));
2879  ISD::CondCode Opcode = getICmpCondCode(predicate);
2880
2881  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2882  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2883}
2884
2885void SelectionDAGBuilder::visitFCmp(const User &I) {
2886  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2887  if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2888    predicate = FC->getPredicate();
2889  else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2890    predicate = FCmpInst::Predicate(FC->getPredicate());
2891  SDValue Op1 = getValue(I.getOperand(0));
2892  SDValue Op2 = getValue(I.getOperand(1));
2893  ISD::CondCode Condition = getFCmpCondCode(predicate);
2894  if (TM.Options.NoNaNsFPMath)
2895    Condition = getFCmpCodeWithoutNaN(Condition);
2896  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2897  setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2898}
2899
2900void SelectionDAGBuilder::visitSelect(const User &I) {
2901  SmallVector<EVT, 4> ValueVTs;
2902  ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2903  unsigned NumValues = ValueVTs.size();
2904  if (NumValues == 0) return;
2905
2906  SmallVector<SDValue, 4> Values(NumValues);
2907  SDValue Cond     = getValue(I.getOperand(0));
2908  SDValue TrueVal  = getValue(I.getOperand(1));
2909  SDValue FalseVal = getValue(I.getOperand(2));
2910  ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2911    ISD::VSELECT : ISD::SELECT;
2912
2913  for (unsigned i = 0; i != NumValues; ++i)
2914    Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2915                            TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2916                            Cond,
2917                            SDValue(TrueVal.getNode(),
2918                                    TrueVal.getResNo() + i),
2919                            SDValue(FalseVal.getNode(),
2920                                    FalseVal.getResNo() + i));
2921
2922  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2923                           DAG.getVTList(ValueVTs), Values));
2924}
2925
2926void SelectionDAGBuilder::visitTrunc(const User &I) {
2927  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2928  SDValue N = getValue(I.getOperand(0));
2929  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2930  setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2931}
2932
2933void SelectionDAGBuilder::visitZExt(const User &I) {
2934  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2935  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2936  SDValue N = getValue(I.getOperand(0));
2937  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2938  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2939}
2940
2941void SelectionDAGBuilder::visitSExt(const User &I) {
2942  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2943  // SExt also can't be a cast to bool for same reason. So, nothing much to do
2944  SDValue N = getValue(I.getOperand(0));
2945  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2946  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2947}
2948
2949void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2950  // FPTrunc is never a no-op cast, no need to check
2951  SDValue N = getValue(I.getOperand(0));
2952  const TargetLowering *TLI = TM.getTargetLowering();
2953  EVT DestVT = TLI->getValueType(I.getType());
2954  setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2955                           DestVT, N,
2956                           DAG.getTargetConstant(0, TLI->getPointerTy())));
2957}
2958
2959void SelectionDAGBuilder::visitFPExt(const User &I) {
2960  // FPExt is never a no-op cast, no need to check
2961  SDValue N = getValue(I.getOperand(0));
2962  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2963  setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2964}
2965
2966void SelectionDAGBuilder::visitFPToUI(const User &I) {
2967  // FPToUI is never a no-op cast, no need to check
2968  SDValue N = getValue(I.getOperand(0));
2969  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2970  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2971}
2972
2973void SelectionDAGBuilder::visitFPToSI(const User &I) {
2974  // FPToSI is never a no-op cast, no need to check
2975  SDValue N = getValue(I.getOperand(0));
2976  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2977  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2978}
2979
2980void SelectionDAGBuilder::visitUIToFP(const User &I) {
2981  // UIToFP is never a no-op cast, no need to check
2982  SDValue N = getValue(I.getOperand(0));
2983  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2984  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2985}
2986
2987void SelectionDAGBuilder::visitSIToFP(const User &I) {
2988  // SIToFP is never a no-op cast, no need to check
2989  SDValue N = getValue(I.getOperand(0));
2990  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2991  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2992}
2993
2994void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2995  // What to do depends on the size of the integer and the size of the pointer.
2996  // We can either truncate, zero extend, or no-op, accordingly.
2997  SDValue N = getValue(I.getOperand(0));
2998  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2999  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3000}
3001
3002void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3003  // What to do depends on the size of the integer and the size of the pointer.
3004  // We can either truncate, zero extend, or no-op, accordingly.
3005  SDValue N = getValue(I.getOperand(0));
3006  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
3007  setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3008}
3009
3010void SelectionDAGBuilder::visitBitCast(const User &I) {
3011  SDValue N = getValue(I.getOperand(0));
3012  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
3013
3014  // BitCast assures us that source and destination are the same size so this is
3015  // either a BITCAST or a no-op.
3016  if (DestVT != N.getValueType())
3017    setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
3018                             DestVT, N)); // convert types.
3019  // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3020  // might fold any kind of constant expression to an integer constant and that
3021  // is not what we are looking for. Only regcognize a bitcast of a genuine
3022  // constant integer as an opaque constant.
3023  else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3024    setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
3025                                 /*isOpaque*/true));
3026  else
3027    setValue(&I, N);            // noop cast.
3028}
3029
3030void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3031  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3032  const Value *SV = I.getOperand(0);
3033  SDValue N = getValue(SV);
3034  EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
3035
3036  unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3037  unsigned DestAS = I.getType()->getPointerAddressSpace();
3038
3039  if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3040    N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3041
3042  setValue(&I, N);
3043}
3044
3045void SelectionDAGBuilder::visitInsertElement(const User &I) {
3046  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3047  SDValue InVec = getValue(I.getOperand(0));
3048  SDValue InVal = getValue(I.getOperand(1));
3049  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3050                                     getCurSDLoc(), TLI.getVectorIdxTy());
3051  setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3052                           TM.getTargetLowering()->getValueType(I.getType()),
3053                           InVec, InVal, InIdx));
3054}
3055
3056void SelectionDAGBuilder::visitExtractElement(const User &I) {
3057  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3058  SDValue InVec = getValue(I.getOperand(0));
3059  SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3060                                     getCurSDLoc(), TLI.getVectorIdxTy());
3061  setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3062                           TM.getTargetLowering()->getValueType(I.getType()),
3063                           InVec, InIdx));
3064}
3065
3066// Utility for visitShuffleVector - Return true if every element in Mask,
3067// beginning from position Pos and ending in Pos+Size, falls within the
3068// specified sequential range [L, L+Pos). or is undef.
3069static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3070                                unsigned Pos, unsigned Size, int Low) {
3071  for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3072    if (Mask[i] >= 0 && Mask[i] != Low)
3073      return false;
3074  return true;
3075}
3076
3077void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3078  SDValue Src1 = getValue(I.getOperand(0));
3079  SDValue Src2 = getValue(I.getOperand(1));
3080
3081  SmallVector<int, 8> Mask;
3082  ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3083  unsigned MaskNumElts = Mask.size();
3084
3085  const TargetLowering *TLI = TM.getTargetLowering();
3086  EVT VT = TLI->getValueType(I.getType());
3087  EVT SrcVT = Src1.getValueType();
3088  unsigned SrcNumElts = SrcVT.getVectorNumElements();
3089
3090  if (SrcNumElts == MaskNumElts) {
3091    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3092                                      &Mask[0]));
3093    return;
3094  }
3095
3096  // Normalize the shuffle vector since mask and vector length don't match.
3097  if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3098    // Mask is longer than the source vectors and is a multiple of the source
3099    // vectors.  We can use concatenate vector to make the mask and vectors
3100    // lengths match.
3101    if (SrcNumElts*2 == MaskNumElts) {
3102      // First check for Src1 in low and Src2 in high
3103      if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3104          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3105        // The shuffle is concatenating two vectors together.
3106        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3107                                 VT, Src1, Src2));
3108        return;
3109      }
3110      // Then check for Src2 in low and Src1 in high
3111      if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3112          isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3113        // The shuffle is concatenating two vectors together.
3114        setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3115                                 VT, Src2, Src1));
3116        return;
3117      }
3118    }
3119
3120    // Pad both vectors with undefs to make them the same length as the mask.
3121    unsigned NumConcat = MaskNumElts / SrcNumElts;
3122    bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3123    bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3124    SDValue UndefVal = DAG.getUNDEF(SrcVT);
3125
3126    SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3127    SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3128    MOps1[0] = Src1;
3129    MOps2[0] = Src2;
3130
3131    Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3132                                                  getCurSDLoc(), VT, MOps1);
3133    Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3134                                                  getCurSDLoc(), VT, MOps2);
3135
3136    // Readjust mask for new input vector length.
3137    SmallVector<int, 8> MappedOps;
3138    for (unsigned i = 0; i != MaskNumElts; ++i) {
3139      int Idx = Mask[i];
3140      if (Idx >= (int)SrcNumElts)
3141        Idx -= SrcNumElts - MaskNumElts;
3142      MappedOps.push_back(Idx);
3143    }
3144
3145    setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3146                                      &MappedOps[0]));
3147    return;
3148  }
3149
3150  if (SrcNumElts > MaskNumElts) {
3151    // Analyze the access pattern of the vector to see if we can extract
3152    // two subvectors and do the shuffle. The analysis is done by calculating
3153    // the range of elements the mask access on both vectors.
3154    int MinRange[2] = { static_cast<int>(SrcNumElts),
3155                        static_cast<int>(SrcNumElts)};
3156    int MaxRange[2] = {-1, -1};
3157
3158    for (unsigned i = 0; i != MaskNumElts; ++i) {
3159      int Idx = Mask[i];
3160      unsigned Input = 0;
3161      if (Idx < 0)
3162        continue;
3163
3164      if (Idx >= (int)SrcNumElts) {
3165        Input = 1;
3166        Idx -= SrcNumElts;
3167      }
3168      if (Idx > MaxRange[Input])
3169        MaxRange[Input] = Idx;
3170      if (Idx < MinRange[Input])
3171        MinRange[Input] = Idx;
3172    }
3173
3174    // Check if the access is smaller than the vector size and can we find
3175    // a reasonable extract index.
3176    int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3177                                   // Extract.
3178    int StartIdx[2];  // StartIdx to extract from
3179    for (unsigned Input = 0; Input < 2; ++Input) {
3180      if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3181        RangeUse[Input] = 0; // Unused
3182        StartIdx[Input] = 0;
3183        continue;
3184      }
3185
3186      // Find a good start index that is a multiple of the mask length. Then
3187      // see if the rest of the elements are in range.
3188      StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3189      if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3190          StartIdx[Input] + MaskNumElts <= SrcNumElts)
3191        RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3192    }
3193
3194    if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3195      setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3196      return;
3197    }
3198    if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3199      // Extract appropriate subvector and generate a vector shuffle
3200      for (unsigned Input = 0; Input < 2; ++Input) {
3201        SDValue &Src = Input == 0 ? Src1 : Src2;
3202        if (RangeUse[Input] == 0)
3203          Src = DAG.getUNDEF(VT);
3204        else
3205          Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3206                            Src, DAG.getConstant(StartIdx[Input],
3207                                                 TLI->getVectorIdxTy()));
3208      }
3209
3210      // Calculate new mask.
3211      SmallVector<int, 8> MappedOps;
3212      for (unsigned i = 0; i != MaskNumElts; ++i) {
3213        int Idx = Mask[i];
3214        if (Idx >= 0) {
3215          if (Idx < (int)SrcNumElts)
3216            Idx -= StartIdx[0];
3217          else
3218            Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3219        }
3220        MappedOps.push_back(Idx);
3221      }
3222
3223      setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3224                                        &MappedOps[0]));
3225      return;
3226    }
3227  }
3228
3229  // We can't use either concat vectors or extract subvectors so fall back to
3230  // replacing the shuffle with extract and build vector.
3231  // to insert and build vector.
3232  EVT EltVT = VT.getVectorElementType();
3233  EVT IdxVT = TLI->getVectorIdxTy();
3234  SmallVector<SDValue,8> Ops;
3235  for (unsigned i = 0; i != MaskNumElts; ++i) {
3236    int Idx = Mask[i];
3237    SDValue Res;
3238
3239    if (Idx < 0) {
3240      Res = DAG.getUNDEF(EltVT);
3241    } else {
3242      SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3243      if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3244
3245      Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3246                        EltVT, Src, DAG.getConstant(Idx, IdxVT));
3247    }
3248
3249    Ops.push_back(Res);
3250  }
3251
3252  setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
3253}
3254
3255void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3256  const Value *Op0 = I.getOperand(0);
3257  const Value *Op1 = I.getOperand(1);
3258  Type *AggTy = I.getType();
3259  Type *ValTy = Op1->getType();
3260  bool IntoUndef = isa<UndefValue>(Op0);
3261  bool FromUndef = isa<UndefValue>(Op1);
3262
3263  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3264
3265  const TargetLowering *TLI = TM.getTargetLowering();
3266  SmallVector<EVT, 4> AggValueVTs;
3267  ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3268  SmallVector<EVT, 4> ValValueVTs;
3269  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3270
3271  unsigned NumAggValues = AggValueVTs.size();
3272  unsigned NumValValues = ValValueVTs.size();
3273  SmallVector<SDValue, 4> Values(NumAggValues);
3274
3275  SDValue Agg = getValue(Op0);
3276  unsigned i = 0;
3277  // Copy the beginning value(s) from the original aggregate.
3278  for (; i != LinearIndex; ++i)
3279    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3280                SDValue(Agg.getNode(), Agg.getResNo() + i);
3281  // Copy values from the inserted value(s).
3282  if (NumValValues) {
3283    SDValue Val = getValue(Op1);
3284    for (; i != LinearIndex + NumValValues; ++i)
3285      Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3286                  SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3287  }
3288  // Copy remaining value(s) from the original aggregate.
3289  for (; i != NumAggValues; ++i)
3290    Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3291                SDValue(Agg.getNode(), Agg.getResNo() + i);
3292
3293  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3294                           DAG.getVTList(AggValueVTs), Values));
3295}
3296
3297void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3298  const Value *Op0 = I.getOperand(0);
3299  Type *AggTy = Op0->getType();
3300  Type *ValTy = I.getType();
3301  bool OutOfUndef = isa<UndefValue>(Op0);
3302
3303  unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3304
3305  const TargetLowering *TLI = TM.getTargetLowering();
3306  SmallVector<EVT, 4> ValValueVTs;
3307  ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3308
3309  unsigned NumValValues = ValValueVTs.size();
3310
3311  // Ignore a extractvalue that produces an empty object
3312  if (!NumValValues) {
3313    setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3314    return;
3315  }
3316
3317  SmallVector<SDValue, 4> Values(NumValValues);
3318
3319  SDValue Agg = getValue(Op0);
3320  // Copy out the selected value(s).
3321  for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3322    Values[i - LinearIndex] =
3323      OutOfUndef ?
3324        DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3325        SDValue(Agg.getNode(), Agg.getResNo() + i);
3326
3327  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3328                           DAG.getVTList(ValValueVTs), Values));
3329}
3330
3331void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3332  Value *Op0 = I.getOperand(0);
3333  // Note that the pointer operand may be a vector of pointers. Take the scalar
3334  // element which holds a pointer.
3335  Type *Ty = Op0->getType()->getScalarType();
3336  unsigned AS = Ty->getPointerAddressSpace();
3337  SDValue N = getValue(Op0);
3338
3339  for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3340       OI != E; ++OI) {
3341    const Value *Idx = *OI;
3342    if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3343      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3344      if (Field) {
3345        // N = N + Offset
3346        uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3347        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3348                        DAG.getConstant(Offset, N.getValueType()));
3349      }
3350
3351      Ty = StTy->getElementType(Field);
3352    } else {
3353      Ty = cast<SequentialType>(Ty)->getElementType();
3354
3355      // If this is a constant subscript, handle it quickly.
3356      const TargetLowering *TLI = TM.getTargetLowering();
3357      if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3358        if (CI->isZero()) continue;
3359        uint64_t Offs =
3360            DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3361        SDValue OffsVal;
3362        EVT PTy = TLI->getPointerTy(AS);
3363        unsigned PtrBits = PTy.getSizeInBits();
3364        if (PtrBits < 64)
3365          OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3366                                DAG.getConstant(Offs, MVT::i64));
3367        else
3368          OffsVal = DAG.getConstant(Offs, PTy);
3369
3370        N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3371                        OffsVal);
3372        continue;
3373      }
3374
3375      // N = N + Idx * ElementSize;
3376      APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3377                                DL->getTypeAllocSize(Ty));
3378      SDValue IdxN = getValue(Idx);
3379
3380      // If the index is smaller or larger than intptr_t, truncate or extend
3381      // it.
3382      IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3383
3384      // If this is a multiply by a power of two, turn it into a shl
3385      // immediately.  This is a very common case.
3386      if (ElementSize != 1) {
3387        if (ElementSize.isPowerOf2()) {
3388          unsigned Amt = ElementSize.logBase2();
3389          IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3390                             N.getValueType(), IdxN,
3391                             DAG.getConstant(Amt, IdxN.getValueType()));
3392        } else {
3393          SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3394          IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3395                             N.getValueType(), IdxN, Scale);
3396        }
3397      }
3398
3399      N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3400                      N.getValueType(), N, IdxN);
3401    }
3402  }
3403
3404  setValue(&I, N);
3405}
3406
3407void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3408  // If this is a fixed sized alloca in the entry block of the function,
3409  // allocate it statically on the stack.
3410  if (FuncInfo.StaticAllocaMap.count(&I))
3411    return;   // getValue will auto-populate this.
3412
3413  Type *Ty = I.getAllocatedType();
3414  const TargetLowering *TLI = TM.getTargetLowering();
3415  uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3416  unsigned Align =
3417    std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3418             I.getAlignment());
3419
3420  SDValue AllocSize = getValue(I.getArraySize());
3421
3422  EVT IntPtr = TLI->getPointerTy();
3423  if (AllocSize.getValueType() != IntPtr)
3424    AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3425
3426  AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3427                          AllocSize,
3428                          DAG.getConstant(TySize, IntPtr));
3429
3430  // Handle alignment.  If the requested alignment is less than or equal to
3431  // the stack alignment, ignore it.  If the size is greater than or equal to
3432  // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3433  unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3434  if (Align <= StackAlign)
3435    Align = 0;
3436
3437  // Round the size of the allocation up to the stack alignment size
3438  // by add SA-1 to the size.
3439  AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3440                          AllocSize.getValueType(), AllocSize,
3441                          DAG.getIntPtrConstant(StackAlign-1));
3442
3443  // Mask out the low bits for alignment purposes.
3444  AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3445                          AllocSize.getValueType(), AllocSize,
3446                          DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3447
3448  SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3449  SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3450  SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
3451  setValue(&I, DSA);
3452  DAG.setRoot(DSA.getValue(1));
3453
3454  assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3455}
3456
3457void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3458  if (I.isAtomic())
3459    return visitAtomicLoad(I);
3460
3461  const Value *SV = I.getOperand(0);
3462  SDValue Ptr = getValue(SV);
3463
3464  Type *Ty = I.getType();
3465
3466  bool isVolatile = I.isVolatile();
3467  bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
3468  bool isInvariant = I.getMetadata("invariant.load") != nullptr;
3469  unsigned Alignment = I.getAlignment();
3470  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3471  const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3472
3473  SmallVector<EVT, 4> ValueVTs;
3474  SmallVector<uint64_t, 4> Offsets;
3475  ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3476  unsigned NumValues = ValueVTs.size();
3477  if (NumValues == 0)
3478    return;
3479
3480  SDValue Root;
3481  bool ConstantMemory = false;
3482  if (isVolatile || NumValues > MaxParallelChains)
3483    // Serialize volatile loads with other side effects.
3484    Root = getRoot();
3485  else if (AA->pointsToConstantMemory(
3486             AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3487    // Do not serialize (non-volatile) loads of constant memory with anything.
3488    Root = DAG.getEntryNode();
3489    ConstantMemory = true;
3490  } else {
3491    // Do not serialize non-volatile loads against each other.
