1//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#include "X86.h"
18#include "X86TargetMachine.h"
19#include "llvm/Analysis/TargetTransformInfo.h"
20#include "llvm/IR/IntrinsicInst.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Target/CostTable.h"
23#include "llvm/Target/TargetLowering.h"
24using namespace llvm;
25
26#define DEBUG_TYPE "x86tti"
27
28// Declare the pass initialization routine locally as target-specific passes
29// don't have a target-wide initialization entry point, and so we rely on the
30// pass constructor initialization.
31namespace llvm {
32void initializeX86TTIPass(PassRegistry &);
33}
34
35namespace {
36
37class X86TTI final : public ImmutablePass, public TargetTransformInfo {
38  const X86Subtarget *ST;
39  const X86TargetLowering *TLI;
40
41  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
42  /// are set if the result needs to be inserted and/or extracted from vectors.
43  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
44
45public:
46  X86TTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) {
47    llvm_unreachable("This pass cannot be directly constructed");
48  }
49
50  X86TTI(const X86TargetMachine *TM)
51    : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
52      TLI(TM->getTargetLowering()) {
53    initializeX86TTIPass(*PassRegistry::getPassRegistry());
54  }
55
56  void initializePass() override {
57    pushTTIStack(this);
58  }
59
60  void getAnalysisUsage(AnalysisUsage &AU) const override {
61    TargetTransformInfo::getAnalysisUsage(AU);
62  }
63
64  /// Pass identification.
65  static char ID;
66
67  /// Provide necessary pointer adjustments for the two base classes.
68  void *getAdjustedAnalysisPointer(const void *ID) override {
69    if (ID == &TargetTransformInfo::ID)
70      return (TargetTransformInfo*)this;
71    return this;
72  }
73
74  /// \name Scalar TTI Implementations
75  /// @{
76  PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
77
78  /// @}
79
80  /// \name Vector TTI Implementations
81  /// @{
82
83  unsigned getNumberOfRegisters(bool Vector) const override;
84  unsigned getRegisterBitWidth(bool Vector) const override;
85  unsigned getMaximumUnrollFactor() const override;
86  unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
87                                  OperandValueKind) const override;
88  unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
89                          int Index, Type *SubTp) const override;
90  unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
91                            Type *Src) const override;
92  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
93                              Type *CondTy) const override;
94  unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
95                              unsigned Index) const override;
96  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
97                           unsigned AddressSpace) const override;
98
99  unsigned getAddressComputationCost(Type *PtrTy,
100                                     bool IsComplex) const override;
101
102  unsigned getReductionCost(unsigned Opcode, Type *Ty,
103                            bool IsPairwiseForm) const override;
104
105  unsigned getIntImmCost(int64_t) const;
106
107  unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
108
109  unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
110                         Type *Ty) const override;
111  unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
112                         Type *Ty) const override;
113
114  /// @}
115};
116
117} // end anonymous namespace
118
119INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
120                   "X86 Target Transform Info", true, true, false)
121char X86TTI::ID = 0;
122
123ImmutablePass *
124llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
125  return new X86TTI(TM);
126}
127
128
129//===----------------------------------------------------------------------===//
130//
131// X86 cost model.
132//
133//===----------------------------------------------------------------------===//
134
135X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
136  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
137  // TODO: Currently the __builtin_popcount() implementation using SSE3
138  //   instructions is inefficient. Once the problem is fixed, we should
139  //   call ST->hasSSE3() instead of ST->hasPOPCNT().
140  return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
141}
142
143unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
144  if (Vector && !ST->hasSSE1())
145    return 0;
146
147  if (ST->is64Bit()) {
148    if (Vector && ST->hasAVX512())
149      return 32;
150    return 16;
151  }
152  return 8;
153}
154
155unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
156  if (Vector) {
157    if (ST->hasAVX512()) return 512;
158    if (ST->hasAVX()) return 256;
159    if (ST->hasSSE1()) return 128;
160    return 0;
161  }
162
163  if (ST->is64Bit())
164    return 64;
165  return 32;
166
167}
168
169unsigned X86TTI::getMaximumUnrollFactor() const {
170  if (ST->isAtom())
171    return 1;
172
173  // Sandybridge and Haswell have multiple execution ports and pipelined
174  // vector units.
