1/* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7// http://metamerist.com/cbrt/CubeRoot.cpp 8// 9 10#include <math.h> 11#include "CubicUtilities.h" 12 13#define TEST_ALTERNATIVES 0 14#if TEST_ALTERNATIVES 15typedef float (*cuberootfnf) (float); 16typedef double (*cuberootfnd) (double); 17 18// estimate bits of precision (32-bit float case) 19inline int bits_of_precision(float a, float b) 20{ 21 const double kd = 1.0 / log(2.0); 22 23 if (a==b) 24 return 23; 25 26 const double kdmin = pow(2.0, -23.0); 27 28 double d = fabs(a-b); 29 if (d < kdmin) 30 return 23; 31 32 return int(-log(d)*kd); 33} 34 35// estiamte bits of precision (64-bit double case) 36inline int bits_of_precision(double a, double b) 37{ 38 const double kd = 1.0 / log(2.0); 39 40 if (a==b) 41 return 52; 42 43 const double kdmin = pow(2.0, -52.0); 44 45 double d = fabs(a-b); 46 if (d < kdmin) 47 return 52; 48 49 return int(-log(d)*kd); 50} 51 52// cube root via x^(1/3) 53static float pow_cbrtf(float x) 54{ 55 return (float) pow(x, 1.0f/3.0f); 56} 57 58// cube root via x^(1/3) 59static double pow_cbrtd(double x) 60{ 61 return pow(x, 1.0/3.0); 62} 63 64// cube root approximation using bit hack for 32-bit float 65static float cbrt_5f(float f) 66{ 67 unsigned int* p = (unsigned int *) &f; 68 *p = *p/3 + 709921077; 69 return f; 70} 71#endif 72 73// cube root approximation using bit hack for 64-bit float 74// adapted from Kahan's cbrt 75static double cbrt_5d(double d) 76{ 77 const unsigned int B1 = 715094163; 78 double t = 0.0; 79 unsigned int* pt = (unsigned int*) &t; 80 unsigned int* px = (unsigned int*) &d; 81 pt[1]=px[1]/3+B1; 82 return t; 83} 84 85#if TEST_ALTERNATIVES 86// cube root approximation using bit hack for 64-bit float 87// adapted from Kahan's cbrt 88#if 0 89static double quint_5d(double d) 90{ 91 return sqrt(sqrt(d)); 92 93 const unsigned int B1 = 71509416*5/3; 94 double t = 0.0; 95 unsigned int* pt = (unsigned int*) &t; 96 unsigned int* px = (unsigned int*) &d; 97 pt[1]=px[1]/5+B1; 98 return t; 99} 100#endif 101 102// iterative cube root approximation using Halley's method (float) 103static float cbrta_halleyf(const float a, const float R) 104{ 105 const float a3 = a*a*a; 106 const float b= a * (a3 + R + R) / (a3 + a3 + R); 107 return b; 108} 109#endif 110 111// iterative cube root approximation using Halley's method (double) 112static double cbrta_halleyd(const double a, const double R) 113{ 114 const double a3 = a*a*a; 115 const double b= a * (a3 + R + R) / (a3 + a3 + R); 116 return b; 117} 118 119#if TEST_ALTERNATIVES 120// iterative cube root approximation using Newton's method (float) 121static float cbrta_newtonf(const float a, const float x) 122{ 123// return (1.0 / 3.0) * ((a + a) + x / (a * a)); 124 return a - (1.0f / 3.0f) * (a - x / (a*a)); 125} 126 127// iterative cube root approximation using Newton's method (double) 128static double cbrta_newtond(const double a, const double x) 129{ 130 return (1.0/3.0) * (x / (a*a) + 2*a); 131} 132 133// cube root approximation using 1 iteration of Halley's method (double) 134static double halley_cbrt1d(double d) 135{ 136 double a = cbrt_5d(d); 137 return cbrta_halleyd(a, d); 138} 139 140// cube root approximation using 1 