1//===- HexagonMachineScheduler.cpp - MI Scheduler for Hexagon -------------===// 2// 3// The LLVM Compiler Infrastructure 4// 5// This file is distributed under the University of Illinois Open Source 6// License. See LICENSE.TXT for details. 7// 8//===----------------------------------------------------------------------===// 9// 10// MachineScheduler schedules machine instructions after phi elimination. It 11// preserves LiveIntervals so it can be invoked before register allocation. 12// 13//===----------------------------------------------------------------------===// 14 15#include "HexagonMachineScheduler.h" 16#include "llvm/CodeGen/MachineLoopInfo.h" 17#include "llvm/IR/Function.h" 18 19using namespace llvm; 20 21#define DEBUG_TYPE "misched" 22 23/// Platform-specific modifications to DAG. 24void VLIWMachineScheduler::postprocessDAG() { 25 SUnit* LastSequentialCall = nullptr; 26 // Currently we only catch the situation when compare gets scheduled 27 // before preceding call. 28 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { 29 // Remember the call. 30 if (SUnits[su].getInstr()->isCall()) 31 LastSequentialCall = &(SUnits[su]); 32 // Look for a compare that defines a predicate. 33 else if (SUnits[su].getInstr()->isCompare() && LastSequentialCall) 34 SUnits[su].addPred(SDep(LastSequentialCall, SDep::Barrier)); 35 } 36} 37 38/// Check if scheduling of this SU is possible 39/// in the current packet. 40/// It is _not_ precise (statefull), it is more like 41/// another heuristic. Many corner cases are figured 42/// empirically. 43bool VLIWResourceModel::isResourceAvailable(SUnit *SU) { 44 if (!SU || !SU->getInstr()) 45 return false; 46 47 // First see if the pipeline could receive this instruction 48 // in the current cycle. 49 switch (SU->getInstr()->getOpcode()) { 50 default: 51 if (!ResourcesModel->canReserveResources(SU->getInstr())) 52 return false; 53 case TargetOpcode::EXTRACT_SUBREG: 54 case TargetOpcode::INSERT_SUBREG: 55 case TargetOpcode::SUBREG_TO_REG: 56 case TargetOpcode::REG_SEQUENCE: 57 case TargetOpcode::IMPLICIT_DEF: 58 case TargetOpcode::COPY: 59 case TargetOpcode::INLINEASM: 60 break; 61 } 62 63 // Now see if there are no other dependencies to instructions already 64 // in the packet. 65 for (unsigned i = 0, e = Packet.size(); i != e; ++i) { 66 if (Packet[i]->Succs.size() == 0) 67 continue; 68 for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(), 69 E = Packet[i]->Succs.end(); I != E; ++I) { 70 // Since we do not add pseudos to packets, might as well 71 // ignore order dependencies. 72 if (I->isCtrl()) 73 continue; 74 75 if (I->getSUnit() == SU) 76 return false; 77 } 78 } 79 return true; 80} 81 82/// Keep track of available resources. 83bool VLIWResourceModel::reserveResources(SUnit *SU) { 84 bool startNewCycle = false; 85 // Artificially reset state. 86 if (!SU) { 87 ResourcesModel->clearResources(); 88 Packet.clear(); 89 TotalPackets++; 90 return false; 91 } 92 // If this SU does not fit in the packet 93 // start a new one. 94 if (!isResourceAvailable(SU)) { 95 ResourcesModel->clearResources(); 96 Packet.clear(); 97 TotalPackets++; 98 startNewCycle = true; 99 } 100 101 switch (SU->getInstr()->getOpcode()) { 102 default: 103 ResourcesModel->reserveResources(SU->getInstr()); 104 break; 105 case TargetOpcode::EXTRACT_SUBREG: 106 case TargetOpcode::INSERT_SUBREG: 107 case TargetOpcode::SUBREG_TO_REG: 108 case TargetOpcode::REG_SEQUENCE: 109 case TargetOpcode::IMPLICIT_DEF: 110 case TargetOpcode::KILL: 111 case TargetOpcode::CFI_INSTRUCTION: 112 case TargetOpcode::EH_LABEL: 113 case TargetOpcode::COPY: 114 case TargetOpcode::INLINEASM: 115 break; 116 } 117 Packet.push_back(SU); 118 119#ifndef NDEBUG 120 DEBUG(dbgs() << "Packet[" << TotalPackets << "]:\n"); 121 for (unsigned i = 0, e = Packet.size(); i != e; ++i) { 122 DEBUG(dbgs() << "\t[" << i << "] SU("); 123 DEBUG(dbgs() << Packet[i]->NodeNum << ")\t"); 124 DEBUG(Packet[i]->getInstr()->dump()); 125 } 126#endif 127 128 // If packet is now full, reset the state so in the next cycle 129 // we start fresh. 