175  if (ST->hasAVX())
176    return 4;
177
178  return 2;
179}
180
181unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
182                                        OperandValueKind Op1Info,
183                                        OperandValueKind Op2Info) const {
184  // Legalize the type.
185  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
186
187  int ISD = TLI->InstructionOpcodeToISD(Opcode);
188  assert(ISD && "Invalid opcode");
189
190  static const CostTblEntry<MVT::SimpleValueType>
191  AVX2UniformConstCostTable[] = {
192    { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
193    { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
194    { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
195    { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
196  };
197
198  if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
199      ST->hasAVX2()) {
200    int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
201    if (Idx != -1)
202      return LT.first * AVX2UniformConstCostTable[Idx].Cost;
203  }
204
205  static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
206    // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
207    // customize them to detect the cases where shift amount is a scalar one.
208    { ISD::SHL,     MVT::v4i32,    1 },
209    { ISD::SRL,     MVT::v4i32,    1 },
210    { ISD::SRA,     MVT::v4i32,    1 },
211    { ISD::SHL,     MVT::v8i32,    1 },
212    { ISD::SRL,     MVT::v8i32,    1 },
213    { ISD::SRA,     MVT::v8i32,    1 },
214    { ISD::SHL,     MVT::v2i64,    1 },
215    { ISD::SRL,     MVT::v2i64,    1 },
216    { ISD::SHL,     MVT::v4i64,    1 },
217    { ISD::SRL,     MVT::v4i64,    1 },
218
219    { ISD::SHL,  MVT::v32i8,  42 }, // cmpeqb sequence.
220    { ISD::SHL,  MVT::v16i16,  16*10 }, // Scalarized.
221
222    { ISD::SRL,  MVT::v32i8,  32*10 }, // Scalarized.
223    { ISD::SRL,  MVT::v16i16,  8*10 }, // Scalarized.
224
225    { ISD::SRA,  MVT::v32i8,  32*10 }, // Scalarized.
226    { ISD::SRA,  MVT::v16i16,  16*10 }, // Scalarized.
227    { ISD::SRA,  MVT::v4i64,  4*10 }, // Scalarized.
228
229    // Vectorizing division is a bad idea. See the SSE2 table for more comments.
230    { ISD::SDIV,  MVT::v32i8,  32*20 },
231    { ISD::SDIV,  MVT::v16i16, 16*20 },
232    { ISD::SDIV,  MVT::v8i32,  8*20 },
233    { ISD::SDIV,  MVT::v4i64,  4*20 },
234    { ISD::UDIV,  MVT::v32i8,  32*20 },
235    { ISD::UDIV,  MVT::v16i16, 16*20 },
236    { ISD::UDIV,  MVT::v8i32,  8*20 },
237    { ISD::UDIV,  MVT::v4i64,  4*20 },
238  };
239
240  // Look for AVX2 lowering tricks.
241  if (ST->hasAVX2()) {
242    if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
243        (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
244         Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
245      // On AVX2, a packed v16i16 shift left by a constant build_vector
246      // is lowered into a vector multiply (vpmullw).
247      return LT.first;
248
249    int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
250    if (Idx != -1)
251      return LT.first * AVX2CostTable[Idx].Cost;
252  }
253
254  static const CostTblEntry<MVT::SimpleValueType>
255  SSE2UniformConstCostTable[] = {
256    // We don't correctly identify costs of casts because they are marked as
257    // custom.
258    // Constant splats are cheaper for the following instructions.
