1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5//  By downloading, copying, installing or using the software you agree to this license.
6//  If you do not agree to this license, do not download, install,
7//  copy or use the software.
8//
9//
10//                        Intel License Agreement
11//                For Open Source Computer Vision Library
12//
13// Copyright (C) 2000, Intel Corporation, all rights reserved.
14// Third party copyrights are property of their respective owners.
15//
16// Redistribution and use in source and binary forms, with or without modification,
17// are permitted provided that the following conditions are met:
18//
19//   * Redistribution's of source code must retain the above copyright notice,
20//     this list of conditions and the following disclaimer.
21//
22//   * Redistribution's in binary form must reproduce the above copyright notice,
23//     this list of conditions and the following disclaimer in the documentation
24//     and/or other materials provided with the distribution.
25//
26//   * The name of Intel Corporation may not be used to endorse or promote products
27//     derived from this software without specific prior written permission.
28//
29// This software is provided by the copyright holders and contributors "as is" and
30// any express or implied warranties, including, but not limited to, the implied
31// warranties of merchantability and fitness for a particular purpose are disclaimed.
32// In no event shall the Intel Corporation or contributors be liable for any direct,
33// indirect, incidental, special, exemplary, or consequential damages
34// (including, but not limited to, procurement of substitute goods or services;
35// loss of use, data, or profits; or business interruption) however caused
36// and on any theory of liability, whether in contract, strict liability,
37// or tort (including negligence or otherwise) arising in any way out of
38// the use of this software, even if advised of the possibility of such damage.
39//
40//M*/
41
42#include "_cv.h"
43
44/*
45    This is stright-forward port v3 of Matlab calibration engine by Jean-Yves Bouguet
46    that is (in a large extent) based on the paper:
47    Z. Zhang. "A flexible new technique for camera calibration".
48    IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334, 2000.
49
50    The 1st initial port was done by Valery Mosyagin.
51*/
52
53CvLevMarq::CvLevMarq()
54{
55    mask = prevParam = param = J = err = JtJ = JtJN = JtErr = JtJV = JtJW = 0;
56    lambdaLg10 = 0; state = DONE;
57    criteria = cvTermCriteria(0,0,0);
58    iters = 0;
59    completeSymmFlag = false;
60}
61
62CvLevMarq::CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag )
63{
64    mask = prevParam = param = J = err = JtJ = JtJN = JtErr = JtJV = JtJW = 0;
65    init(nparams, nerrs, criteria0, _completeSymmFlag);
66}
67
68void CvLevMarq::clear()
69{
70    cvReleaseMat(&mask);
71    cvReleaseMat(&prevParam);
72    cvReleaseMat(&param);
73    cvReleaseMat(&J);
74    cvReleaseMat(&err);
75    cvReleaseMat(&JtJ);
76    cvReleaseMat(&JtJN);
77    cvReleaseMat(&JtErr);
78    cvReleaseMat(&JtJV);
79    cvReleaseMat(&JtJW);
80}
81
82CvLevMarq::~CvLevMarq()
83{
84    clear();
85}
86
87void CvLevMarq::init( int nparams, int nerrs, CvTermCriteria criteria0, bool _completeSymmFlag )
88{
89    if( !param || param->rows != nparams || nerrs != (err ? err->rows : 0) )
90        clear();
91    mask = cvCreateMat( nparams, 1, CV_8U );
92    cvSet(mask, cvScalarAll(1));
93    prevParam = cvCreateMat( nparams, 1, CV_64F );
94    param = cvCreateMat( nparams, 1, CV_64F );
95    JtJ = cvCreateMat( nparams, nparams, CV_64F );
96    JtJN = cvCreateMat( nparams, nparams, CV_64F );
97    JtJV = cvCreateMat( nparams, nparams, CV_64F );
98    JtJW = cvCreateMat( nparams, 1, CV_64F );
99    JtErr = cvCreateMat( nparams, 1, CV_64F );
100    if( nerrs > 0 )
101    {
102        J = cvCreateMat( nerrs, nparams, CV_64F );
103        err = cvCreateMat( nerrs, 1, CV_64F );
104    }
105    prevErrNorm = DBL_MAX;
106    lambdaLg10 = -3;
107    criteria = criteria0;
108    if( criteria.type & CV_TERMCRIT_ITER )
109        criteria.max_iter = MIN(MAX(criteria.max_iter,1),1000);
110    else
111        criteria.max_iter = 30;
112    if( criteria.type & CV_TERMCRIT_EPS )
113        criteria.epsilon = MAX(criteria.epsilon, 0);
114    else
115        criteria.epsilon = DBL_EPSILON;
116    state = STARTED;
117    iters = 0;
118    completeSymmFlag = _completeSymmFlag;
119}
120
121bool CvLevMarq::update( const CvMat*& _param, CvMat*& _J, CvMat*& _err )
122{
123    double change;
124
125    assert( err != 0 );
126    if( state == DONE )
127    {
128        _param = param;
129        return false;
130    }
131
132    if( state == STARTED )
133    {
134        _param = param;
135        cvZero( J );
136        cvZero( err );
137        _J = J;
138        _err = err;
139        state = CALC_J;
140        return true;
141    }
142
143    if( state == CALC_J )
144    {
145        cvMulTransposed( J, JtJ, 1 );
146        cvGEMM( J, err, 1, 0, 0, JtErr, CV_GEMM_A_T );
147        cvCopy( param, prevParam );
148        step();
149        if( iters == 0 )
150            prevErrNorm = cvNorm(err, 0, CV_L2);
151        _param = param;
152        cvZero( err );
153        _err = err;
154        state = CHECK_ERR;
155        return true;
156    }
157
158    assert( state == CHECK_ERR );
159    errNorm = cvNorm( err, 0, CV_L2 );
160    if( errNorm > prevErrNorm )
161    {
162        lambdaLg10++;
163        step();
164        _param = param;
165        cvZero( err );
166        _err = err;
167        state = CHECK_ERR;
168        return true;
169    }
170
171    lambdaLg10 = MAX(lambdaLg10-1, -16);
172    if( ++iters >= criteria.max_iter ||
173        (change = cvNorm(param, prevParam, CV_RELATIVE_L2)) < criteria.epsilon )
174    {
175        _param = param;
176        state = DONE;
177        return true;
178    }
179
180    prevErrNorm = errNorm;
181    _param = param;
182    cvZero(J);
183    _J = J;
184    state = CALC_J;
185    return false;
186}
187
188
189bool CvLevMarq::updateAlt( const CvMat*& _param, CvMat*& _JtJ, CvMat*& _JtErr, double*& _errNorm )
190{
191    double change;
192
193    assert( err == 0 );
194    if( state == DONE )
195    {
196        _param = param;
197        return false;
198    }
199
200    if( state == STARTED )
201    {
202        _param = param;
203        cvZero( JtJ );
204        cvZero( JtErr );
205        errNorm = 0;
206        _JtJ = JtJ;
207        _JtErr = JtErr;
208        _errNorm = &errNorm;
209        state = CALC_J;
210        return true;
211    }
212
213    if( state == CALC_J )
214    {
215        cvCopy( param, prevParam );
216        step();
217        _param = param;
218        prevErrNorm = errNorm;
219        errNorm = 0;
220        _errNorm = &errNorm;
221        state = CHECK_ERR;
222        return true;
223    }
224
225    assert( state == CHECK_ERR );
226    if( errNorm > prevErrNorm )
227    {
228        lambdaLg10++;
229        step();
230        _param = param;
231        errNorm = 0;
232        _errNorm = &errNorm;
233        state = CHECK_ERR;
234        return true;
235    }
236
237    lambdaLg10 = MAX(lambdaLg10-1, -16);
238    if( ++iters >= criteria.max_iter ||
239        (change = cvNorm(param, prevParam, CV_RELATIVE_L2)) < criteria.epsilon )
240    {
241        _param = param;
242        state = DONE;
243        return false;
244    }
245
246    prevErrNorm = errNorm;
247    cvZero( JtJ );
248    cvZero( JtErr );
249    _param = param;
250    _JtJ = JtJ;
251    _JtErr = JtErr;
252    state = CALC_J;
253    return true;
254}
255
256void CvLevMarq::step()
257{
258    const double LOG10 = log(10.);
259    double lambda = exp(lambdaLg10*LOG10);
260    int i, j, nparams = param->rows;
261
262    for( i = 0; i < nparams; i++ )
263        if( mask->data.ptr[i] == 0 )
264        {
265            double *row = JtJ->data.db + i*nparams, *col = JtJ->data.db + i;
266            for( j = 0; j < nparams; j++ )
267                row[j] = col[j*nparams] = 0;
268            JtErr->data.db[i] = 0;
269        }
270
271    if( !err )
272        cvCompleteSymm( JtJ, completeSymmFlag );
273    cvSetIdentity( JtJN, cvRealScalar(lambda) );
274    cvAdd( JtJ, JtJN, JtJN );
275    cvSVD( JtJN, JtJW, 0, JtJV, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T );
276    cvSVBkSb( JtJW, JtJV, JtJV, JtErr, param, CV_SVD_U_T + CV_SVD_V_T );
277    for( i = 0; i < nparams; i++ )
278        param->data.db[i] = prevParam->data.db[i] - (mask->data.ptr[i] ? param->data.db[i] : 0);
279}
280
281// reimplementation of dAB.m
282CV_IMPL void
283cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB )
284{
285    CV_FUNCNAME( "cvCalcMatMulDeriv" );
286
287    __BEGIN__;
288
289    int i, j, M, N, L;
290    int bstep;
291
292    CV_ASSERT( CV_IS_MAT(A) && CV_IS_MAT(B) );
293    CV_ASSERT( CV_ARE_TYPES_EQ(A, B) &&
294        (CV_MAT_TYPE(A->type) == CV_32F || CV_MAT_TYPE(A->type) == CV_64F) );
295    CV_ASSERT( A->cols == B->rows );
296
297    M = A->rows;
298    L = A->cols;
299    N = B->cols;
300    bstep = B->step/CV_ELEM_SIZE(B->type);
301
302    if( dABdA )
303    {
304        CV_ASSERT( CV_ARE_TYPES_EQ(A, dABdA) &&
305            dABdA->rows == A->rows*B->cols && dABdA->cols == A->rows*A->cols );
306    }
307
308    if( dABdB )
309    {
310        CV_ASSERT( CV_ARE_TYPES_EQ(A, dABdB) &&
311            dABdB->rows == A->rows*B->cols && dABdB->cols == B->rows*B->cols );
312    }
313
314    if( CV_MAT_TYPE(A->type) == CV_32F )
315    {
316        for( i = 0; i < M*N; i++ )
317        {
318            int i1 = i / N,  i2 = i % N;
319
320            if( dABdA )
321            {
322                float* dcda = (float*)(dABdA->data.ptr + dABdA->step*i);
323                const float* b = (const float*)B->data.ptr + i2;
324
325                for( j = 0; j < M*L; j++ )
326                    dcda[j] = 0;
327                for( j = 0; j < L; j++ )
328                    dcda[i1*L + j] = b[j*bstep];
329            }
330
331            if( dABdB )
332            {
333                float* dcdb = (float*)(dABdB->data.ptr + dABdB->step*i);
334                const float* a = (const float*)(A->data.ptr + A->step*i1);
335
336                for( j = 0; j < L*N; j++ )
337                    dcdb[j] = 0;
338                for( j = 0; j < L; j++ )
339                    dcdb[j*N + i2] = a[j];
340            }
341        }
342    }
343    else
344    {
345        for( i = 0; i < M*N; i++ )
346        {
347            int i1 = i / N,  i2 = i % N;
348
349            if( dABdA )
350            {
351                double* dcda = (double*)(dABdA->data.ptr + dABdA->step*i);
352                const double* b = (const double*)B->data.ptr + i2;
353
354                for( j = 0; j < M*L; j++ )
355                    dcda[j] = 0;
356                for( j = 0; j < L; j++ )
357                    dcda[i1*L + j] = b[j*bstep];
358            }
359
360            if( dABdB )
361            {
362                double* dcdb = (double*)(dABdB->data.ptr + dABdB->step*i);
363                const double* a = (const double*)(A->data.ptr + A->step*i1);
364
365                for( j = 0; j < L*N; j++ )
366                    dcdb[j] = 0;
367                for( j = 0; j < L; j++ )
368                    dcdb[j*N + i2] = a[j];
369            }
370        }
371    }
372
373    __END__;
374}
375
376// reimplementation of compose_motion.m
377CV_IMPL void
378cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
379             const CvMat* _rvec2, const CvMat* _tvec2,
380             CvMat* _rvec3, CvMat* _tvec3,
381             CvMat* dr3dr1, CvMat* dr3dt1,
382             CvMat* dr3dr2, CvMat* dr3dt2,
383             CvMat* dt3dr1, CvMat* dt3dt1,
384             CvMat* dt3dr2, CvMat* dt3dt2 )
385{
386    CV_FUNCNAME( "cvComposeRT" );
387
388    __BEGIN__;
389
390    double _r1[3], _r2[3];
391    double _R1[9], _d1[9*3], _R2[9], _d2[9*3];
392    CvMat r1 = cvMat(3,1,CV_64F,_r1), r2 = cvMat(3,1,CV_64F,_r2);
393    CvMat R1 = cvMat(3,3,CV_64F,_R1), R2 = cvMat(3,3,CV_64F,_R2);
394    CvMat dR1dr1 = cvMat(9,3,CV_64F,_d1), dR2dr2 = cvMat(9,3,CV_64F,_d2);
395
396    CV_ASSERT( CV_IS_MAT(_rvec1) && CV_IS_MAT(_rvec2) );
397
398    CV_ASSERT( CV_MAT_TYPE(_rvec1->type) == CV_32F ||
399               CV_MAT_TYPE(_rvec1->type) == CV_64F );
400
401    CV_ASSERT( _rvec1->rows == 3 && _rvec1->cols == 1 && CV_ARE_SIZES_EQ(_rvec1, _rvec2) );
402
403    cvConvert( _rvec1, &r1 );
404    cvConvert( _rvec2, &r2 );
405
406    cvRodrigues2( &r1, &R1, &dR1dr1 );
407    cvRodrigues2( &r2, &R2, &dR2dr2 );
408
409    if( _rvec3 || dr3dr1 || dr3dr1 )
410    {
