1//===-- Value.cpp - Implement the Value class -----------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Value, ValueHandle, and User classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Value.h"
15#include "LLVMContextImpl.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/IR/Constant.h"
19#include "llvm/IR/Constants.h"
20#include "llvm/IR/DataLayout.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/GetElementPtrTypeIterator.h"
23#include "llvm/IR/InstrTypes.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/LeakDetector.h"
26#include "llvm/IR/Module.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/IR/ValueHandle.h"
29#include "llvm/IR/ValueSymbolTable.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/ManagedStatic.h"
33#include <algorithm>
34using namespace llvm;
35
36//===----------------------------------------------------------------------===//
37//                                Value Class
38//===----------------------------------------------------------------------===//
39
40static inline Type *checkType(Type *Ty) {
41  assert(Ty && "Value defined with a null type: Error!");
42  return Ty;
43}
44
45Value::Value(Type *ty, unsigned scid)
46    : VTy(checkType(ty)), UseList(nullptr), Name(nullptr), SubclassID(scid),
47      HasValueHandle(0), SubclassOptionalData(0), SubclassData(0) {
48  // FIXME: Why isn't this in the subclass gunk??
49  // Note, we cannot call isa<CallInst> before the CallInst has been
50  // constructed.
51  if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke)
52    assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
53           "invalid CallInst type!");
54  else if (SubclassID != BasicBlockVal &&
55           (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal))
56    assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
57           "Cannot create non-first-class values except for constants!");
58}
59
60Value::~Value() {
61  // Notify all ValueHandles (if present) that this value is going away.
62  if (HasValueHandle)
63    ValueHandleBase::ValueIsDeleted(this);
64
65#ifndef NDEBUG      // Only in -g mode...
66  // Check to make sure that there are no uses of this value that are still
67  // around when the value is destroyed.  If there are, then we have a dangling
68  // reference and something is wrong.  This code is here to print out what is
69  // still being referenced.  The value in question should be printed as
70  // a <badref>
71  //
72  if (!use_empty()) {
73    dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
74    for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
75      dbgs() << "Use still stuck around after Def is destroyed:"
76           << **I << "\n";
77  }
78#endif
79  assert(use_empty() && "Uses remain when a value is destroyed!");
80
81  // If this value is named, destroy the name.  This should not be in a symtab
82  // at this point.
83  if (Name && SubclassID != MDStringVal)
84    Name->Destroy();
85
86  // There should be no uses of this object anymore, remove it.
87  LeakDetector::removeGarbageObject(this);
88}
89
90/// hasNUses - Return true if this Value has exactly N users.
91///
92bool Value::hasNUses(unsigned N) const {
93  const_use_iterator UI = use_begin(), E = use_end();
94
95  for (; N; --N, ++UI)
96    if (UI == E) return false;  // Too few.
97  return UI == E;
98}
99
100/// hasNUsesOrMore - Return true if this value has N users or more.  This is
101/// logically equivalent to getNumUses() >= N.
102///
103bool Value::hasNUsesOrMore(unsigned N) const {
104  const_use_iterator UI = use_begin(), E = use_end();
105
106  for (; N; --N, ++UI)
107    if (UI == E) return false;  // Too few.
108
109  return true;
110}
111
112/// isUsedInBasicBlock - Return true if this value is used in the specified
113/// basic block.
114bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
115  // This can be computed either by scanning the instructions in BB, or by
116  // scanning the use list of this Value. Both lists can be very long, but
117  // usually one is quite short.
118  //
119  // Scan both lists simultaneously until one is exhausted. This limits the
120  // search to the shorter list.
121  BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
122  const_user_iterator UI = user_begin(), UE = user_end();
123  for (; BI != BE && UI != UE; ++BI, ++UI) {
124    // Scan basic block: Check if this Value is used by the instruction at BI.
125    if (std::find(BI->op_begin(), BI->op_end(), this) != BI->op_end())
126      return true;
127    // Scan use list: Check if the use at UI is in BB.
128    const Instruction *User = dyn_cast<Instruction>(*UI);
129    if (User && User->getParent() == BB)
130      return true;
131  }
132  return false;
133}
134
135
136/// getNumUses - This method computes the number of uses of this Value.  This
137/// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
138/// values.