259    { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
260    { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
261    { ISD::SHL,  MVT::v4i32,  1 }, // pslld
262    { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
263
264    { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
265    { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
266    { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
267    { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
268
269    { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
270    { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
271    { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
272
273    { ISD::SDIV, MVT::v8i16,  6 }, // pmulhw sequence
274    { ISD::UDIV, MVT::v8i16,  6 }, // pmulhuw sequence
275    { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
276    { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
277  };
278
279  if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
280      ST->hasSSE2()) {
281    // pmuldq sequence.
282    if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
283      return LT.first * 15;
284
285    int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
286    if (Idx != -1)
287      return LT.first * SSE2UniformConstCostTable[Idx].Cost;
288  }
289
290  if (ISD == ISD::SHL &&
291      Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
292    EVT VT = LT.second;
293    if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
294        (VT == MVT::v4i32 && ST->hasSSE41()))
295      // Vector shift left by non uniform constant can be lowered
296      // into vector multiply (pmullw/pmulld).
297      return LT.first;
298    if (VT == MVT::v4i32 && ST->hasSSE2())
299      // A vector shift left by non uniform constant is converted
300      // into a vector multiply; the new multiply is eventually
301      // lowered into a sequence of shuffles and 2 x pmuludq.
302      ISD = ISD::MUL;
303  }
304
305  static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
306    // We don't correctly identify costs of casts because they are marked as
307    // custom.
308    // For some cases, where the shift amount is a scalar we would be able
309    // to generate better code. Unfortunately, when this is the case the value
310    // (the splat) will get hoisted out of the loop, thereby making it invisible
311    // to ISel. The cost model must return worst case assumptions because it is
312    // used for vectorization and we don't want to make vectorized code worse
313    // than scalar code.
314    { ISD::SHL,  MVT::v16i8,  30 }, // cmpeqb sequence.
315    { ISD::SHL,  MVT::v8i16,  8*10 }, // Scalarized.
316    { ISD::SHL,  MVT::v4i32,  2*5 }, // We optimized this using mul.
317    { ISD::SHL,  MVT::v2i64,  2*10 }, // Scalarized.
318    { ISD::SHL,  MVT::v4i64,  4*10 }, // Scalarized.
319
320    { ISD::SRL,  MVT::v16i8,  16*10 }, // Scalarized.
321    { ISD::SRL,  MVT::v8i16,  8*10 }, // Scalarized.
322    { ISD::SRL,  MVT::v4i32,  4*10 }, // Scalarized.
323    { ISD::SRL,  MVT::v2i64,  2*10 }, // Scalarized.
324
325    { ISD::SRA,  MVT::v16i8,  16*10 }, // Scalarized.
326    { ISD::SRA,  MVT::v8i16,  8*10 }, // Scalarized.
327    { ISD::SRA,  MVT::v4i32,  4*10 }, // Scalarized.
328    { ISD::SRA,  MVT::v2i64,  2*10 }, // Scalarized.
329
330    // It is not a good idea to vectorize division. We have to scalarize it and
331    // in the process we will often end up having to spilling regular
332    // registers. The overhead of division is going to dominate most kernels
333    // anyways so try hard to prevent vectorization of division - it is
334    // generally a bad idea. Assume somewhat arbitrarily that we have to be able
335    // to hide "20 cycles" for each lane.
336    { ISD::SDIV,  MVT::v16i8,  16*20 },
337    { ISD::SDIV,  MVT::v8i16,  8*20 },
338    { ISD::SDIV,  MVT::v4i32,  4*20 },
339    { ISD::SDIV,  MVT::v2i64,  2*20 },
340    { ISD::UDIV,  MVT::v16i8,  16*20 },
341    { ISD::UDIV,  MVT::v8i16,  8*20 },
342    { ISD::UDIV,  MVT::v4i32,  4*20 },
343    { ISD::UDIV,  MVT::v2i64,  2*20 },
344  };
345
346  if (ST->hasSSE2()) {
347    int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
348    if (Idx != -1)
349      return LT.first * SSE2CostTable[Idx].Cost;
350  }
351
352  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
353    // We don't have to scalarize unsupported ops. We can issue two half-sized
354    // operations and we only need to extract the upper YMM half.