3492    Root = DAG.getRoot();
3493  }
3494
3495  const TargetLowering *TLI = TM.getTargetLowering();
3496  if (isVolatile)
3497    Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3498
3499  SmallVector<SDValue, 4> Values(NumValues);
3500  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3501                                          NumValues));
3502  EVT PtrVT = Ptr.getValueType();
3503  unsigned ChainI = 0;
3504  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3505    // Serializing loads here may result in excessive register pressure, and
3506    // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3507    // could recover a bit by hoisting nodes upward in the chain by recognizing
3508    // they are side-effect free or do not alias. The optimizer should really
3509    // avoid this case by converting large object/array copies to llvm.memcpy
3510    // (MaxParallelChains should always remain as failsafe).
3511    if (ChainI == MaxParallelChains) {
3512      assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3513      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3514                                  makeArrayRef(Chains.data(), ChainI));
3515      Root = Chain;
3516      ChainI = 0;
3517    }
3518    SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3519                            PtrVT, Ptr,
3520                            DAG.getConstant(Offsets[i], PtrVT));
3521    SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3522                            A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3523                            isNonTemporal, isInvariant, Alignment, TBAAInfo,
3524                            Ranges);
3525
3526    Values[i] = L;
3527    Chains[ChainI] = L.getValue(1);
3528  }
3529
3530  if (!ConstantMemory) {
3531    SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3532                                makeArrayRef(Chains.data(), ChainI));
3533    if (isVolatile)
3534      DAG.setRoot(Chain);
3535    else
3536      PendingLoads.push_back(Chain);
3537  }
3538
3539  setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3540                           DAG.getVTList(ValueVTs), Values));
3541}
3542
3543void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3544  if (I.isAtomic())
3545    return visitAtomicStore(I);
3546
3547  const Value *SrcV = I.getOperand(0);
3548  const Value *PtrV = I.getOperand(1);
3549
3550  SmallVector<EVT, 4> ValueVTs;
3551  SmallVector<uint64_t, 4> Offsets;
3552  ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3553  unsigned NumValues = ValueVTs.size();
3554  if (NumValues == 0)
3555    return;
3556
3557  // Get the lowered operands. Note that we do this after
3558  // checking if NumResults is zero, because with zero results
3559  // the operands won't have values in the map.
3560  SDValue Src = getValue(SrcV);
3561  SDValue Ptr = getValue(PtrV);
3562
3563  SDValue Root = getRoot();
3564  SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3565                                          NumValues));
3566  EVT PtrVT = Ptr.getValueType();
3567  bool isVolatile = I.isVolatile();
3568  bool isNonTemporal = I.getMetadata("nontemporal") != nullptr;
3569  unsigned Alignment = I.getAlignment();
3570  const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3571
3572  unsigned ChainI = 0;
3573  for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3574    // See visitLoad comments.
3575    if (ChainI == MaxParallelChains) {
3576      SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3577                                  makeArrayRef(Chains.data(), ChainI));
3578      Root = Chain;
3579      ChainI = 0;
3580    }
3581    SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3582                              DAG.getConstant(Offsets[i], PtrVT));
3583    SDValue St = DAG.getStore(Root, getCurSDLoc(),
3584                              SDValue(Src.getNode(), Src.getResNo() + i),
3585                              Add, MachinePointerInfo(PtrV, Offsets[i]),
3586                              isVolatile, isNonTemporal, Alignment, TBAAInfo);
3587    Chains[ChainI] = St;
3588  }
3589
3590  SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3591                                  makeArrayRef(Chains.data(), ChainI));
3592  DAG.setRoot(StoreNode);
3593}
3594
3595static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3596                                    SynchronizationScope Scope,
3597                                    bool Before, SDLoc dl,
3598                                    SelectionDAG &DAG,
3599                                    const TargetLowering &TLI) {
3600  // Fence, if necessary
3601  if (Before) {
3602    if (Order == AcquireRelease || Order == SequentiallyConsistent)
3603      Order = Release;
3604    else if (Order == Acquire || Order == Monotonic || Order == Unordered)
3605      return Chain;
3606  } else {
3607    if (Order == AcquireRelease)
3608      Order = Acquire;
3609    else if (Order == Release || Order == Monotonic || Order == Unordered)
3610      return Chain;
3611  }
3612  SDValue Ops[3];
3613  Ops[0] = Chain;
3614  Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3615  Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3616  return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
3617}
3618
3619void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3620  SDLoc dl = getCurSDLoc();
3621  AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3622  AtomicOrdering FailureOrder = I.getFailureOrdering();
3623  SynchronizationScope Scope = I.getSynchScope();
3624
3625  SDValue InChain = getRoot();
3626
3627  const TargetLowering *TLI = TM.getTargetLowering();
3628  if (TLI->getInsertFencesForAtomic())
3629    InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl,
3630                                   DAG, *TLI);
3631
3632  MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3633  SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3634  SDValue L = DAG.getAtomicCmpSwap(
3635      ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3636      getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3637      getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3638      0 /* Alignment */,
3639      TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder,
3640      TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope);
3641
3642  SDValue OutChain = L.getValue(2);
3643
3644  if (TLI->getInsertFencesForAtomic())
3645    OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl,
3646                                    DAG, *TLI);
3647
3648  setValue(&I, L);
3649  DAG.setRoot(OutChain);
3650}
3651
3652void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3653  SDLoc dl = getCurSDLoc();
3654  ISD::NodeType NT;
3655  switch (I.getOperation()) {
3656  default: llvm_unreachable("Unknown atomicrmw operation");
3657  case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3658  case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3659  case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3660  case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3661  case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3662  case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3663  case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3664  case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3665  case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3666  case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3667  case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3668  }
3669  AtomicOrdering Order = I.getOrdering();
3670  SynchronizationScope Scope = I.getSynchScope();
3671
3672  SDValue InChain = getRoot();
3673
3674  const TargetLowering *TLI = TM.getTargetLowering();
3675  if (TLI->getInsertFencesForAtomic())
3676    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3677                                   DAG, *TLI);
3678
3679  SDValue L =
3680    DAG.getAtomic(NT, dl,
3681                  getValue(I.getValOperand()).getSimpleValueType(),
3682                  InChain,
3683                  getValue(I.getPointerOperand()),
3684                  getValue(I.getValOperand()),
3685                  I.getPointerOperand(), 0 /* Alignment */,
3686                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3687                  Scope);
3688
3689  SDValue OutChain = L.getValue(1);
3690
3691  if (TLI->getInsertFencesForAtomic())
3692    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3693                                    DAG, *TLI);
3694
3695  setValue(&I, L);
3696  DAG.setRoot(OutChain);
3697}
3698
3699void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3700  SDLoc dl = getCurSDLoc();
3701  const TargetLowering *TLI = TM.getTargetLowering();
3702  SDValue Ops[3];
3703  Ops[0] = getRoot();
3704  Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3705  Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3706  DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3707}
3708
3709void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3710  SDLoc dl = getCurSDLoc();
3711  AtomicOrdering Order = I.getOrdering();
3712  SynchronizationScope Scope = I.getSynchScope();
3713
3714  SDValue InChain = getRoot();
3715
3716  const TargetLowering *TLI = TM.getTargetLowering();
3717  EVT VT = TLI->getValueType(I.getType());
3718
3719  if (I.getAlignment() < VT.getSizeInBits() / 8)
3720    report_fatal_error("Cannot generate unaligned atomic load");
3721
3722  MachineMemOperand *MMO =
3723      DAG.getMachineFunction().
3724      getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3725                           MachineMemOperand::MOVolatile |
3726                           MachineMemOperand::MOLoad,
3727                           VT.getStoreSize(),
3728                           I.getAlignment() ? I.getAlignment() :
3729                                              DAG.getEVTAlignment(VT));
3730
3731  InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3732  SDValue L =
3733      DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3734                    getValue(I.getPointerOperand()), MMO,
3735                    TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3736                    Scope);
3737
3738  SDValue OutChain = L.getValue(1);
3739
3740  if (TLI->getInsertFencesForAtomic())
3741    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3742                                    DAG, *TLI);
3743
3744  setValue(&I, L);
3745  DAG.setRoot(OutChain);
3746}
3747
3748void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3749  SDLoc dl = getCurSDLoc();
3750
3751  AtomicOrdering Order = I.getOrdering();
3752  SynchronizationScope Scope = I.getSynchScope();
3753
3754  SDValue InChain = getRoot();
3755
3756  const TargetLowering *TLI = TM.getTargetLowering();
3757  EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3758
3759  if (I.getAlignment() < VT.getSizeInBits() / 8)
3760    report_fatal_error("Cannot generate unaligned atomic store");
3761
3762  if (TLI->getInsertFencesForAtomic())
3763    InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3764                                   DAG, *TLI);
3765
3766  SDValue OutChain =
3767    DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3768                  InChain,
3769                  getValue(I.getPointerOperand()),
3770                  getValue(I.getValueOperand()),
3771                  I.getPointerOperand(), I.getAlignment(),
3772                  TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3773                  Scope);
3774
3775  if (TLI->getInsertFencesForAtomic())
3776    OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3777                                    DAG, *TLI);
3778
3779  DAG.setRoot(OutChain);
3780}
3781
3782/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3783/// node.
3784void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3785                                               unsigned Intrinsic) {
3786  bool HasChain = !I.doesNotAccessMemory();
3787  bool OnlyLoad = HasChain && I.onlyReadsMemory();
3788
3789  // Build the operand list.
3790  SmallVector<SDValue, 8> Ops;
3791  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3792    if (OnlyLoad) {
3793      // We don't need to serialize loads against other loads.
3794      Ops.push_back(DAG.getRoot());
3795    } else {
3796      Ops.push_back(getRoot());
3797    }
3798  }
3799
3800  // Info is set by getTgtMemInstrinsic
3801  TargetLowering::IntrinsicInfo Info;
3802  const TargetLowering *TLI = TM.getTargetLowering();
3803  bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3804
3805  // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3806  if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3807      Info.opc == ISD::INTRINSIC_W_CHAIN)
3808    Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3809
3810  // Add all operands of the call to the operand list.
3811  for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3812    SDValue Op = getValue(I.getArgOperand(i));
3813    Ops.push_back(Op);
3814  }
3815
3816  SmallVector<EVT, 4> ValueVTs;
3817  ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3818
3819  if (HasChain)
3820    ValueVTs.push_back(MVT::Other);
3821
3822  SDVTList VTs = DAG.getVTList(ValueVTs);
3823
3824  // Create the node.
3825  SDValue Result;
3826  if (IsTgtIntrinsic) {
3827    // This is target intrinsic that touches memory
3828    Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3829                                     VTs, Ops, Info.memVT,
3830                                   MachinePointerInfo(Info.ptrVal, Info.offset),
3831                                     Info.align, Info.vol,
3832                                     Info.readMem, Info.writeMem);
3833  } else if (!HasChain) {
3834    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3835  } else if (!I.getType()->isVoidTy()) {
3836    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3837  } else {
3838    Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3839  }
3840
3841  if (HasChain) {
3842    SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3843    if (OnlyLoad)
3844      PendingLoads.push_back(Chain);
3845    else
3846      DAG.setRoot(Chain);
3847  }
3848
3849  if (!I.getType()->isVoidTy()) {
3850    if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3851      EVT VT = TLI->getValueType(PTy);
3852      Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3853    }
3854
3855    setValue(&I, Result);
3856  }
3857}
3858
3859/// GetSignificand - Get the significand and build it into a floating-point
3860/// number with exponent of 1:
3861///
3862///   Op = (Op & 0x007fffff) | 0x3f800000;
3863///
3864/// where Op is the hexadecimal representation of floating point value.
3865static SDValue
3866GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3867  SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3868                           DAG.getConstant(0x007fffff, MVT::i32));
3869  SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3870                           DAG.getConstant(0x3f800000, MVT::i32));
3871  return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3872}
3873
3874/// GetExponent - Get the exponent:
3875///
3876///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3877///
3878/// where Op is the hexadecimal representation of floating point value.
3879static SDValue
3880GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3881            SDLoc dl) {
3882  SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3883                           DAG.getConstant(0x7f800000, MVT::i32));
3884  SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3885                           DAG.getConstant(23, TLI.getPointerTy()));
3886  SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3887                           DAG.getConstant(127, MVT::i32));
3888  return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3889}
3890
3891/// getF32Constant - Get 32-bit floating point constant.
3892static SDValue
3893getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3894  return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3895                           MVT::f32);
3896}
3897
3898/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3899/// limited-precision mode.
3900static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3901                         const TargetLowering &TLI) {
3902  if (Op.getValueType() == MVT::f32 &&
3903      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3904
3905    // Put the exponent in the right bit position for later addition to the
3906    // final result:
3907    //
3908    //   #define LOG2OFe 1.4426950f
3909    //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3910    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3911                             getF32Constant(DAG, 0x3fb8aa3b));
3912    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3913
3914    //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3915    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3916    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3917
3918    //   IntegerPartOfX <<= 23;
3919    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3920                                 DAG.getConstant(23, TLI.getPointerTy()));
3921
3922    SDValue TwoToFracPartOfX;
3923    if (LimitFloatPrecision <= 6) {
3924      // For floating-point precision of 6:
3925      //
3926      //   TwoToFractionalPartOfX =
3927      //     0.997535578f +
3928      //       (0.735607626f + 0.252464424f * x) * x;
3929      //
3930      // error 0.0144103317, which is 6 bits
3931      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3932                               getF32Constant(DAG, 0x3e814304));
3933      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3934                               getF32Constant(DAG, 0x3f3c50c8));
3935      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3936      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3937                                     getF32Constant(DAG, 0x3f7f5e7e));
3938    } else if (LimitFloatPrecision <= 12) {
3939      // For floating-point precision of 12:
3940      //
3941      //   TwoToFractionalPartOfX =
3942      //     0.999892986f +
3943      //       (0.696457318f +
3944      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3945      //
3946      // 0.000107046256 error, which is 13 to 14 bits
3947      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3948                               getF32Constant(DAG, 0x3da235e3));
3949      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3950                               getF32Constant(DAG, 0x3e65b8f3));
3951      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3952      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3953                               getF32Constant(DAG, 0x3f324b07));
3954      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3955      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3956                                     getF32Constant(DAG, 0x3f7ff8fd));
3957    } else { // LimitFloatPrecision <= 18
3958      // For floating-point precision of 18:
3959      //
3960      //   TwoToFractionalPartOfX =
3961      //     0.999999982f +
3962      //       (0.693148872f +
3963      //         (0.240227044f +
3964      //           (0.554906021e-1f +
3965      //             (0.961591928e-2f +
3966      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3967      //
3968      // error 2.47208000*10^(-7), which is better than 18 bits
3969      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3970                               getF32Constant(DAG, 0x3924b03e));
3971      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3972                               getF32Constant(DAG, 0x3ab24b87));
3973      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3974      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3975                               getF32Constant(DAG, 0x3c1d8c17));
3976      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3977      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3978                               getF32Constant(DAG, 0x3d634a1d));
3979      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3980      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3981                               getF32Constant(DAG, 0x3e75fe14));
3982      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3983      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3984                                getF32Constant(DAG, 0x3f317234));
3985      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3986      TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3987                                     getF32Constant(DAG, 0x3f800000));
3988    }
3989
3990    // Add the exponent into the result in integer domain.
3991    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3992    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3993                       DAG.getNode(ISD::ADD, dl, MVT::i32,
3994                                   t13, IntegerPartOfX));
3995  }
3996
3997  // No special expansion.
3998  return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3999}
4000
4001/// expandLog - Lower a log intrinsic. Handles the special sequences for
4002/// limited-precision mode.
4003static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4004                         const TargetLowering &TLI) {
4005  if (Op.getValueType() == MVT::f32 &&
4006      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4007    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4008
4009    // Scale the exponent by log(2) [0.69314718f].
4010    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4011    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4012                                        getF32Constant(DAG, 0x3f317218));
4013
4014    // Get the significand and build it into a floating-point number with
4015    // exponent of 1.
4016    SDValue X = GetSignificand(DAG, Op1, dl);
4017
4018    SDValue LogOfMantissa;
4019    if (LimitFloatPrecision <= 6) {
4020      // For floating-point precision of 6:
4021      //
4022      //   LogofMantissa =
4023      //     -1.1609546f +
4024      //       (1.4034025f - 0.23903021f * x) * x;
4025      //
4026      // error 0.0034276066, which is better than 8 bits
4027      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4028                               getF32Constant(DAG, 0xbe74c456));
4029      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4030                               getF32Constant(DAG, 0x3fb3a2b1));
4031      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4032      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4033                                  getF32Constant(DAG, 0x3f949a29));
4034    } else if (LimitFloatPrecision <= 12) {
4035      // For floating-point precision of 12:
4036      //
4037      //   LogOfMantissa =
4038      //     -1.7417939f +
4039      //       (2.8212026f +
4040      //         (-1.4699568f +
4041      //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4042      //
4043      // error 0.000061011436, which is 14 bits
4044      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4045                               getF32Constant(DAG, 0xbd67b6d6));
4046      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4047                               getF32Constant(DAG, 0x3ee4f4b8));
4048      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4049      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4050                               getF32Constant(DAG, 0x3fbc278b));
4051      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4052      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4053                               getF32Constant(DAG, 0x40348e95));
4054      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4055      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4056                                  getF32Constant(DAG, 0x3fdef31a));
4057    } else { // LimitFloatPrecision <= 18
4058      // For floating-point precision of 18:
4059      //
4060      //   LogOfMantissa =
4061      //     -2.1072184f +
4062      //       (4.2372794f +
4063      //         (-3.7029485f +
4064      //           (2.2781945f +
4065      //             (-0.87823314f +
4066      //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4067      //
4068      // error 0.0000023660568, which is better than 18 bits
4069      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4070                               getF32Constant(DAG, 0xbc91e5ac));
4071      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4072                               getF32Constant(DAG, 0x3e4350aa));
4073      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4074      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4075                               getF32Constant(DAG, 0x3f60d3e3));
4076      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4077      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4078                               getF32Constant(DAG, 0x4011cdf0));
4079      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4080      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4081                               getF32Constant(DAG, 0x406cfd1c));
4082      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4083      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4084                               getF32Constant(DAG, 0x408797cb));
4085      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4086      LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4087                                  getF32Constant(DAG, 0x4006dcab));
4088    }
4089
4090    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4091  }
4092
4093  // No special expansion.
4094  return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4095}
4096
4097/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4098/// limited-precision mode.
4099static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4100                          const TargetLowering &TLI) {
4101  if (Op.getValueType() == MVT::f32 &&
4102      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4103    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4104
4105    // Get the exponent.
4106    SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4107
4108    // Get the significand and build it into a floating-point number with
4109    // exponent of 1.
4110    SDValue X = GetSignificand(DAG, Op1, dl);
4111
4112    // Different possible minimax approximations of significand in
4113    // floating-point for various degrees of accuracy over [1,2].