iteration of Halley's method (float) 141static float halley_cbrt1f(float d) 142{ 143 float a = cbrt_5f(d); 144 return cbrta_halleyf(a, d); 145} 146 147// cube root approximation using 2 iterations of Halley's method (double) 148static double halley_cbrt2d(double d) 149{ 150 double a = cbrt_5d(d); 151 a = cbrta_halleyd(a, d); 152 return cbrta_halleyd(a, d); 153} 154#endif 155 156// cube root approximation using 3 iterations of Halley's method (double) 157static double halley_cbrt3d(double d) 158{ 159 double a = cbrt_5d(d); 160 a = cbrta_halleyd(a, d); 161 a = cbrta_halleyd(a, d); 162 return cbrta_halleyd(a, d); 163} 164 165#if TEST_ALTERNATIVES 166// cube root approximation using 2 iterations of Halley's method (float) 167static float halley_cbrt2f(float d) 168{ 169 float a = cbrt_5f(d); 170 a = cbrta_halleyf(a, d); 171 return cbrta_halleyf(a, d); 172} 173 174// cube root approximation using 1 iteration of Newton's method (double) 175static double newton_cbrt1d(double d) 176{ 177 double a = cbrt_5d(d); 178 return cbrta_newtond(a, d); 179} 180 181// cube root approximation using 2 iterations of Newton's method (double) 182static double newton_cbrt2d(double d) 183{ 184 double a = cbrt_5d(d); 185 a = cbrta_newtond(a, d); 186 return cbrta_newtond(a, d); 187} 188 189// cube root approximation using 3 iterations of Newton's method (double) 190static double newton_cbrt3d(double d) 191{ 192 double a = cbrt_5d(d); 193 a = cbrta_newtond(a, d); 194 a = cbrta_newtond(a, d); 195 return cbrta_newtond(a, d); 196} 197 198// cube root approximation using 4 iterations of Newton's method (double) 199static double newton_cbrt4d(double d) 200{ 201 double a = cbrt_5d(d); 202 a = cbrta_newtond(a, d); 203 a = cbrta_newtond(a, d); 204 a = cbrta_newtond(a, d); 205 return cbrta_newtond(a, d); 206} 207 208// cube root approximation using 2 iterations of Newton's method (float) 209static float newton_cbrt1f(float d) 210{ 211 float a = cbrt_5f(d); 212 return cbrta_newtonf(a, d); 213} 214 215// cube root approximation using 2 iterations of Newton's method (float) 216static float newton_cbrt2f(float d) 217{ 218 float a = cbrt_5f(d); 219 a = cbrta_newtonf(a, d); 220 return cbrta_newtonf(a, d); 221} 222 223// cube root approximation using 3 iterations of Newton's method (float) 224static float newton_cbrt3f(float d) 225{ 226 float a = cbrt_5f(d); 227 a = cbrta_newtonf(a, d); 228 a = cbrta_newtonf(a, d); 229 return cbrta_newtonf(a, d); 230} 231 232// cube root approximation using 4 iterations of Newton's method (float) 233static float newton_cbrt4f(float d) 234{ 235 float a = cbrt_5f(d); 236 a = cbrta_newtonf(a, d); 237 a = cbrta_newtonf(a, d); 238 a = cbrta_newtonf(a, d); 239 return cbrta_newtonf(a, d); 240} 241 242static double TestCubeRootf(const char* szName, cuberootfnf cbrt, double rA, double rB, int rN) 243{ 244 const int N = rN; 245 246 float dd = float((rB-rA) / N); 247 248 // calculate 1M numbers 249 int i=0; 250 float d = (float) rA; 251 252 double s = 0.0; 253 254 for(d=(float) rA, i=0; i<N; i++, d += dd) 255 { 256 s += cbrt(d); 257 } 258 259 double bits = 0.0; 260 double worstx=0.0; 261 double worsty=0.0; 262 int minbits=64; 263 264 for(d=(float) rA, i=0; i<N; i++, d += dd) 265 { 