139unsigned Value::getNumUses() const {
140  return (unsigned)std::distance(use_begin(), use_end());
141}
142
143static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
144  ST = nullptr;
145  if (Instruction *I = dyn_cast<Instruction>(V)) {
146    if (BasicBlock *P = I->getParent())
147      if (Function *PP = P->getParent())
148        ST = &PP->getValueSymbolTable();
149  } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
150    if (Function *P = BB->getParent())
151      ST = &P->getValueSymbolTable();
152  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
153    if (Module *P = GV->getParent())
154      ST = &P->getValueSymbolTable();
155  } else if (Argument *A = dyn_cast<Argument>(V)) {
156    if (Function *P = A->getParent())
157      ST = &P->getValueSymbolTable();
158  } else if (isa<MDString>(V))
159    return true;
160  else {
161    assert(isa<Constant>(V) && "Unknown value type!");
162    return true;  // no name is setable for this.
163  }
164  return false;
165}
166
167StringRef Value::getName() const {
168  // Make sure the empty string is still a C string. For historical reasons,
169  // some clients want to call .data() on the result and expect it to be null
170  // terminated.
171  if (!Name) return StringRef("", 0);
172  return Name->getKey();
173}
174
175void Value::setName(const Twine &NewName) {
176  assert(SubclassID != MDStringVal &&
177         "Cannot set the name of MDString with this method!");
178
179  // Fast path for common IRBuilder case of setName("") when there is no name.
180  if (NewName.isTriviallyEmpty() && !hasName())
181    return;
182
183  SmallString<256> NameData;
184  StringRef NameRef = NewName.toStringRef(NameData);
185  assert(NameRef.find_first_of(0) == StringRef::npos &&
186         "Null bytes are not allowed in names");
187
188  // Name isn't changing?
189  if (getName() == NameRef)
190    return;
191
192  assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
193
194  // Get the symbol table to update for this object.
195  ValueSymbolTable *ST;
196  if (getSymTab(this, ST))
197    return;  // Cannot set a name on this value (e.g. constant).
198
199  if (Function *F = dyn_cast<Function>(this))
200    getContext().pImpl->IntrinsicIDCache.erase(F);
201
202  if (!ST) { // No symbol table to update?  Just do the change.
203    if (NameRef.empty()) {
204      // Free the name for this value.
205      Name->Destroy();
206      Name = nullptr;
207      return;
208    }
209
210    if (Name)
211      Name->Destroy();
212
213    // NOTE: Could optimize for the case the name is shrinking to not deallocate
214    // then reallocated.
215
216    // Create the new name.
217    Name = ValueName::Create(NameRef);
218    Name->setValue(this);
219    return;
220  }
221
222  // NOTE: Could optimize for the case the name is shrinking to not deallocate
223  // then reallocated.
224  if (hasName()) {
225    // Remove old name.
226    ST->removeValueName(Name);
227    Name->Destroy();
228    Name = nullptr;
229
230    if (NameRef.empty())
231      return;
232  }
233
234  // Name is changing to something new.
235  Name = ST->createValueName(NameRef, this);
236}
237
238
239/// takeName - transfer the name from V to this value, setting V's name to
240/// empty.  It is an error to call V->takeName(V).
241void Value::takeName(Value *V) {
242  assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!");
243
244  ValueSymbolTable *ST = nullptr;
245  // If this value has a name, drop it.
246  if (hasName()) {
247    // Get the symtab this is in.
248    if (getSymTab(this, ST)) {
249      // We can't set a name on this value, but we need to clear V's name if
250      // it has one.
251      if (V->hasName()) V->setName("");
252      return;  // Cannot set a name on this value (e.g. constant).
253    }
254
255    // Remove old name.
256    if (ST)
257      ST->removeValueName(Name);
258    Name->Destroy();
259    Name = nullptr;
260  }
261
262  // Now we know that this has no name.
263
264  // If V has no name either, we're done.
265  if (!V->hasName()) return;
266
267  // Get this's symtab if we didn't before.
268  if (!ST) {
269    if (getSymTab(this, ST)) {
270      // Clear V's name.
271      V->setName("");
272      return;  // Cannot set a name on this value (e.g. constant).
273    }
274  }
275
276  // Get V's ST, this should always succed, because V has a name.
277  ValueSymbolTable *VST;
278  bool Failure = getSymTab(V, VST);
279  assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
280
281  // If these values are both in the same symtab, we can do this very fast.