4114    SDValue Log2ofMantissa;
4115    if (LimitFloatPrecision <= 6) {
4116      // For floating-point precision of 6:
4117      //
4118      //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4119      //
4120      // error 0.0049451742, which is more than 7 bits
4121      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4122                               getF32Constant(DAG, 0xbeb08fe0));
4123      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4124                               getF32Constant(DAG, 0x40019463));
4125      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4126      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4127                                   getF32Constant(DAG, 0x3fd6633d));
4128    } else if (LimitFloatPrecision <= 12) {
4129      // For floating-point precision of 12:
4130      //
4131      //   Log2ofMantissa =
4132      //     -2.51285454f +
4133      //       (4.07009056f +
4134      //         (-2.12067489f +
4135      //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4136      //
4137      // error 0.0000876136000, which is better than 13 bits
4138      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4139                               getF32Constant(DAG, 0xbda7262e));
4140      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4141                               getF32Constant(DAG, 0x3f25280b));
4142      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4143      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4144                               getF32Constant(DAG, 0x4007b923));
4145      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4146      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4147                               getF32Constant(DAG, 0x40823e2f));
4148      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4149      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4150                                   getF32Constant(DAG, 0x4020d29c));
4151    } else { // LimitFloatPrecision <= 18
4152      // For floating-point precision of 18:
4153      //
4154      //   Log2ofMantissa =
4155      //     -3.0400495f +
4156      //       (6.1129976f +
4157      //         (-5.3420409f +
4158      //           (3.2865683f +
4159      //             (-1.2669343f +
4160      //               (0.27515199f -
4161      //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4162      //
4163      // error 0.0000018516, which is better than 18 bits
4164      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4165                               getF32Constant(DAG, 0xbcd2769e));
4166      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4167                               getF32Constant(DAG, 0x3e8ce0b9));
4168      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4169      SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4170                               getF32Constant(DAG, 0x3fa22ae7));
4171      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4172      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4173                               getF32Constant(DAG, 0x40525723));
4174      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4175      SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4176                               getF32Constant(DAG, 0x40aaf200));
4177      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4178      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4179                               getF32Constant(DAG, 0x40c39dad));
4180      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4181      Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4182                                   getF32Constant(DAG, 0x4042902c));
4183    }
4184
4185    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4186  }
4187
4188  // No special expansion.
4189  return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4190}
4191
4192/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4193/// limited-precision mode.
4194static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4195                           const TargetLowering &TLI) {
4196  if (Op.getValueType() == MVT::f32 &&
4197      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4198    SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4199
4200    // Scale the exponent by log10(2) [0.30102999f].
4201    SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4202    SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4203                                        getF32Constant(DAG, 0x3e9a209a));
4204
4205    // Get the significand and build it into a floating-point number with
4206    // exponent of 1.
4207    SDValue X = GetSignificand(DAG, Op1, dl);
4208
4209    SDValue Log10ofMantissa;
4210    if (LimitFloatPrecision <= 6) {
4211      // For floating-point precision of 6:
4212      //
4213      //   Log10ofMantissa =
4214      //     -0.50419619f +
4215      //       (0.60948995f - 0.10380950f * x) * x;
4216      //
4217      // error 0.0014886165, which is 6 bits
4218      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4219                               getF32Constant(DAG, 0xbdd49a13));
4220      SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4221                               getF32Constant(DAG, 0x3f1c0789));
4222      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4223      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4224                                    getF32Constant(DAG, 0x3f011300));
4225    } else if (LimitFloatPrecision <= 12) {
4226      // For floating-point precision of 12:
4227      //
4228      //   Log10ofMantissa =
4229      //     -0.64831180f +
4230      //       (0.91751397f +
4231      //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4232      //
4233      // error 0.00019228036, which is better than 12 bits
4234      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4235                               getF32Constant(DAG, 0x3d431f31));
4236      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4237                               getF32Constant(DAG, 0x3ea21fb2));
4238      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4239      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4240                               getF32Constant(DAG, 0x3f6ae232));
4241      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4242      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4243                                    getF32Constant(DAG, 0x3f25f7c3));
4244    } else { // LimitFloatPrecision <= 18
4245      // For floating-point precision of 18:
4246      //
4247      //   Log10ofMantissa =
4248      //     -0.84299375f +
4249      //       (1.5327582f +
4250      //         (-1.0688956f +
4251      //           (0.49102474f +
4252      //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4253      //
4254      // error 0.0000037995730, which is better than 18 bits
4255      SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4256                               getF32Constant(DAG, 0x3c5d51ce));
4257      SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4258                               getF32Constant(DAG, 0x3e00685a));
4259      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4260      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4261                               getF32Constant(DAG, 0x3efb6798));
4262      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4263      SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4264                               getF32Constant(DAG, 0x3f88d192));
4265      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4266      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4267                               getF32Constant(DAG, 0x3fc4316c));
4268      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4269      Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4270                                    getF32Constant(DAG, 0x3f57ce70));
4271    }
4272
4273    return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4274  }
4275
4276  // No special expansion.
4277  return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4278}
4279
4280/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4281/// limited-precision mode.
4282static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4283                          const TargetLowering &TLI) {
4284  if (Op.getValueType() == MVT::f32 &&
4285      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4286    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4287
4288    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4289    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4290    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4291
4292    //   IntegerPartOfX <<= 23;
4293    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4294                                 DAG.getConstant(23, TLI.getPointerTy()));
4295
4296    SDValue TwoToFractionalPartOfX;
4297    if (LimitFloatPrecision <= 6) {
4298      // For floating-point precision of 6:
4299      //
4300      //   TwoToFractionalPartOfX =
4301      //     0.997535578f +
4302      //       (0.735607626f + 0.252464424f * x) * x;
4303      //
4304      // error 0.0144103317, which is 6 bits
4305      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4306                               getF32Constant(DAG, 0x3e814304));
4307      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4308                               getF32Constant(DAG, 0x3f3c50c8));
4309      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4310      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4311                                           getF32Constant(DAG, 0x3f7f5e7e));
4312    } else if (LimitFloatPrecision <= 12) {
4313      // For floating-point precision of 12:
4314      //
4315      //   TwoToFractionalPartOfX =
4316      //     0.999892986f +
4317      //       (0.696457318f +
4318      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4319      //
4320      // error 0.000107046256, which is 13 to 14 bits
4321      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4322                               getF32Constant(DAG, 0x3da235e3));
4323      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4324                               getF32Constant(DAG, 0x3e65b8f3));
4325      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4326      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4327                               getF32Constant(DAG, 0x3f324b07));
4328      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4329      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4330                                           getF32Constant(DAG, 0x3f7ff8fd));
4331    } else { // LimitFloatPrecision <= 18
4332      // For floating-point precision of 18:
4333      //
4334      //   TwoToFractionalPartOfX =
4335      //     0.999999982f +
4336      //       (0.693148872f +
4337      //         (0.240227044f +
4338      //           (0.554906021e-1f +
4339      //             (0.961591928e-2f +
4340      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4341      // error 2.47208000*10^(-7), which is better than 18 bits
4342      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4343                               getF32Constant(DAG, 0x3924b03e));
4344      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4345                               getF32Constant(DAG, 0x3ab24b87));
4346      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4347      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4348                               getF32Constant(DAG, 0x3c1d8c17));
4349      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4350      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4351                               getF32Constant(DAG, 0x3d634a1d));
4352      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4353      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4354                               getF32Constant(DAG, 0x3e75fe14));
4355      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4356      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4357                                getF32Constant(DAG, 0x3f317234));
4358      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4359      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4360                                           getF32Constant(DAG, 0x3f800000));
4361    }
4362
4363    // Add the exponent into the result in integer domain.
4364    SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4365                              TwoToFractionalPartOfX);
4366    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4367                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4368                                   t13, IntegerPartOfX));
4369  }
4370
4371  // No special expansion.
4372  return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4373}
4374
4375/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4376/// limited-precision mode with x == 10.0f.
4377static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4378                         SelectionDAG &DAG, const TargetLowering &TLI) {
4379  bool IsExp10 = false;
4380  if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4381      LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4382    if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4383      APFloat Ten(10.0f);
4384      IsExp10 = LHSC->isExactlyValue(Ten);
4385    }
4386  }
4387
4388  if (IsExp10) {
4389    // Put the exponent in the right bit position for later addition to the
4390    // final result:
4391    //
4392    //   #define LOG2OF10 3.3219281f
4393    //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4394    SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4395                             getF32Constant(DAG, 0x40549a78));
4396    SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4397
4398    //   FractionalPartOfX = x - (float)IntegerPartOfX;
4399    SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4400    SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4401
4402    //   IntegerPartOfX <<= 23;
4403    IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4404                                 DAG.getConstant(23, TLI.getPointerTy()));
4405
4406    SDValue TwoToFractionalPartOfX;
4407    if (LimitFloatPrecision <= 6) {
4408      // For floating-point precision of 6:
4409      //
4410      //   twoToFractionalPartOfX =
4411      //     0.997535578f +
4412      //       (0.735607626f + 0.252464424f * x) * x;
4413      //
4414      // error 0.0144103317, which is 6 bits
4415      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4416                               getF32Constant(DAG, 0x3e814304));
4417      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4418                               getF32Constant(DAG, 0x3f3c50c8));
4419      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4420      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4421                                           getF32Constant(DAG, 0x3f7f5e7e));
4422    } else if (LimitFloatPrecision <= 12) {
4423      // For floating-point precision of 12:
4424      //
4425      //   TwoToFractionalPartOfX =
4426      //     0.999892986f +
4427      //       (0.696457318f +
4428      //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4429      //
4430      // error 0.000107046256, which is 13 to 14 bits
4431      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4432                               getF32Constant(DAG, 0x3da235e3));
4433      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4434                               getF32Constant(DAG, 0x3e65b8f3));
4435      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4436      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4437                               getF32Constant(DAG, 0x3f324b07));
4438      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4439      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4440                                           getF32Constant(DAG, 0x3f7ff8fd));
4441    } else { // LimitFloatPrecision <= 18
4442      // For floating-point precision of 18:
4443      //
4444      //   TwoToFractionalPartOfX =
4445      //     0.999999982f +
4446      //       (0.693148872f +
4447      //         (0.240227044f +
4448      //           (0.554906021e-1f +
4449      //             (0.961591928e-2f +
4450      //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4451      // error 2.47208000*10^(-7), which is better than 18 bits
4452      SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4453                               getF32Constant(DAG, 0x3924b03e));
4454      SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4455                               getF32Constant(DAG, 0x3ab24b87));
4456      SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4457      SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4458                               getF32Constant(DAG, 0x3c1d8c17));
4459      SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4460      SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4461                               getF32Constant(DAG, 0x3d634a1d));
4462      SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4463      SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4464                               getF32Constant(DAG, 0x3e75fe14));
4465      SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4466      SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4467                                getF32Constant(DAG, 0x3f317234));
4468      SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4469      TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4470                                           getF32Constant(DAG, 0x3f800000));
4471    }
4472
4473    SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4474    return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4475                       DAG.getNode(ISD::ADD, dl, MVT::i32,
4476                                   t13, IntegerPartOfX));
4477  }
4478
4479  // No special expansion.
4480  return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4481}
4482
4483
4484/// ExpandPowI - Expand a llvm.powi intrinsic.
4485static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4486                          SelectionDAG &DAG) {
4487  // If RHS is a constant, we can expand this out to a multiplication tree,
4488  // otherwise we end up lowering to a call to __powidf2 (for example).  When
4489  // optimizing for size, we only want to do this if the expansion would produce
4490  // a small number of multiplies, otherwise we do the full expansion.
4491  if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4492    // Get the exponent as a positive value.
4493    unsigned Val = RHSC->getSExtValue();
4494    if ((int)Val < 0) Val = -Val;
4495
4496    // powi(x, 0) -> 1.0
4497    if (Val == 0)
4498      return DAG.getConstantFP(1.0, LHS.getValueType());
4499
4500    const Function *F = DAG.getMachineFunction().getFunction();
4501    if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4502                                         Attribute::OptimizeForSize) ||
4503        // If optimizing for size, don't insert too many multiplies.  This
4504        // inserts up to 5 multiplies.
4505        CountPopulation_32(Val)+Log2_32(Val) < 7) {
4506      // We use the simple binary decomposition method to generate the multiply
4507      // sequence.  There are more optimal ways to do this (for example,
4508      // powi(x,15) generates one more multiply than it should), but this has
4509      // the benefit of being both really simple and much better than a libcall.
4510      SDValue Res;  // Logically starts equal to 1.0
4511      SDValue CurSquare = LHS;
4512      while (Val) {
4513        if (Val & 1) {
4514          if (Res.getNode())
4515            Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4516          else
4517            Res = CurSquare;  // 1.0*CurSquare.
4518        }
4519
4520        CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4521                                CurSquare, CurSquare);
4522        Val >>= 1;
4523      }
4524
4525      // If the original was negative, invert the result, producing 1/(x*x*x).
4526      if (RHSC->getSExtValue() < 0)
4527        Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4528                          DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4529      return Res;
4530    }
4531  }
4532
4533  // Otherwise, expand to a libcall.
4534  return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4535}
4536
4537// getTruncatedArgReg - Find underlying register used for an truncated
4538// argument.
4539static unsigned getTruncatedArgReg(const SDValue &N) {
4540  if (N.getOpcode() != ISD::TRUNCATE)
4541    return 0;
4542
4543  const SDValue &Ext = N.getOperand(0);
4544  if (Ext.getOpcode() == ISD::AssertZext ||
4545      Ext.getOpcode() == ISD::AssertSext) {
4546    const SDValue &CFR = Ext.getOperand(0);
4547    if (CFR.getOpcode() == ISD::CopyFromReg)
4548      return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4549    if (CFR.getOpcode() == ISD::TRUNCATE)
4550      return getTruncatedArgReg(CFR);
4551  }
4552  return 0;
4553}
4554
4555/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4556/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4557/// At the end of instruction selection, they will be inserted to the entry BB.
4558bool
4559SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4560                                              int64_t Offset, bool IsIndirect,
4561                                              const SDValue &N) {
4562  const Argument *Arg = dyn_cast<Argument>(V);
4563  if (!Arg)
4564    return false;
4565
4566  MachineFunction &MF = DAG.getMachineFunction();
4567  const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4568
4569  // Ignore inlined function arguments here.
4570  DIVariable DV(Variable);
4571  if (DV.isInlinedFnArgument(MF.getFunction()))
4572    return false;
4573
4574  Optional<MachineOperand> Op;
4575  // Some arguments' frame index is recorded during argument lowering.
4576  if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4577    Op = MachineOperand::CreateFI(FI);
4578
4579  if (!Op && N.getNode()) {
4580    unsigned Reg;
4581    if (N.getOpcode() == ISD::CopyFromReg)
4582      Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4583    else
4584      Reg = getTruncatedArgReg(N);
4585    if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4586      MachineRegisterInfo &RegInfo = MF.getRegInfo();
4587      unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4588      if (PR)
4589        Reg = PR;
4590    }
4591    if (Reg)
4592      Op = MachineOperand::CreateReg(Reg, false);
4593  }
4594
4595  if (!Op) {
4596    // Check if ValueMap has reg number.
4597    DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4598    if (VMI != FuncInfo.ValueMap.end())
4599      Op = MachineOperand::CreateReg(VMI->second, false);
4600  }
4601
4602  if (!Op && N.getNode())
4603    // Check if frame index is available.
4604    if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4605      if (FrameIndexSDNode *FINode =
4606          dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4607        Op = MachineOperand::CreateFI(FINode->getIndex());
4608
4609  if (!Op)
4610    return false;
4611
4612  if (Op->isReg())
4613    FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4614                                            TII->get(TargetOpcode::DBG_VALUE),
4615                                            IsIndirect,
4616                                            Op->getReg(), Offset, Variable));
4617  else
4618    FuncInfo.ArgDbgValues.push_back(
4619      BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4620          .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4621
4622  return true;
4623}
4624
4625// VisualStudio defines setjmp as _setjmp
4626#if defined(_MSC_VER) && defined(setjmp) && \
4627                         !defined(setjmp_undefined_for_msvc)
4628#  pragma push_macro("setjmp")
4629#  undef setjmp
4630#  define setjmp_undefined_for_msvc
4631#endif
4632
4633/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4634/// we want to emit this as a call to a named external function, return the name
4635/// otherwise lower it and return null.
4636const char *
4637SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4638  const TargetLowering *TLI = TM.getTargetLowering();
4639  SDLoc sdl = getCurSDLoc();
4640  DebugLoc dl = getCurDebugLoc();
4641  SDValue Res;
4642
4643  switch (Intrinsic) {
4644  default:
4645    // By default, turn this into a target intrinsic node.
4646    visitTargetIntrinsic(I, Intrinsic);
4647    return nullptr;
4648  case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4649  case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4650  case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4651  case Intrinsic::returnaddress:
4652    setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4653                             getValue(I.getArgOperand(0))));
4654    return nullptr;
4655  case Intrinsic::frameaddress:
4656    setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4657                             getValue(I.getArgOperand(0))));
4658    return nullptr;
4659  case Intrinsic::read_register: {
4660    Value *Reg = I.getArgOperand(0);
4661    SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
4662    EVT VT = TM.getTargetLowering()->getValueType(I.getType());
4663    setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
4664    return nullptr;
4665  }
4666  case Intrinsic::write_register: {
4667    Value *Reg = I.getArgOperand(0);
4668    Value *RegValue = I.getArgOperand(1);
4669    SDValue Chain = getValue(RegValue).getOperand(0);
4670    SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg));
4671    DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4672                            RegName, getValue(RegValue)));
4673    return nullptr;
4674  }
4675  case Intrinsic::setjmp:
4676    return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4677  case Intrinsic::longjmp:
4678    return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4679  case Intrinsic::memcpy: {
4680    // Assert for address < 256 since we support only user defined address
4681    // spaces.
4682    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4683           < 256 &&
4684           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4685           < 256 &&
4686           "Unknown address space");
4687    SDValue Op1 = getValue(I.getArgOperand(0));
4688    SDValue Op2 = getValue(I.getArgOperand(1));
4689    SDValue Op3 = getValue(I.getArgOperand(2));
4690    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4691    if (!Align)
4692      Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4693    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4694    DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4695                              MachinePointerInfo(I.getArgOperand(0)),
4696                              MachinePointerInfo(I.getArgOperand(1))));
4697    return nullptr;
4698  }
4699  case Intrinsic::memset: {
4700    // Assert for address < 256 since we support only user defined address
4701    // spaces.
4702    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4703           < 256 &&
4704           "Unknown address space");
4705    SDValue Op1 = getValue(I.getArgOperand(0));
4706    SDValue Op2 = getValue(I.getArgOperand(1));
4707    SDValue Op3 = getValue(I.getArgOperand(2));
4708    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4709    if (!Align)
4710      Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4711    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4712    DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4713                              MachinePointerInfo(I.getArgOperand(0))));
4714    return nullptr;
4715  }
4716  case Intrinsic::memmove: {
4717    // Assert for address < 256 since we support only user defined address
4718    // spaces.
4719    assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4720           < 256 &&
4721           cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4722           < 256 &&
4723           "Unknown address space");
4724    SDValue Op1 = getValue(I.getArgOperand(0));
4725    SDValue Op2 = getValue(I.getArgOperand(1));
4726    SDValue Op3 = getValue(I.getArgOperand(2));
4727    unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4728    if (!Align)
4729      Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4730    bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4731    DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4732                               MachinePointerInfo(I.getArgOperand(0)),
4733                               MachinePointerInfo(I.getArgOperand(1))));
4734    return nullptr;
4735  }
4736  case Intrinsic::dbg_declare: {
4737    const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4738    MDNode *Variable = DI.getVariable();
4739    const Value *Address = DI.getAddress();
4740    DIVariable DIVar(Variable);
4741    assert((!DIVar || DIVar.isVariable()) &&
4742      "Variable in DbgDeclareInst should be either null or a DIVariable.");
4743    if (!Address || !DIVar) {
4744      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4745      return nullptr;
4746    }
4747
4748    // Check if address has undef value.
4749    if (isa<UndefValue>(Address) ||
4750        (Address->use_empty() && !isa<Argument>(Address))) {
4751      DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4752      return nullptr;
4753    }
4754
4755    SDValue &N = NodeMap[Address];
4756    if (!N.getNode() && isa<Argument>(Address))
4757      // Check unused arguments map.
4758      N = UnusedArgNodeMap[Address];
4759    SDDbgValue *SDV;
4760    if (N.getNode()) {
4761      if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4762        Address = BCI->getOperand(0);
4763      // Parameters are handled specially.
