1//===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Convert generic global variables into either .global or .const access based
11// on the variable's "constant" qualifier.
12//
13//===----------------------------------------------------------------------===//
14
15#include "NVPTX.h"
16#include "MCTargetDesc/NVPTXBaseInfo.h"
17#include "NVPTXUtilities.h"
18#include "llvm/CodeGen/MachineFunctionAnalysis.h"
19#include "llvm/CodeGen/ValueTypes.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/IRBuilder.h"
23#include "llvm/IR/Instructions.h"
24#include "llvm/IR/Intrinsics.h"
25#include "llvm/IR/Module.h"
26#include "llvm/IR/Operator.h"
27#include "llvm/IR/ValueMap.h"
28#include "llvm/PassManager.h"
29
30using namespace llvm;
31
32namespace llvm {
33void initializeGenericToNVVMPass(PassRegistry &);
34}
35
36namespace {
37class GenericToNVVM : public ModulePass {
38public:
39  static char ID;
40
41  GenericToNVVM() : ModulePass(ID) {}
42
43  bool runOnModule(Module &M) override;
44
45  void getAnalysisUsage(AnalysisUsage &AU) const override {}
46
47private:
48  Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
49                         IRBuilder<> &Builder);
50  Value *remapConstant(Module *M, Function *F, Constant *C,
51                       IRBuilder<> &Builder);
52  Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
53                                                Constant *C,
54                                                IRBuilder<> &Builder);
55  Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
56                           IRBuilder<> &Builder);
57  void remapNamedMDNode(Module *M, NamedMDNode *N);
58  MDNode *remapMDNode(Module *M, MDNode *N);
59
60  typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
61  typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
62  GVMapTy GVMap;
63  ConstantToValueMapTy ConstantToValueMap;
64};
65} // end namespace
66
67char GenericToNVVM::ID = 0;
68
69ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
70
71INITIALIZE_PASS(
72    GenericToNVVM, "generic-to-nvvm",
73    "Ensure that the global variables are in the global address space", false,
74    false)
75
76bool GenericToNVVM::runOnModule(Module &M) {
77  // Create a clone of each global variable that has the default address space.
78  // The clone is created with the global address space  specifier, and the pair
79  // of original global variable and its clone is placed in the GVMap for later
80  // use.
81
82  for (Module::global_iterator I = M.global_begin(), E = M.global_end();
83       I != E;) {
84    GlobalVariable *GV = I++;
85    if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
86        !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
87        !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
88      GlobalVariable *NewGV = new GlobalVariable(
89          M, GV->getType()->getElementType(), GV->isConstant(),
90          GV->getLinkage(),
91          GV->hasInitializer() ? GV->getInitializer() : nullptr,
92          "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
93      NewGV->copyAttributesFrom(GV);
94      GVMap[GV] = NewGV;
95    }
96  }
97
98  // Return immediately, if every global variable has a specific address space
99  // specifier.
100  if (GVMap.empty()) {
101    return false;
102  }
103
104  // Walk through the instructions in function defitinions, and replace any use
105  // of original global variables in GVMap with a use of the corresponding
106  // copies in GVMap.  If necessary, promote constants to instructions.
107  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
108    if (I->isDeclaration()) {
109      continue;
110    }
111    IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
112    for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
113         ++BBI) {
114      for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
115           ++II) {
116        for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
117          Value *Operand = II->getOperand(i);
118          if (isa<Constant>(Operand)) {
119            II->setOperand(
120                i, remapConstant(&M, I, cast<Constant>(Operand), Builder));
121          }
122        }
123      }
124    }
125    ConstantToValueMap.clear();
126  }
127
128  // Walk through the metadata section and update the debug information
129  // associated with the global variables in the default address space.
130  for (Module::named_metadata_iterator I = M.named_metadata_begin(),
131                                       E = M.named_metadata_end();
132       I != E; I++) {
133    remapNamedMDNode(&M, I);
134  }
135
136  // Walk through the global variable  initializers, and replace any use of
137  // original global variables in GVMap with a use of the corresponding copies
138  // in GVMap.  The copies need to be bitcast to the original global variable
139  // types, as we cannot use cvta in global variable initializers.
140  for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
141    GlobalVariable *GV = I->first;
142    GlobalVariable *NewGV = I->second;
143    ++I;
144    Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
145    // At this point, the remaining uses of GV should be found only in global
146    // variable initializers, as other uses have been already been removed
147    // while walking through the instructions in function definitions.
148    for (Value::use_iterator UI = GV->use_begin(), UE = GV->use_end();
149         UI != UE;)
150      (UI++)->set(BitCastNewGV);
151    std::string Name = GV->getName();
152    GV->removeDeadConstantUsers();
153    GV->eraseFromParent();
154    NewGV->setName(Name);
155  }
156  GVMap.clear();
157
158  return true;
159}
160
161Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
162                                      GlobalVariable *GV,
163                                      IRBuilder<> &Builder) {
164  PointerType *GVType = GV->getType();
165  Value *CVTA = nullptr;
166
167  // See if the address space conversion requires the operand to be bitcast
168  // to i8 addrspace(n)* first.