411        double _r3[3], _R3[9], _dR3dR1[9*9], _dR3dR2[9*9], _dr3dR3[9*3];
412        double _W1[9*3], _W2[3*3];
413        CvMat r3 = cvMat(3,1,CV_64F,_r3), R3 = cvMat(3,3,CV_64F,_R3);
414        CvMat dR3dR1 = cvMat(9,9,CV_64F,_dR3dR1), dR3dR2 = cvMat(9,9,CV_64F,_dR3dR2);
415        CvMat dr3dR3 = cvMat(3,9,CV_64F,_dr3dR3);
416        CvMat W1 = cvMat(3,9,CV_64F,_W1), W2 = cvMat(3,3,CV_64F,_W2);
417
418        cvMatMul( &R2, &R1, &R3 );
419        cvCalcMatMulDeriv( &R2, &R1, &dR3dR2, &dR3dR1 );
420
421        cvRodrigues2( &R3, &r3, &dr3dR3 );
422
423        if( _rvec3 )
424            cvConvert( &r3, _rvec3 );
425
426        if( dr3dr1 )
427        {
428            cvMatMul( &dr3dR3, &dR3dR1, &W1 );
429            cvMatMul( &W1, &dR1dr1, &W2 );
430            cvConvert( &W2, dr3dr1 );
431        }
432
433        if( dr3dr2 )
434        {
435            cvMatMul( &dr3dR3, &dR3dR2, &W1 );
436            cvMatMul( &W1, &dR2dr2, &W2 );
437            cvConvert( &W2, dr3dr2 );
438        }
439    }
440
441    if( dr3dt1 )
442        cvZero( dr3dt1 );
443    if( dr3dt2 )
444        cvZero( dr3dt2 );
445
446    if( _tvec3 || dt3dr2 || dt3dt1 )
447    {
448        double _t1[3], _t2[3], _t3[3], _dxdR2[3*9], _dxdt1[3*3], _W3[3*3];
449        CvMat t1 = cvMat(3,1,CV_64F,_t1), t2 = cvMat(3,1,CV_64F,_t2);
450        CvMat t3 = cvMat(3,1,CV_64F,_t3);
451        CvMat dxdR2 = cvMat(3, 9, CV_64F, _dxdR2);
452        CvMat dxdt1 = cvMat(3, 3, CV_64F, _dxdt1);
453        CvMat W3 = cvMat(3, 3, CV_64F, _W3);
454
455        CV_ASSERT( CV_IS_MAT(_tvec1) && CV_IS_MAT(_tvec2) );
456        CV_ASSERT( CV_ARE_SIZES_EQ(_tvec1, _tvec2) && CV_ARE_SIZES_EQ(_tvec1, _rvec1) );
457
458        cvConvert( _tvec1, &t1 );
459        cvConvert( _tvec2, &t2 );
460        cvMatMulAdd( &R2, &t1, &t2, &t3 );
461
462        if( _tvec3 )
463            cvConvert( &t3, _tvec3 );
464
465        if( dt3dr2 || dt3dt1 )
466        {
467            cvCalcMatMulDeriv( &R2, &t1, &dxdR2, &dxdt1 );
468            if( dt3dr2 )
469            {
470                cvMatMul( &dxdR2, &dR2dr2, &W3 );
471                cvConvert( &W3, dt3dr2 );
472            }
473            if( dt3dt1 )
474                cvConvert( &dxdt1, dt3dt1 );
475        }
476    }
477
478    if( dt3dt2 )
479        cvSetIdentity( dt3dt2 );
480    if( dt3dr1 )
481        cvZero( dt3dr1 );
482
483    __END__;
484}
485
486CV_IMPL int
487cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
488{
489    int result = 0;
490
491    CV_FUNCNAME( "cvRogrigues2" );
492
493    __BEGIN__;
494
495    int depth, elem_size;
496    int i, k;
497    double J[27];
498    CvMat _J = cvMat( 3, 9, CV_64F, J );
499
500    if( !CV_IS_MAT(src) )
501        CV_ERROR( !src ? CV_StsNullPtr : CV_StsBadArg, "Input argument is not a valid matrix" );
502
503    if( !CV_IS_MAT(dst) )
504        CV_ERROR( !dst ? CV_StsNullPtr : CV_StsBadArg,
505        "The first output argument is not a valid matrix" );
506
507    depth = CV_MAT_DEPTH(src->type);
508    elem_size = CV_ELEM_SIZE(depth);
509
510    if( depth != CV_32F && depth != CV_64F )
511        CV_ERROR( CV_StsUnsupportedFormat, "The matrices must have 32f or 64f data type" );
512
513    if( !CV_ARE_DEPTHS_EQ(src, dst) )
514        CV_ERROR( CV_StsUnmatchedFormats, "All the matrices must have the same data type" );
515
516    if( jacobian )
517    {
518        if( !CV_IS_MAT(jacobian) )
519            CV_ERROR( CV_StsBadArg, "Jacobian is not a valid matrix" );
520
521        if( !CV_ARE_DEPTHS_EQ(src, jacobian) || CV_MAT_CN(jacobian->type) != 1 )
522            CV_ERROR( CV_StsUnmatchedFormats, "Jacobian must have 32fC1 or 64fC1 datatype" );
523
524        if( (jacobian->rows != 9 || jacobian->cols != 3) &&
525            (jacobian->rows != 3 || jacobian->cols != 9))
526            CV_ERROR( CV_StsBadSize, "Jacobian must be 3x9 or 9x3" );
527    }
528
529    if( src->cols == 1 || src->rows == 1 )
530    {
531        double rx, ry, rz, theta;
532        int step = src->rows > 1 ? src->step / elem_size : 1;
533
534        if( src->rows + src->cols*CV_MAT_CN(src->type) - 1 != 3 )
535            CV_ERROR( CV_StsBadSize, "Input matrix must be 1x3, 3x1 or 3x3" );
536
537        if( dst->rows != 3 || dst->cols != 3 || CV_MAT_CN(dst->type) != 1 )
538            CV_ERROR( CV_StsBadSize, "Output matrix must be 3x3, single-channel floating point matrix" );
539
540        if( depth == CV_32F )
541        {
542            rx = src->data.fl[0];
543            ry = src->data.fl[step];
544            rz = src->data.fl[step*2];
545        }
546        else
547        {
548            rx = src->data.db[0];
549            ry = src->data.db[step];
550            rz = src->data.db[step*2];
551        }
552        theta = sqrt(rx*rx + ry*ry + rz*rz);
553
554        if( theta < DBL_EPSILON )
555        {
556            cvSetIdentity( dst );
557
558            if( jacobian )
559            {
560                memset( J, 0, sizeof(J) );
561                J[5] = J[15] = J[19] = -1;
562                J[7] = J[11] = J[21] = 1;
563            }
564        }
565        else
566        {
567            const double I[] = { 1, 0, 0, 0, 1, 0, 0, 0, 1 };
568
569            double c = cos(theta);
570            double s = sin(theta);
571            double c1 = 1. - c;
572            double itheta = theta ? 1./theta : 0.;
573
574            rx *= itheta; ry *= itheta; rz *= itheta;
575
576            double rrt[] = { rx*rx, rx*ry, rx*rz, rx*ry, ry*ry, ry*rz, rx*rz, ry*rz, rz*rz };
577            double _r_x_[] = { 0, -rz, ry, rz, 0, -rx, -ry, rx, 0 };
578            double R[9];
579            CvMat _R = cvMat( 3, 3, CV_64F, R );
580
581            // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x]
582            // where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0]
583            for( k = 0; k < 9; k++ )
584                R[k] = c*I[k] + c1*rrt[k] + s*_r_x_[k];
585
586            cvConvert( &_R, dst );
587
588            if( jacobian )
589            {
590                double drrt[] = { rx+rx, ry, rz, ry, 0, 0, rz, 0, 0,
591                                  0, rx, 0, rx, ry+ry, rz, 0, rz, 0,
592                                  0, 0, rx, 0, 0, ry, rx, ry, rz+rz };
593                double d_r_x_[] = { 0, 0, 0, 0, 0, -1, 0, 1, 0,
594                                    0, 0, 1, 0, 0, 0, -1, 0, 0,
595                                    0, -1, 0, 1, 0, 0, 0, 0, 0 };
596                for( i = 0; i < 3; i++ )
597                {
598                    double ri = i == 0 ? rx : i == 1 ? ry : rz;
599                    double a0 = -s*ri, a1 = (s - 2*c1*itheta)*ri, a2 = c1*itheta;
600                    double a3 = (c - s*itheta)*ri, a4 = s*itheta;
601                    for( k = 0; k < 9; k++ )
602                        J[i*9+k] = a0*I[k] + a1*rrt[k] + a2*drrt[i*9+k] +
603                                   a3*_r_x_[k] + a4*d_r_x_[i*9+k];
604                }
605            }
606        }
607    }
608    else if( src->cols == 3 && src->rows == 3 )
609    {
610        double R[9], U[9], V[9], W[3], rx, ry, rz;
611        CvMat _R = cvMat( 3, 3, CV_64F, R );
612        CvMat _U = cvMat( 3, 3, CV_64F, U );
613        CvMat _V = cvMat( 3, 3, CV_64F, V );
614        CvMat _W = cvMat( 3, 1, CV_64F, W );
615        double theta, s, c;
616        int step = dst->rows > 1 ? dst->step / elem_size : 1;
617
618        if( (dst->rows != 1 || dst->cols*CV_MAT_CN(dst->type) != 3) &&
619            (dst->rows != 3 || dst->cols != 1 || CV_MAT_CN(dst->type) != 1))
620            CV_ERROR( CV_StsBadSize, "Output matrix must be 1x3 or 3x1" );
621
622        cvConvert( src, &_R );
623        if( !cvCheckArr( &_R, CV_CHECK_RANGE+CV_CHECK_QUIET, -100, 100 ) )
624        {
625            cvZero(dst);
626            if( jacobian )
627                cvZero(jacobian);
628            EXIT;
629        }
630
631        cvSVD( &_R, &_W, &_U, &_V, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T );
632        cvGEMM( &_U, &_V, 1, 0, 0, &_R, CV_GEMM_A_T );
633
634        rx = R[7] - R[5];
635        ry = R[2] - R[6];
636        rz = R[3] - R[1];
637
638        s = sqrt((rx*rx + ry*ry + rz*rz)*0.25);
639        c = (R[0] + R[4] + R[8] - 1)*0.5;
640        c = c > 1. ? 1. : c < -1. ? -1. : c;
641        theta = acos(c);
642
643        if( s < 1e-5 )
644        {
645            double t;
646
647            if( c > 0 )
648                rx = ry = rz = 0;
649            else
650            {
651                t = (R[0] + 1)*0.5;
652                rx = theta*sqrt(MAX(t,0.));
653                t = (R[4] + 1)*0.5;
654                ry = theta*sqrt(MAX(t,0.))*(R[1] < 0 ? -1. : 1.);
655                t = (R[8] + 1)*0.5;
656                rz = theta*sqrt(MAX(t,0.))*(R[2] < 0 ? -1. : 1.);
657            }
658
659            if( jacobian )
660            {
661                memset( J, 0, sizeof(J) );
662                if( c > 0 )
663                {
664                    J[5] = J[15] = J[19] = -0.5;
665                    J[7] = J[11] = J[21] = 0.5;
666                }
667            }
668        }
669        else
670        {
671            double vth = 1/(2*s);
672
673            if( jacobian )
674            {
675                double t, dtheta_dtr = -1./s;
676                // var1 = [vth;theta]
677                // var = [om1;var1] = [om1;vth;theta]
678                double dvth_dtheta = -vth*c/s;
679                double d1 = 0.5*dvth_dtheta*dtheta_dtr;
680                double d2 = 0.5*dtheta_dtr;
681                // dvar1/dR = dvar1/dtheta*dtheta/dR = [dvth/dtheta; 1] * dtheta/dtr * dtr/dR
682                double dvardR[5*9] =
683                {
684                    0, 0, 0, 0, 0, 1, 0, -1, 0,
685                    0, 0, -1, 0, 0, 0, 1, 0, 0,
686                    0, 1, 0, -1, 0, 0, 0, 0, 0,
687                    d1, 0, 0, 0, d1, 0, 0, 0, d1,
688                    d2, 0, 0, 0, d2, 0, 0, 0, d2
689                };
690                // var2 = [om;theta]
691                double dvar2dvar[] =
692                {
693                    vth, 0, 0, rx, 0,
694                    0, vth, 0, ry, 0,
695                    0, 0, vth, rz, 0,
696                    0, 0, 0, 0, 1
697                };
698                double domegadvar2[] =
699                {
700                    theta, 0, 0, rx*vth,
701                    0, theta, 0, ry*vth,
702                    0, 0, theta, rz*vth
703                };
704
705                CvMat _dvardR = cvMat( 5, 9, CV_64FC1, dvardR );
706                CvMat _dvar2dvar = cvMat( 4, 5, CV_64FC1, dvar2dvar );
707                CvMat _domegadvar2 = cvMat( 3, 4, CV_64FC1, domegadvar2 );
708                double t0[3*5];
709                CvMat _t0 = cvMat( 3, 5, CV_64FC1, t0 );
710
711                cvMatMul( &_domegadvar2, &_dvar2dvar, &_t0 );
712                cvMatMul( &_t0, &_dvardR, &_J );
713
714                // transpose every row of _J (treat the rows as 3x3 matrices)
715                CV_SWAP(J[1], J[3], t); CV_SWAP(J[2], J[6], t); CV_SWAP(J[5], J[7], t);
716                CV_SWAP(J[10], J[12], t); CV_SWAP(J[11], J[15], t); CV_SWAP(J[14], J[16], t);
717                CV_SWAP(J[19], J[21], t); CV_SWAP(J[20], J[24], t); CV_SWAP(J[23], J[25], t);
718            }
719
720            vth *= theta;
721            rx *= vth; ry *= vth; rz *= vth;
722        }
723
724        if( depth == CV_32F )
725        {
726            dst->data.fl[0] = (float)rx;
727            dst->data.fl[step] = (float)ry;
728            dst->data.fl[step*2] = (float)rz;
729        }
730        else
731        {
732            dst->data.db[0] = rx;
733            dst->data.db[step] = ry;
734            dst->data.db[step*2] = rz;
735        }
736    }
737
738    if( jacobian )
739    {
740        if( depth == CV_32F )
741        {
742            if( jacobian->rows == _J.rows )
743                cvConvert( &_J, jacobian );
744            else
745            {
746                float Jf[3*9];
747                CvMat _Jf = cvMat( _J.rows, _J.cols, CV_32FC1, Jf );
748                cvConvert( &_J, &_Jf );
749                cvTranspose( &_Jf, jacobian );
750            }
751        }
752        else if( jacobian->rows == _J.rows )
753            cvCopy( &_J, jacobian );
754        else
755            cvTranspose( &_J, jacobian );
756    }
757
758    result = 1;
759
760    __END__;
761
762    return result;
763}
764
765
766CV_IMPL void
767cvProjectPoints2( const CvMat* objectPoints,
768                  const CvMat* r_vec,
769                  const CvMat* t_vec,
770                  const CvMat* A,
771                  const CvMat* distCoeffs,
772                  CvMat* imagePoints, CvMat* dpdr,
773                  CvMat* dpdt, CvMat* dpdf,