355    // Two ops + 1 extract + 1 insert = 4.
356    { ISD::MUL,     MVT::v16i16,   4 },
357    { ISD::MUL,     MVT::v8i32,    4 },
358    { ISD::SUB,     MVT::v8i32,    4 },
359    { ISD::ADD,     MVT::v8i32,    4 },
360    { ISD::SUB,     MVT::v4i64,    4 },
361    { ISD::ADD,     MVT::v4i64,    4 },
362    // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
363    // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
364    // Because we believe v4i64 to be a legal type, we must also include the
365    // split factor of two in the cost table. Therefore, the cost here is 18
366    // instead of 9.
367    { ISD::MUL,     MVT::v4i64,    18 },
368  };
369
370  // Look for AVX1 lowering tricks.
371  if (ST->hasAVX() && !ST->hasAVX2()) {
372    EVT VT = LT.second;
373
374    // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
375    // sequence of extract + two vector multiply + insert.
376    if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
377        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
378      ISD = ISD::MUL;
379
380    int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
381    if (Idx != -1)
382      return LT.first * AVX1CostTable[Idx].Cost;
383  }
384
385  // Custom lowering of vectors.
386  static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
387    // A v2i64/v4i64 and multiply is custom lowered as a series of long
388    // multiplies(3), shifts(4) and adds(2).
389    { ISD::MUL,     MVT::v2i64,    9 },
390    { ISD::MUL,     MVT::v4i64,    9 },
391  };
392  int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
393  if (Idx != -1)
394    return LT.first * CustomLowered[Idx].Cost;
395
396  // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
397  // 2x pmuludq, 2x shuffle.
398  if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
399      !ST->hasSSE41())
400    return LT.first * 6;
401
402  // Fallback to the default implementation.
403  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
404                                                     Op2Info);
405}
406
407unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
408                                Type *SubTp) const {
409  // We only estimate the cost of reverse and alternate shuffles.
410  if (Kind != SK_Reverse && Kind != SK_Alternate)
411    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
412
413  if (Kind == SK_Reverse) {
414    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
415    unsigned Cost = 1;
416    if (LT.second.getSizeInBits() > 128)
417      Cost = 3; // Extract + insert + copy.
418
419    // Multiple by the number of parts.
420    return Cost * LT.first;
421  }
422
423  if (Kind == SK_Alternate) {
424    // 64-bit packed float vectors (v2f32) are widened to type v4f32.
425    // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
426    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
427
428    // The backend knows how to generate a single VEX.256 version of
429    // instruction VPBLENDW if the target supports AVX2.
430    if (ST->hasAVX2() && LT.second == MVT::v16i16)
431      return LT.first;
432
433    static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
434      {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1},  // vblendpd
435      {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1},  // vblendpd
436
437      {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1},  // vblendps
438      {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1},  // vblendps
439
440      // This shuffle is custom lowered into a sequence of:
441      //  2x  vextractf128 , 2x vpblendw , 1x vinsertf128
442      {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
443
444      // This shuffle is custom lowered into a long sequence of:
445      //  2x vextractf128 , 4x vpshufb , 2x vpor ,  1x vinsertf128
446      {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
447    };
448
449    if (ST->hasAVX()) {
450      int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
451      if (Idx != -1)
452        return LT.first * AVXAltShuffleTbl[Idx].Cost;
453    }
454
455    static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
456      // These are lowered into movsd.
457      {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
458      {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
459
460      // packed float vectors with four elements are lowered into BLENDI dag
461      // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
462      {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
463      {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
464
465      // This shuffle generates a single pshufw.
466      {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
467
468      // There is no instruction that matches a v16i8 alternate shuffle.
469      // The backend will expand it into the sequence 'pshufb + pshufb + or'.