169  EVT ExtendedGVType = EVT::getEVT(GVType->getElementType(), true);
170  if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
171    // A bitcast to i8 addrspace(n)* on the operand is needed.
172    LLVMContext &Context = M->getContext();
173    unsigned int AddrSpace = GVType->getAddressSpace();
174    Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
175    CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
176    // Insert the address space conversion.
177    Type *ResultType =
178        PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
179    SmallVector<Type *, 2> ParamTypes;
180    ParamTypes.push_back(ResultType);
181    ParamTypes.push_back(DestTy);
182    Function *CVTAFunction = Intrinsic::getDeclaration(
183        M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
184    CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
185    // Another bitcast from i8 * to <the element type of GVType> * is
186    // required.
187    DestTy =
188        PointerType::get(GVType->getElementType(), llvm::ADDRESS_SPACE_GENERIC);
189    CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
190  } else {
191    // A simple CVTA is enough.
192    SmallVector<Type *, 2> ParamTypes;
193    ParamTypes.push_back(PointerType::get(GVType->getElementType(),
194                                          llvm::ADDRESS_SPACE_GENERIC));
195    ParamTypes.push_back(GVType);
196    Function *CVTAFunction = Intrinsic::getDeclaration(
197        M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
198    CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
199  }
200
201  return CVTA;
202}
203
204Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
205                                    IRBuilder<> &Builder) {
206  // If the constant C has been converted already in the given function  F, just
207  // return the converted value.
208  ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
209  if (CTII != ConstantToValueMap.end()) {
210    return CTII->second;
211  }
212
213  Value *NewValue = C;
214  if (isa<GlobalVariable>(C)) {
215    // If the constant C is a global variable and is found in  GVMap, generate a
216    // set set of instructions that convert the clone of C with the global
217    // address space specifier to a generic pointer.
218    // The constant C cannot be used here, as it will be erased from the
219    // module eventually.  And the clone of C with the global address space
220    // specifier cannot be used here either, as it will affect the types of
221    // other instructions in the function.  Hence, this address space conversion
222    // is required.
223    GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
224    if (I != GVMap.end()) {
225      NewValue = getOrInsertCVTA(M, F, I->second, Builder);
226    }
227  } else if (isa<ConstantVector>(C) || isa<ConstantArray>(C) ||
228             isa<ConstantStruct>(C)) {
229    // If any element in the constant vector or aggregate C is or uses a global
230    // variable in GVMap, the constant C needs to be reconstructed, using a set
231    // of instructions.
232    NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
233  } else if (isa<ConstantExpr>(C)) {
234    // If any operand in the constant expression C is or uses a global variable
235    // in GVMap, the constant expression C needs to be reconstructed, using a
236    // set of instructions.
237    NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
238  }
239
240  ConstantToValueMap[C] = NewValue;
241  return NewValue;
242}
243
244Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
245    Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
246  bool OperandChanged = false;
247  SmallVector<Value *, 4> NewOperands;
248  unsigned NumOperands = C->getNumOperands();
249
250  // Check if any element is or uses a global variable in  GVMap, and thus
251  // converted to another value.
252  for (unsigned i = 0; i < NumOperands; ++i) {
253    Value *Operand = C->getOperand(i);
254    Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
255    OperandChanged |= Operand != NewOperand;
256    NewOperands.push_back(NewOperand);
257  }
258
259  // If none of the elements has been modified, return C as it is.
260  if (!OperandChanged) {
261    return C;
262  }
263
264  // If any of the elements has been  modified, construct the equivalent
265  // vector or aggregate value with a set instructions and the converted
266  // elements.
267  Value *NewValue = UndefValue::get(C->getType());
268  if (isa<ConstantVector>(C)) {
269    for (unsigned i = 0; i < NumOperands; ++i) {
270      Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
271      NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
272    }
273  } else {
274    for (unsigned i = 0; i < NumOperands; ++i) {
275      NewValue =
276          Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
277    }
278  }
279
280  return NewValue;
281}
282
283Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
284                                        IRBuilder<> &Builder) {
285  bool OperandChanged = false;
286  SmallVector<Value *, 4> NewOperands;
287  unsigned NumOperands = C->getNumOperands();
288
289  // Check if any operand is or uses a global variable in  GVMap, and thus
290  // converted to another value.
291  for (unsigned i = 0; i < NumOperands; ++i) {
292    Value *Operand = C->getOperand(i);
293    Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
294    OperandChanged |= Operand != NewOperand;
295    NewOperands.push_back(NewOperand);
296  }
297
298  // If none of the operands has been modified, return C as it is.