774                  CvMat* dpdc, CvMat* dpdk,
775                  double aspectRatio )
776{
777    CvMat *_M = 0, *_m = 0;
778    CvMat *_dpdr = 0, *_dpdt = 0, *_dpdc = 0, *_dpdf = 0, *_dpdk = 0;
779
780    CV_FUNCNAME( "cvProjectPoints2" );
781
782    __BEGIN__;
783
784    int i, j, count;
785    int calc_derivatives;
786    const CvPoint3D64f* M;
787    CvPoint2D64f* m;
788    double r[3], R[9], dRdr[27], t[3], a[9], k[5] = {0,0,0,0,0}, fx, fy, cx, cy;
789    CvMat _r, _t, _a = cvMat( 3, 3, CV_64F, a ), _k;
790    CvMat _R = cvMat( 3, 3, CV_64F, R ), _dRdr = cvMat( 3, 9, CV_64F, dRdr );
791    double *dpdr_p = 0, *dpdt_p = 0, *dpdk_p = 0, *dpdf_p = 0, *dpdc_p = 0;
792    int dpdr_step = 0, dpdt_step = 0, dpdk_step = 0, dpdf_step = 0, dpdc_step = 0;
793    bool fixedAspectRatio = aspectRatio > FLT_EPSILON;
794
795    if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(r_vec) ||
796        !CV_IS_MAT(t_vec) || !CV_IS_MAT(A) ||
797        /*!CV_IS_MAT(distCoeffs) ||*/ !CV_IS_MAT(imagePoints) )
798        CV_ERROR( CV_StsBadArg, "One of required arguments is not a valid matrix" );
799
800    count = MAX(objectPoints->rows, objectPoints->cols);
801
802    if( CV_IS_CONT_MAT(objectPoints->type) && CV_MAT_DEPTH(objectPoints->type) == CV_64F &&
803        ((objectPoints->rows == 1 && CV_MAT_CN(objectPoints->type) == 3) ||
804        (objectPoints->rows == count && CV_MAT_CN(objectPoints->type)*objectPoints->cols == 3)))
805        _M = (CvMat*)objectPoints;
806    else
807    {
808        CV_CALL( _M = cvCreateMat( 1, count, CV_64FC3 ));
809        CV_CALL( cvConvertPointsHomogeneous( objectPoints, _M ));
810    }
811
812    if( CV_IS_CONT_MAT(imagePoints->type) && CV_MAT_DEPTH(imagePoints->type) == CV_64F &&
813        ((imagePoints->rows == 1 && CV_MAT_CN(imagePoints->type) == 2) ||
814        (imagePoints->rows == count && CV_MAT_CN(imagePoints->type)*imagePoints->cols == 2)))
815        _m = imagePoints;
816    else
817        CV_CALL( _m = cvCreateMat( 1, count, CV_64FC2 ));
818
819    M = (CvPoint3D64f*)_M->data.db;
820    m = (CvPoint2D64f*)_m->data.db;
821
822    if( (CV_MAT_DEPTH(r_vec->type) != CV_64F && CV_MAT_DEPTH(r_vec->type) != CV_32F) ||
823        (((r_vec->rows != 1 && r_vec->cols != 1) ||
824        r_vec->rows*r_vec->cols*CV_MAT_CN(r_vec->type) != 3) &&
825        ((r_vec->rows != 3 && r_vec->cols != 3) || CV_MAT_CN(r_vec->type) != 1)))
826        CV_ERROR( CV_StsBadArg, "Rotation must be represented by 1x3 or 3x1 "
827                  "floating-point rotation vector, or 3x3 rotation matrix" );
828
829    if( r_vec->rows == 3 && r_vec->cols == 3 )
830    {
831        _r = cvMat( 3, 1, CV_64FC1, r );
832        CV_CALL( cvRodrigues2( r_vec, &_r ));
833        CV_CALL( cvRodrigues2( &_r, &_R, &_dRdr ));
834        cvCopy( r_vec, &_R );
835    }
836    else
837    {
838        _r = cvMat( r_vec->rows, r_vec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(r_vec->type)), r );
839        CV_CALL( cvConvert( r_vec, &_r ));
840        CV_CALL( cvRodrigues2( &_r, &_R, &_dRdr ) );
841    }
842
843    if( (CV_MAT_DEPTH(t_vec->type) != CV_64F && CV_MAT_DEPTH(t_vec->type) != CV_32F) ||
844        (t_vec->rows != 1 && t_vec->cols != 1) ||
845        t_vec->rows*t_vec->cols*CV_MAT_CN(t_vec->type) != 3 )
846        CV_ERROR( CV_StsBadArg,
847            "Translation vector must be 1x3 or 3x1 floating-point vector" );
848
849    _t = cvMat( t_vec->rows, t_vec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(t_vec->type)), t );
850    CV_CALL( cvConvert( t_vec, &_t ));
851
852    if( (CV_MAT_TYPE(A->type) != CV_64FC1 && CV_MAT_TYPE(A->type) != CV_32FC1) ||
853        A->rows != 3 || A->cols != 3 )
854        CV_ERROR( CV_StsBadArg, "Instrinsic parameters must be 3x3 floating-point matrix" );
855
856    CV_CALL( cvConvert( A, &_a ));
857    fx = a[0]; fy = a[4];
858    cx = a[2]; cy = a[5];
859
860    if( fixedAspectRatio )
861        fx = fy*aspectRatio;
862
863    if( distCoeffs )
864    {
865        if( !CV_IS_MAT(distCoeffs) ||
866            (CV_MAT_DEPTH(distCoeffs->type) != CV_64F &&
867            CV_MAT_DEPTH(distCoeffs->type) != CV_32F) ||
868            (distCoeffs->rows != 1 && distCoeffs->cols != 1) ||
869            (distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 4 &&
870            distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 5) )
871            CV_ERROR( CV_StsBadArg,
872                "Distortion coefficients must be 1x4, 4x1, 1x5 or 5x1 floating-point vector" );
873
874        _k = cvMat( distCoeffs->rows, distCoeffs->cols,
875                    CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k );
876        CV_CALL( cvConvert( distCoeffs, &_k ));
877    }
878
879    if( dpdr )
880    {
881        if( !CV_IS_MAT(dpdr) ||
882            (CV_MAT_TYPE(dpdr->type) != CV_32FC1 &&
883            CV_MAT_TYPE(dpdr->type) != CV_64FC1) ||
884            dpdr->rows != count*2 || dpdr->cols != 3 )
885            CV_ERROR( CV_StsBadArg, "dp/drot must be 2Nx3 floating-point matrix" );
886
887        if( CV_MAT_TYPE(dpdr->type) == CV_64FC1 )
888            _dpdr = dpdr;
889        else
890            CV_CALL( _dpdr = cvCreateMat( 2*count, 3, CV_64FC1 ));
891        dpdr_p = _dpdr->data.db;
892        dpdr_step = _dpdr->step/sizeof(dpdr_p[0]);
893    }
894
895    if( dpdt )
896    {
897        if( !CV_IS_MAT(dpdt) ||
898            (CV_MAT_TYPE(dpdt->type) != CV_32FC1 &&
899            CV_MAT_TYPE(dpdt->type) != CV_64FC1) ||
900            dpdt->rows != count*2 || dpdt->cols != 3 )
901            CV_ERROR( CV_StsBadArg, "dp/dT must be 2Nx3 floating-point matrix" );
902
903        if( CV_MAT_TYPE(dpdt->type) == CV_64FC1 )
904            _dpdt = dpdt;
905        else
906            CV_CALL( _dpdt = cvCreateMat( 2*count, 3, CV_64FC1 ));
907        dpdt_p = _dpdt->data.db;
908        dpdt_step = _dpdt->step/sizeof(dpdt_p[0]);
909    }
910
911    if( dpdf )
912    {
913        if( !CV_IS_MAT(dpdf) ||
914            (CV_MAT_TYPE(dpdf->type) != CV_32FC1 && CV_MAT_TYPE(dpdf->type) != CV_64FC1) ||
915            dpdf->rows != count*2 || dpdf->cols != 2 )
916            CV_ERROR( CV_StsBadArg, "dp/df must be 2Nx2 floating-point matrix" );
917
918        if( CV_MAT_TYPE(dpdf->type) == CV_64FC1 )
919            _dpdf = dpdf;
920        else
921            CV_CALL( _dpdf = cvCreateMat( 2*count, 2, CV_64FC1 ));
922        dpdf_p = _dpdf->data.db;
923        dpdf_step = _dpdf->step/sizeof(dpdf_p[0]);
924    }
925
926    if( dpdc )
927    {
928        if( !CV_IS_MAT(dpdc) ||
929            (CV_MAT_TYPE(dpdc->type) != CV_32FC1 && CV_MAT_TYPE(dpdc->type) != CV_64FC1) ||
930            dpdc->rows != count*2 || dpdc->cols != 2 )
931            CV_ERROR( CV_StsBadArg, "dp/dc must be 2Nx2 floating-point matrix" );
932
933        if( CV_MAT_TYPE(dpdc->type) == CV_64FC1 )
934            _dpdc = dpdc;
935        else
936            CV_CALL( _dpdc = cvCreateMat( 2*count, 2, CV_64FC1 ));
937        dpdc_p = _dpdc->data.db;
938        dpdc_step = _dpdc->step/sizeof(dpdc_p[0]);
939    }
940
941    if( dpdk )
942    {
943        if( !CV_IS_MAT(dpdk) ||
944            (CV_MAT_TYPE(dpdk->type) != CV_32FC1 && CV_MAT_TYPE(dpdk->type) != CV_64FC1) ||
945            dpdk->rows != count*2 || (dpdk->cols != 5 && dpdk->cols != 4 && dpdk->cols != 2) )
946            CV_ERROR( CV_StsBadArg, "dp/df must be 2Nx5, 2Nx4 or 2Nx2 floating-point matrix" );
947
948        if( !distCoeffs )
949            CV_ERROR( CV_StsNullPtr, "distCoeffs is NULL while dpdk is not" );
950
951        if( CV_MAT_TYPE(dpdk->type) == CV_64FC1 )
952            _dpdk = dpdk;
953        else
954            CV_CALL( _dpdk = cvCreateMat( dpdk->rows, dpdk->cols, CV_64FC1 ));
955        dpdk_p = _dpdk->data.db;
956        dpdk_step = _dpdk->step/sizeof(dpdk_p[0]);
957    }
958
959    calc_derivatives = dpdr || dpdt || dpdf || dpdc || dpdk;
960
961    for( i = 0; i < count; i++ )
962    {
963        double X = M[i].x, Y = M[i].y, Z = M[i].z;
964        double x = R[0]*X + R[1]*Y + R[2]*Z + t[0];
965        double y = R[3]*X + R[4]*Y + R[5]*Z + t[1];
966        double z = R[6]*X + R[7]*Y + R[8]*Z + t[2];
967        double r2, r4, r6, a1, a2, a3, cdist;
968        double xd, yd;
969
970        z = z ? 1./z : 1;
971        x *= z; y *= z;
972
973        r2 = x*x + y*y;
974        r4 = r2*r2;
975        r6 = r4*r2;
976        a1 = 2*x*y;
977        a2 = r2 + 2*x*x;
978        a3 = r2 + 2*y*y;
979        cdist = 1 + k[0]*r2 + k[1]*r4 + k[4]*r6;
980        xd = x*cdist + k[2]*a1 + k[3]*a2;
981        yd = y*cdist + k[2]*a3 + k[3]*a1;
982
983        m[i].x = xd*fx + cx;
984        m[i].y = yd*fy + cy;
985
986        if( calc_derivatives )
987        {
988            if( dpdc_p )
989            {
990                dpdc_p[0] = 1; dpdc_p[1] = 0;
991                dpdc_p[dpdc_step] = 0;
992                dpdc_p[dpdc_step+1] = 1;
993                dpdc_p += dpdc_step*2;
994            }
995
996            if( dpdf_p )
997            {
998                if( fixedAspectRatio )
999                {
1000                    dpdf_p[0] = 0; dpdf_p[1] = xd*aspectRatio;
1001                    dpdf_p[dpdf_step] = 0;
1002                    dpdf_p[dpdf_step+1] = yd;
1003                }
1004                else
1005                {
1006                    dpdf_p[0] = xd; dpdf_p[1] = 0;
1007                    dpdf_p[dpdf_step] = 0;
1008                    dpdf_p[dpdf_step+1] = yd;
1009                }
1010                dpdf_p += dpdf_step*2;
1011            }
1012
1013            if( dpdk_p )
1014            {
1015                dpdk_p[0] = fx*x*r2;
1016                dpdk_p[1] = fx*x*r4;
1017                dpdk_p[dpdk_step] = fy*y*r2;
1018                dpdk_p[dpdk_step+1] = fy*y*r4;
1019                if( _dpdk->cols > 2 )
1020                {
1021                    dpdk_p[2] = fx*a1;
1022                    dpdk_p[3] = fx*a2;
1023                    dpdk_p[dpdk_step+2] = fy*a3;
1024                    dpdk_p[dpdk_step+3] = fy*a1;
1025                    if( _dpdk->cols > 4 )
1026                    {
1027                        dpdk_p[4] = fx*x*r6;
1028                        dpdk_p[dpdk_step+4] = fy*y*r6;
1029                    }
1030                }
1031                dpdk_p += dpdk_step*2;
1032            }
1033
1034            if( dpdt_p )
1035            {
1036                double dxdt[] = { z, 0, -x*z }, dydt[] = { 0, z, -y*z };
1037                for( j = 0; j < 3; j++ )
1038                {
1039                    double dr2dt = 2*x*dxdt[j] + 2*y*dydt[j];
1040                    double dcdist_dt = k[0]*dr2dt + 2*k[1]*r2*dr2dt + 3*k[4]*r4*dr2dt;
1041                    double da1dt = 2*(x*dydt[j] + y*dxdt[j]);
1042                    double dmxdt = fx*(dxdt[j]*cdist + x*dcdist_dt +
1043                                k[2]*da1dt + k[3]*(dr2dt + 2*x*dxdt[j]));
1044                    double dmydt = fy*(dydt[j]*cdist + y*dcdist_dt +
1045                                k[2]*(dr2dt + 2*y*dydt[j]) + k[3]*da1dt);
1046                    dpdt_p[j] = dmxdt;
1047                    dpdt_p[dpdt_step+j] = dmydt;
1048                }
1049                dpdt_p += dpdt_step*2;
1050            }
1051
1052            if( dpdr_p )
1053            {
1054                double dx0dr[] =
1055                {
1056                    X*dRdr[0] + Y*dRdr[1] + Z*dRdr[2],
1057                    X*dRdr[9] + Y*dRdr[10] + Z*dRdr[11],
1058                    X*dRdr[18] + Y*dRdr[19] + Z*dRdr[20]
1059                };
1060                double dy0dr[] =
1061                {
1062                    X*dRdr[3] + Y*dRdr[4] + Z*dRdr[5],
1063                    X*dRdr[12] + Y*dRdr[13] + Z*dRdr[14],
1064                    X*dRdr[21] + Y*dRdr[22] + Z*dRdr[23]
1065                };
1066                double dz0dr[] =
1067                {
1068                    X*dRdr[6] + Y*dRdr[7] + Z*dRdr[8],
1069                    X*dRdr[15] + Y*dRdr[16] + Z*dRdr[17],
1070                    X*dRdr[24] + Y*dRdr[25] + Z*dRdr[26]
1071                };
1072                for( j = 0; j < 3; j++ )
1073                {
1074                    double dxdr = z*(dx0dr[j] - x*dz0dr[j]);
1075                    double dydr = z*(dy0dr[j] - y*dz0dr[j]);
1076                    double dr2dr = 2*x*dxdr + 2*y*dydr;
1077                    double dcdist_dr = k[0]*dr2dr + 2*k[1]*r2*dr2dr + 3*k[4]*r4*dr2dr;
1078                    double da1dr = 2*(x*dydr + y*dxdr);
1079                    double dmxdr = fx*(dxdr*cdist + x*dcdist_dr +
1080                                k[2]*da1dr + k[3]*(dr2dr + 2*x*dxdr));
1081                    double dmydr = fy*(dydr*cdist + y*dcdist_dr +
1082                                k[2]*(dr2dr + 2*y*dydr) + k[3]*da1dr);
1083                    dpdr_p[j] = dmxdr;