130 if (Packet.size() >= SchedModel->getIssueWidth()) { 131 ResourcesModel->clearResources(); 132 Packet.clear(); 133 TotalPackets++; 134 startNewCycle = true; 135 } 136 137 return startNewCycle; 138} 139 140/// schedule - Called back from MachineScheduler::runOnMachineFunction 141/// after setting up the current scheduling region. [RegionBegin, RegionEnd) 142/// only includes instructions that have DAG nodes, not scheduling boundaries. 143void VLIWMachineScheduler::schedule() { 144 DEBUG(dbgs() 145 << "********** MI Converging Scheduling VLIW BB#" << BB->getNumber() 146 << " " << BB->getName() 147 << " in_func " << BB->getParent()->getFunction()->getName() 148 << " at loop depth " << MLI.getLoopDepth(BB) 149 << " \n"); 150 151 buildDAGWithRegPressure(); 152 153 // Postprocess the DAG to add platform-specific artificial dependencies. 154 postprocessDAG(); 155 156 SmallVector<SUnit*, 8> TopRoots, BotRoots; 157 findRootsAndBiasEdges(TopRoots, BotRoots); 158 159 // Initialize the strategy before modifying the DAG. 160 SchedImpl->initialize(this); 161 162 // To view Height/Depth correctly, they should be accessed at least once. 163 // 164 // FIXME: SUnit::dumpAll always recompute depth and height now. The max 165 // depth/height could be computed directly from the roots and leaves. 166 DEBUG(unsigned maxH = 0; 167 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 168 if (SUnits[su].getHeight() > maxH) 169 maxH = SUnits[su].getHeight(); 170 dbgs() << "Max Height " << maxH << "\n";); 171 DEBUG(unsigned maxD = 0; 172 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 173 if (SUnits[su].getDepth() > maxD) 174 maxD = SUnits[su].getDepth(); 175 dbgs() << "Max Depth " << maxD << "\n";); 176 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 177 SUnits[su].dumpAll(this)); 178 179 initQueues(TopRoots, BotRoots); 180 181 bool IsTopNode = false; 182 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) { 183 if (!checkSchedLimit()) 184 break; 185 186 scheduleMI(SU, IsTopNode); 187 188 updateQueues(SU, IsTopNode); 189 190 // Notify the scheduling strategy after updating the DAG. 191 SchedImpl->schedNode(SU, IsTopNode); 192 } 193 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone."); 194 195 placeDebugValues(); 196} 197 198void ConvergingVLIWScheduler::initialize(ScheduleDAGMI *dag) { 199 DAG = static_cast<VLIWMachineScheduler*>(dag); 200 SchedModel = DAG->getSchedModel(); 201 202 Top.init(DAG, SchedModel); 203 Bot.init(DAG, SchedModel); 204 205 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or 206 // are disabled, then these HazardRecs will be disabled. 207 const InstrItineraryData *Itin = DAG->getSchedModel()->getInstrItineraries(); 208 const TargetMachine &TM = DAG->MF.getTarget(); 209 delete Top.HazardRec; 210 delete Bot.HazardRec; 211 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 212 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG); 213 214 delete Top.ResourceModel; 215 delete Bot.ResourceModel; 216 Top.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel()); 217 Bot.ResourceModel = new VLIWResourceModel(TM, DAG->getSchedModel()); 218 219 assert((!llvm::ForceTopDown || !llvm::ForceBottomUp) && 220 "-misched-topdown incompatible with -misched-bottomup"); 221} 222 223void ConvergingVLIWScheduler::releaseTopNode(SUnit *SU) { 224 if (SU->isScheduled) 225 return; 226 227 for (SUnit::succ_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 228 I != E; ++I) { 229 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle; 230 unsigned MinLatency = I->getLatency(); 231#ifndef NDEBUG 232 Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency); 233#endif 234 if (SU->TopReadyCycle < PredReadyCycle + MinLatency) 235 SU->TopReadyCycle = PredReadyCycle + MinLatency; 