282  // This works even if both values have no symtab yet.
283  if (ST == VST) {
284    // Take the name!
285    Name = V->Name;
286    V->Name = nullptr;
287    Name->setValue(this);
288    return;
289  }
290
291  // Otherwise, things are slightly more complex.  Remove V's name from VST and
292  // then reinsert it into ST.
293
294  if (VST)
295    VST->removeValueName(V->Name);
296  Name = V->Name;
297  V->Name = nullptr;
298  Name->setValue(this);
299
300  if (ST)
301    ST->reinsertValue(this);
302}
303
304#ifndef NDEBUG
305static bool contains(SmallPtrSet<ConstantExpr *, 4> &Cache, ConstantExpr *Expr,
306                     Constant *C) {
307  if (!Cache.insert(Expr))
308    return false;
309
310  for (auto &O : Expr->operands()) {
311    if (O == C)
312      return true;
313    auto *CE = dyn_cast<ConstantExpr>(O);
314    if (!CE)
315      continue;
316    if (contains(Cache, CE, C))
317      return true;
318  }
319  return false;
320}
321
322static bool contains(Value *Expr, Value *V) {
323  if (Expr == V)
324    return true;
325
326  auto *C = dyn_cast<Constant>(V);
327  if (!C)
328    return false;
329
330  auto *CE = dyn_cast<ConstantExpr>(Expr);
331  if (!CE)
332    return false;
333
334  SmallPtrSet<ConstantExpr *, 4> Cache;
335  return contains(Cache, CE, C);
336}
337#endif
338
339void Value::replaceAllUsesWith(Value *New) {
340  assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
341  assert(!contains(New, this) &&
342         "this->replaceAllUsesWith(expr(this)) is NOT valid!");
343  assert(New->getType() == getType() &&
344         "replaceAllUses of value with new value of different type!");
345
346  // Notify all ValueHandles (if present) that this value is going away.
347  if (HasValueHandle)
348    ValueHandleBase::ValueIsRAUWd(this, New);
349
350  while (!use_empty()) {
351    Use &U = *UseList;
352    // Must handle Constants specially, we cannot call replaceUsesOfWith on a
353    // constant because they are uniqued.
354    if (auto *C = dyn_cast<Constant>(U.getUser())) {
355      if (!isa<GlobalValue>(C)) {
356        C->replaceUsesOfWithOnConstant(this, New, &U);
357        continue;
358      }
359    }
360
361    U.set(New);
362  }
363
364  if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
365    BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
366}
367
368namespace {
369// Various metrics for how much to strip off of pointers.
370enum PointerStripKind {
371  PSK_ZeroIndices,
372  PSK_ZeroIndicesAndAliases,
373  PSK_InBoundsConstantIndices,
374  PSK_InBounds
375};
376
377template <PointerStripKind StripKind>
378static Value *stripPointerCastsAndOffsets(Value *V) {
379  if (!V->getType()->isPointerTy())
380    return V;
381
382  // Even though we don't look through PHI nodes, we could be called on an
383  // instruction in an unreachable block, which may be on a cycle.
384  SmallPtrSet<Value *, 4> Visited;
385
386  Visited.insert(V);
387  do {
388    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
389      switch (StripKind) {
390      case PSK_ZeroIndicesAndAliases:
391      case PSK_ZeroIndices:
392        if (!GEP->hasAllZeroIndices())
393          return V;
394        break;
395      case PSK_InBoundsConstantIndices:
396        if (!GEP->hasAllConstantIndices())
397          return V;
398        // fallthrough
399      case PSK_InBounds:
400        if (!GEP->isInBounds())
401          return V;
402        break;
403      }
404      V = GEP->getPointerOperand();
405    } else if (Operator::getOpcode(V) == Instruction::BitCast ||
406               Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
407      V = cast<Operator>(V)->getOperand(0);
408    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
409      if (StripKind == PSK_ZeroIndices || GA->mayBeOverridden())
410        return V;
411      V = GA->getAliasee();
412    } else {
413      return V;
414    }
415    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
416  } while (Visited.insert(V));
417
418  return V;
419}
420} // namespace
421
422Value *Value::stripPointerCasts() {
423  return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
424}
425
426Value *Value::stripPointerCastsNoFollowAliases() {
427  return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
428}
429
430Value *Value::stripInBoundsConstantOffsets() {
431  return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
432}
433
434Value *Value::stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
435                                                        APInt &Offset) {
436  if (!getType()->isPointerTy())
437    return this;
438
439  assert(Offset.getBitWidth() == DL.getPointerSizeInBits(cast<PointerType>(
440                                     getType())->getAddressSpace()) &&
441         "The offset must have exactly as many bits as our pointer.");
442
443  // Even though we don't look through PHI nodes, we could be called on an
444  // instruction in an unreachable block, which may be on a cycle.