1084                    dpdr_p[dpdr_step+j] = dmydr;
1085                }
1086                dpdr_p += dpdr_step*2;
1087            }
1088        }
1089    }
1090
1091    if( _m != imagePoints )
1092        cvConvertPointsHomogeneous( _m, imagePoints );
1093    if( _dpdr != dpdr )
1094        cvConvert( _dpdr, dpdr );
1095    if( _dpdt != dpdt )
1096        cvConvert( _dpdt, dpdt );
1097    if( _dpdf != dpdf )
1098        cvConvert( _dpdf, dpdf );
1099    if( _dpdc != dpdc )
1100        cvConvert( _dpdc, dpdc );
1101    if( _dpdk != dpdk )
1102        cvConvert( _dpdk, dpdk );
1103
1104    __END__;
1105
1106    if( _M != objectPoints )
1107        cvReleaseMat( &_M );
1108    if( _m != imagePoints )
1109        cvReleaseMat( &_m );
1110    if( _dpdr != dpdr )
1111        cvReleaseMat( &_dpdr );
1112    if( _dpdt != dpdt )
1113        cvReleaseMat( &_dpdt );
1114    if( _dpdf != dpdf )
1115        cvReleaseMat( &_dpdf );
1116    if( _dpdc != dpdc )
1117        cvReleaseMat( &_dpdc );
1118    if( _dpdk != dpdk )
1119        cvReleaseMat( &_dpdk );
1120}
1121
1122
1123CV_IMPL void
1124cvFindExtrinsicCameraParams2( const CvMat* objectPoints,
1125                  const CvMat* imagePoints, const CvMat* A,
1126                  const CvMat* distCoeffs,
1127                  CvMat* rvec, CvMat* tvec )
1128{
1129    const int max_iter = 20;
1130    CvMat *_M = 0, *_Mxy = 0, *_m = 0, *_mn = 0, *_L = 0, *_J = 0;
1131
1132    CV_FUNCNAME( "cvFindExtrinsicCameraParams2" );
1133
1134    __BEGIN__;
1135
1136    int i, count;
1137    double a[9], ar[9]={1,0,0,0,1,0,0,0,1}, R[9];
1138    double MM[9], U[9], V[9], W[3];
1139    CvScalar Mc;
1140    double JtJ[6*6], JtErr[6], JtJW[6], JtJV[6*6], delta[6], param[6];
1141    CvMat _A = cvMat( 3, 3, CV_64F, a );
1142    CvMat _Ar = cvMat( 3, 3, CV_64F, ar );
1143    CvMat _R = cvMat( 3, 3, CV_64F, R );
1144    CvMat _r = cvMat( 3, 1, CV_64F, param );
1145    CvMat _t = cvMat( 3, 1, CV_64F, param + 3 );
1146    CvMat _Mc = cvMat( 1, 3, CV_64F, Mc.val );
1147    CvMat _MM = cvMat( 3, 3, CV_64F, MM );
1148    CvMat _U = cvMat( 3, 3, CV_64F, U );
1149    CvMat _V = cvMat( 3, 3, CV_64F, V );
1150    CvMat _W = cvMat( 3, 1, CV_64F, W );
1151    CvMat _JtJ = cvMat( 6, 6, CV_64F, JtJ );
1152    CvMat _JtErr = cvMat( 6, 1, CV_64F, JtErr );
1153    CvMat _JtJW = cvMat( 6, 1, CV_64F, JtJW );
1154    CvMat _JtJV = cvMat( 6, 6, CV_64F, JtJV );
1155    CvMat _delta = cvMat( 6, 1, CV_64F, delta );
1156    CvMat _param = cvMat( 6, 1, CV_64F, param );
1157    CvMat _dpdr, _dpdt;
1158
1159    CV_ASSERT( CV_IS_MAT(objectPoints) && CV_IS_MAT(imagePoints) &&
1160        CV_IS_MAT(A) && CV_IS_MAT(rvec) && CV_IS_MAT(tvec) );
1161
1162    count = MAX(objectPoints->cols, objectPoints->rows);
1163    CV_CALL( _M = cvCreateMat( 1, count, CV_64FC3 ));
1164    CV_CALL( _m = cvCreateMat( 1, count, CV_64FC2 ));
1165
1166    CV_CALL( cvConvertPointsHomogeneous( objectPoints, _M ));
1167    CV_CALL( cvConvertPointsHomogeneous( imagePoints, _m ));
1168    CV_CALL( cvConvert( A, &_A ));
1169
1170    CV_ASSERT( (CV_MAT_DEPTH(rvec->type) == CV_64F || CV_MAT_DEPTH(rvec->type) == CV_32F) &&
1171        (rvec->rows == 1 || rvec->cols == 1) && rvec->rows*rvec->cols*CV_MAT_CN(rvec->type) == 3 );
1172
1173    CV_ASSERT( (CV_MAT_DEPTH(tvec->type) == CV_64F || CV_MAT_DEPTH(tvec->type) == CV_32F) &&
1174        (tvec->rows == 1 || tvec->cols == 1) && tvec->rows*tvec->cols*CV_MAT_CN(tvec->type) == 3 );
1175
1176    CV_CALL( _mn = cvCreateMat( 1, count, CV_64FC2 ));
1177    CV_CALL( _Mxy = cvCreateMat( 1, count, CV_64FC2 ));
1178
1179    // normalize image points
1180    // (unapply the intrinsic matrix transformation and distortion)
1181    cvUndistortPoints( _m, _mn, &_A, distCoeffs, 0, &_Ar );
1182
1183    Mc = cvAvg(_M);
1184    cvReshape( _M, _M, 1, count );
1185    cvMulTransposed( _M, &_MM, 1, &_Mc );
1186    cvSVD( &_MM, &_W, 0, &_V, CV_SVD_MODIFY_A + CV_SVD_V_T );
1187
1188    // initialize extrinsic parameters
1189    if( W[2]/W[1] < 1e-3 || count < 4 )
1190    {
1191        // a planar structure case (all M's lie in the same plane)
1192        double tt[3], h[9], h1_norm, h2_norm;
1193        CvMat* R_transform = &_V;
1194        CvMat T_transform = cvMat( 3, 1, CV_64F, tt );
1195        CvMat _H = cvMat( 3, 3, CV_64F, h );
1196        CvMat _h1, _h2, _h3;
1197
1198        if( V[2]*V[2] + V[5]*V[5] < 1e-10 )
1199            cvSetIdentity( R_transform );
1200
1201        if( cvDet(R_transform) < 0 )
1202            cvScale( R_transform, R_transform, -1 );
1203
1204        cvGEMM( R_transform, &_Mc, -1, 0, 0, &T_transform, CV_GEMM_B_T );
1205
1206        for( i = 0; i < count; i++ )
1207        {
1208            const double* Rp = R_transform->data.db;
1209            const double* Tp = T_transform.data.db;
1210            const double* src = _M->data.db + i*3;
1211            double* dst = _Mxy->data.db + i*2;
1212
1213            dst[0] = Rp[0]*src[0] + Rp[1]*src[1] + Rp[2]*src[2] + Tp[0];
1214            dst[1] = Rp[3]*src[0] + Rp[4]*src[1] + Rp[5]*src[2] + Tp[1];
1215        }
1216
1217        cvFindHomography( _Mxy, _mn, &_H );
1218
1219        cvGetCol( &_H, &_h1, 0 );
1220        _h2 = _h1; _h2.data.db++;
1221        _h3 = _h2; _h3.data.db++;
1222        h1_norm = sqrt(h[0]*h[0] + h[3]*h[3] + h[6]*h[6]);
1223        h2_norm = sqrt(h[1]*h[1] + h[4]*h[4] + h[7]*h[7]);
1224
1225        cvScale( &_h1, &_h1, 1./h1_norm );
1226        cvScale( &_h2, &_h2, 1./h2_norm );
1227        cvScale( &_h3, &_t, 2./(h1_norm + h2_norm));
1228        cvCrossProduct( &_h1, &_h2, &_h3 );
1229
1230        cvRodrigues2( &_H, &_r );
1231        cvRodrigues2( &_r, &_H );
1232        cvMatMulAdd( &_H, &T_transform, &_t, &_t );
1233        cvMatMul( &_H, R_transform, &_R );
1234        cvRodrigues2( &_R, &_r );
1235    }
1236    else
1237    {
1238        // non-planar structure. Use DLT method
1239        double* L;
1240        double LL[12*12], LW[12], LV[12*12], sc;
1241        CvMat _LL = cvMat( 12, 12, CV_64F, LL );
1242        CvMat _LW = cvMat( 12, 1, CV_64F, LW );
1243        CvMat _LV = cvMat( 12, 12, CV_64F, LV );
1244        CvMat _RRt, _RR, _tt;
1245        CvPoint3D64f* M = (CvPoint3D64f*)_M->data.db;
1246        CvPoint2D64f* mn = (CvPoint2D64f*)_mn->data.db;
1247
1248        CV_CALL( _L = cvCreateMat( 2*count, 12, CV_64F ));
1249        L = _L->data.db;
1250
1251        for( i = 0; i < count; i++, L += 24 )
1252        {
1253            double x = -mn[i].x, y = -mn[i].y;
1254            L[0] = L[16] = M[i].x;
1255            L[1] = L[17] = M[i].y;
1256            L[2] = L[18] = M[i].z;
1257            L[3] = L[19] = 1.;
1258            L[4] = L[5] = L[6] = L[7] = 0.;
1259            L[12] = L[13] = L[14] = L[15] = 0.;
1260            L[8] = x*M[i].x;
1261            L[9] = x*M[i].y;
1262            L[10] = x*M[i].z;
1263            L[11] = x;
1264            L[20] = y*M[i].x;
1265            L[21] = y*M[i].y;
1266            L[22] = y*M[i].z;
1267            L[23] = y;
1268        }
1269
1270        cvMulTransposed( _L, &_LL, 1 );
1271        cvSVD( &_LL, &_LW, 0, &_LV, CV_SVD_MODIFY_A + CV_SVD_V_T );
1272        _RRt = cvMat( 3, 4, CV_64F, LV + 11*12 );
1273        cvGetCols( &_RRt, &_RR, 0, 3 );
1274        cvGetCol( &_RRt, &_tt, 3 );
1275        if( cvDet(&_RR) < 0 )
1276            cvScale( &_RRt, &_RRt, -1 );
1277        sc = cvNorm(&_RR);
1278        cvSVD( &_RR, &_W, &_U, &_V, CV_SVD_MODIFY_A + CV_SVD_U_T + CV_SVD_V_T );
1279        cvGEMM( &_U, &_V, 1, 0, 0, &_R, CV_GEMM_A_T );
1280        cvScale( &_tt, &_t, cvNorm(&_R)/sc );
1281        cvRodrigues2( &_R, &_r );
1282        cvReleaseMat( &_L );
1283    }
1284
1285    cvReshape( _M, _M, 3, 1 );
1286    cvReshape( _mn, _mn, 2, 1 );
1287
1288    CV_CALL( _J = cvCreateMat( 2*count, 6, CV_64FC1 ));
1289    cvGetCols( _J, &_dpdr, 0, 3 );
1290    cvGetCols( _J, &_dpdt, 3, 6 );
1291
1292    // refine extrinsic parameters using iterative algorithm
1293    for( i = 0; i < max_iter; i++ )
1294    {
1295        double n1, n2;
1296        cvReshape( _mn, _mn, 2, 1 );
1297        cvProjectPoints2( _M, &_r, &_t, &_A, distCoeffs,
1298                          _mn, &_dpdr, &_dpdt, 0, 0, 0 );
1299        cvSub( _m, _mn, _mn );
1300        cvReshape( _mn, _mn, 1, 2*count );
1301
1302        cvMulTransposed( _J, &_JtJ, 1 );
1303        cvGEMM( _J, _mn, 1, 0, 0, &_JtErr, CV_GEMM_A_T );
1304        cvSVD( &_JtJ, &_JtJW, 0, &_JtJV, CV_SVD_MODIFY_A + CV_SVD_V_T );
1305        if( JtJW[5]/JtJW[0] < 1e-12 )
1306            break;
1307        cvSVBkSb( &_JtJW, &_JtJV, &_JtJV, &_JtErr,
1308                  &_delta, CV_SVD_U_T + CV_SVD_V_T );
1309        cvAdd( &_delta, &_param, &_param );
1310        n1 = cvNorm( &_delta );
1311        n2 = cvNorm( &_param );
1312        if( n1/n2 < 1e-10 )
1313            break;
1314    }
1315
1316    _r = cvMat( rvec->rows, rvec->cols,
1317        CV_MAKETYPE(CV_64F,CV_MAT_CN(rvec->type)), param );
1318    _t = cvMat( tvec->rows, tvec->cols,
1319        CV_MAKETYPE(CV_64F,CV_MAT_CN(tvec->type)), param + 3 );
1320
1321    cvConvert( &_r, rvec );
1322    cvConvert( &_t, tvec );
1323
1324    __END__;
1325
1326    cvReleaseMat( &_M );
1327    cvReleaseMat( &_Mxy );
1328    cvReleaseMat( &_m );
1329    cvReleaseMat( &_mn );
1330    cvReleaseMat( &_L );
1331    cvReleaseMat( &_J );
1332}
1333
1334
1335CV_IMPL void
1336cvInitIntrinsicParams2D( const CvMat* objectPoints,
1337                         const CvMat* imagePoints,
1338                         const CvMat* npoints,
1339                         CvSize imageSize,
1340                         CvMat* cameraMatrix,
1341                         double aspectRatio )
1342{
1343    CvMat *_A = 0, *_b = 0, *_allH = 0, *_allK = 0;
1344
1345    CV_FUNCNAME( "cvInitIntrinsicParams2D" );
1346
1347    __BEGIN__;
1348
1349    int i, j, pos, nimages, total, ni = 0;
1350    double a[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 1 };
1351    double H[9], f[2];
1352    CvMat _a = cvMat( 3, 3, CV_64F, a );
1353    CvMat _H = cvMat( 3, 3, CV_64F, H );
1354    CvMat _f = cvMat( 2, 1, CV_64F, f );
1355
1356    assert( CV_MAT_TYPE(npoints->type) == CV_32SC1 &&
1357            CV_IS_MAT_CONT(npoints->type) );
1358    nimages = npoints->rows + npoints->cols - 1;
1359
1360    if( (CV_MAT_TYPE(objectPoints->type) != CV_32FC3 &&
1361        CV_MAT_TYPE(objectPoints->type) != CV_64FC3) ||
1362        (CV_MAT_TYPE(imagePoints->type) != CV_32FC2 &&
1363        CV_MAT_TYPE(imagePoints->type) != CV_64FC2) )
1364        CV_ERROR( CV_StsUnsupportedFormat, "Both object points and image points must be 2D" );
1365
1366    if( objectPoints->rows != 1 || imagePoints->rows != 1 )
1367        CV_ERROR( CV_StsBadSize, "object points and image points must be a single-row matrices" );
1368
1369    _A = cvCreateMat( 2*nimages, 2, CV_64F );
1370    _b = cvCreateMat( 2*nimages, 1, CV_64F );
1371    a[2] = (imageSize.width - 1)*0.5;
1372    a[5] = (imageSize.height - 1)*0.5;
1373    _allH = cvCreateMat( nimages, 9, CV_64F );
1374
1375    total = cvRound(cvSum(npoints).val[0]);
1376
1377    // extract vanishing points in order to obtain initial value for the focal length
1378    for( i = 0, pos = 0; i < nimages; i++, pos += ni )
1379    {
1380        double* Ap = _A->data.db + i*4;
1381        double* bp = _b->data.db + i*2;
1382        ni = npoints->data.i[i];
1383        double h[3], v[3], d1[3], d2[3];
1384        double n[4] = {0,0,0,0};
1385        CvMat _m, _M;
1386        cvGetCols( objectPoints, &_M, pos, pos + ni );
1387        cvGetCols( imagePoints, &_m, pos, pos + ni );
1388
1389        cvFindHomography( &_M, &_m, &_H );
1390        memcpy( _allH->data.db + i*9, H, sizeof(H) );
1391
1392        H[0] -= H[6]*a[2]; H[1] -= H[7]*a[2]; H[2] -= H[8]*a[2];
1393        H[3] -= H[6]*a[5]; H[4] -= H[7]*a[5]; H[5] -= H[8]*a[5];
1394
1395        for( j = 0; j < 3; j++ )
1396        {
1397            double t0 = H[j*3], t1 = H[j*3+1];
1398            h[j] = t0; v[j] = t1;
1399            d1[j] = (t0 + t1)*0.5;
1400            d2[j] = (t0 - t1)*0.5;
1401            n[0] += t0*t0; n[1] += t1*t1;
1402            n[2] += d1[j]*d1[j]; n[3] += d2[j]*d2[j];
1403        }
1404
1405        for( j = 0; j < 4; j++ )
1406            n[j] = 1./sqrt(n[j]);
1407
1408        for( j = 0; j < 3; j++ )
1409        {
1410            h[j] *= n[0]; v[j] *= n[1];
1411            d1[j] *= n[2]; d2[j] *= n[3];
1412        }
1413
1414        Ap[0] = h[0]*v[0]; Ap[1] = h[1]*v[1];
1415        Ap[2] = d1[0]*d2[0]; Ap[3] = d1[1]*d2[1];
1416        bp[0] = -h[2]*v[2]; bp[1] = -d1[2]*d2[2];
1417    }
1418
1419    cvSolve( _A, _b, &_f, CV_LSQ | CV_SVD );
1420    a[0] = sqrt(fabs(1./f[0]));
1421    a[4] = sqrt(fabs(1./f[1]));
1422    if( aspectRatio != 0 )
