1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)queue.h	8.5 (Berkeley) 8/20/94
30 */
31
32#ifndef	_SYS_QUEUE_H_
33#define	_SYS_QUEUE_H_
34
35/*
36 * This file defines five types of data structures: singly-linked lists,
37 * lists, simple queues, tail queues, and circular queues.
38 *
39 * A singly-linked list is headed by a single forward pointer. The
40 * elements are singly linked for minimum space and pointer manipulation
41 * overhead at the expense of O(n) removal for arbitrary elements. New
42 * elements can be added to the list after an existing element or at the
43 * head of the list.  Elements being removed from the head of the list
44 * should use the explicit macro for this purpose for optimum
45 * efficiency. A singly-linked list may only be traversed in the forward
46 * direction.  Singly-linked lists are ideal for applications with large
47 * datasets and few or no removals or for implementing a LIFO queue.
48 *
49 * A list is headed by a single forward pointer (or an array of forward
50 * pointers for a hash table header). The elements are doubly linked
51 * so that an arbitrary element can be removed without a need to
52 * traverse the list. New elements can be added to the list before
53 * or after an existing element or at the head of the list. A list
54 * may only be traversed in the forward direction.
55 *
56 * A simple queue is headed by a pair of pointers, one the head of the
57 * list and the other to the tail of the list. The elements are singly
58 * linked to save space, so elements can only be removed from the
59 * head of the list. New elements can be added to the list after
60 * an existing element, at the head of the list, or at the end of the
61 * list. A simple queue may only be traversed in the forward direction.
62 *
63 * A tail queue is headed by a pair of pointers, one to the head of the
64 * list and the other to the tail of the list. The elements are doubly
65 * linked so that an arbitrary element can be removed without a need to
66 * traverse the list. New elements can be added to the list before or
67 * after an existing element, at the head of the list, or at the end of
68 * the list. A tail queue may be traversed in either direction.
69 *
70 * A circle queue is headed by a pair of pointers, one to the head of the
71 * list and the other to the tail of the list. The elements are doubly
72 * linked so that an arbitrary element can be removed without a need to
73 * traverse the list. New elements can be added to the list before or after
74 * an existing element, at the head of the list, or at the end of the list.
75 * A circle queue may be traversed in either direction, but has a more
76 * complex end of list detection.
77 *
78 * For details on the use of these macros, see the queue(3) manual page.
79 */
80
81/*
82 * List definitions.
83 */
84#define	LIST_HEAD(name, type)						\
85struct name {								\
86	struct type *lh_first;	/* first element */			\
87}
88
89#define	LIST_HEAD_INITIALIZER(head)					\
90	{ NULL }
91
92#define	LIST_ENTRY(type)						\
93struct {								\
94	struct type *le_next;	/* next element */			\
95	struct type **le_prev;	/* address of previous next element */	\
96}
97
98/*
99 * List functions.
100 */
101#define	LIST_INIT(head) do {						\
102	(head)->lh_first = NULL;					\
103} while (/*CONSTCOND*/0)
104
105#define	LIST_INSERT_AFTER(listelm, elm, field) do {			\
106	if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)	\
107		(listelm)->field.le_next->field.le_prev =		\
108		    &(elm)->field.le_next;				\
109	(listelm)->field.le_next = (elm);				\
110	(elm)->field.le_prev = &(listelm)->field.le_next;		\
111} while (/*CONSTCOND*/0)
112
113#define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
114	(elm)->field.le_prev = (listelm)->field.le_prev;		\
115	(elm)->field.le_next = (listelm);				\
116	*(listelm)->field.le_prev = (elm);				\
117	(listelm)->field.le_prev = &(elm)->field.le_next;		\
118} while (/*CONSTCOND*/0)
119
120#define	LIST_INSERT_HEAD(head, elm, field) do {				\
121	if (((elm)->field.le_next = (head)->lh_first) != NULL)		\
122		(head)->lh_first->field.le_prev = &(elm)->field.le_next;\
123	(head)->lh_first = (elm);					\
124	(elm)->field.le_prev = &(head)->lh_first;			\
125} while (/*CONSTCOND*/0)
126
127#define	LIST_REMOVE(elm, field) do {					\
128	if ((elm)->field.le_next != NULL)				\
129		(elm)->field.le_next->field.le_prev = 			\
130		    (elm)->field.le_prev;				\
131	*(elm)->field.le_prev = (elm)->field.le_next;			\
132} while (/*CONSTCOND*/0)
133
134#define	LIST_FOREACH(var, head, field)					\
135	for ((var) = ((head)->lh_first);				\
136		(var);							\
137		(var) = ((var)->field.le_next))
138
139/*
140 * List access methods.