299  if (!OperandChanged) {
300    return C;
301  }
302
303  // If any of the operands has been modified, construct the instruction with
304  // the converted operands.
305  unsigned Opcode = C->getOpcode();
306  switch (Opcode) {
307  case Instruction::ICmp:
308    // CompareConstantExpr (icmp)
309    return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
310                              NewOperands[0], NewOperands[1]);
311  case Instruction::FCmp:
312    // CompareConstantExpr (fcmp)
313    assert(false && "Address space conversion should have no effect "
314                    "on float point CompareConstantExpr (fcmp)!");
315    return C;
316  case Instruction::ExtractElement:
317    // ExtractElementConstantExpr
318    return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
319  case Instruction::InsertElement:
320    // InsertElementConstantExpr
321    return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
322                                       NewOperands[2]);
323  case Instruction::ShuffleVector:
324    // ShuffleVector
325    return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
326                                       NewOperands[2]);
327  case Instruction::ExtractValue:
328    // ExtractValueConstantExpr
329    return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
330  case Instruction::InsertValue:
331    // InsertValueConstantExpr
332    return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
333                                     C->getIndices());
334  case Instruction::GetElementPtr:
335    // GetElementPtrConstantExpr
336    return cast<GEPOperator>(C)->isInBounds()
337               ? Builder.CreateGEP(
338                     NewOperands[0],
339                     makeArrayRef(&NewOperands[1], NumOperands - 1))
340               : Builder.CreateInBoundsGEP(
341                     NewOperands[0],
342                     makeArrayRef(&NewOperands[1], NumOperands - 1));
343  case Instruction::Select:
344    // SelectConstantExpr
345    return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
346  default:
347    // BinaryConstantExpr
348    if (Instruction::isBinaryOp(Opcode)) {
349      return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
350                                 NewOperands[0], NewOperands[1]);
351    }
352    // UnaryConstantExpr
353    if (Instruction::isCast(Opcode)) {
354      return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
355                                NewOperands[0], C->getType());
356    }
357    assert(false && "GenericToNVVM encountered an unsupported ConstantExpr");
358    return C;
359  }
360}
361
362void GenericToNVVM::remapNamedMDNode(Module *M, NamedMDNode *N) {
363
364  bool OperandChanged = false;
365  SmallVector<MDNode *, 16> NewOperands;
366  unsigned NumOperands = N->getNumOperands();
367
368  // Check if any operand is or contains a global variable in  GVMap, and thus
369  // converted to another value.
370  for (unsigned i = 0; i < NumOperands; ++i) {
371    MDNode *Operand = N->getOperand(i);
372    MDNode *NewOperand = remapMDNode(M, Operand);
373    OperandChanged |= Operand != NewOperand;
374    NewOperands.push_back(NewOperand);
375  }
376
377  // If none of the operands has been modified, return immediately.
378  if (!OperandChanged) {
379    return;
380  }
381
382  // Replace the old operands with the new operands.
383  N->dropAllReferences();
384  for (SmallVectorImpl<MDNode *>::iterator I = NewOperands.begin(),
385                                           E = NewOperands.end();
386       I != E; ++I) {
387    N->addOperand(*I);
388  }
389}
390
391MDNode *GenericToNVVM::remapMDNode(Module *M, MDNode *N) {
392
393  bool OperandChanged = false;
394  SmallVector<Value *, 8> NewOperands;
395  unsigned NumOperands = N->getNumOperands();
396
397  // Check if any operand is or contains a global variable in  GVMap, and thus
398  // converted to another value.
399  for (unsigned i = 0; i < NumOperands; ++i) {
400    Value *Operand = N->getOperand(i);
401    Value *NewOperand = Operand;
402    if (Operand) {
403      if (isa<GlobalVariable>(Operand)) {
404        GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(Operand));
405        if (I != GVMap.end()) {
406          NewOperand = I->second;
407          if (++i < NumOperands) {
408            NewOperands.push_back(NewOperand);
409            // Address space of the global variable follows the global variable
410            // in the global variable debug info (see createGlobalVariable in
411            // lib/Analysis/DIBuilder.cpp).
412            NewOperand =
413                ConstantInt::get(Type::getInt32Ty(M->getContext()),
414                                 I->second->getType()->getAddressSpace());
415          }
416        }
417      } else if (isa<MDNode>(Operand)) {
418        NewOperand = remapMDNode(M, cast<MDNode>(Operand));
419      }
420    }
421    OperandChanged |= Operand != NewOperand;
422    NewOperands.push_back(NewOperand);
423  }
424
425  // If none of the operands has been modified, return N as it is.
426  if (!OperandChanged) {
427    return N;
428  }
429
430  // If any of the operands has been modified, create a new MDNode with the new
431  // operands.
432  return MDNode::get(M->getContext(), makeArrayRef(NewOperands));
433}
434