1423    {
1424        double tf = (a[0] + a[4])/(aspectRatio + 1.);
1425        a[0] = aspectRatio*tf;
1426        a[4] = tf;
1427    }
1428
1429    cvConvert( &_a, cameraMatrix );
1430
1431    __END__;
1432
1433    cvReleaseMat( &_A );
1434    cvReleaseMat( &_b );
1435    cvReleaseMat( &_allH );
1436    cvReleaseMat( &_allK );
1437}
1438
1439
1440/* finds intrinsic and extrinsic camera parameters
1441   from a few views of known calibration pattern */
1442CV_IMPL void
1443cvCalibrateCamera2( const CvMat* objectPoints,
1444                    const CvMat* imagePoints,
1445                    const CvMat* npoints,
1446                    CvSize imageSize,
1447                    CvMat* cameraMatrix, CvMat* distCoeffs,
1448                    CvMat* rvecs, CvMat* tvecs,
1449                    int flags )
1450{
1451    const int NINTRINSIC = 9;
1452    CvMat *_M = 0, *_m = 0, *_Ji = 0, *_Je = 0, *_err = 0;
1453    CvLevMarq solver;
1454
1455    CV_FUNCNAME( "cvCalibrateCamera2" );
1456
1457    __BEGIN__;
1458
1459    double A[9], k[5] = {0,0,0,0,0};
1460    CvMat _A = cvMat(3, 3, CV_64F, A), _k;
1461    int i, nimages, maxPoints = 0, ni = 0, pos, total = 0, nparams, npstep, cn;
1462    double aspectRatio = 0.;
1463
1464    // 0. check the parameters & allocate buffers
1465    if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(imagePoints) ||
1466        !CV_IS_MAT(npoints) || !CV_IS_MAT(cameraMatrix) || !CV_IS_MAT(distCoeffs) )
1467        CV_ERROR( CV_StsBadArg, "One of required vector arguments is not a valid matrix" );
1468
1469    if( imageSize.width <= 0 || imageSize.height <= 0 )
1470        CV_ERROR( CV_StsOutOfRange, "image width and height must be positive" );
1471
1472    if( CV_MAT_TYPE(npoints->type) != CV_32SC1 ||
1473        (npoints->rows != 1 && npoints->cols != 1) )
1474        CV_ERROR( CV_StsUnsupportedFormat,
1475            "the array of point counters must be 1-dimensional integer vector" );
1476
1477    nimages = npoints->rows*npoints->cols;
1478    npstep = npoints->rows == 1 ? 1 : npoints->step/CV_ELEM_SIZE(npoints->type);
1479
1480    if( rvecs )
1481    {
1482        cn = CV_MAT_CN(rvecs->type);
1483        if( !CV_IS_MAT(rvecs) ||
1484            (CV_MAT_DEPTH(rvecs->type) != CV_32F && CV_MAT_DEPTH(rvecs->type) != CV_64F) ||
1485            ((rvecs->rows != nimages || (rvecs->cols*cn != 3 && rvecs->cols*cn != 9)) &&
1486            (rvecs->rows != 1 || rvecs->cols != nimages || cn != 3)) )
1487            CV_ERROR( CV_StsBadArg, "the output array of rotation vectors must be 3-channel "
1488                "1xn or nx1 array or 1-channel nx3 or nx9 array, where n is the number of views" );
1489    }
1490
1491    if( tvecs )
1492    {
1493        cn = CV_MAT_CN(tvecs->type);
1494        if( !CV_IS_MAT(tvecs) ||
1495            (CV_MAT_DEPTH(tvecs->type) != CV_32F && CV_MAT_DEPTH(tvecs->type) != CV_64F) ||
1496            ((tvecs->rows != nimages || tvecs->cols*cn != 3) &&
1497            (tvecs->rows != 1 || tvecs->cols != nimages || cn != 3)) )
1498            CV_ERROR( CV_StsBadArg, "the output array of translation vectors must be 3-channel "
1499                "1xn or nx1 array or 1-channel nx3 array, where n is the number of views" );
1500    }
1501
1502    if( (CV_MAT_TYPE(cameraMatrix->type) != CV_32FC1 &&
1503        CV_MAT_TYPE(cameraMatrix->type) != CV_64FC1) ||
1504        cameraMatrix->rows != 3 || cameraMatrix->cols != 3 )
1505        CV_ERROR( CV_StsBadArg,
1506            "Intrinsic parameters must be 3x3 floating-point matrix" );
1507
1508    if( (CV_MAT_TYPE(distCoeffs->type) != CV_32FC1 &&
1509        CV_MAT_TYPE(distCoeffs->type) != CV_64FC1) ||
1510        (distCoeffs->cols != 1 && distCoeffs->rows != 1) ||
1511        (distCoeffs->cols*distCoeffs->rows != 4 &&
1512        distCoeffs->cols*distCoeffs->rows != 5) )
1513        CV_ERROR( CV_StsBadArg,
1514            "Distortion coefficients must be 4x1, 1x4, 5x1 or 1x5 floating-point matrix" );
1515
1516    for( i = 0; i < nimages; i++ )
1517    {
1518        ni = npoints->data.i[i*npstep];
1519        if( ni < 4 )
1520        {
1521            char buf[100];
1522            sprintf( buf, "The number of points in the view #%d is < 4", i );
1523            CV_ERROR( CV_StsOutOfRange, buf );
1524        }
1525        maxPoints = MAX( maxPoints, ni );
1526        total += ni;
1527    }
1528
1529    CV_CALL( _M = cvCreateMat( 1, total, CV_64FC3 ));
1530    CV_CALL( _m = cvCreateMat( 1, total, CV_64FC2 ));
1531
1532    CV_CALL( cvConvertPointsHomogeneous( objectPoints, _M ));
1533    CV_CALL( cvConvertPointsHomogeneous( imagePoints, _m ));
1534
1535    nparams = NINTRINSIC + nimages*6;
1536    CV_CALL( _Ji = cvCreateMat( maxPoints*2, NINTRINSIC, CV_64FC1 ));
1537    CV_CALL( _Je = cvCreateMat( maxPoints*2, 6, CV_64FC1 ));
1538    CV_CALL( _err = cvCreateMat( maxPoints*2, 1, CV_64FC1 ));
1539    cvZero( _Ji );
1540
1541    _k = cvMat( distCoeffs->rows, distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k);
1542    if( distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) == 4 )
1543        flags |= CV_CALIB_FIX_K3;
1544
1545    // 1. initialize intrinsic parameters & LM solver
1546    if( flags & CV_CALIB_USE_INTRINSIC_GUESS )
1547    {
1548        cvConvert( cameraMatrix, &_A );
1549        if( A[0] <= 0 || A[4] <= 0 )
1550            CV_ERROR( CV_StsOutOfRange, "Focal length (fx and fy) must be positive" );
1551        if( A[2] < 0 || A[2] >= imageSize.width ||
1552            A[5] < 0 || A[5] >= imageSize.height )
1553            CV_ERROR( CV_StsOutOfRange, "Principal point must be within the image" );
1554        if( fabs(A[1]) > 1e-5 )
1555            CV_ERROR( CV_StsOutOfRange, "Non-zero skew is not supported by the function" );
1556        if( fabs(A[3]) > 1e-5 || fabs(A[6]) > 1e-5 ||
1557            fabs(A[7]) > 1e-5 || fabs(A[8]-1) > 1e-5 )
1558            CV_ERROR( CV_StsOutOfRange,
1559                "The intrinsic matrix must have [fx 0 cx; 0 fy cy; 0 0 1] shape" );
1560        A[1] = A[3] = A[6] = A[7] = 0.;
1561        A[8] = 1.;
1562
1563        if( flags & CV_CALIB_FIX_ASPECT_RATIO )
1564            aspectRatio = A[0]/A[4];
1565        cvConvert( distCoeffs, &_k );
1566    }
1567    else
1568    {
1569        CvScalar mean, sdv;
1570        cvAvgSdv( _M, &mean, &sdv );
1571        if( (fabs(mean.val[2]) > 1e-5 && fabs(mean.val[2] - 1) > 1e-5) || fabs(sdv.val[2]) > 1e-5 )
1572            CV_ERROR( CV_StsBadArg,
1573            "For non-planar calibration rigs the initial intrinsic matrix must be specified" );
1574        for( i = 0; i < total; i++ )
1575            ((CvPoint3D64f*)_M->data.db)[i].z = 0.;
1576
1577        if( flags & CV_CALIB_FIX_ASPECT_RATIO )
1578        {
1579            aspectRatio = cvmGet(cameraMatrix,0,0);
1580            aspectRatio /= cvmGet(cameraMatrix,1,1);
1581            if( aspectRatio < 0.01 || aspectRatio > 100 )
1582                CV_ERROR( CV_StsOutOfRange,
1583                    "The specified aspect ratio (=A[0][0]/A[1][1]) is incorrect" );
1584        }
1585        cvInitIntrinsicParams2D( _M, _m, npoints, imageSize, &_A, aspectRatio );
1586    }
1587
1588    solver.init( nparams, 0, cvTermCriteria(CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON) );
1589
1590    {
1591    double* param = solver.param->data.db;
1592    uchar* mask = solver.mask->data.ptr;
1593
1594    param[0] = A[0]; param[1] = A[4]; param[2] = A[2]; param[3] = A[5];
1595    param[4] = k[0]; param[5] = k[1]; param[6] = k[2]; param[7] = k[3];
1596    param[8] = k[4];
1597
1598    if( flags & CV_CALIB_FIX_FOCAL_LENGTH )
1599        mask[0] = mask[1] = 0;
1600    if( flags & CV_CALIB_FIX_PRINCIPAL_POINT )
1601        mask[2] = mask[3] = 0;
1602    if( flags & CV_CALIB_ZERO_TANGENT_DIST )
1603    {
1604        param[6] = param[7] = 0;
1605        mask[6] = mask[7] = 0;
1606    }
1607    if( flags & CV_CALIB_FIX_K1 )
1608        mask[4] = 0;
1609    if( flags & CV_CALIB_FIX_K2 )
1610        mask[5] = 0;
1611    if( flags & CV_CALIB_FIX_K3 )
1612        mask[8] = 0;
1613    }
1614
1615    // 2. initialize extrinsic parameters
1616    for( i = 0, pos = 0; i < nimages; i++, pos += ni )
1617    {
1618        CvMat _Mi, _mi, _ri, _ti;
1619        ni = npoints->data.i[i*npstep];
1620
1621        cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 );
1622        cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 );
1623
1624        cvGetCols( _M, &_Mi, pos, pos + ni );
1625        cvGetCols( _m, &_mi, pos, pos + ni );
1626
1627        cvFindExtrinsicCameraParams2( &_Mi, &_mi, &_A, &_k, &_ri, &_ti );
1628    }
1629
1630    // 3. run the optimization
1631    for(;;)
1632    {
1633        const CvMat* _param = 0;
1634        CvMat *_JtJ = 0, *_JtErr = 0;
1635        double* _errNorm = 0;
1636        bool proceed = solver.updateAlt( _param, _JtJ, _JtErr, _errNorm );
1637        double *param = solver.param->data.db, *pparam = solver.prevParam->data.db;
1638
1639        if( flags & CV_CALIB_FIX_ASPECT_RATIO )
1640        {
1641            param[0] = param[1]*aspectRatio;
1642            pparam[0] = pparam[1]*aspectRatio;
1643        }
1644
1645        A[0] = param[0]; A[4] = param[1];
1646        A[2] = param[2]; A[5] = param[3];
1647        k[0] = param[4]; k[1] = param[5]; k[2] = param[6];
1648        k[3] = param[7];
1649        k[4] = param[8];
1650
1651        if( !proceed )
1652            break;
1653
1654        for( i = 0, pos = 0; i < nimages; i++, pos += ni )
1655        {
1656            CvMat _Mi, _mi, _ri, _ti, _dpdr, _dpdt, _dpdf, _dpdc, _dpdk, _mp, _part;
1657            ni = npoints->data.i[i*npstep];
1658
1659            cvGetRows( solver.param, &_ri, NINTRINSIC + i*6, NINTRINSIC + i*6 + 3 );
1660            cvGetRows( solver.param, &_ti, NINTRINSIC + i*6 + 3, NINTRINSIC + i*6 + 6 );
1661
1662            cvGetCols( _M, &_Mi, pos, pos + ni );
1663            cvGetCols( _m, &_mi, pos, pos + ni );
1664
1665            _Je->rows = _Ji->rows = _err->rows = ni*2;
1666            cvGetCols( _Je, &_dpdr, 0, 3 );
1667            cvGetCols( _Je, &_dpdt, 3, 6 );
1668            cvGetCols( _Ji, &_dpdf, 0, 2 );
1669            cvGetCols( _Ji, &_dpdc, 2, 4 );
1670            cvGetCols( _Ji, &_dpdk, 4, NINTRINSIC );
1671            cvReshape( _err, &_mp, 2, 1 );
1672
1673            if( _JtJ || _JtErr )
1674            {
1675                cvProjectPoints2( &_Mi, &_ri, &_ti, &_A, &_k, &_mp, &_dpdr, &_dpdt,
1676                                  (flags & CV_CALIB_FIX_FOCAL_LENGTH) ? 0 : &_dpdf,
1677                                  (flags & CV_CALIB_FIX_PRINCIPAL_POINT) ? 0 : &_dpdc, &_dpdk,
1678                                  (flags & CV_CALIB_FIX_ASPECT_RATIO) ? aspectRatio : 0);
1679            }
1680            else
1681                cvProjectPoints2( &_Mi, &_ri, &_ti, &_A, &_k, &_mp );
1682
1683            cvSub( &_mp, &_mi, &_mp );
1684
1685            if( _JtJ || _JtErr )
1686            {
1687                cvGetSubRect( _JtJ, &_part, cvRect(0,0,NINTRINSIC,NINTRINSIC) );
1688                cvGEMM( _Ji, _Ji, 1, &_part, 1, &_part, CV_GEMM_A_T );
1689
1690                cvGetSubRect( _JtJ, &_part, cvRect(NINTRINSIC+i*6,NINTRINSIC+i*6,6,6) );
1691                cvGEMM( _Je, _Je, 1, 0, 0, &_part, CV_GEMM_A_T );
1692
1693                cvGetSubRect( _JtJ, &_part, cvRect(NINTRINSIC+i*6,0,6,NINTRINSIC) );
1694                cvGEMM( _Ji, _Je, 1, 0, 0, &_part, CV_GEMM_A_T );
1695
1696                cvGetRows( _JtErr, &_part, 0, NINTRINSIC );
1697                cvGEMM( _Ji, _err, 1, &_part, 1, &_part, CV_GEMM_A_T );
1698
1699                cvGetRows( _JtErr, &_part, NINTRINSIC + i*6, NINTRINSIC + (i+1)*6 );
1700                cvGEMM( _Je, _err, 1, 0, 0, &_part, CV_GEMM_A_T );
1701            }
1702
1703            if( _errNorm )
1704            {
1705                double errNorm = cvNorm( &_mp, 0, CV_L2 );
1706                *_errNorm += errNorm*errNorm;
1707            }
1708        }
1709    }
1710
1711    // 4. store the results
1712    cvConvert( &_A, cameraMatrix );
1713    cvConvert( &_k, distCoeffs );
1714
1715    for( i = 0; i < nimages; i++ )
1716    {
1717        CvMat src, dst;
1718        if( rvecs )
1719        {
1720            src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 );
1721            if( rvecs->rows == nimages && rvecs->cols*CV_MAT_CN(rvecs->type) == 9 )
1722            {
1723                dst = cvMat( 3, 3, CV_MAT_DEPTH(rvecs->type),
1724                    rvecs->data.ptr + rvecs->step*i );
1725                cvRodrigues2( &src, &_A );
1726                cvConvert( &_A, &dst );
1727            }
1728            else
1729            {
1730                dst = cvMat( 3, 1, CV_MAT_DEPTH(rvecs->type), rvecs->rows == 1 ?