141 */
142#define	LIST_EMPTY(head)		((head)->lh_first == NULL)
143#define	LIST_FIRST(head)		((head)->lh_first)
144#define	LIST_NEXT(elm, field)		((elm)->field.le_next)
145
146
147/*
148 * Singly-linked List definitions.
149 */
150#define	SLIST_HEAD(name, type)						\
151struct name {								\
152	struct type *slh_first;	/* first element */			\
153}
154
155#define	SLIST_HEAD_INITIALIZER(head)					\
156	{ NULL }
157
158#define	SLIST_ENTRY(type)						\
159struct {								\
160	struct type *sle_next;	/* next element */			\
161}
162
163/*
164 * Singly-linked List functions.
165 */
166#define	SLIST_INIT(head) do {						\
167	(head)->slh_first = NULL;					\
168} while (/*CONSTCOND*/0)
169
170#define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
171	(elm)->field.sle_next = (slistelm)->field.sle_next;		\
172	(slistelm)->field.sle_next = (elm);				\
173} while (/*CONSTCOND*/0)
174
175#define	SLIST_INSERT_HEAD(head, elm, field) do {			\
176	(elm)->field.sle_next = (head)->slh_first;			\
177	(head)->slh_first = (elm);					\
178} while (/*CONSTCOND*/0)
179
180#define	SLIST_REMOVE_HEAD(head, field) do {				\
181	(head)->slh_first = (head)->slh_first->field.sle_next;		\
182} while (/*CONSTCOND*/0)
183
184#define	SLIST_REMOVE(head, elm, type, field) do {			\
185	if ((head)->slh_first == (elm)) {				\
186		SLIST_REMOVE_HEAD((head), field);			\
187	}								\
188	else {								\
189		struct type *curelm = (head)->slh_first;		\
190		while(curelm->field.sle_next != (elm))			\
191			curelm = curelm->field.sle_next;		\
192		curelm->field.sle_next =				\
193		    curelm->field.sle_next->field.sle_next;		\
194	}								\
195} while (/*CONSTCOND*/0)
196
197#define	SLIST_FOREACH(var, head, field)					\
198	for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
199
200/*
201 * Singly-linked List access methods.
202 */
203#define	SLIST_EMPTY(head)	((head)->slh_first == NULL)
204#define	SLIST_FIRST(head)	((head)->slh_first)
205#define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
206
207
208/*
209 * Singly-linked Tail queue declarations.
210 */
211#define	STAILQ_HEAD(name, type)					\
212struct name {								\
213	struct type *stqh_first;	/* first element */			\
214	struct type **stqh_last;	/* addr of last next element */		\
215}
216
217#define	STAILQ_HEAD_INITIALIZER(head)					\
218	{ NULL, &(head).stqh_first }
219
220#define	STAILQ_ENTRY(type)						\
221struct {								\
222	struct type *stqe_next;	/* next element */			\
223}
224
225/*
226 * Singly-linked Tail queue functions.
227 */
228#define	STAILQ_INIT(head) do {						\
229	(head)->stqh_first = NULL;					\
230	(head)->stqh_last = &(head)->stqh_first;				\
231} while (/*CONSTCOND*/0)
232
233#define	STAILQ_INSERT_HEAD(head, elm, field) do {			\
234	if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)	\
235		(head)->stqh_last = &(elm)->field.stqe_next;		\
236	(head)->stqh_first = (elm);					\
237} while (/*CONSTCOND*/0)
238
239#define	STAILQ_INSERT_TAIL(head, elm, field) do {			\
240	(elm)->field.stqe_next = NULL;					\
241	*(head)->stqh_last = (elm);					\
242	(head)->stqh_last = &(elm)->field.stqe_next;			\
243} while (/*CONSTCOND*/0)
244
245#define	STAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
246	if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
247		(head)->stqh_last = &(elm)->field.stqe_next;		\
248	(listelm)->field.stqe_next = (elm);				\
249} while (/*CONSTCOND*/0)
250
251#define	STAILQ_REMOVE_HEAD(head, field) do {				\
252	if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
253		(head)->stqh_last = &(head)->stqh_first;			\
254} while (/*CONSTCOND*/0)
255
256#define	STAILQ_REMOVE(head, elm, type, field) do {			\
257	if ((head)->stqh_first == (elm)) {				\
258		STAILQ_REMOVE_HEAD((head), field);			\
259	} else {							\
260		struct type *curelm = (head)->stqh_first;		\
261		while (curelm->field.stqe_next != (elm))			\
262			curelm = curelm->field.stqe_next;		\
263		if ((curelm->field.stqe_next =				\
264			curelm->field.stqe_next->field.stqe_next) == NULL) \
265			    (head)->stqh_last = &(curelm)->field.stqe_next; \
266	}								\
267} while (/*CONSTCOND*/0)
268
269#define	STAILQ_FOREACH(var, head, field)				\
270	for ((var) = ((head)->stqh_first);				\
271		(var);							\
272		(var) = ((var)->field.stqe_next))
273
274#define	STAILQ_CONCAT(head1, head2) do {				\
275	if (!STAILQ_EMPTY((head2))) {					\
276		*(head1)->stqh_last = (head2)->stqh_first;		\
277		(head1)->stqh_last = (head2)->stqh_last;		\
278		STAILQ_INIT((head2));					\
279	}								\
280} while (/*CONSTCOND*/0)
281
282/*
283 * Singly-linked Tail queue access methods.