266 float a = cbrt((float) d); 267 float b = (float) pow((double) d, 1.0/3.0); 268 269 int bc = bits_of_precision(a, b); 270 bits += bc; 271 272 if (b > 1.0e-6) 273 { 274 if (bc < minbits) 275 { 276 minbits = bc; 277 worstx = d; 278 worsty = a; 279 } 280 } 281 } 282 283 bits /= N; 284 285 printf(" %3d mbp %6.3f abp\n", minbits, bits); 286 287 return s; 288} 289 290 291static double TestCubeRootd(const char* szName, cuberootfnd cbrt, double rA, double rB, int rN) 292{ 293 const int N = rN; 294 295 double dd = (rB-rA) / N; 296 297 int i=0; 298 299 double s = 0.0; 300 double d = 0.0; 301 302 for(d=rA, i=0; i<N; i++, d += dd) 303 { 304 s += cbrt(d); 305 } 306 307 308 double bits = 0.0; 309 double worstx = 0.0; 310 double worsty = 0.0; 311 int minbits = 64; 312 for(d=rA, i=0; i<N; i++, d += dd) 313 { 314 double a = cbrt(d); 315 double b = pow(d, 1.0/3.0); 316 317 int bc = bits_of_precision(a, b); // min(53, count_matching_bitsd(a, b) - 12); 318 bits += bc; 319 320 if (b > 1.0e-6) 321 { 322 if (bc < minbits) 323 { 324 bits_of_precision(a, b); 325 minbits = bc; 326 worstx = d; 327 worsty = a; 328 } 329 } 330 } 331 332 bits /= N; 333 334 printf(" %3d mbp %6.3f abp\n", minbits, bits); 335 336 return s; 337} 338 339static int _tmain() 340{ 341 // a million uniform steps through the range from 0.0 to 1.0 342 // (doing uniform steps in the log scale would be better) 343 double a = 0.0; 344 double b = 1.0; 345 int n = 1000000; 346 347 printf("32-bit float tests\n"); 348 printf("----------------------------------------\n"); 349 TestCubeRootf("cbrt_5f", cbrt_5f, a, b, n); 350 TestCubeRootf("pow", pow_cbrtf, a, b, n); 351 TestCubeRootf("halley x 1", halley_cbrt1f, a, b, n); 352 TestCubeRootf("halley x 2", halley_cbrt2f, a, b, n); 353 TestCubeRootf("newton x 1", newton_cbrt1f, a, b, n); 354 TestCubeRootf("newton x 2", newton_cbrt2f, a, b, n); 355 TestCubeRootf("newton x 3", newton_cbrt3f, a, b, n); 356 TestCubeRootf("newton x 4", newton_cbrt4f, a, b, n); 357 printf("\n\n"); 358 359 printf("64-bit double tests\n"); 360 printf("----------------------------------------\n"); 361 TestCubeRootd("cbrt_5d", cbrt_5d, a, b, n); 362 TestCubeRootd("pow", pow_cbrtd, a, b, n); 363 TestCubeRootd("halley x 1", halley_cbrt1d, a, b, n); 364 TestCubeRootd("halley x 2", halley_cbrt2d, a, b, n); 365 TestCubeRootd("halley x 3", halley_cbrt3d, a, b, n); 366 TestCubeRootd("newton x 1", newton_cbrt1d, a, b, n); 367 TestCubeRootd("newton x 2", newton_cbrt2d, a, b, n); 368 TestCubeRootd("newton x 3", newton_cbrt3d, a, b, n); 369 TestCubeRootd("newton x 4", newton_cbrt4d, a, b, n); 370 printf("\n\n"); 371 372 return 0; 373} 374#endif 375 376double cube_root(double x) { 377 if (approximately_zero_cubed(x)) { 378 return 0; 379 } 380 double result = halley_cbrt3d(fabs(x)); 381 if (x < 0) { 382 result = -result; 383 } 384 return result; 385} 386 387#if TEST_ALTERNATIVES 388// http://bytes.com/topic/c/answers/754588-tips-find-cube-root-program-using-c 389/* cube root */ 390int icbrt(int n) { 391 int t=0, x=(n+2)/3; /* works for n=0 and n>=1 */ 392 for(; t!=x;) { 393 int x3=x*x*x; 394 t=x; 395 x*=(2*n + x3); 396 x/=(2*x3 + n); 397 } 398 return x ; /* always(?) equal to floor(n^(1/3)) */ 399} 400#endif 401