236 } 237 Top.releaseNode(SU, SU->TopReadyCycle); 238} 239 240void ConvergingVLIWScheduler::releaseBottomNode(SUnit *SU) { 241 if (SU->isScheduled) 242 return; 243 244 assert(SU->getInstr() && "Scheduled SUnit must have instr"); 245 246 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 247 I != E; ++I) { 248 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle; 249 unsigned MinLatency = I->getLatency(); 250#ifndef NDEBUG 251 Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency); 252#endif 253 if (SU->BotReadyCycle < SuccReadyCycle + MinLatency) 254 SU->BotReadyCycle = SuccReadyCycle + MinLatency; 255 } 256 Bot.releaseNode(SU, SU->BotReadyCycle); 257} 258 259/// Does this SU have a hazard within the current instruction group. 260/// 261/// The scheduler supports two modes of hazard recognition. The first is the 262/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that 263/// supports highly complicated in-order reservation tables 264/// (ScoreboardHazardRecognizer) and arbitrary target-specific logic. 265/// 266/// The second is a streamlined mechanism that checks for hazards based on 267/// simple counters that the scheduler itself maintains. It explicitly checks 268/// for instruction dispatch limitations, including the number of micro-ops that 269/// can dispatch per cycle. 270/// 271/// TODO: Also check whether the SU must start a new group. 272bool ConvergingVLIWScheduler::VLIWSchedBoundary::checkHazard(SUnit *SU) { 273 if (HazardRec->isEnabled()) 274 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard; 275 276 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr()); 277 if (IssueCount + uops > SchedModel->getIssueWidth()) 278 return true; 279 280 return false; 281} 282 283void ConvergingVLIWScheduler::VLIWSchedBoundary::releaseNode(SUnit *SU, 284 unsigned ReadyCycle) { 285 if (ReadyCycle < MinReadyCycle) 286 MinReadyCycle = ReadyCycle; 287 288 // Check for interlocks first. For the purpose of other heuristics, an 289 // instruction that cannot issue appears as if it's not in the ReadyQueue. 290 if (ReadyCycle > CurrCycle || checkHazard(SU)) 291 292 Pending.push(SU); 293 else 294 Available.push(SU); 295} 296 297/// Move the boundary of scheduled code by one cycle. 298void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpCycle() { 299 unsigned Width = SchedModel->getIssueWidth(); 300 IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width; 301 302 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized"); 303 unsigned NextCycle = std::max(CurrCycle + 1, MinReadyCycle); 304 305 if (!HazardRec->isEnabled()) { 306 // Bypass HazardRec virtual calls. 307 CurrCycle = NextCycle; 308 } else { 309 // Bypass getHazardType calls in case of long latency. 310 for (; CurrCycle != NextCycle; ++CurrCycle) { 311 if (isTop()) 312 HazardRec->AdvanceCycle(); 313 else 314 HazardRec->RecedeCycle(); 315 } 316 } 317 CheckPending = true; 318 319 DEBUG(dbgs() << "*** " << Available.getName() << " cycle " 320 << CurrCycle << '\n'); 321} 322 323/// Move the boundary of scheduled code by one SUnit. 324void ConvergingVLIWScheduler::VLIWSchedBoundary::bumpNode(SUnit *SU) { 325 bool startNewCycle = false; 326 327 // Update the reservation table. 328 if (HazardRec->isEnabled()) { 329 if (!isTop() && SU->isCall) { 330 // Calls are scheduled with their preceding instructions. For bottom-up 331 // scheduling, clear the pipeline state before emitting. 332 HazardRec->Reset(); 333 } 334 HazardRec->EmitInstruction(SU); 335 } 336 337 // Update DFA model. 338 startNewCycle = ResourceModel->reserveResources(SU); 339 340 // Check the instruction group dispatch limit. 341 // TODO: Check if this SU must end a dispatch group. 342 IssueCount += SchedModel->getNumMicroOps(SU->getInstr()); 343 if (startNewCycle) { 344 DEBUG(dbgs() << "*** Max instrs at cycle " << CurrCycle << '\n'); 345 bumpCycle(); 346 } 347 else 348 DEBUG(dbgs() << "*** IssueCount " << IssueCount 349 << " at cycle " << CurrCycle << '\n'); 350} 351 352/// Release pending ready nodes in to the available queue. This makes them 353/// visible to heuristics. 