445  SmallPtrSet<Value *, 4> Visited;
446  Visited.insert(this);
447  Value *V = this;
448  do {
449    if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
450      if (!GEP->isInBounds())
451        return V;
452      APInt GEPOffset(Offset);
453      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
454        return V;
455      Offset = GEPOffset;
456      V = GEP->getPointerOperand();
457    } else if (Operator::getOpcode(V) == Instruction::BitCast) {
458      V = cast<Operator>(V)->getOperand(0);
459    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
460      V = GA->getAliasee();
461    } else {
462      return V;
463    }
464    assert(V->getType()->isPointerTy() && "Unexpected operand type!");
465  } while (Visited.insert(V));
466
467  return V;
468}
469
470Value *Value::stripInBoundsOffsets() {
471  return stripPointerCastsAndOffsets<PSK_InBounds>(this);
472}
473
474/// isDereferenceablePointer - Test if this value is always a pointer to
475/// allocated and suitably aligned memory for a simple load or store.
476static bool isDereferenceablePointer(const Value *V, const DataLayout *DL,
477                                     SmallPtrSet<const Value *, 32> &Visited) {
478  // Note that it is not safe to speculate into a malloc'd region because
479  // malloc may return null.
480
481  // These are obviously ok.
482  if (isa<AllocaInst>(V)) return true;
483
484  // It's not always safe to follow a bitcast, for example:
485  //   bitcast i8* (alloca i8) to i32*
486  // would result in a 4-byte load from a 1-byte alloca. However,
487  // if we're casting from a pointer from a type of larger size
488  // to a type of smaller size (or the same size), and the alignment
489  // is at least as large as for the resulting pointer type, then
490  // we can look through the bitcast.
491  if (DL)
492    if (const BitCastInst* BC = dyn_cast<BitCastInst>(V)) {
493      Type *STy = BC->getSrcTy()->getPointerElementType(),
494           *DTy = BC->getDestTy()->getPointerElementType();
495      if (STy->isSized() && DTy->isSized() &&
496          (DL->getTypeStoreSize(STy) >=
497           DL->getTypeStoreSize(DTy)) &&
498          (DL->getABITypeAlignment(STy) >=
499           DL->getABITypeAlignment(DTy)))
500        return isDereferenceablePointer(BC->getOperand(0), DL, Visited);
501    }
502
503  // Global variables which can't collapse to null are ok.
504  if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
505    return !GV->hasExternalWeakLinkage();
506
507  // byval arguments are ok.
508  if (const Argument *A = dyn_cast<Argument>(V))
509    return A->hasByValAttr();
510
511  // For GEPs, determine if the indexing lands within the allocated object.
512  if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
513    // Conservatively require that the base pointer be fully dereferenceable.
514    if (!Visited.insert(GEP->getOperand(0)))
515      return false;
516    if (!isDereferenceablePointer(GEP->getOperand(0), DL, Visited))
517      return false;
518    // Check the indices.
519    gep_type_iterator GTI = gep_type_begin(GEP);
520    for (User::const_op_iterator I = GEP->op_begin()+1,
521         E = GEP->op_end(); I != E; ++I) {
522      Value *Index = *I;
523      Type *Ty = *GTI++;
524      // Struct indices can't be out of bounds.
525      if (isa<StructType>(Ty))
526        continue;
527      ConstantInt *CI = dyn_cast<ConstantInt>(Index);
528      if (!CI)
529        return false;
530      // Zero is always ok.
531      if (CI->isZero())
532        continue;
533      // Check to see that it's within the bounds of an array.
534      ArrayType *ATy = dyn_cast<ArrayType>(Ty);
535      if (!ATy)
536        return false;
537      if (CI->getValue().getActiveBits() > 64)
538        return false;
539      if (CI->getZExtValue() >= ATy->getNumElements())
540        return false;
541    }
542    // Indices check out; this is dereferenceable.