1731                    rvecs->data.ptr + i*CV_ELEM_SIZE(rvecs->type) :
1732                    rvecs->data.ptr + rvecs->step*i );
1733                cvConvert( &src, &dst );
1734            }
1735        }
1736        if( tvecs )
1737        {
1738            src = cvMat( 3, 1, CV_64F, solver.param->data.db + NINTRINSIC + i*6 + 3 );
1739            dst = cvMat( 3, 1, CV_MAT_TYPE(tvecs->type), tvecs->rows == 1 ?
1740                    tvecs->data.ptr + i*CV_ELEM_SIZE(tvecs->type) :
1741                    tvecs->data.ptr + tvecs->step*i );
1742            cvConvert( &src, &dst );
1743         }
1744    }
1745
1746    __END__;
1747
1748    cvReleaseMat( &_M );
1749    cvReleaseMat( &_m );
1750    cvReleaseMat( &_Ji );
1751    cvReleaseMat( &_Je );
1752    cvReleaseMat( &_err );
1753}
1754
1755
1756void cvCalibrationMatrixValues( const CvMat *calibMatr, CvSize imgSize,
1757    double apertureWidth, double apertureHeight, double *fovx, double *fovy,
1758    double *focalLength, CvPoint2D64f *principalPoint, double *pasp )
1759{
1760    double alphax, alphay, mx, my;
1761    int imgWidth = imgSize.width, imgHeight = imgSize.height;
1762
1763    CV_FUNCNAME("cvCalibrationMatrixValues");
1764    __BEGIN__;
1765
1766    /* Validate parameters. */
1767
1768    if(calibMatr == 0)
1769        CV_ERROR(CV_StsNullPtr, "Some of parameters is a NULL pointer!");
1770
1771    if(!CV_IS_MAT(calibMatr))
1772        CV_ERROR(CV_StsUnsupportedFormat, "Input parameters must be a matrices!");
1773
1774    if(calibMatr->cols != 3 || calibMatr->rows != 3)
1775        CV_ERROR(CV_StsUnmatchedSizes, "Size of matrices must be 3x3!");
1776
1777    alphax = cvmGet(calibMatr, 0, 0);
1778    alphay = cvmGet(calibMatr, 1, 1);
1779    assert(imgWidth != 0 && imgHeight != 0 && alphax != 0.0 && alphay != 0.0);
1780
1781    /* Calculate pixel aspect ratio. */
1782    if(pasp)
1783        *pasp = alphay / alphax;
1784
1785    /* Calculate number of pixel per realworld unit. */
1786
1787    if(apertureWidth != 0.0 && apertureHeight != 0.0) {
1788        mx = imgWidth / apertureWidth;
1789        my = imgHeight / apertureHeight;
1790    } else {
1791        mx = 1.0;
1792        my = *pasp;
1793    }
1794
1795    /* Calculate fovx and fovy. */
1796
1797    if(fovx)
1798        *fovx = 2 * atan(imgWidth / (2 * alphax)) * 180.0 / CV_PI;
1799
1800    if(fovy)
1801        *fovy = 2 * atan(imgHeight / (2 * alphay)) * 180.0 / CV_PI;
1802
1803    /* Calculate focal length. */
1804
1805    if(focalLength)
1806        *focalLength = alphax / mx;
1807
1808    /* Calculate principle point. */
1809
1810    if(principalPoint)
1811        *principalPoint = cvPoint2D64f(cvmGet(calibMatr, 0, 2) / mx, cvmGet(calibMatr, 1, 2) / my);
1812
1813    __END__;
1814}
1815
1816
1817//////////////////////////////// Stereo Calibration ///////////////////////////////////
1818
1819static int dbCmp( const void* _a, const void* _b )
1820{
1821    double a = *(const double*)_a;
1822    double b = *(const double*)_b;
1823
1824    return (a > b) - (a < b);
1825}
1826
1827
1828void cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1,
1829                        const CvMat* _imagePoints2, const CvMat* _npoints,
1830                        CvMat* _cameraMatrix1, CvMat* _distCoeffs1,
1831                        CvMat* _cameraMatrix2, CvMat* _distCoeffs2,
1832                        CvSize imageSize, CvMat* _R, CvMat* _T,
1833                        CvMat* _E, CvMat* _F,
1834                        CvTermCriteria termCrit, int flags )
1835{
1836    const int NINTRINSIC = 9;
1837    CvMat* npoints = 0;
1838    CvMat* err = 0;
1839    CvMat* J_LR = 0;
1840    CvMat* Je = 0;
1841    CvMat* Ji = 0;
1842    CvMat* imagePoints[2] = {0,0};
1843    CvMat* objectPoints = 0;
1844    CvMat* RT0 = 0;
1845    CvLevMarq solver;
1846
1847    CV_FUNCNAME( "cvStereoCalibrate" );
1848
1849    __BEGIN__;
1850
1851    double A[2][9], dk[2][5]={{0,0,0,0,0},{0,0,0,0,0}}, rlr[9];
1852    CvMat K[2], Dist[2], om_LR, T_LR;
1853    CvMat R_LR = cvMat(3, 3, CV_64F, rlr);
1854    int i, k, p, ni = 0, ofs, nimages, pointsTotal, maxPoints = 0;
1855    int nparams;
1856    bool recomputeIntrinsics = false;
1857    double aspectRatio[2] = {0,0};
1858
1859    CV_ASSERT( CV_IS_MAT(_imagePoints1) && CV_IS_MAT(_imagePoints2) &&
1860               CV_IS_MAT(_objectPoints) && CV_IS_MAT(_npoints) &&
1861               CV_IS_MAT(_R) && CV_IS_MAT(_T) );
1862
1863    CV_ASSERT( CV_ARE_TYPES_EQ(_imagePoints1, _imagePoints2) &&
1864               CV_ARE_DEPTHS_EQ(_imagePoints1, _objectPoints) );
1865
1866    CV_ASSERT( (_npoints->cols == 1 || _npoints->rows == 1) &&
1867               CV_MAT_TYPE(_npoints->type) == CV_32SC1 );
1868
1869    nimages = _npoints->cols + _npoints->rows - 1;
1870    npoints = cvCreateMat( _npoints->rows, _npoints->cols, _npoints->type );
1871    cvCopy( _npoints, npoints );
1872
1873    for( i = 0, pointsTotal = 0; i < nimages; i++ )
1874    {
1875        maxPoints = MAX(maxPoints, npoints->data.i[i]);
1876        pointsTotal += npoints->data.i[i];
1877    }
1878
1879    objectPoints = cvCreateMat( _objectPoints->rows, _objectPoints->cols,
1880                                CV_64FC(CV_MAT_CN(_objectPoints->type)));
1881    cvConvert( _objectPoints, objectPoints );
1882    cvReshape( objectPoints, objectPoints, 3, 1 );
1883
1884    for( k = 0; k < 2; k++ )
1885    {
1886        const CvMat* points = k == 0 ? _imagePoints1 : _imagePoints2;
1887        const CvMat* cameraMatrix = k == 0 ? _cameraMatrix1 : _cameraMatrix2;
1888        const CvMat* distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2;
1889
1890        int cn = CV_MAT_CN(_imagePoints1->type);
1891        CV_ASSERT( (CV_MAT_DEPTH(_imagePoints1->type) == CV_32F ||
1892                CV_MAT_DEPTH(_imagePoints1->type) == CV_64F) &&
1893               ((_imagePoints1->rows == pointsTotal && _imagePoints1->cols*cn == 2) ||
1894                (_imagePoints1->rows == 1 && _imagePoints1->cols == pointsTotal && cn == 2)) );
1895
1896        K[k] = cvMat(3,3,CV_64F,A[k]);
1897        Dist[k] = cvMat(1,5,CV_64F,dk[k]);
1898
1899        imagePoints[k] = cvCreateMat( points->rows, points->cols, CV_64FC(CV_MAT_CN(points->type)));
1900        cvConvert( points, imagePoints[k] );
1901        cvReshape( imagePoints[k], imagePoints[k], 2, 1 );
1902
1903        if( flags & (CV_CALIB_FIX_INTRINSIC|CV_CALIB_USE_INTRINSIC_GUESS|
1904            CV_CALIB_FIX_ASPECT_RATIO|CV_CALIB_FIX_FOCAL_LENGTH) )
1905            cvConvert( cameraMatrix, &K[k] );
1906
1907        if( flags & (CV_CALIB_FIX_INTRINSIC|CV_CALIB_USE_INTRINSIC_GUESS|
1908            CV_CALIB_FIX_K1|CV_CALIB_FIX_K2|CV_CALIB_FIX_K3) )
1909        {
1910            CvMat tdist = cvMat( distCoeffs->rows, distCoeffs->cols,
1911                CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), Dist[k].data.db );
1912            cvConvert( distCoeffs, &tdist );
1913        }
1914
1915        if( !(flags & (CV_CALIB_FIX_INTRINSIC|CV_CALIB_USE_INTRINSIC_GUESS)))
1916        {
1917            cvCalibrateCamera2( objectPoints, imagePoints[k],
1918                npoints, imageSize, &K[k], &Dist[k], 0, 0, flags );
1919        }
1920    }
1921
1922    if( flags & CV_CALIB_SAME_FOCAL_LENGTH )
1923    {
1924        static const int avg_idx[] = { 0, 4, 2, 5, -1 };
1925        for( k = 0; avg_idx[k] >= 0; k++ )
1926            A[0][avg_idx[k]] = A[1][avg_idx[k]] = (A[0][avg_idx[k]] + A[1][avg_idx[k]])*0.5;
1927    }
1928
1929    if( flags & CV_CALIB_FIX_ASPECT_RATIO )
1930    {
1931        for( k = 0; k < 2; k++ )
1932            aspectRatio[k] = A[k][0]/A[k][4];
1933    }
1934
1935    recomputeIntrinsics = (flags & CV_CALIB_FIX_INTRINSIC) == 0;
1936
1937    err = cvCreateMat( maxPoints*2, 1, CV_64F );
1938    Je = cvCreateMat( maxPoints*2, 6, CV_64F );
1939    J_LR = cvCreateMat( maxPoints*2, 6, CV_64F );
1940    Ji = cvCreateMat( maxPoints*2, NINTRINSIC, CV_64F );
1941    cvZero( Ji );
1942
1943    // we optimize for the inter-camera R(3),t(3), then, optionally,
1944    // for intrinisic parameters of each camera ((fx,fy,cx,cy,k1,k2,p1,p2) ~ 8 parameters).
1945    nparams = 6*(nimages+1) + (recomputeIntrinsics ? NINTRINSIC*2 : 0);
1946
1947    // storage for initial [om(R){i}|t{i}] (in order to compute the median for each component)
1948    RT0 = cvCreateMat( 6, nimages, CV_64F );
1949
1950    solver.init( nparams, 0, termCrit );
1951    if( recomputeIntrinsics )
1952    {
1953        uchar* imask = solver.mask->data.ptr + nparams - NINTRINSIC*2;
1954        if( flags & CV_CALIB_FIX_ASPECT_RATIO )
1955            imask[0] = imask[NINTRINSIC] = 0;
1956        if( flags & CV_CALIB_FIX_FOCAL_LENGTH )
1957            imask[0] = imask[1] = imask[NINTRINSIC] = imask[NINTRINSIC+1] = 0;
1958        if( flags & CV_CALIB_FIX_PRINCIPAL_POINT )
1959            imask[2] = imask[3] = imask[NINTRINSIC+2] = imask[NINTRINSIC+3] = 0;
1960        if( flags & CV_CALIB_ZERO_TANGENT_DIST )
1961            imask[6] = imask[7] = imask[NINTRINSIC+6] = imask[NINTRINSIC+7] = 0;
1962        if( flags & CV_CALIB_FIX_K1 )
1963            imask[4] = imask[NINTRINSIC+4] = 0;
1964        if( flags & CV_CALIB_FIX_K2 )
1965            imask[5] = imask[NINTRINSIC+5] = 0;
1966        if( flags & CV_CALIB_FIX_K3 )
1967            imask[8] = imask[NINTRINSIC+8] = 0;
1968    }
1969
1970    /*
1971       Compute initial estimate of pose
1972
1973       For each image, compute:
1974          R(om) is the rotation matrix of om
1975          om(R) is the rotation vector of R
1976          R_ref = R(om_right) * R(om_left)'
1977          T_ref_list = [T_ref_list; T_right - R_ref * T_left]
1978          om_ref_list = {om_ref_list; om(R_ref)]
1979
1980       om = median(om_ref_list)
1981       T = median(T_ref_list)
1982    */
1983    for( i = ofs = 0; i < nimages; ofs += ni, i++ )
1984    {
1985        ni = npoints->data.i[i];
1986        CvMat objpt_i;
1987        double _om[2][3], r[2][9], t[2][3];
1988        CvMat om[2], R[2], T[2], imgpt_i[2];
1989
1990        objpt_i = cvMat(1, ni, CV_64FC3, objectPoints->data.db + ofs*3);
1991        for( k = 0; k < 2; k++ )
1992        {
1993            imgpt_i[k] = cvMat(1, ni, CV_64FC2, imagePoints[k]->data.db + ofs*2);
1994            om[k] = cvMat(3, 1, CV_64F, _om[k]);
1995            R[k] = cvMat(3, 3, CV_64F, r[k]);
1996            T[k] = cvMat(3, 1, CV_64F, t[k]);
1997
1998            // FIXME: here we ignore activePoints[k] because of
1999            // the limited API of cvFindExtrnisicCameraParams2
2000            cvFindExtrinsicCameraParams2( &objpt_i, &imgpt_i[k], &K[k], &Dist[k], &om[k], &T[k] );
2001            cvRodrigues2( &om[k], &R[k] );
2002            if( k == 0 )
2003            {
2004                // save initial om_left and T_left
2005                solver.param->data.db[(i+1)*6] = _om[0][0];
2006                solver.param->data.db[(i+1)*6 + 1] = _om[0][1];
2007                solver.param->data.db[(i+1)*6 + 2] = _om[0][2];
2008                solver.param->data.db[(i+1)*6 + 3] = t[0][0];
2009                solver.param->data.db[(i+1)*6 + 4] = t[0][1];
2010                solver.param->data.db[(i+1)*6 + 5] = t[0][2];
2011            }
2012        }
2013        cvGEMM( &R[1], &R[0], 1, 0, 0, &R[0], CV_GEMM_B_T );
2014        cvGEMM( &R[0], &T[0], -1, &T[1], 1, &T[1] );
2015        cvRodrigues2( &R[0], &T[0] );
2016        RT0->data.db[i] = t[0][0];
2017        RT0->data.db[i + nimages] = t[0][1];
2018        RT0->data.db[i + nimages*2] = t[0][2];
2019        RT0->data.db[i + nimages*3] = t[1][0];
2020        RT0->data.db[i + nimages*4] = t[1][1];
2021        RT0->data.db[i + nimages*5] = t[1][2];
2022    }
2023
2024    // find the medians and save the first 6 parameters
2025    for( i = 0; i < 6; i++ )
2026    {
2027        qsort( RT0->data.db + i*nimages, nimages, CV_ELEM_SIZE(RT0->type), dbCmp );
2028        solver.param->data.db[i] = nimages % 2 != 0 ? RT0->data.db[i*nimages + nimages/2] :
2029            (RT0->data.db[i*nimages + nimages/2 - 1] + RT0->data.db[i*nimages + nimages/2])*0.5;
2030    }
2031
2032    if( recomputeIntrinsics )
2033        for( k = 0; k < 2; k++ )
2034        {
2035            double* iparam = solver.param->data.db + (nimages+1)*6 + k*NINTRINSIC;