354void ConvergingVLIWScheduler::VLIWSchedBoundary::releasePending() { 355 // If the available queue is empty, it is safe to reset MinReadyCycle. 356 if (Available.empty()) 357 MinReadyCycle = UINT_MAX; 358 359 // Check to see if any of the pending instructions are ready to issue. If 360 // so, add them to the available queue. 361 for (unsigned i = 0, e = Pending.size(); i != e; ++i) { 362 SUnit *SU = *(Pending.begin()+i); 363 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle; 364 365 if (ReadyCycle < MinReadyCycle) 366 MinReadyCycle = ReadyCycle; 367 368 if (ReadyCycle > CurrCycle) 369 continue; 370 371 if (checkHazard(SU)) 372 continue; 373 374 Available.push(SU); 375 Pending.remove(Pending.begin()+i); 376 --i; --e; 377 } 378 CheckPending = false; 379} 380 381/// Remove SU from the ready set for this boundary. 382void ConvergingVLIWScheduler::VLIWSchedBoundary::removeReady(SUnit *SU) { 383 if (Available.isInQueue(SU)) 384 Available.remove(Available.find(SU)); 385 else { 386 assert(Pending.isInQueue(SU) && "bad ready count"); 387 Pending.remove(Pending.find(SU)); 388 } 389} 390 391/// If this queue only has one ready candidate, return it. As a side effect, 392/// advance the cycle until at least one node is ready. If multiple instructions 393/// are ready, return NULL. 394SUnit *ConvergingVLIWScheduler::VLIWSchedBoundary::pickOnlyChoice() { 395 if (CheckPending) 396 releasePending(); 397 398 for (unsigned i = 0; Available.empty(); ++i) { 399 assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) && 400 "permanent hazard"); (void)i; 401 ResourceModel->reserveResources(nullptr); 402 bumpCycle(); 403 releasePending(); 404 } 405 if (Available.size() == 1) 406 return *Available.begin(); 407 return nullptr; 408} 409 410#ifndef NDEBUG 411void ConvergingVLIWScheduler::traceCandidate(const char *Label, 412 const ReadyQueue &Q, 413 SUnit *SU, PressureChange P) { 414 dbgs() << Label << " " << Q.getName() << " "; 415 if (P.isValid()) 416 dbgs() << DAG->TRI->getRegPressureSetName(P.getPSet()) << ":" 417 << P.getUnitInc() << " "; 418 else 419 dbgs() << " "; 420 SU->dump(DAG); 421} 422#endif 423 424/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor 425/// of SU, return it, otherwise return null. 426static SUnit *getSingleUnscheduledPred(SUnit *SU) { 427 SUnit *OnlyAvailablePred = nullptr; 428 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 429 I != E; ++I) { 430 SUnit &Pred = *I->getSUnit(); 431 if (!Pred.isScheduled) { 432 // We found an available, but not scheduled, predecessor. If it's the 433 // only one we have found, keep track of it... otherwise give up. 434 if (OnlyAvailablePred && OnlyAvailablePred != &Pred) 435 return nullptr; 436 OnlyAvailablePred = &Pred; 437 } 438 } 439 return OnlyAvailablePred; 440} 441 442/// getSingleUnscheduledSucc - If there is exactly one unscheduled successor 443/// of SU, return it, otherwise return null. 444static SUnit *getSingleUnscheduledSucc(SUnit *SU) { 445 SUnit *OnlyAvailableSucc = nullptr; 446 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 447 I != E; ++I) { 448 SUnit &Succ = *I->getSUnit(); 449 if (!Succ.isScheduled) { 450 // We found an available, but not scheduled, successor. If it's the 451 // only one we have found, keep track of it... otherwise give up. 452 if (OnlyAvailableSucc && OnlyAvailableSucc != &Succ) 453 return nullptr; 454 OnlyAvailableSucc = &Succ; 455 } 456 } 457 return OnlyAvailableSucc; 458} 459 460// Constants used to denote relative importance of 461// heuristic components for cost computation. 