543    return true;
544  }
545
546  // If we don't know, assume the worst.
547  return false;
548}
549
550/// isDereferenceablePointer - Test if this value is always a pointer to
551/// allocated and suitably aligned memory for a simple load or store.
552bool Value::isDereferenceablePointer(const DataLayout *DL) const {
553  SmallPtrSet<const Value *, 32> Visited;
554  return ::isDereferenceablePointer(this, DL, Visited);
555}
556
557/// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
558/// return the value in the PHI node corresponding to PredBB.  If not, return
559/// ourself.  This is useful if you want to know the value something has in a
560/// predecessor block.
561Value *Value::DoPHITranslation(const BasicBlock *CurBB,
562                               const BasicBlock *PredBB) {
563  PHINode *PN = dyn_cast<PHINode>(this);
564  if (PN && PN->getParent() == CurBB)
565    return PN->getIncomingValueForBlock(PredBB);
566  return this;
567}
568
569LLVMContext &Value::getContext() const { return VTy->getContext(); }
570
571//===----------------------------------------------------------------------===//
572//                             ValueHandleBase Class
573//===----------------------------------------------------------------------===//
574
575/// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
576/// List is known to point into the existing use list.
577void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
578  assert(List && "Handle list is null?");
579
580  // Splice ourselves into the list.
581  Next = *List;
582  *List = this;
583  setPrevPtr(List);
584  if (Next) {
585    Next->setPrevPtr(&Next);
586    assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?");
587  }
588}
589
590void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
591  assert(List && "Must insert after existing node");
592
593  Next = List->Next;
594  setPrevPtr(&List->Next);
595  List->Next = this;
596  if (Next)
597    Next->setPrevPtr(&Next);
598}
599
600/// AddToUseList - Add this ValueHandle to the use list for VP.
601void ValueHandleBase::AddToUseList() {
602  assert(VP.getPointer() && "Null pointer doesn't have a use list!");
603
604  LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
605
606  if (VP.getPointer()->HasValueHandle) {
607    // If this value already has a ValueHandle, then it must be in the
608    // ValueHandles map already.
609    ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()];
610    assert(Entry && "Value doesn't have any handles?");
611    AddToExistingUseList(&Entry);
612    return;
613  }
614
615  // Ok, it doesn't have any handles yet, so we must insert it into the
616  // DenseMap.  However, doing this insertion could cause the DenseMap to
617  // reallocate itself, which would invalidate all of the PrevP pointers that
618  // point into the old table.  Handle this by checking for reallocation and
619  // updating the stale pointers only if needed.
620  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
621  const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
622
623  ValueHandleBase *&Entry = Handles[VP.getPointer()];
624  assert(!Entry && "Value really did already have handles?");
625  AddToExistingUseList(&Entry);
626  VP.getPointer()->HasValueHandle = true;
627
628  // If reallocation didn't happen or if this was the first insertion, don't
629  // walk the table.
630  if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
631      Handles.size() == 1) {
632    return;
633  }
634
635  // Okay, reallocation did happen.  Fix the Prev Pointers.
636  for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
637       E = Handles.end(); I != E; ++I) {
638    assert(I->second && I->first == I->second->VP.getPointer() &&
639           "List invariant broken!");
640    I->second->setPrevPtr(&I->second);
641  }
642}
643
644/// RemoveFromUseList - Remove this ValueHandle from its current use list.
645void ValueHandleBase::RemoveFromUseList() {
646  assert(VP.getPointer() && VP.getPointer()->HasValueHandle &&
647         "Pointer doesn't have a use list!");
648
649  // Unlink this from its use list.
650  ValueHandleBase **PrevPtr = getPrevPtr();
651  assert(*PrevPtr == this && "List invariant broken");
652
653  *PrevPtr = Next;
654  if (Next) {
655    assert(Next->getPrevPtr() == &Next && "List invariant broken");
656    Next->setPrevPtr(PrevPtr);
657    return;
658  }
659
660  // If the Next pointer was null, then it is possible that this was the last
661  // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
662  // map.