4764      bool isParameter =
4765        (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4766         isa<Argument>(Address));
4767
4768      const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4769
4770      if (isParameter && !AI) {
4771        FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4772        if (FINode)
4773          // Byval parameter.  We have a frame index at this point.
4774          SDV = DAG.getFrameIndexDbgValue(Variable, FINode->getIndex(),
4775					  0, dl, SDNodeOrder);
4776        else {
4777          // Address is an argument, so try to emit its dbg value using
4778          // virtual register info from the FuncInfo.ValueMap.
4779          EmitFuncArgumentDbgValue(Address, Variable, 0, false, N);
4780          return nullptr;
4781        }
4782      } else if (AI)
4783        SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4784                              true, 0, dl, SDNodeOrder);
4785      else {
4786        // Can't do anything with other non-AI cases yet.
4787        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4788        DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4789        DEBUG(Address->dump());
4790        return nullptr;
4791      }
4792      DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4793    } else {
4794      // If Address is an argument then try to emit its dbg value using
4795      // virtual register info from the FuncInfo.ValueMap.
4796      if (!EmitFuncArgumentDbgValue(Address, Variable, 0, false, N)) {
4797        // If variable is pinned by a alloca in dominating bb then
4798        // use StaticAllocaMap.
4799        if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4800          if (AI->getParent() != DI.getParent()) {
4801            DenseMap<const AllocaInst*, int>::iterator SI =
4802              FuncInfo.StaticAllocaMap.find(AI);
4803            if (SI != FuncInfo.StaticAllocaMap.end()) {
4804              SDV = DAG.getFrameIndexDbgValue(Variable, SI->second,
4805                                              0, dl, SDNodeOrder);
4806              DAG.AddDbgValue(SDV, nullptr, false);
4807              return nullptr;
4808            }
4809          }
4810        }
4811        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4812      }
4813    }
4814    return nullptr;
4815  }
4816  case Intrinsic::dbg_value: {
4817    const DbgValueInst &DI = cast<DbgValueInst>(I);
4818    DIVariable DIVar(DI.getVariable());
4819    assert((!DIVar || DIVar.isVariable()) &&
4820      "Variable in DbgValueInst should be either null or a DIVariable.");
4821    if (!DIVar)
4822      return nullptr;
4823
4824    MDNode *Variable = DI.getVariable();
4825    uint64_t Offset = DI.getOffset();
4826    const Value *V = DI.getValue();
4827    if (!V)
4828      return nullptr;
4829
4830    SDDbgValue *SDV;
4831    if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4832      SDV = DAG.getConstantDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4833      DAG.AddDbgValue(SDV, nullptr, false);
4834    } else {
4835      // Do not use getValue() in here; we don't want to generate code at
4836      // this point if it hasn't been done yet.
4837      SDValue N = NodeMap[V];
4838      if (!N.getNode() && isa<Argument>(V))
4839        // Check unused arguments map.
4840        N = UnusedArgNodeMap[V];
4841      if (N.getNode()) {
4842        // A dbg.value for an alloca is always indirect.
4843        bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4844        if (!EmitFuncArgumentDbgValue(V, Variable, Offset, IsIndirect, N)) {
4845          SDV = DAG.getDbgValue(Variable, N.getNode(),
4846                                N.getResNo(), IsIndirect,
4847				Offset, dl, SDNodeOrder);
4848          DAG.AddDbgValue(SDV, N.getNode(), false);
4849        }
4850      } else if (!V->use_empty() ) {
4851        // Do not call getValue(V) yet, as we don't want to generate code.
4852        // Remember it for later.
4853        DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4854        DanglingDebugInfoMap[V] = DDI;
4855      } else {
4856        // We may expand this to cover more cases.  One case where we have no
4857        // data available is an unreferenced parameter.
4858        DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4859      }
4860    }
4861
4862    // Build a debug info table entry.
4863    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4864      V = BCI->getOperand(0);
4865    const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4866    // Don't handle byval struct arguments or VLAs, for example.
4867    if (!AI) {
4868      DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4869      DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4870      return nullptr;
4871    }
4872    DenseMap<const AllocaInst*, int>::iterator SI =
4873      FuncInfo.StaticAllocaMap.find(AI);
4874    if (SI == FuncInfo.StaticAllocaMap.end())
4875      return nullptr; // VLAs.
4876    return nullptr;
4877  }
4878
4879  case Intrinsic::eh_typeid_for: {
4880    // Find the type id for the given typeinfo.
4881    GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4882    unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4883    Res = DAG.getConstant(TypeID, MVT::i32);
4884    setValue(&I, Res);
4885    return nullptr;
4886  }
4887
4888  case Intrinsic::eh_return_i32:
4889  case Intrinsic::eh_return_i64:
4890    DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4891    DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4892                            MVT::Other,
4893                            getControlRoot(),
4894                            getValue(I.getArgOperand(0)),
4895                            getValue(I.getArgOperand(1))));
4896    return nullptr;
4897  case Intrinsic::eh_unwind_init:
4898    DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4899    return nullptr;
4900  case Intrinsic::eh_dwarf_cfa: {
4901    SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4902                                        TLI->getPointerTy());
4903    SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4904                                 CfaArg.getValueType(),
4905                                 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4906                                             CfaArg.getValueType()),
4907                                 CfaArg);
4908    SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4909                             TLI->getPointerTy(),
4910                             DAG.getConstant(0, TLI->getPointerTy()));
4911    setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4912                             FA, Offset));
4913    return nullptr;
4914  }
4915  case Intrinsic::eh_sjlj_callsite: {
4916    MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4917    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4918    assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4919    assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4920
4921    MMI.setCurrentCallSite(CI->getZExtValue());
4922    return nullptr;
4923  }
4924  case Intrinsic::eh_sjlj_functioncontext: {
4925    // Get and store the index of the function context.
4926    MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4927    AllocaInst *FnCtx =
4928      cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4929    int FI = FuncInfo.StaticAllocaMap[FnCtx];
4930    MFI->setFunctionContextIndex(FI);
4931    return nullptr;
4932  }
4933  case Intrinsic::eh_sjlj_setjmp: {
4934    SDValue Ops[2];
4935    Ops[0] = getRoot();
4936    Ops[1] = getValue(I.getArgOperand(0));
4937    SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4938                             DAG.getVTList(MVT::i32, MVT::Other), Ops);
4939    setValue(&I, Op.getValue(0));
4940    DAG.setRoot(Op.getValue(1));
4941    return nullptr;
4942  }
4943  case Intrinsic::eh_sjlj_longjmp: {
4944    DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4945                            getRoot(), getValue(I.getArgOperand(0))));
4946    return nullptr;
4947  }
4948
4949  case Intrinsic::x86_mmx_pslli_w:
4950  case Intrinsic::x86_mmx_pslli_d:
4951  case Intrinsic::x86_mmx_pslli_q:
4952  case Intrinsic::x86_mmx_psrli_w:
4953  case Intrinsic::x86_mmx_psrli_d:
4954  case Intrinsic::x86_mmx_psrli_q:
4955  case Intrinsic::x86_mmx_psrai_w:
4956  case Intrinsic::x86_mmx_psrai_d: {
4957    SDValue ShAmt = getValue(I.getArgOperand(1));
4958    if (isa<ConstantSDNode>(ShAmt)) {
4959      visitTargetIntrinsic(I, Intrinsic);
4960      return nullptr;
4961    }
4962    unsigned NewIntrinsic = 0;
4963    EVT ShAmtVT = MVT::v2i32;
4964    switch (Intrinsic) {
4965    case Intrinsic::x86_mmx_pslli_w:
4966      NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4967      break;
4968    case Intrinsic::x86_mmx_pslli_d:
4969      NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4970      break;
4971    case Intrinsic::x86_mmx_pslli_q:
4972      NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4973      break;
4974    case Intrinsic::x86_mmx_psrli_w:
4975      NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4976      break;
4977    case Intrinsic::x86_mmx_psrli_d:
4978      NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4979      break;
4980    case Intrinsic::x86_mmx_psrli_q:
4981      NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4982      break;
4983    case Intrinsic::x86_mmx_psrai_w:
4984      NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4985      break;
4986    case Intrinsic::x86_mmx_psrai_d:
4987      NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4988      break;
4989    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4990    }
4991
4992    // The vector shift intrinsics with scalars uses 32b shift amounts but
4993    // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4994    // to be zero.
4995    // We must do this early because v2i32 is not a legal type.
4996    SDValue ShOps[2];
4997    ShOps[0] = ShAmt;
4998    ShOps[1] = DAG.getConstant(0, MVT::i32);
4999    ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5000    EVT DestVT = TLI->getValueType(I.getType());
5001    ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5002    Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5003                       DAG.getConstant(NewIntrinsic, MVT::i32),
5004                       getValue(I.getArgOperand(0)), ShAmt);
5005    setValue(&I, Res);
5006    return nullptr;
5007  }
5008  case Intrinsic::x86_avx_vinsertf128_pd_256:
5009  case Intrinsic::x86_avx_vinsertf128_ps_256:
5010  case Intrinsic::x86_avx_vinsertf128_si_256:
5011  case Intrinsic::x86_avx2_vinserti128: {
5012    EVT DestVT = TLI->getValueType(I.getType());
5013    EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
5014    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
5015                   ElVT.getVectorNumElements();
5016    Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
5017                      getValue(I.getArgOperand(0)),
5018                      getValue(I.getArgOperand(1)),
5019                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
5020    setValue(&I, Res);
5021    return nullptr;
5022  }
5023  case Intrinsic::x86_avx_vextractf128_pd_256:
5024  case Intrinsic::x86_avx_vextractf128_ps_256:
5025  case Intrinsic::x86_avx_vextractf128_si_256:
5026  case Intrinsic::x86_avx2_vextracti128: {
5027    EVT DestVT = TLI->getValueType(I.getType());
5028    uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
5029                   DestVT.getVectorNumElements();
5030    Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
5031                      getValue(I.getArgOperand(0)),
5032                      DAG.getConstant(Idx, TLI->getVectorIdxTy()));
5033    setValue(&I, Res);
5034    return nullptr;
5035  }
5036  case Intrinsic::convertff:
5037  case Intrinsic::convertfsi:
5038  case Intrinsic::convertfui:
5039  case Intrinsic::convertsif:
5040  case Intrinsic::convertuif:
5041  case Intrinsic::convertss:
5042  case Intrinsic::convertsu:
5043  case Intrinsic::convertus:
5044  case Intrinsic::convertuu: {
5045    ISD::CvtCode Code = ISD::CVT_INVALID;
5046    switch (Intrinsic) {
5047    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5048    case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5049    case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5050    case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5051    case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5052    case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5053    case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5054    case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5055    case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5056    case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5057    }
5058    EVT DestVT = TLI->getValueType(I.getType());
5059    const Value *Op1 = I.getArgOperand(0);
5060    Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5061                               DAG.getValueType(DestVT),
5062                               DAG.getValueType(getValue(Op1).getValueType()),
5063                               getValue(I.getArgOperand(1)),
5064                               getValue(I.getArgOperand(2)),
5065                               Code);
5066    setValue(&I, Res);
5067    return nullptr;
5068  }
5069  case Intrinsic::powi:
5070    setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5071                            getValue(I.getArgOperand(1)), DAG));
5072    return nullptr;
5073  case Intrinsic::log:
5074    setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5075    return nullptr;
5076  case Intrinsic::log2:
5077    setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5078    return nullptr;
5079  case Intrinsic::log10:
5080    setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5081    return nullptr;
5082  case Intrinsic::exp:
5083    setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5084    return nullptr;
5085  case Intrinsic::exp2:
5086    setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
5087    return nullptr;
5088  case Intrinsic::pow:
5089    setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5090                           getValue(I.getArgOperand(1)), DAG, *TLI));
5091    return nullptr;
5092  case Intrinsic::sqrt:
5093  case Intrinsic::fabs:
5094  case Intrinsic::sin:
5095  case Intrinsic::cos:
5096  case Intrinsic::floor:
5097  case Intrinsic::ceil:
5098  case Intrinsic::trunc:
5099  case Intrinsic::rint:
5100  case Intrinsic::nearbyint:
5101  case Intrinsic::round: {
5102    unsigned Opcode;
5103    switch (Intrinsic) {
5104    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5105    case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5106    case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5107    case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5108    case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5109    case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5110    case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5111    case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5112    case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5113    case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5114    case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5115    }
5116
5117    setValue(&I, DAG.getNode(Opcode, sdl,
5118                             getValue(I.getArgOperand(0)).getValueType(),
5119                             getValue(I.getArgOperand(0))));
5120    return nullptr;
5121  }
5122  case Intrinsic::copysign:
5123    setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5124                             getValue(I.getArgOperand(0)).getValueType(),
5125                             getValue(I.getArgOperand(0)),
5126                             getValue(I.getArgOperand(1))));
5127    return nullptr;
5128  case Intrinsic::fma:
5129    setValue(&I, DAG.getNode(ISD::FMA, sdl,
5130                             getValue(I.getArgOperand(0)).getValueType(),
5131                             getValue(I.getArgOperand(0)),
5132                             getValue(I.getArgOperand(1)),
5133                             getValue(I.getArgOperand(2))));
5134    return nullptr;
5135  case Intrinsic::fmuladd: {
5136    EVT VT = TLI->getValueType(I.getType());
5137    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5138        TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5139      setValue(&I, DAG.getNode(ISD::FMA, sdl,
5140                               getValue(I.getArgOperand(0)).getValueType(),
5141                               getValue(I.getArgOperand(0)),
5142                               getValue(I.getArgOperand(1)),
5143                               getValue(I.getArgOperand(2))));
5144    } else {
5145      SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5146                                getValue(I.getArgOperand(0)).getValueType(),
5147                                getValue(I.getArgOperand(0)),
5148                                getValue(I.getArgOperand(1)));
5149      SDValue Add = DAG.getNode(ISD::FADD, sdl,
5150                                getValue(I.getArgOperand(0)).getValueType(),
5151                                Mul,
5152                                getValue(I.getArgOperand(2)));
5153      setValue(&I, Add);
5154    }
5155    return nullptr;
5156  }
5157  case Intrinsic::convert_to_fp16:
5158    setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5159                             MVT::i16, getValue(I.getArgOperand(0))));
5160    return nullptr;
5161  case Intrinsic::convert_from_fp16:
5162    setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5163                             MVT::f32, getValue(I.getArgOperand(0))));
5164    return nullptr;
5165  case Intrinsic::pcmarker: {
5166    SDValue Tmp = getValue(I.getArgOperand(0));
5167    DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5168    return nullptr;
5169  }
5170  case Intrinsic::readcyclecounter: {
5171    SDValue Op = getRoot();
5172    Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5173                      DAG.getVTList(MVT::i64, MVT::Other), Op);
5174    setValue(&I, Res);
5175    DAG.setRoot(Res.getValue(1));
5176    return nullptr;
5177  }
5178  case Intrinsic::bswap:
5179    setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5180                             getValue(I.getArgOperand(0)).getValueType(),
5181                             getValue(I.getArgOperand(0))));
5182    return nullptr;
5183  case Intrinsic::cttz: {
5184    SDValue Arg = getValue(I.getArgOperand(0));
5185    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5186    EVT Ty = Arg.getValueType();
5187    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5188                             sdl, Ty, Arg));
5189    return nullptr;
5190  }
5191  case Intrinsic::ctlz: {
5192    SDValue Arg = getValue(I.getArgOperand(0));
5193    ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5194    EVT Ty = Arg.getValueType();
5195    setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5196                             sdl, Ty, Arg));
5197    return nullptr;
5198  }
5199  case Intrinsic::ctpop: {
5200    SDValue Arg = getValue(I.getArgOperand(0));
5201    EVT Ty = Arg.getValueType();
5202    setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5203    return nullptr;
5204  }
5205  case Intrinsic::stacksave: {
5206    SDValue Op = getRoot();
5207    Res = DAG.getNode(ISD::STACKSAVE, sdl,
5208                      DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op);
5209    setValue(&I, Res);
5210    DAG.setRoot(Res.getValue(1));
5211    return nullptr;
5212  }
5213  case Intrinsic::stackrestore: {
5214    Res = getValue(I.getArgOperand(0));
5215    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5216    return nullptr;
5217  }
5218  case Intrinsic::stackprotector: {
5219    // Emit code into the DAG to store the stack guard onto the stack.
5220    MachineFunction &MF = DAG.getMachineFunction();
5221    MachineFrameInfo *MFI = MF.getFrameInfo();
5222    EVT PtrTy = TLI->getPointerTy();
5223
5224    SDValue Src = getValue(I.getArgOperand(0));   // The guard's value.
5225    AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5226
5227    int FI = FuncInfo.StaticAllocaMap[Slot];
5228    MFI->setStackProtectorIndex(FI);
5229
5230    SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5231
5232    // Store the stack protector onto the stack.
5233    Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5234                       MachinePointerInfo::getFixedStack(FI),
5235                       true, false, 0);
5236    setValue(&I, Res);
5237    DAG.setRoot(Res);
5238    return nullptr;
5239  }
5240  case Intrinsic::objectsize: {
5241    // If we don't know by now, we're never going to know.
5242    ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5243
5244    assert(CI && "Non-constant type in __builtin_object_size?");
5245
5246    SDValue Arg = getValue(I.getCalledValue());
5247    EVT Ty = Arg.getValueType();
5248
5249    if (CI->isZero())
5250      Res = DAG.getConstant(-1ULL, Ty);
5251    else
5252      Res = DAG.getConstant(0, Ty);
5253
5254    setValue(&I, Res);
5255    return nullptr;
5256  }
5257  case Intrinsic::annotation:
5258  case Intrinsic::ptr_annotation:
5259    // Drop the intrinsic, but forward the value
5260    setValue(&I, getValue(I.getOperand(0)));
5261    return nullptr;
5262  case Intrinsic::var_annotation:
5263    // Discard annotate attributes
5264    return nullptr;
5265
5266  case Intrinsic::init_trampoline: {
5267    const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5268
5269    SDValue Ops[6];
5270    Ops[0] = getRoot();
5271    Ops[1] = getValue(I.getArgOperand(0));
5272    Ops[2] = getValue(I.getArgOperand(1));
5273    Ops[3] = getValue(I.getArgOperand(2));
5274    Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5275    Ops[5] = DAG.getSrcValue(F);
5276
5277    Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5278
5279    DAG.setRoot(Res);
5280    return nullptr;
5281  }
5282  case Intrinsic::adjust_trampoline: {
5283    setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5284                             TLI->getPointerTy(),
5285                             getValue(I.getArgOperand(0))));
5286    return nullptr;
5287  }
5288  case Intrinsic::gcroot:
5289    if (GFI) {
5290      const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5291      const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5292
5293      FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5294      GFI->addStackRoot(FI->getIndex(), TypeMap);
5295    }
5296    return nullptr;
5297  case Intrinsic::gcread:
5298  case Intrinsic::gcwrite:
5299    llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5300  case Intrinsic::flt_rounds:
5301    setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5302    return nullptr;
5303
5304  case Intrinsic::expect: {
5305    // Just replace __builtin_expect(exp, c) with EXP.