284 */
285#define	STAILQ_EMPTY(head)	((head)->stqh_first == NULL)
286#define	STAILQ_FIRST(head)	((head)->stqh_first)
287#define	STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)
288
289
290/*
291 * Simple queue definitions.
292 */
293#define	SIMPLEQ_HEAD(name, type)					\
294struct name {								\
295	struct type *sqh_first;	/* first element */			\
296	struct type **sqh_last;	/* addr of last next element */		\
297}
298
299#define	SIMPLEQ_HEAD_INITIALIZER(head)					\
300	{ NULL, &(head).sqh_first }
301
302#define	SIMPLEQ_ENTRY(type)						\
303struct {								\
304	struct type *sqe_next;	/* next element */			\
305}
306
307/*
308 * Simple queue functions.
309 */
310#define	SIMPLEQ_INIT(head) do {						\
311	(head)->sqh_first = NULL;					\
312	(head)->sqh_last = &(head)->sqh_first;				\
313} while (/*CONSTCOND*/0)
314
315#define	SIMPLEQ_INSERT_HEAD(head, elm, field) do {			\
316	if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)	\
317		(head)->sqh_last = &(elm)->field.sqe_next;		\
318	(head)->sqh_first = (elm);					\
319} while (/*CONSTCOND*/0)
320
321#define	SIMPLEQ_INSERT_TAIL(head, elm, field) do {			\
322	(elm)->field.sqe_next = NULL;					\
323	*(head)->sqh_last = (elm);					\
324	(head)->sqh_last = &(elm)->field.sqe_next;			\
325} while (/*CONSTCOND*/0)
326
327#define	SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
328	if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
329		(head)->sqh_last = &(elm)->field.sqe_next;		\
330	(listelm)->field.sqe_next = (elm);				\
331} while (/*CONSTCOND*/0)
332
333#define	SIMPLEQ_REMOVE_HEAD(head, field) do {				\
334	if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
335		(head)->sqh_last = &(head)->sqh_first;			\
336} while (/*CONSTCOND*/0)
337
338#define	SIMPLEQ_REMOVE(head, elm, type, field) do {			\
339	if ((head)->sqh_first == (elm)) {				\
340		SIMPLEQ_REMOVE_HEAD((head), field);			\
341	} else {							\
342		struct type *curelm = (head)->sqh_first;		\
343		while (curelm->field.sqe_next != (elm))			\
344			curelm = curelm->field.sqe_next;		\
345		if ((curelm->field.sqe_next =				\
346			curelm->field.sqe_next->field.sqe_next) == NULL) \
347			    (head)->sqh_last = &(curelm)->field.sqe_next; \
348	}								\
349} while (/*CONSTCOND*/0)
350
351#define	SIMPLEQ_FOREACH(var, head, field)				\
352	for ((var) = ((head)->sqh_first);				\
353		(var);							\
354		(var) = ((var)->field.sqe_next))
355
356/*
357 * Simple queue access methods.
358 */
359#define	SIMPLEQ_EMPTY(head)		((head)->sqh_first == NULL)
360#define	SIMPLEQ_FIRST(head)		((head)->sqh_first)
361#define	SIMPLEQ_NEXT(elm, field)	((elm)->field.sqe_next)
362
363
364/*
365 * Tail queue definitions.