462static const unsigned PriorityOne = 200; 463static const unsigned PriorityTwo = 50; 464static const unsigned ScaleTwo = 10; 465static const unsigned FactorOne = 2; 466 467/// Single point to compute overall scheduling cost. 468/// TODO: More heuristics will be used soon. 469int ConvergingVLIWScheduler::SchedulingCost(ReadyQueue &Q, SUnit *SU, 470 SchedCandidate &Candidate, 471 RegPressureDelta &Delta, 472 bool verbose) { 473 // Initial trivial priority. 474 int ResCount = 1; 475 476 // Do not waste time on a node that is already scheduled. 477 if (!SU || SU->isScheduled) 478 return ResCount; 479 480 // Forced priority is high. 481 if (SU->isScheduleHigh) 482 ResCount += PriorityOne; 483 484 // Critical path first. 485 if (Q.getID() == TopQID) { 486 ResCount += (SU->getHeight() * ScaleTwo); 487 488 // If resources are available for it, multiply the 489 // chance of scheduling. 490 if (Top.ResourceModel->isResourceAvailable(SU)) 491 ResCount <<= FactorOne; 492 } else { 493 ResCount += (SU->getDepth() * ScaleTwo); 494 495 // If resources are available for it, multiply the 496 // chance of scheduling. 497 if (Bot.ResourceModel->isResourceAvailable(SU)) 498 ResCount <<= FactorOne; 499 } 500 501 unsigned NumNodesBlocking = 0; 502 if (Q.getID() == TopQID) { 503 // How many SUs does it block from scheduling? 504 // Look at all of the successors of this node. 505 // Count the number of nodes that 506 // this node is the sole unscheduled node for. 507 for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 508 I != E; ++I) 509 if (getSingleUnscheduledPred(I->getSUnit()) == SU) 510 ++NumNodesBlocking; 511 } else { 512 // How many unscheduled predecessors block this node? 513 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 514 I != E; ++I) 515 if (getSingleUnscheduledSucc(I->getSUnit()) == SU) 516 ++NumNodesBlocking; 517 } 518 ResCount += (NumNodesBlocking * ScaleTwo); 519 520 // Factor in reg pressure as a heuristic. 521 ResCount -= (Delta.Excess.getUnitInc()*PriorityTwo); 522 ResCount -= (Delta.CriticalMax.getUnitInc()*PriorityTwo); 523 524 DEBUG(if (verbose) dbgs() << " Total(" << ResCount << ")"); 525 526 return ResCount; 527} 528 529/// Pick the best candidate from the top queue. 530/// 531/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during 532/// DAG building. To adjust for the current scheduling location we need to 533/// maintain the number of vreg uses remaining to be top-scheduled. 534ConvergingVLIWScheduler::CandResult ConvergingVLIWScheduler:: 535pickNodeFromQueue(ReadyQueue &Q, const RegPressureTracker &RPTracker, 536 SchedCandidate &Candidate) { 537 DEBUG(Q.dump()); 538 539 // getMaxPressureDelta temporarily modifies the tracker. 540 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker); 541 542 // BestSU remains NULL if no top candidates beat the best existing candidate. 543 CandResult FoundCandidate = NoCand; 544 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) { 545 RegPressureDelta RPDelta; 546 TempTracker.getMaxPressureDelta((*I)->getInstr(), RPDelta, 547 DAG->getRegionCriticalPSets(), 548 DAG->getRegPressure().MaxSetPressure); 549 550 int CurrentCost = SchedulingCost(Q, *I, Candidate, RPDelta, false); 551 552 // Initialize the candidate if needed. 553 if (!Candidate.SU) { 554 Candidate.SU = *I; 555 Candidate.RPDelta = RPDelta; 556 Candidate.SCost = CurrentCost; 557 FoundCandidate = NodeOrder; 558 continue; 559 } 560 561 // Best cost. 562 if (CurrentCost > Candidate.SCost) { 563 DEBUG(traceCandidate("CCAND", Q, *I)); 564 Candidate.SU = *I; 565 Candidate.RPDelta = RPDelta; 566 Candidate.SCost = CurrentCost; 567 FoundCandidate = BestCost; 568 continue; 569 } 570 571 // Fall through to original instruction order. 572 // Only consider node order if Candidate was chosen from this Q. 573 if (FoundCandidate == NoCand) 574 continue; 575 } 576 return FoundCandidate; 577} 578 579/// Pick the best candidate node from either the top or bottom queue. 580SUnit *ConvergingVLIWScheduler::pickNodeBidrectional(bool &IsTopNode) { 581 // Schedule as far as possible in the direction of no choice. This is most 582 // efficient, but also provides the best heuristics for CriticalPSets. 