5306    setValue(&I, getValue(I.getArgOperand(0)));
5307    return nullptr;
5308  }
5309
5310  case Intrinsic::debugtrap:
5311  case Intrinsic::trap: {
5312    StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5313    if (TrapFuncName.empty()) {
5314      ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5315        ISD::TRAP : ISD::DEBUGTRAP;
5316      DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5317      return nullptr;
5318    }
5319    TargetLowering::ArgListTy Args;
5320
5321    TargetLowering::CallLoweringInfo CLI(DAG);
5322    CLI.setDebugLoc(sdl).setChain(getRoot())
5323      .setCallee(CallingConv::C, I.getType(),
5324                 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()),
5325                 std::move(Args), 0);
5326
5327    std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5328    DAG.setRoot(Result.second);
5329    return nullptr;
5330  }
5331
5332  case Intrinsic::uadd_with_overflow:
5333  case Intrinsic::sadd_with_overflow:
5334  case Intrinsic::usub_with_overflow:
5335  case Intrinsic::ssub_with_overflow:
5336  case Intrinsic::umul_with_overflow:
5337  case Intrinsic::smul_with_overflow: {
5338    ISD::NodeType Op;
5339    switch (Intrinsic) {
5340    default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5341    case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5342    case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5343    case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5344    case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5345    case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5346    case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5347    }
5348    SDValue Op1 = getValue(I.getArgOperand(0));
5349    SDValue Op2 = getValue(I.getArgOperand(1));
5350
5351    SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5352    setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5353    return nullptr;
5354  }
5355  case Intrinsic::prefetch: {
5356    SDValue Ops[5];
5357    unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5358    Ops[0] = getRoot();
5359    Ops[1] = getValue(I.getArgOperand(0));
5360    Ops[2] = getValue(I.getArgOperand(1));
5361    Ops[3] = getValue(I.getArgOperand(2));
5362    Ops[4] = getValue(I.getArgOperand(3));
5363    DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5364                                        DAG.getVTList(MVT::Other), Ops,
5365                                        EVT::getIntegerVT(*Context, 8),
5366                                        MachinePointerInfo(I.getArgOperand(0)),
5367                                        0, /* align */
5368                                        false, /* volatile */
5369                                        rw==0, /* read */
5370                                        rw==1)); /* write */
5371    return nullptr;
5372  }
5373  case Intrinsic::lifetime_start:
5374  case Intrinsic::lifetime_end: {
5375    bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5376    // Stack coloring is not enabled in O0, discard region information.
5377    if (TM.getOptLevel() == CodeGenOpt::None)
5378      return nullptr;
5379
5380    SmallVector<Value *, 4> Allocas;
5381    GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL);
5382
5383    for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5384           E = Allocas.end(); Object != E; ++Object) {
5385      AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5386
5387      // Could not find an Alloca.
5388      if (!LifetimeObject)
5389        continue;
5390
5391      int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5392
5393      SDValue Ops[2];
5394      Ops[0] = getRoot();
5395      Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5396      unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5397
5398      Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5399      DAG.setRoot(Res);
5400    }
5401    return nullptr;
5402  }
5403  case Intrinsic::invariant_start:
5404    // Discard region information.
5405    setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5406    return nullptr;
5407  case Intrinsic::invariant_end:
5408    // Discard region information.
5409    return nullptr;
5410  case Intrinsic::stackprotectorcheck: {
5411    // Do not actually emit anything for this basic block. Instead we initialize
5412    // the stack protector descriptor and export the guard variable so we can
5413    // access it in FinishBasicBlock.
5414    const BasicBlock *BB = I.getParent();
5415    SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5416    ExportFromCurrentBlock(SPDescriptor.getGuard());
5417
5418    // Flush our exports since we are going to process a terminator.
5419    (void)getControlRoot();
5420    return nullptr;
5421  }
5422  case Intrinsic::clear_cache:
5423    return TLI->getClearCacheBuiltinName();
5424  case Intrinsic::donothing:
5425    // ignore
5426    return nullptr;
5427  case Intrinsic::experimental_stackmap: {
5428    visitStackmap(I);
5429    return nullptr;
5430  }
5431  case Intrinsic::experimental_patchpoint_void:
5432  case Intrinsic::experimental_patchpoint_i64: {
5433    visitPatchpoint(I);
5434    return nullptr;
5435  }
5436  }
5437}
5438
5439void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5440                                      bool isTailCall,
5441                                      MachineBasicBlock *LandingPad) {
5442  const TargetLowering *TLI = TM.getTargetLowering();
5443  PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5444  FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5445  Type *RetTy = FTy->getReturnType();
5446  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5447  MCSymbol *BeginLabel = nullptr;
5448
5449  TargetLowering::ArgListTy Args;
5450  TargetLowering::ArgListEntry Entry;
5451  Args.reserve(CS.arg_size());
5452
5453  for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5454       i != e; ++i) {
5455    const Value *V = *i;
5456
5457    // Skip empty types
5458    if (V->getType()->isEmptyTy())
5459      continue;
5460
5461    SDValue ArgNode = getValue(V);
5462    Entry.Node = ArgNode; Entry.Ty = V->getType();
5463
5464    // Skip the first return-type Attribute to get to params.
5465    Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5466    Args.push_back(Entry);
5467  }
5468
5469  if (LandingPad) {
5470    // Insert a label before the invoke call to mark the try range.  This can be
5471    // used to detect deletion of the invoke via the MachineModuleInfo.
5472    BeginLabel = MMI.getContext().CreateTempSymbol();
5473
5474    // For SjLj, keep track of which landing pads go with which invokes
5475    // so as to maintain the ordering of pads in the LSDA.
5476    unsigned CallSiteIndex = MMI.getCurrentCallSite();
5477    if (CallSiteIndex) {
5478      MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5479      LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5480
5481      // Now that the call site is handled, stop tracking it.
5482      MMI.setCurrentCallSite(0);
5483    }
5484
5485    // Both PendingLoads and PendingExports must be flushed here;
5486    // this call might not return.
5487    (void)getRoot();
5488    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5489  }
5490
5491  // Check if target-independent constraints permit a tail call here.
5492  // Target-dependent constraints are checked within TLI->LowerCallTo.
5493  if (isTailCall && !isInTailCallPosition(CS, DAG))
5494    isTailCall = false;
5495
5496  TargetLowering::CallLoweringInfo CLI(DAG);
5497  CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5498    .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall);
5499
5500  std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5501  assert((isTailCall || Result.second.getNode()) &&
5502         "Non-null chain expected with non-tail call!");
5503  assert((Result.second.getNode() || !Result.first.getNode()) &&
5504         "Null value expected with tail call!");
5505  if (Result.first.getNode())
5506    setValue(CS.getInstruction(), Result.first);
5507
5508  if (!Result.second.getNode()) {
5509    // As a special case, a null chain means that a tail call has been emitted
5510    // and the DAG root is already updated.
5511    HasTailCall = true;
5512
5513    // Since there's no actual continuation from this block, nothing can be
5514    // relying on us setting vregs for them.
5515    PendingExports.clear();
5516  } else {
5517    DAG.setRoot(Result.second);
5518  }
5519
5520  if (LandingPad) {
5521    // Insert a label at the end of the invoke call to mark the try range.  This
5522    // can be used to detect deletion of the invoke via the MachineModuleInfo.
5523    MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5524    DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5525
5526    // Inform MachineModuleInfo of range.
5527    MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5528  }
5529}
5530
5531/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5532/// value is equal or not-equal to zero.
5533static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5534  for (const User *U : V->users()) {
5535    if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5536      if (IC->isEquality())
5537        if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5538          if (C->isNullValue())
5539            continue;
5540    // Unknown instruction.
5541    return false;
5542  }
5543  return true;
5544}
5545
5546static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5547                             Type *LoadTy,
5548                             SelectionDAGBuilder &Builder) {
5549
5550  // Check to see if this load can be trivially constant folded, e.g. if the
5551  // input is from a string literal.
5552  if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5553    // Cast pointer to the type we really want to load.
5554    LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5555                                         PointerType::getUnqual(LoadTy));
5556
5557    if (const Constant *LoadCst =
5558          ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5559                                       Builder.DL))
5560      return Builder.getValue(LoadCst);
5561  }
5562
5563  // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5564  // still constant memory, the input chain can be the entry node.
5565  SDValue Root;
5566  bool ConstantMemory = false;
5567
5568  // Do not serialize (non-volatile) loads of constant memory with anything.
5569  if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5570    Root = Builder.DAG.getEntryNode();
5571    ConstantMemory = true;
5572  } else {
5573    // Do not serialize non-volatile loads against each other.
5574    Root = Builder.DAG.getRoot();
5575  }
5576
5577  SDValue Ptr = Builder.getValue(PtrVal);
5578  SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5579                                        Ptr, MachinePointerInfo(PtrVal),
5580                                        false /*volatile*/,
5581                                        false /*nontemporal*/,
5582                                        false /*isinvariant*/, 1 /* align=1 */);
5583
5584  if (!ConstantMemory)
5585    Builder.PendingLoads.push_back(LoadVal.getValue(1));
5586  return LoadVal;
5587}
5588
5589/// processIntegerCallValue - Record the value for an instruction that
5590/// produces an integer result, converting the type where necessary.
5591void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5592                                                  SDValue Value,
5593                                                  bool IsSigned) {
5594  EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5595  if (IsSigned)
5596    Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5597  else
5598    Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5599  setValue(&I, Value);
5600}
5601
5602/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5603/// If so, return true and lower it, otherwise return false and it will be
5604/// lowered like a normal call.
5605bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5606  // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5607  if (I.getNumArgOperands() != 3)
5608    return false;
5609
5610  const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5611  if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5612      !I.getArgOperand(2)->getType()->isIntegerTy() ||
5613      !I.getType()->isIntegerTy())
5614    return false;
5615
5616  const Value *Size = I.getArgOperand(2);
5617  const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5618  if (CSize && CSize->getZExtValue() == 0) {
5619    EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5620    setValue(&I, DAG.getConstant(0, CallVT));
5621    return true;
5622  }
5623
5624  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5625  std::pair<SDValue, SDValue> Res =
5626    TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5627                                getValue(LHS), getValue(RHS), getValue(Size),
5628                                MachinePointerInfo(LHS),
5629                                MachinePointerInfo(RHS));
5630  if (Res.first.getNode()) {
5631    processIntegerCallValue(I, Res.first, true);
5632    PendingLoads.push_back(Res.second);
5633    return true;
5634  }
5635
5636  // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5637  // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5638  if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5639    bool ActuallyDoIt = true;
5640    MVT LoadVT;
5641    Type *LoadTy;
5642    switch (CSize->getZExtValue()) {
5643    default:
5644      LoadVT = MVT::Other;
5645      LoadTy = nullptr;
5646      ActuallyDoIt = false;
5647      break;
5648    case 2:
5649      LoadVT = MVT::i16;
5650      LoadTy = Type::getInt16Ty(CSize->getContext());
5651      break;
5652    case 4:
5653      LoadVT = MVT::i32;
5654      LoadTy = Type::getInt32Ty(CSize->getContext());
5655      break;
5656    case 8:
5657      LoadVT = MVT::i64;
5658      LoadTy = Type::getInt64Ty(CSize->getContext());
5659      break;
5660        /*
5661    case 16:
5662      LoadVT = MVT::v4i32;
5663      LoadTy = Type::getInt32Ty(CSize->getContext());
5664      LoadTy = VectorType::get(LoadTy, 4);
5665      break;
5666         */
5667    }
5668
5669    // This turns into unaligned loads.  We only do this if the target natively
5670    // supports the MVT we'll be loading or if it is small enough (<= 4) that
5671    // we'll only produce a small number of byte loads.
5672
5673    // Require that we can find a legal MVT, and only do this if the target
5674    // supports unaligned loads of that type.  Expanding into byte loads would
5675    // bloat the code.
5676    const TargetLowering *TLI = TM.getTargetLowering();
5677    if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5678      unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5679      unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5680      // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5681      // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5682      if (!TLI->isTypeLegal(LoadVT) ||
5683          !TLI->allowsUnalignedMemoryAccesses(LoadVT, SrcAS) ||
5684          !TLI->allowsUnalignedMemoryAccesses(LoadVT, DstAS))
5685        ActuallyDoIt = false;
5686    }
5687
5688    if (ActuallyDoIt) {
5689      SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5690      SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5691
5692      SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5693                                 ISD::SETNE);
5694      processIntegerCallValue(I, Res, false);
5695      return true;
5696    }
5697  }
5698
5699
5700  return false;
5701}
5702
5703/// visitMemChrCall -- See if we can lower a memchr call into an optimized
5704/// form.  If so, return true and lower it, otherwise return false and it
5705/// will be lowered like a normal call.
5706bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5707  // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5708  if (I.getNumArgOperands() != 3)
5709    return false;
5710
5711  const Value *Src = I.getArgOperand(0);
5712  const Value *Char = I.getArgOperand(1);
5713  const Value *Length = I.getArgOperand(2);
5714  if (!Src->getType()->isPointerTy() ||
5715      !Char->getType()->isIntegerTy() ||
5716      !Length->getType()->isIntegerTy() ||
5717      !I.getType()->isPointerTy())
5718    return false;
5719
5720  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5721  std::pair<SDValue, SDValue> Res =
5722    TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5723                                getValue(Src), getValue(Char), getValue(Length),
5724                                MachinePointerInfo(Src));
5725  if (Res.first.getNode()) {
5726    setValue(&I, Res.first);
5727    PendingLoads.push_back(Res.second);
5728    return true;
5729  }
5730
5731  return false;
5732}
5733
5734/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5735/// optimized form.  If so, return true and lower it, otherwise return false
5736/// and it will be lowered like a normal call.
5737bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5738  // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5739  if (I.getNumArgOperands() != 2)
5740    return false;
5741
5742  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5743  if (!Arg0->getType()->isPointerTy() ||
5744      !Arg1->getType()->isPointerTy() ||
5745      !I.getType()->isPointerTy())
5746    return false;
5747
5748  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5749  std::pair<SDValue, SDValue> Res =
5750    TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5751                                getValue(Arg0), getValue(Arg1),
5752                                MachinePointerInfo(Arg0),
5753                                MachinePointerInfo(Arg1), isStpcpy);
5754  if (Res.first.getNode()) {
5755    setValue(&I, Res.first);
5756    DAG.setRoot(Res.second);
5757    return true;
5758  }
5759
5760  return false;
5761}
5762
5763/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5764/// If so, return true and lower it, otherwise return false and it will be
5765/// lowered like a normal call.
5766bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5767  // Verify that the prototype makes sense.  int strcmp(void*,void*)
5768  if (I.getNumArgOperands() != 2)
5769    return false;
5770
5771  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5772  if (!Arg0->getType()->isPointerTy() ||
5773      !Arg1->getType()->isPointerTy() ||
5774      !I.getType()->isIntegerTy())
5775    return false;
5776
5777  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5778  std::pair<SDValue, SDValue> Res =
5779    TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5780                                getValue(Arg0), getValue(Arg1),
5781                                MachinePointerInfo(Arg0),
5782                                MachinePointerInfo(Arg1));
5783  if (Res.first.getNode()) {
5784    processIntegerCallValue(I, Res.first, true);
5785    PendingLoads.push_back(Res.second);
5786    return true;
5787  }
5788
5789  return false;
5790}
5791
5792/// visitStrLenCall -- See if we can lower a strlen call into an optimized
5793/// form.  If so, return true and lower it, otherwise return false and it
5794/// will be lowered like a normal call.
5795bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5796  // Verify that the prototype makes sense.  size_t strlen(char *)
5797  if (I.getNumArgOperands() != 1)
5798    return false;
5799
5800  const Value *Arg0 = I.getArgOperand(0);
5801  if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5802    return false;
5803
5804  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5805  std::pair<SDValue, SDValue> Res =
5806    TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5807                                getValue(Arg0), MachinePointerInfo(Arg0));
5808  if (Res.first.getNode()) {
5809    processIntegerCallValue(I, Res.first, false);
5810    PendingLoads.push_back(Res.second);
5811    return true;
5812  }
5813
5814  return false;
5815}
5816
5817/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5818/// form.  If so, return true and lower it, otherwise return false and it
5819/// will be lowered like a normal call.
5820bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5821  // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5822  if (I.getNumArgOperands() != 2)
5823    return false;
5824
5825  const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5826  if (!Arg0->getType()->isPointerTy() ||
5827      !Arg1->getType()->isIntegerTy() ||
5828      !I.getType()->isIntegerTy())
5829    return false;
5830
5831  const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5832  std::pair<SDValue, SDValue> Res =
5833    TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5834                                 getValue(Arg0), getValue(Arg1),
5835                                 MachinePointerInfo(Arg0));
5836  if (Res.first.getNode()) {
5837    processIntegerCallValue(I, Res.first, false);
5838    PendingLoads.push_back(Res.second);
5839    return true;
5840  }
5841
5842  return false;
5843}
5844
5845/// visitUnaryFloatCall - If a call instruction is a unary floating-point
5846/// operation (as expected), translate it to an SDNode with the specified opcode
5847/// and return true.
5848bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5849                                              unsigned Opcode) {
5850  // Sanity check that it really is a unary floating-point call.
5851  if (I.getNumArgOperands() != 1 ||
5852      !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5853      I.getType() != I.getArgOperand(0)->getType() ||
5854      !I.onlyReadsMemory())
5855    return false;
5856
5857  SDValue Tmp = getValue(I.getArgOperand(0));
5858  setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5859  return true;
5860}
5861
5862void SelectionDAGBuilder::visitCall(const CallInst &I) {
5863  // Handle inline assembly differently.
5864  if (isa<InlineAsm>(I.getCalledValue())) {
5865    visitInlineAsm(&I);
5866    return;
5867  }
5868
5869  MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5870  ComputeUsesVAFloatArgument(I, &MMI);
5871
5872  const char *RenameFn = nullptr;
5873  if (Function *F = I.getCalledFunction()) {
5874    if (F->isDeclaration()) {
5875      if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5876        if (unsigned IID = II->getIntrinsicID(F)) {
5877          RenameFn = visitIntrinsicCall(I, IID);
5878          if (!RenameFn)
5879            return;
5880        }
5881      }
5882      if (unsigned IID = F->getIntrinsicID()) {
5883        RenameFn = visitIntrinsicCall(I, IID);
5884        if (!RenameFn)
5885          return;
5886      }
5887    }
5888
5889    // Check for well-known libc/libm calls.  If the function is internal, it
5890    // can't be a library call.