366 */
367#define	_TAILQ_HEAD(name, type, qual)					\
368struct name {								\
369	qual type *tqh_first;		/* first element */		\
370	qual type *qual *tqh_last;	/* addr of last next element */	\
371}
372#define TAILQ_HEAD(name, type)	_TAILQ_HEAD(name, struct type,)
373
374#define	TAILQ_HEAD_INITIALIZER(head)					\
375	{ NULL, &(head).tqh_first }
376
377#define	_TAILQ_ENTRY(type, qual)					\
378struct {								\
379	qual type *tqe_next;		/* next element */		\
380	qual type *qual *tqe_prev;	/* address of previous next element */\
381}
382#define TAILQ_ENTRY(type)	_TAILQ_ENTRY(struct type,)
383
384/*
385 * Tail queue functions.
386 */
387#define	TAILQ_INIT(head) do {						\
388	(head)->tqh_first = NULL;					\
389	(head)->tqh_last = &(head)->tqh_first;				\
390} while (/*CONSTCOND*/0)
391
392#define	TAILQ_INSERT_HEAD(head, elm, field) do {			\
393	if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)	\
394		(head)->tqh_first->field.tqe_prev =			\
395		    &(elm)->field.tqe_next;				\
396	else								\
397		(head)->tqh_last = &(elm)->field.tqe_next;		\
398	(head)->tqh_first = (elm);					\
399	(elm)->field.tqe_prev = &(head)->tqh_first;			\
400} while (/*CONSTCOND*/0)
401
402#define	TAILQ_INSERT_TAIL(head, elm, field) do {			\
403	(elm)->field.tqe_next = NULL;					\
404	(elm)->field.tqe_prev = (head)->tqh_last;			\
405	*(head)->tqh_last = (elm);					\
406	(head)->tqh_last = &(elm)->field.tqe_next;			\
407} while (/*CONSTCOND*/0)
408
409#define	TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
410	if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
411		(elm)->field.tqe_next->field.tqe_prev = 		\
412		    &(elm)->field.tqe_next;				\
413	else								\
414		(head)->tqh_last = &(elm)->field.tqe_next;		\
415	(listelm)->field.tqe_next = (elm);				\
416	(elm)->field.tqe_prev = &(listelm)->field.tqe_next;		\
417} while (/*CONSTCOND*/0)
418
419#define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
420	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
421	(elm)->field.tqe_next = (listelm);				\
422	*(listelm)->field.tqe_prev = (elm);				\
423	(listelm)->field.tqe_prev = &(elm)->field.tqe_next;		\
424} while (/*CONSTCOND*/0)
425
426#define	TAILQ_REMOVE(head, elm, field) do {				\
427	if (((elm)->field.tqe_next) != NULL)				\
428		(elm)->field.tqe_next->field.tqe_prev = 		\
429		    (elm)->field.tqe_prev;				\
430	else								\
431		(head)->tqh_last = (elm)->field.tqe_prev;		\
432	*(elm)->field.tqe_prev = (elm)->field.tqe_next;			\
433} while (/*CONSTCOND*/0)
434
435#define	TAILQ_FOREACH(var, head, field)					\
436	for ((var) = ((head)->tqh_first);				\
437		(var);							\
438		(var) = ((var)->field.tqe_next))
439
440#define	TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
441	for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));	\
442		(var);							\
443		(var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
444
445#define	TAILQ_CONCAT(head1, head2, field) do {				\
446	if (!TAILQ_EMPTY(head2)) {					\
447		*(head1)->tqh_last = (head2)->tqh_first;		\
448		(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;	\
449		(head1)->tqh_last = (head2)->tqh_last;			\
450		TAILQ_INIT((head2));					\
451	}								\
452} while (/*CONSTCOND*/0)
453
454/*
455 * Tail queue access methods.
456 */
457#define	TAILQ_EMPTY(head)		((head)->tqh_first == NULL)
458#define	TAILQ_FIRST(head)		((head)->tqh_first)
459#define	TAILQ_NEXT(elm, field)		((elm)->field.tqe_next)
460
461#define	TAILQ_LAST(head, headname) \
462	(*(((struct headname *)((head)->tqh_last))->tqh_last))
463#define	TAILQ_PREV(elm, headname, field) \
464	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
465
466
467/*
468 * Circular queue definitions.
469 */
470#define	CIRCLEQ_HEAD(name, type)					\
471struct name {								\
472	struct type *cqh_first;		/* first element */		\
473	struct type *cqh_last;		/* last element */		\
474}
475
476#define	CIRCLEQ_HEAD_INITIALIZER(head)					\
477	{ (void *)&head, (void *)&head }
478
479#define	CIRCLEQ_ENTRY(type)						\
480struct {								\
481	struct type *cqe_next;		/* next element */		\
482	struct type *cqe_prev;		/* previous element */		\
483}
484
485/*
486 * Circular queue functions.