583 if (SUnit *SU = Bot.pickOnlyChoice()) { 584 IsTopNode = false; 585 return SU; 586 } 587 if (SUnit *SU = Top.pickOnlyChoice()) { 588 IsTopNode = true; 589 return SU; 590 } 591 SchedCandidate BotCand; 592 // Prefer bottom scheduling when heuristics are silent. 593 CandResult BotResult = pickNodeFromQueue(Bot.Available, 594 DAG->getBotRPTracker(), BotCand); 595 assert(BotResult != NoCand && "failed to find the first candidate"); 596 597 // If either Q has a single candidate that provides the least increase in 598 // Excess pressure, we can immediately schedule from that Q. 599 // 600 // RegionCriticalPSets summarizes the pressure within the scheduled region and 601 // affects picking from either Q. If scheduling in one direction must 602 // increase pressure for one of the excess PSets, then schedule in that 603 // direction first to provide more freedom in the other direction. 604 if (BotResult == SingleExcess || BotResult == SingleCritical) { 605 IsTopNode = false; 606 return BotCand.SU; 607 } 608 // Check if the top Q has a better candidate. 609 SchedCandidate TopCand; 610 CandResult TopResult = pickNodeFromQueue(Top.Available, 611 DAG->getTopRPTracker(), TopCand); 612 assert(TopResult != NoCand && "failed to find the first candidate"); 613 614 if (TopResult == SingleExcess || TopResult == SingleCritical) { 615 IsTopNode = true; 616 return TopCand.SU; 617 } 618 // If either Q has a single candidate that minimizes pressure above the 619 // original region's pressure pick it. 620 if (BotResult == SingleMax) { 621 IsTopNode = false; 622 return BotCand.SU; 623 } 624 if (TopResult == SingleMax) { 625 IsTopNode = true; 626 return TopCand.SU; 627 } 628 if (TopCand.SCost > BotCand.SCost) { 629 IsTopNode = true; 630 return TopCand.SU; 631 } 632 // Otherwise prefer the bottom candidate in node order. 633 IsTopNode = false; 634 return BotCand.SU; 635} 636 637/// Pick the best node to balance the schedule. Implements MachineSchedStrategy. 638SUnit *ConvergingVLIWScheduler::pickNode(bool &IsTopNode) { 639 if (DAG->top() == DAG->bottom()) { 640 assert(Top.Available.empty() && Top.Pending.empty() && 641 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage"); 642 return nullptr; 643 } 644 SUnit *SU; 645 if (llvm::ForceTopDown) { 646 SU = Top.pickOnlyChoice(); 647 if (!SU) { 648 SchedCandidate TopCand; 649 CandResult TopResult = 650 pickNodeFromQueue(Top.Available, DAG->getTopRPTracker(), TopCand); 651 assert(TopResult != NoCand && "failed to find the first candidate"); 652 (void)TopResult; 653 SU = TopCand.SU; 654 } 655 IsTopNode = true; 656 } else if (llvm::ForceBottomUp) { 657 SU = Bot.pickOnlyChoice(); 658 if (!SU) { 659 SchedCandidate BotCand; 660 CandResult BotResult = 661 pickNodeFromQueue(Bot.Available, DAG->getBotRPTracker(), BotCand); 662 assert(BotResult != NoCand && "failed to find the first candidate"); 663 (void)BotResult; 664 SU = BotCand.SU; 665 } 666 IsTopNode = false; 667 } else { 668 SU = pickNodeBidrectional(IsTopNode); 669 } 670 if (SU->isTopReady()) 671 Top.removeReady(SU); 672 if (SU->isBottomReady()) 673 Bot.removeReady(SU); 674 675 DEBUG(dbgs() << "*** " << (IsTopNode ? "Top" : "Bottom") 676 << " Scheduling Instruction in cycle " 677 << (IsTopNode ? Top.CurrCycle : Bot.CurrCycle) << '\n'; 678 SU->dump(DAG)); 679 return SU; 680} 681 682/// Update the scheduler's state after scheduling a node. This is the same node 683/// that was just returned by pickNode(). However, VLIWMachineScheduler needs 684/// to update it's state based on the current cycle before MachineSchedStrategy 685/// does. 686void ConvergingVLIWScheduler::schedNode(SUnit *SU, bool IsTopNode) { 687 if (IsTopNode) { 688 SU->TopReadyCycle = Top.CurrCycle; 689 Top.bumpNode(SU); 690 } else { 691 SU->BotReadyCycle = Bot.CurrCycle; 692 Bot.bumpNode(SU); 693 } 694} 695