5891    LibFunc::Func Func;
5892    if (!F->hasLocalLinkage() && F->hasName() &&
5893        LibInfo->getLibFunc(F->getName(), Func) &&
5894        LibInfo->hasOptimizedCodeGen(Func)) {
5895      switch (Func) {
5896      default: break;
5897      case LibFunc::copysign:
5898      case LibFunc::copysignf:
5899      case LibFunc::copysignl:
5900        if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5901            I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5902            I.getType() == I.getArgOperand(0)->getType() &&
5903            I.getType() == I.getArgOperand(1)->getType() &&
5904            I.onlyReadsMemory()) {
5905          SDValue LHS = getValue(I.getArgOperand(0));
5906          SDValue RHS = getValue(I.getArgOperand(1));
5907          setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5908                                   LHS.getValueType(), LHS, RHS));
5909          return;
5910        }
5911        break;
5912      case LibFunc::fabs:
5913      case LibFunc::fabsf:
5914      case LibFunc::fabsl:
5915        if (visitUnaryFloatCall(I, ISD::FABS))
5916          return;
5917        break;
5918      case LibFunc::sin:
5919      case LibFunc::sinf:
5920      case LibFunc::sinl:
5921        if (visitUnaryFloatCall(I, ISD::FSIN))
5922          return;
5923        break;
5924      case LibFunc::cos:
5925      case LibFunc::cosf:
5926      case LibFunc::cosl:
5927        if (visitUnaryFloatCall(I, ISD::FCOS))
5928          return;
5929        break;
5930      case LibFunc::sqrt:
5931      case LibFunc::sqrtf:
5932      case LibFunc::sqrtl:
5933      case LibFunc::sqrt_finite:
5934      case LibFunc::sqrtf_finite:
5935      case LibFunc::sqrtl_finite:
5936        if (visitUnaryFloatCall(I, ISD::FSQRT))
5937          return;
5938        break;
5939      case LibFunc::floor:
5940      case LibFunc::floorf:
5941      case LibFunc::floorl:
5942        if (visitUnaryFloatCall(I, ISD::FFLOOR))
5943          return;
5944        break;
5945      case LibFunc::nearbyint:
5946      case LibFunc::nearbyintf:
5947      case LibFunc::nearbyintl:
5948        if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5949          return;
5950        break;
5951      case LibFunc::ceil:
5952      case LibFunc::ceilf:
5953      case LibFunc::ceill:
5954        if (visitUnaryFloatCall(I, ISD::FCEIL))
5955          return;
5956        break;
5957      case LibFunc::rint:
5958      case LibFunc::rintf:
5959      case LibFunc::rintl:
5960        if (visitUnaryFloatCall(I, ISD::FRINT))
5961          return;
5962        break;
5963      case LibFunc::round:
5964      case LibFunc::roundf:
5965      case LibFunc::roundl:
5966        if (visitUnaryFloatCall(I, ISD::FROUND))
5967          return;
5968        break;
5969      case LibFunc::trunc:
5970      case LibFunc::truncf:
5971      case LibFunc::truncl:
5972        if (visitUnaryFloatCall(I, ISD::FTRUNC))
5973          return;
5974        break;
5975      case LibFunc::log2:
5976      case LibFunc::log2f:
5977      case LibFunc::log2l:
5978        if (visitUnaryFloatCall(I, ISD::FLOG2))
5979          return;
5980        break;
5981      case LibFunc::exp2:
5982      case LibFunc::exp2f:
5983      case LibFunc::exp2l:
5984        if (visitUnaryFloatCall(I, ISD::FEXP2))
5985          return;
5986        break;
5987      case LibFunc::memcmp:
5988        if (visitMemCmpCall(I))
5989          return;
5990        break;
5991      case LibFunc::memchr:
5992        if (visitMemChrCall(I))
5993          return;
5994        break;
5995      case LibFunc::strcpy:
5996        if (visitStrCpyCall(I, false))
5997          return;
5998        break;
5999      case LibFunc::stpcpy:
6000        if (visitStrCpyCall(I, true))
6001          return;
6002        break;
6003      case LibFunc::strcmp:
6004        if (visitStrCmpCall(I))
6005          return;
6006        break;
6007      case LibFunc::strlen:
6008        if (visitStrLenCall(I))
6009          return;
6010        break;
6011      case LibFunc::strnlen:
6012        if (visitStrNLenCall(I))
6013          return;
6014        break;
6015      }
6016    }
6017  }
6018
6019  SDValue Callee;
6020  if (!RenameFn)
6021    Callee = getValue(I.getCalledValue());
6022  else
6023    Callee = DAG.getExternalSymbol(RenameFn,
6024                                   TM.getTargetLowering()->getPointerTy());
6025
6026  // Check if we can potentially perform a tail call. More detailed checking is
6027  // be done within LowerCallTo, after more information about the call is known.
6028  LowerCallTo(&I, Callee, I.isTailCall());
6029}
6030
6031namespace {
6032
6033/// AsmOperandInfo - This contains information for each constraint that we are
6034/// lowering.
6035class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6036public:
6037  /// CallOperand - If this is the result output operand or a clobber
6038  /// this is null, otherwise it is the incoming operand to the CallInst.
6039  /// This gets modified as the asm is processed.
6040  SDValue CallOperand;
6041
6042  /// AssignedRegs - If this is a register or register class operand, this
6043  /// contains the set of register corresponding to the operand.
6044  RegsForValue AssignedRegs;
6045
6046  explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6047    : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6048  }
6049
6050  /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6051  /// corresponds to.  If there is no Value* for this operand, it returns
6052  /// MVT::Other.
6053  EVT getCallOperandValEVT(LLVMContext &Context,
6054                           const TargetLowering &TLI,
6055                           const DataLayout *DL) const {
6056    if (!CallOperandVal) return MVT::Other;
6057
6058    if (isa<BasicBlock>(CallOperandVal))
6059      return TLI.getPointerTy();
6060
6061    llvm::Type *OpTy = CallOperandVal->getType();
6062
6063    // FIXME: code duplicated from TargetLowering::ParseConstraints().
6064    // If this is an indirect operand, the operand is a pointer to the
6065    // accessed type.
6066    if (isIndirect) {
6067      llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6068      if (!PtrTy)
6069        report_fatal_error("Indirect operand for inline asm not a pointer!");
6070      OpTy = PtrTy->getElementType();
6071    }
6072
6073    // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6074    if (StructType *STy = dyn_cast<StructType>(OpTy))
6075      if (STy->getNumElements() == 1)
6076        OpTy = STy->getElementType(0);
6077
6078    // If OpTy is not a single value, it may be a struct/union that we
6079    // can tile with integers.
6080    if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6081      unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6082      switch (BitSize) {
6083      default: break;
6084      case 1:
6085      case 8:
6086      case 16:
6087      case 32:
6088      case 64:
6089      case 128:
6090        OpTy = IntegerType::get(Context, BitSize);
6091        break;
6092      }
6093    }
6094
6095    return TLI.getValueType(OpTy, true);
6096  }
6097};
6098
6099typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6100
6101} // end anonymous namespace
6102
6103/// GetRegistersForValue - Assign registers (virtual or physical) for the
6104/// specified operand.  We prefer to assign virtual registers, to allow the
6105/// register allocator to handle the assignment process.  However, if the asm
6106/// uses features that we can't model on machineinstrs, we have SDISel do the
6107/// allocation.  This produces generally horrible, but correct, code.
6108///
6109///   OpInfo describes the operand.
6110///
6111static void GetRegistersForValue(SelectionDAG &DAG,
6112                                 const TargetLowering &TLI,
6113                                 SDLoc DL,
6114                                 SDISelAsmOperandInfo &OpInfo) {
6115  LLVMContext &Context = *DAG.getContext();
6116
6117  MachineFunction &MF = DAG.getMachineFunction();
6118  SmallVector<unsigned, 4> Regs;
6119
6120  // If this is a constraint for a single physreg, or a constraint for a
6121  // register class, find it.
6122  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6123    TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6124                                     OpInfo.ConstraintVT);
6125
6126  unsigned NumRegs = 1;
6127  if (OpInfo.ConstraintVT != MVT::Other) {
6128    // If this is a FP input in an integer register (or visa versa) insert a bit
6129    // cast of the input value.  More generally, handle any case where the input
6130    // value disagrees with the register class we plan to stick this in.
6131    if (OpInfo.Type == InlineAsm::isInput &&
6132        PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6133      // Try to convert to the first EVT that the reg class contains.  If the
6134      // types are identical size, use a bitcast to convert (e.g. two differing
6135      // vector types).
6136      MVT RegVT = *PhysReg.second->vt_begin();
6137      if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6138        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6139                                         RegVT, OpInfo.CallOperand);
6140        OpInfo.ConstraintVT = RegVT;
6141      } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6142        // If the input is a FP value and we want it in FP registers, do a
6143        // bitcast to the corresponding integer type.  This turns an f64 value
6144        // into i64, which can be passed with two i32 values on a 32-bit
6145        // machine.
6146        RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6147        OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6148                                         RegVT, OpInfo.CallOperand);
6149        OpInfo.ConstraintVT = RegVT;
6150      }
6151    }
6152
6153    NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6154  }
6155
6156  MVT RegVT;
6157  EVT ValueVT = OpInfo.ConstraintVT;
6158
6159  // If this is a constraint for a specific physical register, like {r17},
6160  // assign it now.
6161  if (unsigned AssignedReg = PhysReg.first) {
6162    const TargetRegisterClass *RC = PhysReg.second;
6163    if (OpInfo.ConstraintVT == MVT::Other)
6164      ValueVT = *RC->vt_begin();
6165
6166    // Get the actual register value type.  This is important, because the user
6167    // may have asked for (e.g.) the AX register in i32 type.  We need to
6168    // remember that AX is actually i16 to get the right extension.
6169    RegVT = *RC->vt_begin();
6170
6171    // This is a explicit reference to a physical register.
6172    Regs.push_back(AssignedReg);
6173
6174    // If this is an expanded reference, add the rest of the regs to Regs.
6175    if (NumRegs != 1) {
6176      TargetRegisterClass::iterator I = RC->begin();
6177      for (; *I != AssignedReg; ++I)
6178        assert(I != RC->end() && "Didn't find reg!");
6179
6180      // Already added the first reg.
6181      --NumRegs; ++I;
6182      for (; NumRegs; --NumRegs, ++I) {
6183        assert(I != RC->end() && "Ran out of registers to allocate!");
6184        Regs.push_back(*I);
6185      }
6186    }
6187
6188    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6189    return;
6190  }
6191
6192  // Otherwise, if this was a reference to an LLVM register class, create vregs
6193  // for this reference.
6194  if (const TargetRegisterClass *RC = PhysReg.second) {
6195    RegVT = *RC->vt_begin();
6196    if (OpInfo.ConstraintVT == MVT::Other)
6197      ValueVT = RegVT;
6198
6199    // Create the appropriate number of virtual registers.
6200    MachineRegisterInfo &RegInfo = MF.getRegInfo();
6201    for (; NumRegs; --NumRegs)
6202      Regs.push_back(RegInfo.createVirtualRegister(RC));
6203
6204    OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6205    return;
6206  }
6207
6208  // Otherwise, we couldn't allocate enough registers for this.
6209}
6210
6211/// visitInlineAsm - Handle a call to an InlineAsm object.
6212///
6213void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6214  const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6215
6216  /// ConstraintOperands - Information about all of the constraints.
6217  SDISelAsmOperandInfoVector ConstraintOperands;
6218
6219  const TargetLowering *TLI = TM.getTargetLowering();
6220  TargetLowering::AsmOperandInfoVector
6221    TargetConstraints = TLI->ParseConstraints(CS);
6222
6223  bool hasMemory = false;
6224
6225  unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6226  unsigned ResNo = 0;   // ResNo - The result number of the next output.
6227  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6228    ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6229    SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6230
6231    MVT OpVT = MVT::Other;
6232
6233    // Compute the value type for each operand.
6234    switch (OpInfo.Type) {
6235    case InlineAsm::isOutput:
6236      // Indirect outputs just consume an argument.
6237      if (OpInfo.isIndirect) {
6238        OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6239        break;
6240      }
6241
6242      // The return value of the call is this value.  As such, there is no
6243      // corresponding argument.
6244      assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6245      if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6246        OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6247      } else {
6248        assert(ResNo == 0 && "Asm only has one result!");
6249        OpVT = TLI->getSimpleValueType(CS.getType());
6250      }
6251      ++ResNo;
6252      break;
6253    case InlineAsm::isInput:
6254      OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6255      break;
6256    case InlineAsm::isClobber:
6257      // Nothing to do.
6258      break;
6259    }
6260
6261    // If this is an input or an indirect output, process the call argument.
6262    // BasicBlocks are labels, currently appearing only in asm's.
6263    if (OpInfo.CallOperandVal) {
6264      if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6265        OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6266      } else {
6267        OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6268      }
6269
6270      OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL).
6271        getSimpleVT();
6272    }
6273
6274    OpInfo.ConstraintVT = OpVT;
6275
6276    // Indirect operand accesses access memory.
6277    if (OpInfo.isIndirect)
6278      hasMemory = true;
6279    else {
6280      for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6281        TargetLowering::ConstraintType
6282          CType = TLI->getConstraintType(OpInfo.Codes[j]);
6283        if (CType == TargetLowering::C_Memory) {
6284          hasMemory = true;
6285          break;
6286        }
6287      }
6288    }
6289  }
6290
6291  SDValue Chain, Flag;
6292
6293  // We won't need to flush pending loads if this asm doesn't touch
6294  // memory and is nonvolatile.
6295  if (hasMemory || IA->hasSideEffects())
6296    Chain = getRoot();
6297  else
6298    Chain = DAG.getRoot();
6299
6300  // Second pass over the constraints: compute which constraint option to use
6301  // and assign registers to constraints that want a specific physreg.
6302  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6303    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6304
6305    // If this is an output operand with a matching input operand, look up the
6306    // matching input. If their types mismatch, e.g. one is an integer, the
6307    // other is floating point, or their sizes are different, flag it as an
6308    // error.
6309    if (OpInfo.hasMatchingInput()) {
6310      SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6311
6312      if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6313        std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6314          TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6315                                            OpInfo.ConstraintVT);
6316        std::pair<unsigned, const TargetRegisterClass*> InputRC =
6317          TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6318                                            Input.ConstraintVT);
6319        if ((OpInfo.ConstraintVT.isInteger() !=
6320             Input.ConstraintVT.isInteger()) ||
6321            (MatchRC.second != InputRC.second)) {
6322          report_fatal_error("Unsupported asm: input constraint"
6323                             " with a matching output constraint of"
6324                             " incompatible type!");
6325        }
6326        Input.ConstraintVT = OpInfo.ConstraintVT;
6327      }
6328    }
6329
6330    // Compute the constraint code and ConstraintType to use.
6331    TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6332
6333    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6334        OpInfo.Type == InlineAsm::isClobber)
6335      continue;
6336
6337    // If this is a memory input, and if the operand is not indirect, do what we
6338    // need to to provide an address for the memory input.
6339    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6340        !OpInfo.isIndirect) {
6341      assert((OpInfo.isMultipleAlternative ||
6342              (OpInfo.Type == InlineAsm::isInput)) &&
6343             "Can only indirectify direct input operands!");
6344
6345      // Memory operands really want the address of the value.  If we don't have
6346      // an indirect input, put it in the constpool if we can, otherwise spill
6347      // it to a stack slot.
6348      // TODO: This isn't quite right. We need to handle these according to
6349      // the addressing mode that the constraint wants. Also, this may take
6350      // an additional register for the computation and we don't want that
6351      // either.
6352
6353      // If the operand is a float, integer, or vector constant, spill to a
6354      // constant pool entry to get its address.
6355      const Value *OpVal = OpInfo.CallOperandVal;
6356      if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6357          isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6358        OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6359                                                 TLI->getPointerTy());
6360      } else {
6361        // Otherwise, create a stack slot and emit a store to it before the
6362        // asm.
6363        Type *Ty = OpVal->getType();
6364        uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6365        unsigned Align  = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6366        MachineFunction &MF = DAG.getMachineFunction();
6367        int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6368        SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6369        Chain = DAG.getStore(Chain, getCurSDLoc(),
6370                             OpInfo.CallOperand, StackSlot,
6371                             MachinePointerInfo::getFixedStack(SSFI),
6372                             false, false, 0);
6373        OpInfo.CallOperand = StackSlot;
6374      }
6375
6376      // There is no longer a Value* corresponding to this operand.
6377      OpInfo.CallOperandVal = nullptr;
6378
6379      // It is now an indirect operand.
6380      OpInfo.isIndirect = true;
6381    }
6382
6383    // If this constraint is for a specific register, allocate it before
6384    // anything else.
6385    if (OpInfo.ConstraintType == TargetLowering::C_Register)
6386      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6387  }
6388
6389  // Second pass - Loop over all of the operands, assigning virtual or physregs
6390  // to register class operands.
6391  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6392    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6393
6394    // C_Register operands have already been allocated, Other/Memory don't need
6395    // to be.
6396    if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6397      GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6398  }
6399
6400  // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6401  std::vector<SDValue> AsmNodeOperands;
6402  AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6403  AsmNodeOperands.push_back(
6404          DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6405                                      TLI->getPointerTy()));
6406
6407  // If we have a !srcloc metadata node associated with it, we want to attach
6408  // this to the ultimately generated inline asm machineinstr.  To do this, we
6409  // pass in the third operand as this (potentially null) inline asm MDNode.
6410  const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6411  AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6412
6413  // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6414  // bits as operand 3.
6415  unsigned ExtraInfo = 0;
6416  if (IA->hasSideEffects())
6417    ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6418  if (IA->isAlignStack())
6419    ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6420  // Set the asm dialect.
6421  ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6422
6423  // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6424  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6425    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6426
6427    // Compute the constraint code and ConstraintType to use.
6428    TLI->ComputeConstraintToUse(OpInfo, SDValue());
6429
6430    // Ideally, we would only check against memory constraints.  However, the
6431    // meaning of an other constraint can be target-specific and we can't easily
6432    // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6433    // for other constriants as well.
6434    if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6435        OpInfo.ConstraintType == TargetLowering::C_Other) {
6436      if (OpInfo.Type == InlineAsm::isInput)
6437        ExtraInfo |= InlineAsm::Extra_MayLoad;
6438      else if (OpInfo.Type == InlineAsm::isOutput)
6439        ExtraInfo |= InlineAsm::Extra_MayStore;
6440      else if (OpInfo.Type == InlineAsm::isClobber)
6441        ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6442    }
6443  }
6444
6445  AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6446                                                  TLI->getPointerTy()));
6447
6448  // Loop over all of the inputs, copying the operand values into the
6449  // appropriate registers and processing the output regs.
6450  RegsForValue RetValRegs;
6451
6452  // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6453  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6454
6455  for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6456    SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6457
6458    switch (OpInfo.Type) {
6459    case InlineAsm::isOutput: {
6460      if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6461          OpInfo.ConstraintType != TargetLowering::C_Register) {
6462        // Memory output, or 'other' output (e.g. 'X' constraint).
6463        assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6464
6465        // Add information to the INLINEASM node to know about this output.
6466        unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6467        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6468                                                        TLI->getPointerTy()));
6469        AsmNodeOperands.push_back(OpInfo.CallOperand);
6470        break;
6471      }
6472
6473      // Otherwise, this is a register or register class output.
6474
6475      // Copy the output from the appropriate register.  Find a register that
6476      // we can use.
6477      if (OpInfo.AssignedRegs.Regs.empty()) {
6478        LLVMContext &Ctx = *DAG.getContext();
6479        Ctx.emitError(CS.getInstruction(),
6480                      "couldn't allocate output register for constraint '" +
6481                          Twine(OpInfo.ConstraintCode) + "'");
6482        return;
6483      }
6484
6485      // If this is an indirect operand, store through the pointer after the
6486      // asm.
6487      if (OpInfo.isIndirect) {
6488        IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6489                                                      OpInfo.CallOperandVal));
6490      } else {
6491        // This is the result value of the call.
6492        assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6493        // Concatenate this output onto the outputs list.
6494        RetValRegs.append(OpInfo.AssignedRegs);
6495      }
6496
6497      // Add information to the INLINEASM node to know that this register is
6498      // set.
6499      OpInfo.AssignedRegs
6500          .AddInlineAsmOperands(OpInfo.isEarlyClobber
6501                                    ? InlineAsm::Kind_RegDefEarlyClobber
6502                                    : InlineAsm::Kind_RegDef,
6503                                false, 0, DAG, AsmNodeOperands);
6504      break;
6505    }
6506    case InlineAsm::isInput: {
6507      SDValue InOperandVal = OpInfo.CallOperand;
6508
6509      if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6510        // If this is required to match an output register we have already set,
6511        // just use its register.
6512        unsigned OperandNo = OpInfo.getMatchedOperand();
6513
6514        // Scan until we find the definition we already emitted of this operand.
6515        // When we find it, create a RegsForValue operand.
6516        unsigned CurOp = InlineAsm::Op_FirstOperand;
6517        for (; OperandNo; --OperandNo) {
6518          // Advance to the next operand.