470      {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
471    };
472
473    if (ST->hasSSE41()) {
474      int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
475      if (Idx != -1)
476        return LT.first * SSE41AltShuffleTbl[Idx].Cost;
477    }
478
479    static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
480      {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
481      {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
482
483      // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
484      // the sequence 'shufps + pshufd'
485      {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
486      {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
487
488      {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
489      {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}  // pshufb + pshufb + or
490    };
491
492    if (ST->hasSSSE3()) {
493      int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
494      if (Idx != -1)
495        return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
496    }
497
498    static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
499      {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
500      {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
501
502      {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
503      {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
504
505      // This is expanded into a long sequence of four extract + four insert.
506      {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
507
508      // 8 x (pinsrw + pextrw + and + movb + movzb + or)
509      {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
510    };
511
512    // Fall-back (SSE3 and SSE2).
513    int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
514    if (Idx != -1)
515      return LT.first * SSEAltShuffleTbl[Idx].Cost;
516    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
517  }
518
519  return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
520}
521
522unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
523  int ISD = TLI->InstructionOpcodeToISD(Opcode);
524  assert(ISD && "Invalid opcode");
525
526  std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
527  std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
528
529  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
530  SSE2ConvTbl[] = {
531    // These are somewhat magic numbers justified by looking at the output of
532    // Intel's IACA, running some kernels and making sure when we take
533    // legalization into account the throughput will be overestimated.
534    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
535    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
536    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
537    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
538    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
539    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
540    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
541    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
542    // There are faster sequences for float conversions.
543    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
544    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
545    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
546    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
547    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
548    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
549    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
550    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
551  };
552
553  if (ST->hasSSE2() && !ST->hasAVX()) {
554    int Idx =
555        ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
556    if (Idx != -1)
557      return LTSrc.first * SSE2ConvTbl[Idx].Cost;
558  }
559
560  EVT SrcTy = TLI->getValueType(Src);
561  EVT DstTy = TLI->getValueType(Dst);
562
563  // The function getSimpleVT only handles simple value types.
564  if (!SrcTy.isSimple() || !DstTy.isSimple())
565    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
566
567  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
568  AVX2ConversionTbl[] = {
569    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
570    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
571    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
572    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
573    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
574    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
575    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
576    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
577    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
578    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
579    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
580    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
581    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
582    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
583    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
584    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
585
586    { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
587    { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
588    { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
589    { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
590    { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
591    { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
592  };
593
594  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
595  AVXConversionTbl[] = {
596    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
597    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
598    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
599    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
600    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
601    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
602    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
603    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
604    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
605    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
606    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
607    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
608    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
609    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
610    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
611    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
612
613    { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
614    { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
615    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
616    { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
617    { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
618    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
619    { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
620
621    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
622    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
623    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
624    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
625    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
626    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
627    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
628    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
629    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
630    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
631    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
632    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
633
634    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
635    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
636    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
637    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
638    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
639    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
640    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
641    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
642    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
643    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
644    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
645    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
646    // The generic code to compute the scalar overhead is currently broken.
647    // Workaround this limitation by estimating the scalarization overhead
648    // here. We have roughly 10 instructions per scalar element.
649    // Multiply that by the vector width.
650    // FIXME: remove that when PR19268 is fixed.
651    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 2*10 },
652    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 4*10 },
653
654    { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
655    { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
656    // This node is expanded into scalarized operations but BasicTTI is overly
657    // optimistic estimating its cost.  It computes 3 per element (one
658    // vector-extract, one scalar conversion and one vector-insert).  The
659    // problem is that the inserts form a read-modify-write chain so latency
660    // should be factored in too.  Inflating the cost per element by 1.
661    { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
662    { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
663  };
664
665  if (ST->hasAVX2()) {
666    int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
667                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT());
668    if (Idx != -1)
669      return AVX2ConversionTbl[Idx].Cost;
670  }
671
672  if (ST->hasAVX()) {
673    int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
674                                     SrcTy.getSimpleVT());
675    if (Idx != -1)
676      return AVXConversionTbl[Idx].Cost;
677  }
678
679  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
680}
681
682unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
683                                    Type *CondTy) const {
684  // Legalize the type.