2036            if( flags & CV_CALIB_ZERO_TANGENT_DIST )
2037                dk[k][2] = dk[k][3] = 0;
2038            iparam[0] = A[k][0]; iparam[1] = A[k][4]; iparam[2] = A[k][2]; iparam[3] = A[k][5];
2039            iparam[4] = dk[k][0]; iparam[5] = dk[k][1]; iparam[6] = dk[k][2];
2040            iparam[7] = dk[k][3]; iparam[8] = dk[k][4];
2041        }
2042
2043    om_LR = cvMat(3, 1, CV_64F, solver.param->data.db);
2044    T_LR = cvMat(3, 1, CV_64F, solver.param->data.db + 3);
2045
2046    for(;;)
2047    {
2048        const CvMat* param = 0;
2049        CvMat tmpimagePoints;
2050        CvMat *JtJ = 0, *JtErr = 0;
2051        double* errNorm = 0;
2052        double _omR[3], _tR[3];
2053        double _dr3dr1[9], _dr3dr2[9], /*_dt3dr1[9],*/ _dt3dr2[9], _dt3dt1[9], _dt3dt2[9];
2054        CvMat dr3dr1 = cvMat(3, 3, CV_64F, _dr3dr1);
2055        CvMat dr3dr2 = cvMat(3, 3, CV_64F, _dr3dr2);
2056        //CvMat dt3dr1 = cvMat(3, 3, CV_64F, _dt3dr1);
2057        CvMat dt3dr2 = cvMat(3, 3, CV_64F, _dt3dr2);
2058        CvMat dt3dt1 = cvMat(3, 3, CV_64F, _dt3dt1);
2059        CvMat dt3dt2 = cvMat(3, 3, CV_64F, _dt3dt2);
2060        CvMat om[2], T[2], imgpt_i[2];
2061        CvMat dpdrot_hdr, dpdt_hdr, dpdf_hdr, dpdc_hdr, dpdk_hdr;
2062        CvMat *dpdrot = &dpdrot_hdr, *dpdt = &dpdt_hdr, *dpdf = 0, *dpdc = 0, *dpdk = 0;
2063
2064        if( !solver.updateAlt( param, JtJ, JtErr, errNorm ))
2065            break;
2066
2067        cvRodrigues2( &om_LR, &R_LR );
2068        om[1] = cvMat(3,1,CV_64F,_omR);
2069        T[1] = cvMat(3,1,CV_64F,_tR);
2070
2071        if( recomputeIntrinsics )
2072        {
2073            double* iparam = solver.param->data.db + (nimages+1)*6;
2074            double* ipparam = solver.prevParam->data.db + (nimages+1)*6;
2075            dpdf = &dpdf_hdr;
2076            dpdc = &dpdc_hdr;
2077            dpdk = &dpdk_hdr;
2078            if( flags & CV_CALIB_SAME_FOCAL_LENGTH )
2079            {
2080                iparam[NINTRINSIC] = iparam[0];
2081                iparam[NINTRINSIC+1] = iparam[1];
2082                ipparam[NINTRINSIC] = ipparam[0];
2083                ipparam[NINTRINSIC+1] = ipparam[1];
2084            }
2085            if( flags & CV_CALIB_FIX_ASPECT_RATIO )
2086            {
2087                iparam[0] = iparam[1]*aspectRatio[0];
2088                iparam[NINTRINSIC] = iparam[NINTRINSIC+1]*aspectRatio[1];
2089                ipparam[0] = ipparam[1]*aspectRatio[0];
2090                ipparam[NINTRINSIC] = ipparam[NINTRINSIC+1]*aspectRatio[1];
2091            }
2092            for( k = 0; k < 2; k++ )
2093            {
2094                A[k][0] = iparam[k*NINTRINSIC+0];
2095                A[k][4] = iparam[k*NINTRINSIC+1];
2096                A[k][2] = iparam[k*NINTRINSIC+2];
2097                A[k][5] = iparam[k*NINTRINSIC+3];
2098                dk[k][0] = iparam[k*NINTRINSIC+4];
2099                dk[k][1] = iparam[k*NINTRINSIC+5];
2100                dk[k][2] = iparam[k*NINTRINSIC+6];
2101                dk[k][3] = iparam[k*NINTRINSIC+7];
2102                dk[k][4] = iparam[k*NINTRINSIC+8];
2103            }
2104        }
2105
2106        for( i = ofs = 0; i < nimages; ofs += ni, i++ )
2107        {
2108            ni = npoints->data.i[i];
2109            CvMat objpt_i, _part;
2110
2111            om[0] = cvMat(3,1,CV_64F,solver.param->data.db+(i+1)*6);
2112            T[0] = cvMat(3,1,CV_64F,solver.param->data.db+(i+1)*6+3);
2113
2114            if( JtJ || JtErr )
2115                cvComposeRT( &om[0], &T[0], &om_LR, &T_LR, &om[1], &T[1], &dr3dr1, 0,
2116                             &dr3dr2, 0, 0, &dt3dt1, &dt3dr2, &dt3dt2 );
2117            else
2118                cvComposeRT( &om[0], &T[0], &om_LR, &T_LR, &om[1], &T[1] );
2119
2120            objpt_i = cvMat(1, ni, CV_64FC3, objectPoints->data.db + ofs*3);
2121            err->rows = Je->rows = J_LR->rows = Ji->rows = ni*2;
2122            cvReshape( err, &tmpimagePoints, 2, 1 );
2123
2124            cvGetCols( Ji, &dpdf_hdr, 0, 2 );
2125            cvGetCols( Ji, &dpdc_hdr, 2, 4 );
2126            cvGetCols( Ji, &dpdk_hdr, 4, NINTRINSIC );
2127            cvGetCols( Je, &dpdrot_hdr, 0, 3 );
2128            cvGetCols( Je, &dpdt_hdr, 3, 6 );
2129
2130            for( k = 0; k < 2; k++ )
2131            {
2132                double maxErr, l2err;
2133                imgpt_i[k] = cvMat(1, ni, CV_64FC2, imagePoints[k]->data.db + ofs*2);
2134
2135                if( JtJ || JtErr )
2136                    cvProjectPoints2( &objpt_i, &om[k], &T[k], &K[k], &Dist[k],
2137                            &tmpimagePoints, dpdrot, dpdt, dpdf, dpdc, dpdk,
2138                            (flags & CV_CALIB_FIX_ASPECT_RATIO) ? aspectRatio[k] : 0);
2139                else
2140                    cvProjectPoints2( &objpt_i, &om[k], &T[k], &K[k], &Dist[k], &tmpimagePoints );
2141                cvSub( &tmpimagePoints, &imgpt_i[k], &tmpimagePoints );
2142
2143                l2err = cvNorm( &tmpimagePoints, 0, CV_L2 );
2144                maxErr = cvNorm( &tmpimagePoints, 0, CV_C );
2145
2146                if( JtJ || JtErr )
2147                {
2148                    int iofs = (nimages+1)*6 + k*NINTRINSIC, eofs = (i+1)*6;
2149                    assert( JtJ && JtErr );
2150
2151                    if( k == 1 )
2152                    {
2153                        // d(err_{x|y}R) ~ de3
2154                        // convert de3/{dr3,dt3} => de3{dr1,dt1} & de3{dr2,dt2}
2155                        for( p = 0; p < ni*2; p++ )
2156                        {
2157                            CvMat de3dr3 = cvMat( 1, 3, CV_64F, Je->data.ptr + Je->step*p );
2158                            CvMat de3dt3 = cvMat( 1, 3, CV_64F, de3dr3.data.db + 3 );
2159                            CvMat de3dr2 = cvMat( 1, 3, CV_64F, J_LR->data.ptr + J_LR->step*p );
2160                            CvMat de3dt2 = cvMat( 1, 3, CV_64F, de3dr2.data.db + 3 );
2161                            double _de3dr1[3], _de3dt1[3];
2162                            CvMat de3dr1 = cvMat( 1, 3, CV_64F, _de3dr1 );
2163                            CvMat de3dt1 = cvMat( 1, 3, CV_64F, _de3dt1 );
2164
2165                            cvMatMul( &de3dr3, &dr3dr1, &de3dr1 );
2166                            cvMatMul( &de3dt3, &dt3dt1, &de3dt1 );
2167
2168                            cvMatMul( &de3dr3, &dr3dr2, &de3dr2 );
2169                            cvMatMulAdd( &de3dt3, &dt3dr2, &de3dr2, &de3dr2 );
2170
2171                            cvMatMul( &de3dt3, &dt3dt2, &de3dt2 );
2172
2173                            cvCopy( &de3dr1, &de3dr3 );
2174                            cvCopy( &de3dt1, &de3dt3 );
2175                        }
2176
2177                        cvGetSubRect( JtJ, &_part, cvRect(0, 0, 6, 6) );
2178                        cvGEMM( J_LR, J_LR, 1, &_part, 1, &_part, CV_GEMM_A_T );
2179
2180                        cvGetSubRect( JtJ, &_part, cvRect(eofs, 0, 6, 6) );
2181                        cvGEMM( J_LR, Je, 1, 0, 0, &_part, CV_GEMM_A_T );
2182
2183                        cvGetRows( JtErr, &_part, 0, 6 );
2184                        cvGEMM( J_LR, err, 1, &_part, 1, &_part, CV_GEMM_A_T );
2185                    }
2186
2187                    cvGetSubRect( JtJ, &_part, cvRect(eofs, eofs, 6, 6) );
2188                    cvGEMM( Je, Je, 1, &_part, 1, &_part, CV_GEMM_A_T );
2189
2190                    cvGetRows( JtErr, &_part, eofs, eofs + 6 );
2191                    cvGEMM( Je, err, 1, &_part, 1, &_part, CV_GEMM_A_T );
2192
2193                    if( recomputeIntrinsics )
2194                    {
2195                        cvGetSubRect( JtJ, &_part, cvRect(iofs, iofs, NINTRINSIC, NINTRINSIC) );
2196                        cvGEMM( Ji, Ji, 1, &_part, 1, &_part, CV_GEMM_A_T );
2197                        cvGetSubRect( JtJ, &_part, cvRect(iofs, eofs, NINTRINSIC, 6) );
2198                        cvGEMM( Je, Ji, 1, &_part, 1, &_part, CV_GEMM_A_T );
2199                        if( k == 1 )
2200                        {
2201                            cvGetSubRect( JtJ, &_part, cvRect(iofs, 0, NINTRINSIC, 6) );
2202                            cvGEMM( J_LR, Ji, 1, &_part, 1, &_part, CV_GEMM_A_T );
2203                        }
2204                        cvGetRows( JtErr, &_part, iofs, iofs + NINTRINSIC );
2205                        cvGEMM( Ji, err, 1, &_part, 1, &_part, CV_GEMM_A_T );
2206                    }
2207                }
2208
2209                if( errNorm )
2210                    *errNorm += l2err*l2err;
2211            }
2212        }
2213    }
2214
2215    cvRodrigues2( &om_LR, &R_LR );
2216    if( _R->rows == 1 || _R->cols == 1 )
2217        cvConvert( &om_LR, _R );
2218    else
2219        cvConvert( &R_LR, _R );
2220    cvConvert( &T_LR, _T );
2221
2222    if( recomputeIntrinsics )
2223    {
2224        cvConvert( &K[0], _cameraMatrix1 );
2225        cvConvert( &K[1], _cameraMatrix2 );
2226
2227        for( k = 0; k < 2; k++ )
2228        {
2229            CvMat* distCoeffs = k == 0 ? _distCoeffs1 : _distCoeffs2;
2230            CvMat tdist = cvMat( distCoeffs->rows, distCoeffs->cols,
2231                CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), Dist[k].data.db );
2232            cvConvert( &tdist, distCoeffs );
2233        }
2234    }
2235
2236    if( _E || _F )
2237    {
2238        double* t = T_LR.data.db;
2239        double tx[] =
2240        {
2241            0, -t[2], t[1],
2242            t[2], 0, -t[0],
2243            -t[1], t[0], 0
2244        };
2245        CvMat Tx = cvMat(3, 3, CV_64F, tx);
2246        double e[9], f[9];
2247        CvMat E = cvMat(3, 3, CV_64F, e);
2248        CvMat F = cvMat(3, 3, CV_64F, f);
2249        cvMatMul( &Tx, &R_LR, &E );
2250        if( _E )
2251            cvConvert( &E, _E );
2252        if( _F )
2253        {
2254            double ik[9];
2255            CvMat iK = cvMat(3, 3, CV_64F, ik);
2256            cvInvert(&K[1], &iK);
2257            cvGEMM( &iK, &E, 1, 0, 0, &E, CV_GEMM_A_T );
2258            cvInvert(&K[0], &iK);
2259            cvMatMul(&E, &iK, &F);
2260            cvConvertScale( &F, _F, fabs(f[8]) > 0 ? 1./f[8] : 1 );
2261        }
2262    }
2263
2264    __END__;
2265
2266    cvReleaseMat( &npoints );
2267    cvReleaseMat( &err );
2268    cvReleaseMat( &J_LR );
2269    cvReleaseMat( &Je );
2270    cvReleaseMat( &Ji );
2271    cvReleaseMat( &RT0 );
2272    cvReleaseMat( &objectPoints );
2273    cvReleaseMat( &imagePoints[0] );
2274    cvReleaseMat( &imagePoints[1] );
2275}
2276
2277
2278void cvStereoRectify( const CvMat* _cameraMatrix1, const CvMat* _cameraMatrix2,
2279                      const CvMat* _distCoeffs1, const CvMat* _distCoeffs2,
2280                      CvSize imageSize, const CvMat* _R, const CvMat* _T,
2281                      CvMat* _R1, CvMat* _R2, CvMat* _P1, CvMat* _P2,
2282                      CvMat* _Q, int flags )
2283{
2284    double _om[3], _t[3], _uu[3]={0,0,0}, _r_r[3][3], _pp[3][4];
2285    double _ww[3], _wr[3][3], _z[3] = {0,0,0}, _ri[3][3];
2286    CvMat om  = cvMat(3, 1, CV_64F, _om);
2287    CvMat t   = cvMat(3, 1, CV_64F, _t);
2288    CvMat uu  = cvMat(3, 1, CV_64F, _uu);
2289    CvMat r_r = cvMat(3, 3, CV_64F, _r_r);
2290    CvMat pp  = cvMat(3, 4, CV_64F, _pp);
2291    CvMat ww  = cvMat(3, 1, CV_64F, _ww); // temps
2292    CvMat wR  = cvMat(3, 3, CV_64F, _wr);
2293    CvMat Z   = cvMat(3, 1, CV_64F, _z);
2294    CvMat Ri  = cvMat(3, 3, CV_64F, _ri);
2295    double nx = imageSize.width, ny = imageSize.height;
2296    int i, k;
2297
2298    if( _R->rows == 3 && _R->cols == 3 )
2299        cvRodrigues2(_R, &om);          // get vector rotation
2300    else
2301        cvConvert(_R, &om); // it's already a rotation vector
2302    cvConvertScale(&om, &om, -0.5); // get average rotation
2303    cvRodrigues2(&om, &r_r);        // rotate cameras to same orientation by averaging
2304    cvMatMul(&r_r, _T, &t);
2305
2306    int idx = fabs(_t[0]) > fabs(_t[1]) ? 0 : 1;
2307    double c = _t[idx], nt = cvNorm(&t, 0, CV_L2);
2308    _uu[idx] = c > 0 ? 1 : -1;
2309
2310    // calculate global Z rotation
2311    cvCrossProduct(&t,&uu,&ww);
2312    double nw = cvNorm(&ww, 0, CV_L2);
2313    cvConvertScale(&ww, &ww, acos(fabs(c)/nt)/nw);