6519          unsigned OpFlag =
6520            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6521          assert((InlineAsm::isRegDefKind(OpFlag) ||
6522                  InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6523                  InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6524          CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6525        }
6526
6527        unsigned OpFlag =
6528          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6529        if (InlineAsm::isRegDefKind(OpFlag) ||
6530            InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6531          // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6532          if (OpInfo.isIndirect) {
6533            // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6534            LLVMContext &Ctx = *DAG.getContext();
6535            Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6536                                               " don't know how to handle tied "
6537                                               "indirect register inputs");
6538            return;
6539          }
6540
6541          RegsForValue MatchedRegs;
6542          MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6543          MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6544          MatchedRegs.RegVTs.push_back(RegVT);
6545          MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6546          for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6547               i != e; ++i) {
6548            if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6549              MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6550            else {
6551              LLVMContext &Ctx = *DAG.getContext();
6552              Ctx.emitError(CS.getInstruction(),
6553                            "inline asm error: This value"
6554                            " type register class is not natively supported!");
6555              return;
6556            }
6557          }
6558          // Use the produced MatchedRegs object to
6559          MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6560                                    Chain, &Flag, CS.getInstruction());
6561          MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6562                                           true, OpInfo.getMatchedOperand(),
6563                                           DAG, AsmNodeOperands);
6564          break;
6565        }
6566
6567        assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6568        assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6569               "Unexpected number of operands");
6570        // Add information to the INLINEASM node to know about this input.
6571        // See InlineAsm.h isUseOperandTiedToDef.
6572        OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6573                                                    OpInfo.getMatchedOperand());
6574        AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6575                                                        TLI->getPointerTy()));
6576        AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6577        break;
6578      }
6579
6580      // Treat indirect 'X' constraint as memory.
6581      if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6582          OpInfo.isIndirect)
6583        OpInfo.ConstraintType = TargetLowering::C_Memory;
6584
6585      if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6586        std::vector<SDValue> Ops;
6587        TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6588                                          Ops, DAG);
6589        if (Ops.empty()) {
6590          LLVMContext &Ctx = *DAG.getContext();
6591          Ctx.emitError(CS.getInstruction(),
6592                        "invalid operand for inline asm constraint '" +
6593                            Twine(OpInfo.ConstraintCode) + "'");
6594          return;
6595        }
6596
6597        // Add information to the INLINEASM node to know about this input.
6598        unsigned ResOpType =
6599          InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6600        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6601                                                        TLI->getPointerTy()));
6602        AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6603        break;
6604      }
6605
6606      if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6607        assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6608        assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6609               "Memory operands expect pointer values");
6610
6611        // Add information to the INLINEASM node to know about this input.
6612        unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6613        AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6614                                                        TLI->getPointerTy()));
6615        AsmNodeOperands.push_back(InOperandVal);
6616        break;
6617      }
6618
6619      assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6620              OpInfo.ConstraintType == TargetLowering::C_Register) &&
6621             "Unknown constraint type!");
6622
6623      // TODO: Support this.
6624      if (OpInfo.isIndirect) {
6625        LLVMContext &Ctx = *DAG.getContext();
6626        Ctx.emitError(CS.getInstruction(),
6627                      "Don't know how to handle indirect register inputs yet "
6628                      "for constraint '" +
6629                          Twine(OpInfo.ConstraintCode) + "'");
6630        return;
6631      }
6632
6633      // Copy the input into the appropriate registers.
6634      if (OpInfo.AssignedRegs.Regs.empty()) {
6635        LLVMContext &Ctx = *DAG.getContext();
6636        Ctx.emitError(CS.getInstruction(),
6637                      "couldn't allocate input reg for constraint '" +
6638                          Twine(OpInfo.ConstraintCode) + "'");
6639        return;
6640      }
6641
6642      OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6643                                        Chain, &Flag, CS.getInstruction());
6644
6645      OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6646                                               DAG, AsmNodeOperands);
6647      break;
6648    }
6649    case InlineAsm::isClobber: {
6650      // Add the clobbered value to the operand list, so that the register
6651      // allocator is aware that the physreg got clobbered.
6652      if (!OpInfo.AssignedRegs.Regs.empty())
6653        OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6654                                                 false, 0, DAG,
6655                                                 AsmNodeOperands);
6656      break;
6657    }
6658    }
6659  }
6660
6661  // Finish up input operands.  Set the input chain and add the flag last.
6662  AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6663  if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6664
6665  Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6666                      DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6667  Flag = Chain.getValue(1);
6668
6669  // If this asm returns a register value, copy the result from that register
6670  // and set it as the value of the call.
6671  if (!RetValRegs.Regs.empty()) {
6672    SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6673                                             Chain, &Flag, CS.getInstruction());
6674
6675    // FIXME: Why don't we do this for inline asms with MRVs?
6676    if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6677      EVT ResultType = TLI->getValueType(CS.getType());
6678
6679      // If any of the results of the inline asm is a vector, it may have the
6680      // wrong width/num elts.  This can happen for register classes that can
6681      // contain multiple different value types.  The preg or vreg allocated may
6682      // not have the same VT as was expected.  Convert it to the right type
6683      // with bit_convert.
6684      if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6685        Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6686                          ResultType, Val);
6687
6688      } else if (ResultType != Val.getValueType() &&
6689                 ResultType.isInteger() && Val.getValueType().isInteger()) {
6690        // If a result value was tied to an input value, the computed result may
6691        // have a wider width than the expected result.  Extract the relevant
6692        // portion.
6693        Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6694      }
6695
6696      assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6697    }
6698
6699    setValue(CS.getInstruction(), Val);
6700    // Don't need to use this as a chain in this case.
6701    if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6702      return;
6703  }
6704
6705  std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6706
6707  // Process indirect outputs, first output all of the flagged copies out of
6708  // physregs.
6709  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6710    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6711    const Value *Ptr = IndirectStoresToEmit[i].second;
6712    SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6713                                             Chain, &Flag, IA);
6714    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6715  }
6716
6717  // Emit the non-flagged stores from the physregs.
6718  SmallVector<SDValue, 8> OutChains;
6719  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6720    SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6721                               StoresToEmit[i].first,
6722                               getValue(StoresToEmit[i].second),
6723                               MachinePointerInfo(StoresToEmit[i].second),
6724                               false, false, 0);
6725    OutChains.push_back(Val);
6726  }
6727
6728  if (!OutChains.empty())
6729    Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6730
6731  DAG.setRoot(Chain);
6732}
6733
6734void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6735  DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6736                          MVT::Other, getRoot(),
6737                          getValue(I.getArgOperand(0)),
6738                          DAG.getSrcValue(I.getArgOperand(0))));
6739}
6740
6741void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6742  const TargetLowering *TLI = TM.getTargetLowering();
6743  const DataLayout &DL = *TLI->getDataLayout();
6744  SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6745                           getRoot(), getValue(I.getOperand(0)),
6746                           DAG.getSrcValue(I.getOperand(0)),
6747                           DL.getABITypeAlignment(I.getType()));
6748  setValue(&I, V);
6749  DAG.setRoot(V.getValue(1));
6750}
6751
6752void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6753  DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6754                          MVT::Other, getRoot(),
6755                          getValue(I.getArgOperand(0)),
6756                          DAG.getSrcValue(I.getArgOperand(0))));
6757}
6758
6759void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6760  DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6761                          MVT::Other, getRoot(),
6762                          getValue(I.getArgOperand(0)),
6763                          getValue(I.getArgOperand(1)),
6764                          DAG.getSrcValue(I.getArgOperand(0)),
6765                          DAG.getSrcValue(I.getArgOperand(1))));
6766}
6767
6768/// \brief Lower an argument list according to the target calling convention.
6769///
6770/// \return A tuple of <return-value, token-chain>
6771///
6772/// This is a helper for lowering intrinsics that follow a target calling
6773/// convention or require stack pointer adjustment. Only a subset of the
6774/// intrinsic's operands need to participate in the calling convention.
6775std::pair<SDValue, SDValue>
6776SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
6777                                       unsigned NumArgs, SDValue Callee,
6778                                       bool useVoidTy) {
6779  TargetLowering::ArgListTy Args;
6780  Args.reserve(NumArgs);
6781
6782  // Populate the argument list.
6783  // Attributes for args start at offset 1, after the return attribute.
6784  ImmutableCallSite CS(&CI);
6785  for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6786       ArgI != ArgE; ++ArgI) {
6787    const Value *V = CI.getOperand(ArgI);
6788
6789    assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6790
6791    TargetLowering::ArgListEntry Entry;
6792    Entry.Node = getValue(V);
6793    Entry.Ty = V->getType();
6794    Entry.setAttributes(&CS, AttrI);
6795    Args.push_back(Entry);
6796  }
6797
6798  Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType();
6799  TargetLowering::CallLoweringInfo CLI(DAG);
6800  CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6801    .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
6802    .setDiscardResult(!CI.use_empty());
6803
6804  const TargetLowering *TLI = TM.getTargetLowering();
6805  return TLI->LowerCallTo(CLI);
6806}
6807
6808/// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6809/// or patchpoint target node's operand list.
6810///
6811/// Constants are converted to TargetConstants purely as an optimization to
6812/// avoid constant materialization and register allocation.
6813///
6814/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6815/// generate addess computation nodes, and so ExpandISelPseudo can convert the
6816/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6817/// address materialization and register allocation, but may also be required
6818/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6819/// alloca in the entry block, then the runtime may assume that the alloca's
6820/// StackMap location can be read immediately after compilation and that the
6821/// location is valid at any point during execution (this is similar to the
6822/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6823/// only available in a register, then the runtime would need to trap when
6824/// execution reaches the StackMap in order to read the alloca's location.
6825static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
6826                                SmallVectorImpl<SDValue> &Ops,
6827                                SelectionDAGBuilder &Builder) {
6828  for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) {
6829    SDValue OpVal = Builder.getValue(CI.getArgOperand(i));
6830    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6831      Ops.push_back(
6832        Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
6833      Ops.push_back(
6834        Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
6835    } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6836      const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6837      Ops.push_back(
6838        Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
6839    } else
6840      Ops.push_back(OpVal);
6841  }
6842}
6843
6844/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6845void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6846  // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6847  //                                  [live variables...])
6848
6849  assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6850
6851  SDValue Chain, InFlag, Callee, NullPtr;
6852  SmallVector<SDValue, 32> Ops;
6853
6854  SDLoc DL = getCurSDLoc();
6855  Callee = getValue(CI.getCalledValue());
6856  NullPtr = DAG.getIntPtrConstant(0, true);
6857
6858  // The stackmap intrinsic only records the live variables (the arguemnts
6859  // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6860  // intrinsic, this won't be lowered to a function call. This means we don't
6861  // have to worry about calling conventions and target specific lowering code.
6862  // Instead we perform the call lowering right here.
6863  //
6864  // chain, flag = CALLSEQ_START(chain, 0)
6865  // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6866  // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6867  //
6868  Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6869  InFlag = Chain.getValue(1);
6870
6871  // Add the <id> and <numBytes> constants.
6872  SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6873  Ops.push_back(DAG.getTargetConstant(
6874                  cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6875  SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6876  Ops.push_back(DAG.getTargetConstant(
6877                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6878
6879  // Push live variables for the stack map.
6880  addStackMapLiveVars(CI, 2, Ops, *this);
6881
6882  // We are not pushing any register mask info here on the operands list,
6883  // because the stackmap doesn't clobber anything.
6884
6885  // Push the chain and the glue flag.
6886  Ops.push_back(Chain);
6887  Ops.push_back(InFlag);
6888
6889  // Create the STACKMAP node.
6890  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6891  SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6892  Chain = SDValue(SM, 0);
6893  InFlag = Chain.getValue(1);
6894
6895  Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6896
6897  // Stackmaps don't generate values, so nothing goes into the NodeMap.
6898
6899  // Set the root to the target-lowered call chain.
6900  DAG.setRoot(Chain);
6901
6902  // Inform the Frame Information that we have a stackmap in this function.
6903  FuncInfo.MF->getFrameInfo()->setHasStackMap();
6904}
6905
6906/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6907void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) {
6908  // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6909  //                                                 i32 <numBytes>,
6910  //                                                 i8* <target>,
6911  //                                                 i32 <numArgs>,
6912  //                                                 [Args...],
6913  //                                                 [live variables...])
6914
6915  CallingConv::ID CC = CI.getCallingConv();
6916  bool isAnyRegCC = CC == CallingConv::AnyReg;
6917  bool hasDef = !CI.getType()->isVoidTy();
6918  SDValue Callee = getValue(CI.getOperand(2)); // <target>
6919
6920  // Get the real number of arguments participating in the call <numArgs>
6921  SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos));
6922  unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6923
6924  // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6925  // Intrinsics include all meta-operands up to but not including CC.
6926  unsigned NumMetaOpers = PatchPointOpers::CCPos;
6927  assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs &&
6928         "Not enough arguments provided to the patchpoint intrinsic");
6929
6930  // For AnyRegCC the arguments are lowered later on manually.
6931  unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs;
6932  std::pair<SDValue, SDValue> Result =
6933    LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC);
6934
6935  // Set the root to the target-lowered call chain.
6936  SDValue Chain = Result.second;
6937  DAG.setRoot(Chain);
6938
6939  SDNode *CallEnd = Chain.getNode();
6940  if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6941    CallEnd = CallEnd->getOperand(0).getNode();
6942
6943  /// Get a call instruction from the call sequence chain.
6944  /// Tail calls are not allowed.
6945  assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6946         "Expected a callseq node.");
6947  SDNode *Call = CallEnd->getOperand(0).getNode();
6948  bool hasGlue = Call->getGluedNode();
6949
6950  // Replace the target specific call node with the patchable intrinsic.
6951  SmallVector<SDValue, 8> Ops;
6952
6953  // Add the <id> and <numBytes> constants.
6954  SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6955  Ops.push_back(DAG.getTargetConstant(
6956                  cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
6957  SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6958  Ops.push_back(DAG.getTargetConstant(
6959                  cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
6960
6961  // Assume that the Callee is a constant address.
6962  // FIXME: handle function symbols in the future.
6963  Ops.push_back(
6964    DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
6965                          /*isTarget=*/true));
6966
6967  // Adjust <numArgs> to account for any arguments that have been passed on the
6968  // stack instead.
6969  // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6970  unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3);
6971  NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs;
6972  Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
6973
6974  // Add the calling convention
6975  Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
6976
6977  // Add the arguments we omitted previously. The register allocator should
6978  // place these in any free register.
6979  if (isAnyRegCC)
6980    for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6981      Ops.push_back(getValue(CI.getArgOperand(i)));
6982
6983  // Push the arguments from the call instruction up to the register mask.
6984  SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1;
6985  for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
6986    Ops.push_back(*i);
6987
6988  // Push live variables for the stack map.
6989  addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this);
6990
6991  // Push the register mask info.
6992  if (hasGlue)
6993    Ops.push_back(*(Call->op_end()-2));
6994  else
6995    Ops.push_back(*(Call->op_end()-1));
6996
6997  // Push the chain (this is originally the first operand of the call, but
6998  // becomes now the last or second to last operand).
6999  Ops.push_back(*(Call->op_begin()));
7000
7001  // Push the glue flag (last operand).
7002  if (hasGlue)
7003    Ops.push_back(*(Call->op_end()-1));
7004
7005  SDVTList NodeTys;
7006  if (isAnyRegCC && hasDef) {
7007    // Create the return types based on the intrinsic definition
7008    const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7009    SmallVector<EVT, 3> ValueVTs;
7010    ComputeValueVTs(TLI, CI.getType(), ValueVTs);
7011    assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7012
7013    // There is always a chain and a glue type at the end
7014    ValueVTs.push_back(MVT::Other);
7015    ValueVTs.push_back(MVT::Glue);
7016    NodeTys = DAG.getVTList(ValueVTs);
7017  } else
7018    NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7019
7020  // Replace the target specific call node with a PATCHPOINT node.
7021  MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7022                                         getCurSDLoc(), NodeTys, Ops);
7023
7024  // Update the NodeMap.
7025  if (hasDef) {
7026    if (isAnyRegCC)
7027      setValue(&CI, SDValue(MN, 0));
7028    else
7029      setValue(&CI, Result.first);
7030  }
7031
7032  // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7033  // call sequence. Furthermore the location of the chain and glue can change
7034  // when the AnyReg calling convention is used and the intrinsic returns a
7035  // value.
7036  if (isAnyRegCC && hasDef) {
7037    SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7038    SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7039    DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7040  } else
7041    DAG.ReplaceAllUsesWith(Call, MN);
7042  DAG.DeleteNode(Call);
7043
7044  // Inform the Frame Information that we have a patchpoint in this function.
7045  FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7046}
7047
7048/// Returns an AttributeSet representing the attributes applied to the return
7049/// value of the given call.
7050static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7051  SmallVector<Attribute::AttrKind, 2> Attrs;
7052  if (CLI.RetSExt)
7053    Attrs.push_back(Attribute::SExt);
7054  if (CLI.RetZExt)
7055    Attrs.push_back(Attribute::ZExt);
7056  if (CLI.IsInReg)
7057    Attrs.push_back(Attribute::InReg);
7058
7059  return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7060                           Attrs);
7061}
7062
7063/// TargetLowering::LowerCallTo - This is the default LowerCallTo
7064/// implementation, which just calls LowerCall.
7065/// FIXME: When all targets are
7066/// migrated to using LowerCall, this hook should be integrated into SDISel.
7067std::pair<SDValue, SDValue>
7068TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7069  // Handle the incoming return values from the call.
7070  CLI.Ins.clear();
7071  Type *OrigRetTy = CLI.RetTy;
7072  SmallVector<EVT, 4> RetTys;
7073  SmallVector<uint64_t, 4> Offsets;
7074  ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
7075
7076  SmallVector<ISD::OutputArg, 4> Outs;
7077  GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
7078
7079  bool CanLowerReturn =
7080      this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7081                           CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7082
7083  SDValue DemoteStackSlot;
7084  int DemoteStackIdx = -100;
7085  if (!CanLowerReturn) {
7086    // FIXME: equivalent assert?
7087    // assert(!CS.hasInAllocaArgument() &&
7088    //        "sret demotion is incompatible with inalloca");
7089    uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
7090    unsigned Align  = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
7091    MachineFunction &MF = CLI.DAG.getMachineFunction();
7092    DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7093    Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7094
7095    DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
7096    ArgListEntry Entry;
7097    Entry.Node = DemoteStackSlot;
7098    Entry.Ty = StackSlotPtrType;
7099    Entry.isSExt = false;
7100    Entry.isZExt = false;
7101    Entry.isInReg = false;
7102    Entry.isSRet = true;
7103    Entry.isNest = false;
7104    Entry.isByVal = false;
7105    Entry.isReturned = false;
7106    Entry.Alignment = Align;
7107    CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7108    CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7109  } else {
7110    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7111      EVT VT = RetTys[I];
7112      MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7113      unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7114      for (unsigned i = 0; i != NumRegs; ++i) {
7115        ISD::InputArg MyFlags;
7116        MyFlags.VT = RegisterVT;
7117        MyFlags.ArgVT = VT;
7118        MyFlags.Used = CLI.IsReturnValueUsed;
7119        if (CLI.RetSExt)
7120          MyFlags.Flags.setSExt();
7121        if (CLI.RetZExt)
7122          MyFlags.Flags.setZExt();
7123        if (CLI.IsInReg)
7124          MyFlags.Flags.setInReg();
7125        CLI.Ins.push_back(MyFlags);
7126      }
7127    }
7128  }
7129
7130  // Handle all of the outgoing arguments.
7131  CLI.Outs.clear();
7132  CLI.OutVals.clear();
7133  ArgListTy &Args = CLI.getArgs();
7134  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7135    SmallVector<EVT, 4> ValueVTs;
7136    ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7137    Type *FinalType = Args[i].Ty;
7138    if (Args[i].isByVal)
7139      FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7140    bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7141        FinalType, CLI.CallConv, CLI.IsVarArg);
7142    for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7143         ++Value) {
7144      EVT VT = ValueVTs[Value];
7145      Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7146      SDValue Op = SDValue(Args[i].Node.getNode(),
7147                           Args[i].Node.getResNo() + Value);
7148      ISD::ArgFlagsTy Flags;
7149      unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
7150
7151      if (Args[i].isZExt)
7152        Flags.setZExt();
7153      if (Args[i].isSExt)
7154        Flags.setSExt();
7155      if (Args[i].isInReg)
7156        Flags.setInReg();
7157      if (Args[i].isSRet)
7158        Flags.setSRet();
7159      if (Args[i].isByVal)
7160        Flags.setByVal();
7161      if (Args[i].isInAlloca) {
7162        Flags.setInAlloca();
7163        // Set the byval flag for CCAssignFn callbacks that don't know about
7164        // inalloca.  This way we can know how many bytes we should've allocated
7165        // and how many bytes a callee cleanup function will pop.  If we port
7166        // inalloca to more targets, we'll have to add custom inalloca handling
7167        // in the various CC lowering callbacks.