685  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
686
687  MVT MTy = LT.second;
688
689  int ISD = TLI->InstructionOpcodeToISD(Opcode);
690  assert(ISD && "Invalid opcode");
691
692  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
693    { ISD::SETCC,   MVT::v2f64,   1 },
694    { ISD::SETCC,   MVT::v4f32,   1 },
695    { ISD::SETCC,   MVT::v2i64,   1 },
696    { ISD::SETCC,   MVT::v4i32,   1 },
697    { ISD::SETCC,   MVT::v8i16,   1 },
698    { ISD::SETCC,   MVT::v16i8,   1 },
699  };
700
701  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
702    { ISD::SETCC,   MVT::v4f64,   1 },
703    { ISD::SETCC,   MVT::v8f32,   1 },
704    // AVX1 does not support 8-wide integer compare.
705    { ISD::SETCC,   MVT::v4i64,   4 },
706    { ISD::SETCC,   MVT::v8i32,   4 },
707    { ISD::SETCC,   MVT::v16i16,  4 },
708    { ISD::SETCC,   MVT::v32i8,   4 },
709  };
710
711  static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
712    { ISD::SETCC,   MVT::v4i64,   1 },
713    { ISD::SETCC,   MVT::v8i32,   1 },
714    { ISD::SETCC,   MVT::v16i16,  1 },
715    { ISD::SETCC,   MVT::v32i8,   1 },
716  };
717
718  if (ST->hasAVX2()) {
719    int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
720    if (Idx != -1)
721      return LT.first * AVX2CostTbl[Idx].Cost;
722  }
723
724  if (ST->hasAVX()) {
725    int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
726    if (Idx != -1)
727      return LT.first * AVX1CostTbl[Idx].Cost;
728  }
729
730  if (ST->hasSSE42()) {
731    int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
732    if (Idx != -1)
733      return LT.first * SSE42CostTbl[Idx].Cost;
734  }
735
736  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
737}
738
739unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
740                                    unsigned Index) const {
741  assert(Val->isVectorTy() && "This must be a vector type");
742
743  if (Index != -1U) {
744    // Legalize the type.
745    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
746
747    // This type is legalized to a scalar type.
748    if (!LT.second.isVector())
749      return 0;
750
751    // The type may be split. Normalize the index to the new type.
752    unsigned Width = LT.second.getVectorNumElements();
753    Index = Index % Width;
754
755    // Floating point scalars are already located in index #0.
756    if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
757      return 0;
758  }
759
760  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
761}
762
763unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
764                                            bool Extract) const {
765  assert (Ty->isVectorTy() && "Can only scalarize vectors");
766  unsigned Cost = 0;
767
768  for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
769    if (Insert)
770      Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
771    if (Extract)
772      Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
773  }
774
775  return Cost;
776}
777
778unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
779                                 unsigned AddressSpace) const {
780  // Handle non-power-of-two vectors such as <3 x float>
781  if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
782    unsigned NumElem = VTy->getVectorNumElements();
783
784    // Handle a few common cases:
785    // <3 x float>
786    if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
787      // Cost = 64 bit store + extract + 32 bit store.
788      return 3;
789
790    // <3 x double>
791    if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
792      // Cost = 128 bit store + unpack + 64 bit store.
793      return 3;
794
795    // Assume that all other non-power-of-two numbers are scalarized.
796    if (!isPowerOf2_32(NumElem)) {
797      unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
798                                                           VTy->getScalarType(),
799                                                           Alignment,
800                                                           AddressSpace);
801      unsigned SplitCost = getScalarizationOverhead(Src,
802                                                    Opcode == Instruction::Load,
803                                                    Opcode==Instruction::Store);
804      return NumElem * Cost + SplitCost;
805    }
806  }
807
808  // Legalize the type.
809  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
810  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
811         "Invalid Opcode");
812
813  // Each load/store unit costs 1.
814  unsigned Cost = LT.first * 1;
815
816  // On Sandybridge 256bit load/stores are double pumped
817  // (but not on Haswell).