487 */
488#define	CIRCLEQ_INIT(head) do {						\
489	(head)->cqh_first = (void *)(head);				\
490	(head)->cqh_last = (void *)(head);				\
491} while (/*CONSTCOND*/0)
492
493#define	CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {		\
494	(elm)->field.cqe_next = (listelm)->field.cqe_next;		\
495	(elm)->field.cqe_prev = (listelm);				\
496	if ((listelm)->field.cqe_next == (void *)(head))		\
497		(head)->cqh_last = (elm);				\
498	else								\
499		(listelm)->field.cqe_next->field.cqe_prev = (elm);	\
500	(listelm)->field.cqe_next = (elm);				\
501} while (/*CONSTCOND*/0)
502
503#define	CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {		\
504	(elm)->field.cqe_next = (listelm);				\
505	(elm)->field.cqe_prev = (listelm)->field.cqe_prev;		\
506	if ((listelm)->field.cqe_prev == (void *)(head))		\
507		(head)->cqh_first = (elm);				\
508	else								\
509		(listelm)->field.cqe_prev->field.cqe_next = (elm);	\
510	(listelm)->field.cqe_prev = (elm);				\
511} while (/*CONSTCOND*/0)
512
513#define	CIRCLEQ_INSERT_HEAD(head, elm, field) do {			\
514	(elm)->field.cqe_next = (head)->cqh_first;			\
515	(elm)->field.cqe_prev = (void *)(head);				\
516	if ((head)->cqh_last == (void *)(head))				\
517		(head)->cqh_last = (elm);				\
518	else								\
519		(head)->cqh_first->field.cqe_prev = (elm);		\
520	(head)->cqh_first = (elm);					\
521} while (/*CONSTCOND*/0)
522
523#define	CIRCLEQ_INSERT_TAIL(head, elm, field) do {			\
524	(elm)->field.cqe_next = (void *)(head);				\
525	(elm)->field.cqe_prev = (head)->cqh_last;			\
526	if ((head)->cqh_first == (void *)(head))			\
527		(head)->cqh_first = (elm);				\
528	else								\
529		(head)->cqh_last->field.cqe_next = (elm);		\
530	(head)->cqh_last = (elm);					\
531} while (/*CONSTCOND*/0)
532
533#define	CIRCLEQ_REMOVE(head, elm, field) do {				\
534	if ((elm)->field.cqe_next == (void *)(head))			\
535		(head)->cqh_last = (elm)->field.cqe_prev;		\
536	else								\
537		(elm)->field.cqe_next->field.cqe_prev =			\
538		    (elm)->field.cqe_prev;				\
539	if ((elm)->field.cqe_prev == (void *)(head))			\
540		(head)->cqh_first = (elm)->field.cqe_next;		\
541	else								\
542		(elm)->field.cqe_prev->field.cqe_next =			\
543		    (elm)->field.cqe_next;				\
544} while (/*CONSTCOND*/0)
545
546#define	CIRCLEQ_FOREACH(var, head, field)				\
547	for ((var) = ((head)->cqh_first);				\
548		(var) != (const void *)(head);				\
549		(var) = ((var)->field.cqe_next))
550
551#define	CIRCLEQ_FOREACH_REVERSE(var, head, field)			\
552	for ((var) = ((head)->cqh_last);				\
553		(var) != (const void *)(head);				\
554		(var) = ((var)->field.cqe_prev))
555
556/*
557 * Circular queue access methods.
558 */
559#define	CIRCLEQ_EMPTY(head)		((head)->cqh_first == (void *)(head))
560#define	CIRCLEQ_FIRST(head)		((head)->cqh_first)
561#define	CIRCLEQ_LAST(head)		((head)->cqh_last)
562#define	CIRCLEQ_NEXT(elm, field)	((elm)->field.cqe_next)
563#define	CIRCLEQ_PREV(elm, field)	((elm)->field.cqe_prev)
564
565#define CIRCLEQ_LOOP_NEXT(head, elm, field)				\
566	(((elm)->field.cqe_next == (void *)(head))			\
567	    ? ((head)->cqh_first)					\
568	    : (elm->field.cqe_next))
569#define CIRCLEQ_LOOP_PREV(head, elm, field)				\
570	(((elm)->field.cqe_prev == (void *)(head))			\
571	    ? ((head)->cqh_last)					\
572	    : (elm->field.cqe_prev))
573
574#endif	/* sys/queue.h */
575