7168        Flags.setByVal();
7169      }
7170      if (Args[i].isByVal || Args[i].isInAlloca) {
7171        PointerType *Ty = cast<PointerType>(Args[i].Ty);
7172        Type *ElementTy = Ty->getElementType();
7173        Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7174        // For ByVal, alignment should come from FE.  BE will guess if this
7175        // info is not there but there are cases it cannot get right.
7176        unsigned FrameAlign;
7177        if (Args[i].Alignment)
7178          FrameAlign = Args[i].Alignment;
7179        else
7180          FrameAlign = getByValTypeAlignment(ElementTy);
7181        Flags.setByValAlign(FrameAlign);
7182      }
7183      if (Args[i].isNest)
7184        Flags.setNest();
7185      if (NeedsRegBlock)
7186        Flags.setInConsecutiveRegs();
7187      Flags.setOrigAlign(OriginalAlignment);
7188
7189      MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7190      unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7191      SmallVector<SDValue, 4> Parts(NumParts);
7192      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7193
7194      if (Args[i].isSExt)
7195        ExtendKind = ISD::SIGN_EXTEND;
7196      else if (Args[i].isZExt)
7197        ExtendKind = ISD::ZERO_EXTEND;
7198
7199      // Conservatively only handle 'returned' on non-vectors for now
7200      if (Args[i].isReturned && !Op.getValueType().isVector()) {
7201        assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7202               "unexpected use of 'returned'");
7203        // Before passing 'returned' to the target lowering code, ensure that
7204        // either the register MVT and the actual EVT are the same size or that
7205        // the return value and argument are extended in the same way; in these
7206        // cases it's safe to pass the argument register value unchanged as the
7207        // return register value (although it's at the target's option whether
7208        // to do so)
7209        // TODO: allow code generation to take advantage of partially preserved
7210        // registers rather than clobbering the entire register when the
7211        // parameter extension method is not compatible with the return
7212        // extension method
7213        if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7214            (ExtendKind != ISD::ANY_EXTEND &&
7215             CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7216        Flags.setReturned();
7217      }
7218
7219      getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7220                     CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7221
7222      for (unsigned j = 0; j != NumParts; ++j) {
7223        // if it isn't first piece, alignment must be 1
7224        ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7225                               i < CLI.NumFixedArgs,
7226                               i, j*Parts[j].getValueType().getStoreSize());
7227        if (NumParts > 1 && j == 0)
7228          MyFlags.Flags.setSplit();
7229        else if (j != 0)
7230          MyFlags.Flags.setOrigAlign(1);
7231
7232        // Only mark the end at the last register of the last value.
7233        if (NeedsRegBlock && Value == NumValues - 1 && j == NumParts - 1)
7234          MyFlags.Flags.setInConsecutiveRegsLast();
7235
7236        CLI.Outs.push_back(MyFlags);
7237        CLI.OutVals.push_back(Parts[j]);
7238      }
7239    }
7240  }
7241
7242  SmallVector<SDValue, 4> InVals;
7243  CLI.Chain = LowerCall(CLI, InVals);
7244
7245  // Verify that the target's LowerCall behaved as expected.
7246  assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7247         "LowerCall didn't return a valid chain!");
7248  assert((!CLI.IsTailCall || InVals.empty()) &&
7249         "LowerCall emitted a return value for a tail call!");
7250  assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7251         "LowerCall didn't emit the correct number of values!");
7252
7253  // For a tail call, the return value is merely live-out and there aren't
7254  // any nodes in the DAG representing it. Return a special value to
7255  // indicate that a tail call has been emitted and no more Instructions
7256  // should be processed in the current block.
7257  if (CLI.IsTailCall) {
7258    CLI.DAG.setRoot(CLI.Chain);
7259    return std::make_pair(SDValue(), SDValue());
7260  }
7261
7262  DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7263          assert(InVals[i].getNode() &&
7264                 "LowerCall emitted a null value!");
7265          assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7266                 "LowerCall emitted a value with the wrong type!");
7267        });
7268
7269  SmallVector<SDValue, 4> ReturnValues;
7270  if (!CanLowerReturn) {
7271    // The instruction result is the result of loading from the
7272    // hidden sret parameter.
7273    SmallVector<EVT, 1> PVTs;
7274    Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7275
7276    ComputeValueVTs(*this, PtrRetTy, PVTs);
7277    assert(PVTs.size() == 1 && "Pointers should fit in one register");
7278    EVT PtrVT = PVTs[0];
7279
7280    unsigned NumValues = RetTys.size();
7281    ReturnValues.resize(NumValues);
7282    SmallVector<SDValue, 4> Chains(NumValues);
7283
7284    for (unsigned i = 0; i < NumValues; ++i) {
7285      SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7286                                    CLI.DAG.getConstant(Offsets[i], PtrVT));
7287      SDValue L = CLI.DAG.getLoad(
7288          RetTys[i], CLI.DL, CLI.Chain, Add,
7289          MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
7290          false, false, 1);
7291      ReturnValues[i] = L;
7292      Chains[i] = L.getValue(1);
7293    }
7294
7295    CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7296  } else {
7297    // Collect the legal value parts into potentially illegal values
7298    // that correspond to the original function's return values.
7299    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7300    if (CLI.RetSExt)
7301      AssertOp = ISD::AssertSext;
7302    else if (CLI.RetZExt)
7303      AssertOp = ISD::AssertZext;
7304    unsigned CurReg = 0;
7305    for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7306      EVT VT = RetTys[I];
7307      MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7308      unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7309
7310      ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7311                                              NumRegs, RegisterVT, VT, nullptr,
7312                                              AssertOp));
7313      CurReg += NumRegs;
7314    }
7315
7316    // For a function returning void, there is no return value. We can't create
7317    // such a node, so we just return a null return value in that case. In
7318    // that case, nothing will actually look at the value.
7319    if (ReturnValues.empty())
7320      return std::make_pair(SDValue(), CLI.Chain);
7321  }
7322
7323  SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7324                                CLI.DAG.getVTList(RetTys), ReturnValues);
7325  return std::make_pair(Res, CLI.Chain);
7326}
7327
7328void TargetLowering::LowerOperationWrapper(SDNode *N,
7329                                           SmallVectorImpl<SDValue> &Results,
7330                                           SelectionDAG &DAG) const {
7331  SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7332  if (Res.getNode())
7333    Results.push_back(Res);
7334}
7335
7336SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7337  llvm_unreachable("LowerOperation not implemented for this target!");
7338}
7339
7340void
7341SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7342  SDValue Op = getNonRegisterValue(V);
7343  assert((Op.getOpcode() != ISD::CopyFromReg ||
7344          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7345         "Copy from a reg to the same reg!");
7346  assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7347
7348  const TargetLowering *TLI = TM.getTargetLowering();
7349  RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
7350  SDValue Chain = DAG.getEntryNode();
7351  RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V);
7352  PendingExports.push_back(Chain);
7353}
7354
7355#include "llvm/CodeGen/SelectionDAGISel.h"
7356
7357/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7358/// entry block, return true.  This includes arguments used by switches, since
7359/// the switch may expand into multiple basic blocks.
7360static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7361  // With FastISel active, we may be splitting blocks, so force creation
7362  // of virtual registers for all non-dead arguments.
7363  if (FastISel)
7364    return A->use_empty();
7365
7366  const BasicBlock *Entry = A->getParent()->begin();
7367  for (const User *U : A->users())
7368    if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7369      return false;  // Use not in entry block.
7370
7371  return true;
7372}
7373
7374void SelectionDAGISel::LowerArguments(const Function &F) {
7375  SelectionDAG &DAG = SDB->DAG;
7376  SDLoc dl = SDB->getCurSDLoc();
7377  const TargetLowering *TLI = getTargetLowering();
7378  const DataLayout *DL = TLI->getDataLayout();
7379  SmallVector<ISD::InputArg, 16> Ins;
7380
7381  if (!FuncInfo->CanLowerReturn) {
7382    // Put in an sret pointer parameter before all the other parameters.
7383    SmallVector<EVT, 1> ValueVTs;
7384    ComputeValueVTs(*getTargetLowering(),
7385                    PointerType::getUnqual(F.getReturnType()), ValueVTs);
7386
7387    // NOTE: Assuming that a pointer will never break down to more than one VT
7388    // or one register.
7389    ISD::ArgFlagsTy Flags;
7390    Flags.setSRet();
7391    MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7392    ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7393    Ins.push_back(RetArg);
7394  }
7395
7396  // Set up the incoming argument description vector.
7397  unsigned Idx = 1;
7398  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7399       I != E; ++I, ++Idx) {
7400    SmallVector<EVT, 4> ValueVTs;
7401    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7402    bool isArgValueUsed = !I->use_empty();
7403    unsigned PartBase = 0;
7404    Type *FinalType = I->getType();
7405    if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7406      FinalType = cast<PointerType>(FinalType)->getElementType();
7407    bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7408        FinalType, F.getCallingConv(), F.isVarArg());
7409    for (unsigned Value = 0, NumValues = ValueVTs.size();
7410         Value != NumValues; ++Value) {
7411      EVT VT = ValueVTs[Value];
7412      Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7413      ISD::ArgFlagsTy Flags;
7414      unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7415
7416      if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7417        Flags.setZExt();
7418      if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7419        Flags.setSExt();
7420      if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7421        Flags.setInReg();
7422      if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7423        Flags.setSRet();
7424      if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7425        Flags.setByVal();
7426      if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7427        Flags.setInAlloca();
7428        // Set the byval flag for CCAssignFn callbacks that don't know about
7429        // inalloca.  This way we can know how many bytes we should've allocated
7430        // and how many bytes a callee cleanup function will pop.  If we port
7431        // inalloca to more targets, we'll have to add custom inalloca handling
7432        // in the various CC lowering callbacks.
7433        Flags.setByVal();
7434      }
7435      if (Flags.isByVal() || Flags.isInAlloca()) {
7436        PointerType *Ty = cast<PointerType>(I->getType());
7437        Type *ElementTy = Ty->getElementType();
7438        Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7439        // For ByVal, alignment should be passed from FE.  BE will guess if
7440        // this info is not there but there are cases it cannot get right.
7441        unsigned FrameAlign;
7442        if (F.getParamAlignment(Idx))
7443          FrameAlign = F.getParamAlignment(Idx);
7444        else
7445          FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7446        Flags.setByValAlign(FrameAlign);
7447      }
7448      if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7449        Flags.setNest();
7450      if (NeedsRegBlock)
7451        Flags.setInConsecutiveRegs();
7452      Flags.setOrigAlign(OriginalAlignment);
7453
7454      MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7455      unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7456      for (unsigned i = 0; i != NumRegs; ++i) {
7457        ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7458                              Idx-1, PartBase+i*RegisterVT.getStoreSize());
7459        if (NumRegs > 1 && i == 0)
7460          MyFlags.Flags.setSplit();
7461        // if it isn't first piece, alignment must be 1
7462        else if (i > 0)
7463          MyFlags.Flags.setOrigAlign(1);
7464
7465        // Only mark the end at the last register of the last value.
7466        if (NeedsRegBlock && Value == NumValues - 1 && i == NumRegs - 1)
7467          MyFlags.Flags.setInConsecutiveRegsLast();
7468
7469        Ins.push_back(MyFlags);
7470      }
7471      PartBase += VT.getStoreSize();
7472    }
7473  }
7474
7475  // Call the target to set up the argument values.
7476  SmallVector<SDValue, 8> InVals;
7477  SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7478                                              F.isVarArg(), Ins,
7479                                              dl, DAG, InVals);
7480
7481  // Verify that the target's LowerFormalArguments behaved as expected.
7482  assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7483         "LowerFormalArguments didn't return a valid chain!");
7484  assert(InVals.size() == Ins.size() &&
7485         "LowerFormalArguments didn't emit the correct number of values!");
7486  DEBUG({
7487      for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7488        assert(InVals[i].getNode() &&
7489               "LowerFormalArguments emitted a null value!");
7490        assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7491               "LowerFormalArguments emitted a value with the wrong type!");
7492      }
7493    });
7494
7495  // Update the DAG with the new chain value resulting from argument lowering.
7496  DAG.setRoot(NewRoot);
7497
7498  // Set up the argument values.
7499  unsigned i = 0;
7500  Idx = 1;
7501  if (!FuncInfo->CanLowerReturn) {
7502    // Create a virtual register for the sret pointer, and put in a copy
7503    // from the sret argument into it.
7504    SmallVector<EVT, 1> ValueVTs;
7505    ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7506    MVT VT = ValueVTs[0].getSimpleVT();
7507    MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7508    ISD::NodeType AssertOp = ISD::DELETED_NODE;
7509    SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7510                                        RegVT, VT, nullptr, AssertOp);
7511
7512    MachineFunction& MF = SDB->DAG.getMachineFunction();
7513    MachineRegisterInfo& RegInfo = MF.getRegInfo();
7514    unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7515    FuncInfo->DemoteRegister = SRetReg;
7516    NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7517                                    SRetReg, ArgValue);
7518    DAG.setRoot(NewRoot);
7519
7520    // i indexes lowered arguments.  Bump it past the hidden sret argument.
7521    // Idx indexes LLVM arguments.  Don't touch it.
7522    ++i;
7523  }
7524
7525  for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7526      ++I, ++Idx) {
7527    SmallVector<SDValue, 4> ArgValues;
7528    SmallVector<EVT, 4> ValueVTs;
7529    ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7530    unsigned NumValues = ValueVTs.size();
7531
7532    // If this argument is unused then remember its value. It is used to generate
7533    // debugging information.
7534    if (I->use_empty() && NumValues) {
7535      SDB->setUnusedArgValue(I, InVals[i]);
7536
7537      // Also remember any frame index for use in FastISel.
7538      if (FrameIndexSDNode *FI =
7539          dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7540        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7541    }
7542
7543    for (unsigned Val = 0; Val != NumValues; ++Val) {
7544      EVT VT = ValueVTs[Val];
7545      MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7546      unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7547
7548      if (!I->use_empty()) {
7549        ISD::NodeType AssertOp = ISD::DELETED_NODE;
7550        if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7551          AssertOp = ISD::AssertSext;
7552        else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7553          AssertOp = ISD::AssertZext;
7554
7555        ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7556                                             NumParts, PartVT, VT,
7557                                             nullptr, AssertOp));
7558      }
7559
7560      i += NumParts;
7561    }
7562
7563    // We don't need to do anything else for unused arguments.
7564    if (ArgValues.empty())
7565      continue;
7566
7567    // Note down frame index.
7568    if (FrameIndexSDNode *FI =
7569        dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7570      FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7571
7572    SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7573                                     SDB->getCurSDLoc());
7574
7575    SDB->setValue(I, Res);
7576    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7577      if (LoadSDNode *LNode =
7578          dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7579        if (FrameIndexSDNode *FI =
7580            dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7581        FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7582    }
7583
7584    // If this argument is live outside of the entry block, insert a copy from
7585    // wherever we got it to the vreg that other BB's will reference it as.
7586    if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7587      // If we can, though, try to skip creating an unnecessary vreg.
7588      // FIXME: This isn't very clean... it would be nice to make this more
7589      // general.  It's also subtly incompatible with the hacks FastISel
7590      // uses with vregs.
7591      unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7592      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7593        FuncInfo->ValueMap[I] = Reg;
7594        continue;
7595      }
7596    }
7597    if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7598      FuncInfo->InitializeRegForValue(I);
7599      SDB->CopyToExportRegsIfNeeded(I);
7600    }
7601  }
7602
7603  assert(i == InVals.size() && "Argument register count mismatch!");
7604
7605  // Finally, if the target has anything special to do, allow it to do so.
7606  // FIXME: this should insert code into the DAG!
7607  EmitFunctionEntryCode();
7608}
7609
7610/// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7611/// ensure constants are generated when needed.  Remember the virtual registers
7612/// that need to be added to the Machine PHI nodes as input.  We cannot just
7613/// directly add them, because expansion might result in multiple MBB's for one
7614/// BB.  As such, the start of the BB might correspond to a different MBB than
7615/// the end.
7616///
7617void
7618SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7619  const TerminatorInst *TI = LLVMBB->getTerminator();
7620
7621  SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7622
7623  // Check successor nodes' PHI nodes that expect a constant to be available
7624  // from this block.
7625  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7626    const BasicBlock *SuccBB = TI->getSuccessor(succ);
7627    if (!isa<PHINode>(SuccBB->begin())) continue;
7628    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7629
7630    // If this terminator has multiple identical successors (common for
7631    // switches), only handle each succ once.
7632    if (!SuccsHandled.insert(SuccMBB)) continue;
7633
7634    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7635
7636    // At this point we know that there is a 1-1 correspondence between LLVM PHI
7637    // nodes and Machine PHI nodes, but the incoming operands have not been
7638    // emitted yet.
7639    for (BasicBlock::const_iterator I = SuccBB->begin();
7640         const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7641      // Ignore dead phi's.
7642      if (PN->use_empty()) continue;
7643
7644      // Skip empty types
7645      if (PN->getType()->isEmptyTy())
7646        continue;
7647
7648      unsigned Reg;
7649      const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7650
7651      if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7652        unsigned &RegOut = ConstantsOut[C];
7653        if (RegOut == 0) {
7654          RegOut = FuncInfo.CreateRegs(C->getType());
7655          CopyValueToVirtualRegister(C, RegOut);
7656        }
7657        Reg = RegOut;
7658      } else {
7659        DenseMap<const Value *, unsigned>::iterator I =
7660          FuncInfo.ValueMap.find(PHIOp);
7661        if (I != FuncInfo.ValueMap.end())
7662          Reg = I->second;
7663        else {
7664          assert(isa<AllocaInst>(PHIOp) &&
7665                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7666                 "Didn't codegen value into a register!??");
7667          Reg = FuncInfo.CreateRegs(PHIOp->getType());
7668          CopyValueToVirtualRegister(PHIOp, Reg);
7669        }
7670      }
7671
7672      // Remember that this register needs to added to the machine PHI node as
7673      // the input for this MBB.
7674      SmallVector<EVT, 4> ValueVTs;
7675      const TargetLowering *TLI = TM.getTargetLowering();
7676      ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7677      for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7678        EVT VT = ValueVTs[vti];
7679        unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7680        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7681          FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7682        Reg += NumRegisters;
7683      }
7684    }
7685  }
7686
7687  ConstantsOut.clear();
7688}
7689
7690/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7691/// is 0.
7692MachineBasicBlock *
7693SelectionDAGBuilder::StackProtectorDescriptor::
7694AddSuccessorMBB(const BasicBlock *BB,
7695                MachineBasicBlock *ParentMBB,
7696                MachineBasicBlock *SuccMBB) {
7697  // If SuccBB has not been created yet, create it.
7698  if (!SuccMBB) {
7699    MachineFunction *MF = ParentMBB->getParent();
7700    MachineFunction::iterator BBI = ParentMBB;
7701    SuccMBB = MF->CreateMachineBasicBlock(BB);
7702    MF->insert(++BBI, SuccMBB);
7703  }
7704  // Add it as a successor of ParentMBB.
7705  ParentMBB->addSuccessor(SuccMBB);
7706  return SuccMBB;
7707}
7708