818  if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
819    Cost*=2;
820
821  return Cost;
822}
823
824unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
825  // Address computations in vectorized code with non-consecutive addresses will
826  // likely result in more instructions compared to scalar code where the
827  // computation can more often be merged into the index mode. The resulting
828  // extra micro-ops can significantly decrease throughput.
829  unsigned NumVectorInstToHideOverhead = 10;
830
831  if (Ty->isVectorTy() && IsComplex)
832    return NumVectorInstToHideOverhead;
833
834  return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
835}
836
837unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
838                                  bool IsPairwise) const {
839
840  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
841
842  MVT MTy = LT.second;
843
844  int ISD = TLI->InstructionOpcodeToISD(Opcode);
845  assert(ISD && "Invalid opcode");
846
847  // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
848  // and make it as the cost.
849
850  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
851    { ISD::FADD,  MVT::v2f64,   2 },
852    { ISD::FADD,  MVT::v4f32,   4 },
853    { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
854    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
855    { ISD::ADD,   MVT::v8i16,   5 },
856  };
857
858  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
859    { ISD::FADD,  MVT::v4f32,   4 },
860    { ISD::FADD,  MVT::v4f64,   5 },
861    { ISD::FADD,  MVT::v8f32,   7 },
862    { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
863    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
864    { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
865    { ISD::ADD,   MVT::v8i16,   5 },
866    { ISD::ADD,   MVT::v8i32,   5 },
867  };
868
869  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
870    { ISD::FADD,  MVT::v2f64,   2 },
871    { ISD::FADD,  MVT::v4f32,   4 },
872    { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
873    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
874    { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
875  };
876
877  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
878    { ISD::FADD,  MVT::v4f32,   3 },
879    { ISD::FADD,  MVT::v4f64,   3 },
880    { ISD::FADD,  MVT::v8f32,   4 },
881    { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
882    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
883    { ISD::ADD,   MVT::v4i64,   3 },
884    { ISD::ADD,   MVT::v8i16,   4 },
885    { ISD::ADD,   MVT::v8i32,   5 },
886  };
887
888  if (IsPairwise) {
889    if (ST->hasAVX()) {
890      int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
891      if (Idx != -1)
892        return LT.first * AVX1CostTblPairWise[Idx].Cost;
893    }
894
895    if (ST->hasSSE42()) {
896      int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
897      if (Idx != -1)
898        return LT.first * SSE42CostTblPairWise[Idx].Cost;
899    }
900  } else {
901    if (ST->hasAVX()) {
902      int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
903      if (Idx != -1)
904        return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
905    }
906
907    if (ST->hasSSE42()) {
908      int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
909      if (Idx != -1)
910        return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
911    }
912  }
913
914  return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
915}
916
917/// \brief Calculate the cost of materializing a 64-bit value. This helper
918/// method might only calculate a fraction of a larger immediate. Therefore it
919/// is valid to return a cost of ZERO.
920unsigned X86TTI::getIntImmCost(int64_t Val) const {
921  if (Val == 0)
922    return TCC_Free;
923
924  if (isInt<32>(Val))
925    return TCC_Basic;
926
927  return 2 * TCC_Basic;
928}
929
930unsigned X86TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
931  assert(Ty->isIntegerTy());
932
933  unsigned BitSize = Ty->getPrimitiveSizeInBits();
934  if (BitSize == 0)
935    return ~0U;
936
937  // Never hoist constants larger than 128bit, because this might lead to
938  // incorrect code generation or assertions in codegen.
939  // Fixme: Create a cost model for types larger than i128 once the codegen
940  // issues have been fixed.
941  if (BitSize > 128)
942    return TCC_Free;
943
944  if (Imm == 0)
945    return TCC_Free;
946
947  // Sign-extend all constants to a multiple of 64-bit.
948  APInt ImmVal = Imm;
949  if (BitSize & 0x3f)
950    ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
951
952  // Split the constant into 64-bit chunks and calculate the cost for each
953  // chunk.