2314    cvRodrigues2(&ww, &wR);
2315
2316    // apply to both views
2317    cvGEMM(&wR, &r_r, 1, 0, 0, &Ri, CV_GEMM_B_T);
2318    cvConvert( &Ri, _R1 );
2319    cvGEMM(&wR, &r_r, 1, 0, 0, &Ri, 0);
2320    cvConvert( &Ri, _R2 );
2321    cvMatMul(&r_r, _T, &t);
2322
2323    // calculate projection/camera matrices
2324    // these contain the relevant rectified image internal params (fx, fy=fx, cx, cy)
2325    double fc_new = DBL_MAX;
2326    CvPoint2D64f cc_new[2] = {{0,0}, {0,0}};
2327
2328    for( k = 0; k < 2; k++ )
2329    {
2330        const CvMat* A = k == 0 ? _cameraMatrix1 : _cameraMatrix2;
2331        const CvMat* Dk = k == 0 ? _distCoeffs1 : _distCoeffs2;
2332        CvPoint2D32f _pts[4];
2333        CvPoint3D32f _pts_3[4];
2334        CvMat pts = cvMat(1, 4, CV_32FC2, _pts);
2335        CvMat pts_3 = cvMat(1, 4, CV_32FC3, _pts_3);
2336        double fc, dk1 = Dk ? cvmGet(Dk, 0, 0) : 0;
2337
2338        fc = cvmGet(A,idx^1,idx^1);
2339        if( dk1 < 0 )
2340            fc *= 1 + 0.2*dk1*(nx*nx + ny*ny)/(8*fc*fc);
2341        fc_new = MIN(fc_new, fc);
2342
2343        for( i = 0; i < 4; i++ )
2344        {
2345            _pts[i].x = (float)(((i % 2) + 0.5)*nx*0.5);
2346            _pts[i].y = (float)(((i / 2) + 0.5)*ny*0.5);
2347        }
2348        cvUndistortPoints( &pts, &pts, A, Dk, 0, 0 );
2349        cvConvertPointsHomogeneous( &pts, &pts_3 );
2350        cvProjectPoints2( &pts_3, k == 0 ? _R1 : _R2, &Z, A, 0, &pts );
2351        CvScalar avg = cvAvg(&pts);
2352        cc_new[k].x = avg.val[0];
2353        cc_new[k].y = avg.val[1];
2354    }
2355
2356    // vertical focal length must be the same for both images to keep the epipolar constraint
2357    // (for horizontal epipolar lines -- TBD: check for vertical epipolar lines)
2358    // use fy for fx also, for simplicity
2359
2360    // For simplicity, set the principal points for both cameras to be the average
2361    // of the two principal points (either one of or both x- and y- coordinates)
2362    if( flags & CV_CALIB_ZERO_DISPARITY )
2363    {
2364        cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5;
2365        cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5;
2366    }
2367    else if( idx == 0 ) // horizontal stereo
2368        cc_new[0].y = cc_new[1].y = (cc_new[0].y + cc_new[1].y)*0.5;
2369    else // vertical stereo
2370        cc_new[0].x = cc_new[1].x = (cc_new[0].x + cc_new[1].x)*0.5;
2371
2372    cvZero( &pp );
2373    _pp[0][0] = _pp[1][1] = fc_new;
2374    _pp[0][2] = cc_new[0].x;
2375    _pp[1][2] = cc_new[0].y;
2376    _pp[2][2] = 1;
2377    cvConvert(&pp, _P1);
2378
2379    _pp[0][2] = cc_new[1].x;
2380    _pp[1][2] = cc_new[1].y;
2381    _pp[idx][3] = _t[idx]*fc_new; // baseline * focal length
2382    cvConvert(&pp, _P2);
2383
2384    if( _Q )
2385    {
2386        double q[] =
2387        {
2388            1, 0, 0, -cc_new[0].x,
2389            0, 1, 0, -cc_new[0].y,
2390            0, 0, 0, fc_new,
2391            0, 0, 1./_t[idx],
2392            (idx == 0 ? cc_new[0].x - cc_new[1].x : cc_new[0].y - cc_new[1].y)/_t[idx]
2393        };
2394        CvMat Q = cvMat(4, 4, CV_64F, q);
2395        cvConvert( &Q, _Q );
2396    }
2397}
2398
2399
2400CV_IMPL int
2401cvStereoRectifyUncalibrated(
2402    const CvMat* _points1, const CvMat* _points2,
2403    const CvMat* F0, CvSize imgSize, CvMat* _H1, CvMat* _H2, double threshold )
2404{
2405    int result = 0;
2406    CvMat* _m1 = 0;
2407    CvMat* _m2 = 0;
2408    CvMat* _lines1 = 0;
2409    CvMat* _lines2 = 0;
2410
2411    CV_FUNCNAME( "cvStereoCalcHomographiesFromF" );
2412
2413    __BEGIN__;
2414
2415    int i, j, npoints;
2416    double cx, cy;
2417    double u[9], v[9], w[9], f[9], h1[9], h2[9], h0[9], e2[3];
2418    CvMat E2 = cvMat( 3, 1, CV_64F, e2 );
2419    CvMat U = cvMat( 3, 3, CV_64F, u );
2420    CvMat V = cvMat( 3, 3, CV_64F, v );
2421    CvMat W = cvMat( 3, 3, CV_64F, w );
2422    CvMat F = cvMat( 3, 3, CV_64F, f );
2423    CvMat H1 = cvMat( 3, 3, CV_64F, h1 );
2424    CvMat H2 = cvMat( 3, 3, CV_64F, h2 );
2425    CvMat H0 = cvMat( 3, 3, CV_64F, h0 );
2426
2427    CvPoint2D64f* m1;
2428    CvPoint2D64f* m2;
2429    CvPoint3D64f* lines1;
2430    CvPoint3D64f* lines2;
2431
2432    CV_ASSERT( CV_IS_MAT(_points1) && CV_IS_MAT(_points2) &&
2433        (_points1->rows == 1 || _points1->cols == 1) &&
2434        (_points2->rows == 1 || _points2->cols == 1) &&
2435        CV_ARE_SIZES_EQ(_points1, _points2) );
2436
2437    npoints = _points1->rows * _points1->cols * CV_MAT_CN(_points1->type) / 2;
2438
2439    _m1 = cvCreateMat( _points1->rows, _points1->cols, CV_64FC(CV_MAT_CN(_points1->type)) );
2440    _m2 = cvCreateMat( _points2->rows, _points2->cols, CV_64FC(CV_MAT_CN(_points2->type)) );
2441    _lines1 = cvCreateMat( 1, npoints, CV_64FC3 );
2442    _lines2 = cvCreateMat( 1, npoints, CV_64FC3 );
2443
2444    cvConvert( F0, &F );
2445
2446    cvSVD( (CvMat*)&F, &W, &U, &V, CV_SVD_U_T + CV_SVD_V_T );
2447    W.data.db[8] = 0.;
2448    cvGEMM( &U, &W, 1, 0, 0, &W, CV_GEMM_A_T );
2449    cvMatMul( &W, &V, &F );
2450
2451    cx = cvRound( (imgSize.width-1)*0.5 );
2452    cy = cvRound( (imgSize.height-1)*0.5 );
2453
2454    cvZero( _H1 );
2455    cvZero( _H2 );
2456
2457    cvConvert( _points1, _m1 );
2458    cvConvert( _points2, _m2 );
2459    cvReshape( _m1, _m1, 2, 1 );
2460    cvReshape( _m1, _m1, 2, 1 );
2461
2462    m1 = (CvPoint2D64f*)_m1->data.ptr;
2463    m2 = (CvPoint2D64f*)_m2->data.ptr;
2464    lines1 = (CvPoint3D64f*)_lines1->data.ptr;
2465    lines2 = (CvPoint3D64f*)_lines2->data.ptr;
2466
2467    if( threshold > 0 )
2468    {
2469        cvComputeCorrespondEpilines( _m1, 1, &F, _lines1 );
2470        cvComputeCorrespondEpilines( _m2, 2, &F, _lines2 );
2471
2472        // measure distance from points to the corresponding epilines, mark outliers
2473        for( i = j = 0; i < npoints; i++ )
2474        {
2475            if( fabs(m1[i].x*lines2[i].x +
2476                     m1[i].y*lines2[i].y +
2477                     lines2[i].z) <= threshold &&
2478                fabs(m2[i].x*lines1[i].x +
2479                     m2[i].y*lines1[i].y +
2480                     lines1[i].z) <= threshold )
2481            {
2482                if( j > i )
2483                {
2484                    m1[j] = m1[i];
2485                    m2[j] = m2[i];
2486                }
2487                j++;
2488            }
2489        }
2490
2491        npoints = j;
2492        if( npoints == 0 )
2493            EXIT;
2494    }
2495
2496    {
2497    _m1->cols = _m2->cols = npoints;
2498    memcpy( E2.data.db, U.data.db + 6, sizeof(e2));
2499    cvScale( &E2, &E2, e2[2] > 0 ? 1 : -1 );
2500
2501    double t[] =
2502    {
2503        1, 0, -cx,
2504        0, 1, -cy,
2505        0, 0, 1
2506    };
2507    CvMat T = cvMat(3, 3, CV_64F, t);
2508    cvMatMul( &T, &E2, &E2 );
2509
2510    int mirror = e2[0] < 0;
2511    double d = MAX(sqrt(e2[0]*e2[0] + e2[1]*e2[1]),DBL_EPSILON);
2512    double alpha = e2[0]/d;
2513    double beta = e2[1]/d;
2514    double r[] =
2515    {
2516        alpha, beta, 0,
2517        -beta, alpha, 0,
2518        0, 0, 1
2519    };
2520    CvMat R = cvMat(3, 3, CV_64F, r);
2521    cvMatMul( &R, &T, &T );
2522    cvMatMul( &R, &E2, &E2 );
2523    double invf = fabs(e2[2]) < 1e-6*fabs(e2[0]) ? 0 : -e2[2]/e2[0];
2524    double k[] =
2525    {
2526        1, 0, 0,
2527        0, 1, 0,
2528        invf, 0, 1
2529    };
2530    CvMat K = cvMat(3, 3, CV_64F, k);
2531    cvMatMul( &K, &T, &H2 );
2532    cvMatMul( &K, &E2, &E2 );
2533
2534    double it[] =
2535    {
2536        1, 0, cx,
2537        0, 1, cy,
2538        0, 0, 1
2539    };
2540    CvMat iT = cvMat( 3, 3, CV_64F, it );
2541    cvMatMul( &iT, &H2, &H2 );
2542
2543    memcpy( E2.data.db, U.data.db + 6, sizeof(e2));
2544    cvScale( &E2, &E2, e2[2] > 0 ? 1 : -1 );
2545
2546    double e2_x[] =
2547    {
2548        0, -e2[2], e2[1],
2549       e2[2], 0, -e2[0],
2550       -e2[1], e2[0], 0
2551    };
2552    double e2_111[] =
2553    {
2554        e2[0], e2[0], e2[0],
2555        e2[1], e2[1], e2[1],
2556        e2[2], e2[2], e2[2],
2557    };
2558    CvMat E2_x = cvMat(3, 3, CV_64F, e2_x);
2559    CvMat E2_111 = cvMat(3, 3, CV_64F, e2_111);
2560    cvMatMulAdd(&E2_x, &F, &E2_111, &H0 );
2561    cvMatMul(&H2, &H0, &H0);
2562    CvMat E1=cvMat(3, 1, CV_64F, V.data.db+6);
2563    cvMatMul(&H0, &E1, &E1);
2564
2565    cvPerspectiveTransform( _m1, _m1, &H0 );
2566    cvPerspectiveTransform( _m2, _m2, &H2 );
2567    CvMat A = cvMat( 1, npoints, CV_64FC3, lines1 ), BxBy, B;
2568    double a[9], atb[3], x[3];
2569    CvMat AtA = cvMat( 3, 3, CV_64F, a );
2570    CvMat AtB = cvMat( 3, 1, CV_64F, atb );
2571    CvMat X = cvMat( 3, 1, CV_64F, x );
2572    cvConvertPointsHomogeneous( _m1, &A );
2573    cvReshape( &A, &A, 1, npoints );
2574    cvReshape( _m2, &BxBy, 1, npoints );
2575    cvGetCol( &BxBy, &B, 0 );
2576    cvGEMM( &A, &A, 1, 0, 0, &AtA, CV_GEMM_A_T );
2577    cvGEMM( &A, &B, 1, 0, 0, &AtB, CV_GEMM_A_T );
2578    cvSolve( &AtA, &AtB, &X, CV_SVD_SYM );
2579
2580    double ha[] =
2581    {
2582        x[0], x[1], x[2],
2583        0, 1, 0,
2584        0, 0, 1
2585    };
2586    CvMat Ha = cvMat(3, 3, CV_64F, ha);
2587    cvMatMul( &Ha, &H0, &H1 );
2588    cvPerspectiveTransform( _m1, _m1, &Ha );
2589
2590    if( mirror )
2591    {
2592        double mm[] = { -1, 0, cx*2, 0, -1, cy*2, 0, 0, 1 };
2593        CvMat MM = cvMat(3, 3, CV_64F, mm);
2594        cvMatMul( &MM, &H1, &H1 );
2595        cvMatMul( &MM, &H2, &H2 );
2596    }
2597
2598    cvConvert( &H1, _H1 );
2599    cvConvert( &H2, _H2 );
2600
2601    result = 1;
2602    }
2603
2604    __END__;
2605
2606    cvReleaseMat( &_m1 );
2607    cvReleaseMat( &_m2 );
2608    cvReleaseMat( &_lines1 );
2609    cvReleaseMat( &_lines2 );
2610
2611    return result;
2612}
2613
2614
2615CV_IMPL void
2616cvReprojectImageTo3D(
2617    const CvArr* disparityImage,
2618    CvArr* _3dImage, const CvMat* _Q )
2619{
2620    CV_FUNCNAME( "cvReprojectImageTo3D" );
2621
2622    __BEGIN__;
2623
2624    double q[4][4];
2625    CvMat Q = cvMat(4, 4, CV_64F, q);
2626    CvMat sstub, *src = cvGetMat( disparityImage, &sstub );
2627    CvMat dstub, *dst = cvGetMat( _3dImage, &dstub );
2628    int stype = CV_MAT_TYPE(src->type), dtype = CV_MAT_TYPE(dst->type);
2629    int x, y, rows = src->rows, cols = src->cols;
2630    float* sbuf = (float*)cvStackAlloc( cols*sizeof(sbuf[0]) );
2631    float* dbuf = (float*)cvStackAlloc( cols*3*sizeof(dbuf[0]) );
2632
2633    CV_ASSERT( CV_ARE_SIZES_EQ(src, dst) &&
2634        (CV_MAT_TYPE(stype) == CV_16SC1 || CV_MAT_TYPE(stype) == CV_32FC1) &&
2635        (CV_MAT_TYPE(dtype) == CV_16SC3 || CV_MAT_TYPE(dtype) == CV_32FC3) );
2636
2637    cvConvert( _Q, &Q );
2638
2639    for( y = 0; y < rows; y++ )
2640    {
2641        const float* sptr = (const float*)(src->data.ptr + src->step*y);
2642        float* dptr0 = (float*)(dst->data.ptr + dst->step*y), *dptr = dptr0;
2643        double qx = q[0][1]*y + q[0][3], qy = q[1][1]*y + q[1][3];
2644        double qz = q[2][1]*y + q[2][3], qw = q[3][1]*y + q[3][3];
2645
2646        if( stype == CV_16SC1 )
2647        {
2648            const short* sptr0 = (const short*)sptr;
2649            for( x = 0; x < cols; x++ )
2650                sbuf[x] = (float)sptr0[x];
2651            sptr = sbuf;
2652        }
2653        if( dtype != CV_32FC3 )
2654            dptr = dbuf;
2655
2656        for( x = 0; x < cols; x++, qx += q[0][0], qy += q[1][0], qz += q[2][0], qw += q[3][0] )
2657        {
2658            double d = sptr[x];
2659            double iW = 1./(qw + q[3][2]*d);
2660            double X = (qx + q[0][2]*d)*iW;
2661            double Y = (qy + q[1][2]*d)*iW;
2662            double Z = (qz + q[2][2]*d)*iW;
2663
2664            dptr[x*3] = (float)X;
2665            dptr[x*3+1] = (float)Y;
2666            dptr[x*3+2] = (float)Z;
2667        }
2668
2669        if( dtype == CV_16SC3 )
2670        {
2671            for( x = 0; x < cols*3; x++ )
2672            {
2673                int ival = cvRound(dptr[x]);
2674                ((short*)dptr0)[x] = CV_CAST_16S(ival);
2675            }
2676        }
2677    }
2678
2679    __END__;
2680}
2681
2682
2683/* End of file. */
2684