663  LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl;
664  DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
665  if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
666    Handles.erase(VP.getPointer());
667    VP.getPointer()->HasValueHandle = false;
668  }
669}
670
671
672void ValueHandleBase::ValueIsDeleted(Value *V) {
673  assert(V->HasValueHandle && "Should only be called if ValueHandles present");
674
675  // Get the linked list base, which is guaranteed to exist since the
676  // HasValueHandle flag is set.
677  LLVMContextImpl *pImpl = V->getContext().pImpl;
678  ValueHandleBase *Entry = pImpl->ValueHandles[V];
679  assert(Entry && "Value bit set but no entries exist");
680
681  // We use a local ValueHandleBase as an iterator so that ValueHandles can add
682  // and remove themselves from the list without breaking our iteration.  This
683  // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
684  // Note that we deliberately do not the support the case when dropping a value
685  // handle results in a new value handle being permanently added to the list
686  // (as might occur in theory for CallbackVH's): the new value handle will not
687  // be processed and the checking code will mete out righteous punishment if
688  // the handle is still present once we have finished processing all the other
689  // value handles (it is fine to momentarily add then remove a value handle).
690  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
691    Iterator.RemoveFromUseList();
692    Iterator.AddToExistingUseListAfter(Entry);
693    assert(Entry->Next == &Iterator && "Loop invariant broken.");
694
695    switch (Entry->getKind()) {
696    case Assert:
697      break;
698    case Tracking:
699      // Mark that this value has been deleted by setting it to an invalid Value
700      // pointer.
701      Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
702      break;
703    case Weak:
704      // Weak just goes to null, which will unlink it from the list.
705      Entry->operator=(nullptr);
706      break;
707    case Callback:
708      // Forward to the subclass's implementation.
709      static_cast<CallbackVH*>(Entry)->deleted();
710      break;
711    }
712  }
713
714  // All callbacks, weak references, and assertingVHs should be dropped by now.
715  if (V->HasValueHandle) {
716#ifndef NDEBUG      // Only in +Asserts mode...
717    dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
718           << "\n";
719    if (pImpl->ValueHandles[V]->getKind() == Assert)
720      llvm_unreachable("An asserting value handle still pointed to this"
721                       " value!");
722
723#endif
724    llvm_unreachable("All references to V were not removed?");
725  }
726}
727
728
729void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
730  assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
731  assert(Old != New && "Changing value into itself!");
732
733  // Get the linked list base, which is guaranteed to exist since the
734  // HasValueHandle flag is set.
735  LLVMContextImpl *pImpl = Old->getContext().pImpl;
736  ValueHandleBase *Entry = pImpl->ValueHandles[Old];
737
738  assert(Entry && "Value bit set but no entries exist");
739
740  // We use a local ValueHandleBase as an iterator so that
741  // ValueHandles can add and remove themselves from the list without
742  // breaking our iteration.  This is not really an AssertingVH; we
743  // just have to give ValueHandleBase some kind.
744  for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
745    Iterator.RemoveFromUseList();
746    Iterator.AddToExistingUseListAfter(Entry);
747    assert(Entry->Next == &Iterator && "Loop invariant broken.");
748
749    switch (Entry->getKind()) {
750    case Assert:
751      // Asserting handle does not follow RAUW implicitly.
752      break;
753    case Tracking:
754      // Tracking goes to new value like a WeakVH. Note that this may make it
755      // something incompatible with its templated type. We don't want to have a
756      // virtual (or inline) interface to handle this though, so instead we make
757      // the TrackingVH accessors guarantee that a client never sees this value.
758
759      // FALLTHROUGH
760    case Weak:
761      // Weak goes to the new value, which will unlink it from Old's list.
762      Entry->operator=(New);
763      break;
764    case Callback:
765      // Forward to the subclass's implementation.
766      static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
767      break;
768    }
769  }
770
771#ifndef NDEBUG
772  // If any new tracking or weak value handles were added while processing the
773  // list, then complain about it now.
774  if (Old->HasValueHandle)
775    for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
776      switch (Entry->getKind()) {
777      case Tracking:
778      case Weak:
779        dbgs() << "After RAUW from " << *Old->getType() << " %"
780               << Old->getName() << " to " << *New->getType() << " %"
781               << New->getName() << "\n";
782        llvm_unreachable("A tracking or weak value handle still pointed to the"
783                         " old value!\n");
784      default:
785        break;
786      }
787#endif
788}
789
790// Pin the vtable to this file.
791void CallbackVH::anchor() {}
792