954  unsigned Cost = 0;
955  for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
956    APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
957    int64_t Val = Tmp.getSExtValue();
958    Cost += getIntImmCost(Val);
959  }
960  // We need at least one instruction to materialze the constant.
961  return std::max(1U, Cost);
962}
963
964unsigned X86TTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
965                               Type *Ty) const {
966  assert(Ty->isIntegerTy());
967
968  unsigned BitSize = Ty->getPrimitiveSizeInBits();
969  // There is no cost model for constants with a bit size of 0. Return TCC_Free
970  // here, so that constant hoisting will ignore this constant.
971  if (BitSize == 0)
972    return TCC_Free;
973
974  unsigned ImmIdx = ~0U;
975  switch (Opcode) {
976  default: return TCC_Free;
977  case Instruction::GetElementPtr:
978    // Always hoist the base address of a GetElementPtr. This prevents the
979    // creation of new constants for every base constant that gets constant
980    // folded with the offset.
981    if (Idx == 0)
982      return 2 * TCC_Basic;
983    return TCC_Free;
984  case Instruction::Store:
985    ImmIdx = 0;
986    break;
987  case Instruction::Add:
988  case Instruction::Sub:
989  case Instruction::Mul:
990  case Instruction::UDiv:
991  case Instruction::SDiv:
992  case Instruction::URem:
993  case Instruction::SRem:
994  case Instruction::And:
995  case Instruction::Or:
996  case Instruction::Xor:
997  case Instruction::ICmp:
998    ImmIdx = 1;
999    break;
1000  // Always return TCC_Free for the shift value of a shift instruction.
1001  case Instruction::Shl:
1002  case Instruction::LShr:
1003  case Instruction::AShr:
1004    if (Idx == 1)
1005      return TCC_Free;
1006    break;
1007  case Instruction::Trunc:
1008  case Instruction::ZExt:
1009  case Instruction::SExt:
1010  case Instruction::IntToPtr:
1011  case Instruction::PtrToInt:
1012  case Instruction::BitCast:
1013  case Instruction::PHI:
1014  case Instruction::Call:
1015  case Instruction::Select:
1016  case Instruction::Ret:
1017  case Instruction::Load:
1018    break;
1019  }
1020
1021  if (Idx == ImmIdx) {
1022    unsigned NumConstants = (BitSize + 63) / 64;
1023    unsigned Cost = X86TTI::getIntImmCost(Imm, Ty);
1024    return (Cost <= NumConstants * TCC_Basic)
1025      ? static_cast<unsigned>(TCC_Free)
1026      : Cost;
1027  }
1028
1029  return X86TTI::getIntImmCost(Imm, Ty);
1030}
1031
1032unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
1033                               const APInt &Imm, Type *Ty) const {
1034  assert(Ty->isIntegerTy());
1035
1036  unsigned BitSize = Ty->getPrimitiveSizeInBits();
1037  // There is no cost model for constants with a bit size of 0. Return TCC_Free
1038  // here, so that constant hoisting will ignore this constant.
1039  if (BitSize == 0)
1040    return TCC_Free;
1041
1042  switch (IID) {
1043  default: return TCC_Free;
1044  case Intrinsic::sadd_with_overflow:
1045  case Intrinsic::uadd_with_overflow:
1046  case Intrinsic::ssub_with_overflow:
1047  case Intrinsic::usub_with_overflow:
1048  case Intrinsic::smul_with_overflow:
1049  case Intrinsic::umul_with_overflow:
1050    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
1051      return TCC_Free;
1052    break;
1053  case Intrinsic::experimental_stackmap:
1054    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
1055      return TCC_Free;
1056    break;
1057  case Intrinsic::experimental_patchpoint_void:
1058  case Intrinsic::experimental_patchpoint_i64:
1059    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
1060      return TCC_Free;
1061    break;
1062  }
1063  return X86TTI::getIntImmCost(Imm, Ty);
1064}
1065