1// Bitmap Allocator. -*- C++ -*-
2
3// Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4// Free Software Foundation, Inc.
5//
6// This file is part of the GNU ISO C++ Library.  This library is free
7// software; you can redistribute it and/or modify it under the
8// terms of the GNU General Public License as published by the
9// Free Software Foundation; either version 3, or (at your option)
10// any later version.
11
12// This library is distributed in the hope that it will be useful,
13// but WITHOUT ANY WARRANTY; without even the implied warranty of
14// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15// GNU General Public License for more details.
16
17// Under Section 7 of GPL version 3, you are granted additional
18// permissions described in the GCC Runtime Library Exception, version
19// 3.1, as published by the Free Software Foundation.
20
21// You should have received a copy of the GNU General Public License and
22// a copy of the GCC Runtime Library Exception along with this program;
23// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24// <http://www.gnu.org/licenses/>.
25
26/** @file ext/bitmap_allocator.h
27 *  This file is a GNU extension to the Standard C++ Library.
28 */
29
30#ifndef _BITMAP_ALLOCATOR_H
31#define _BITMAP_ALLOCATOR_H 1
32
33#include <utility> // For std::pair.
34#include <bits/functexcept.h> // For __throw_bad_alloc().
35#include <functional> // For greater_equal, and less_equal.
36#include <new> // For operator new.
37#include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
38#include <ext/concurrence.h>
39#include <bits/move.h>
40
41/** @brief The constant in the expression below is the alignment
42 * required in bytes.
43 */
44#define _BALLOC_ALIGN_BYTES 8
45
46namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
47{
48  using std::size_t;
49  using std::ptrdiff_t;
50
51  namespace __detail
52  {
53  _GLIBCXX_BEGIN_NAMESPACE_VERSION
54    /** @class  __mini_vector bitmap_allocator.h bitmap_allocator.h
55     *
56     *  @brief  __mini_vector<> is a stripped down version of the
57     *  full-fledged std::vector<>.
58     *
59     *  It is to be used only for built-in types or PODs. Notable
60     *  differences are:
61     *
62     *  1. Not all accessor functions are present.
63     *  2. Used ONLY for PODs.
64     *  3. No Allocator template argument. Uses ::operator new() to get
65     *  memory, and ::operator delete() to free it.
66     *  Caveat: The dtor does NOT free the memory allocated, so this a
67     *  memory-leaking vector!
68     */
69    template<typename _Tp>
70      class __mini_vector
71      {
72	__mini_vector(const __mini_vector&);
73	__mini_vector& operator=(const __mini_vector&);
74
75      public:
76	typedef _Tp value_type;
77	typedef _Tp* pointer;
78	typedef _Tp& reference;
79	typedef const _Tp& const_reference;
80	typedef size_t size_type;
81	typedef ptrdiff_t difference_type;
82	typedef pointer iterator;
83
84      private:
85	pointer _M_start;
86	pointer _M_finish;
87	pointer _M_end_of_storage;
88
89	size_type
90	_M_space_left() const throw()
91	{ return _M_end_of_storage - _M_finish; }
92
93	pointer
94	allocate(size_type __n)
95	{ return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
96
97	void
98	deallocate(pointer __p, size_type)
99	{ ::operator delete(__p); }
100
101      public:
102	// Members used: size(), push_back(), pop_back(),
103	// insert(iterator, const_reference), erase(iterator),
104	// begin(), end(), back(), operator[].
105
106	__mini_vector()
107        : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
108
109	size_type
110	size() const throw()
111	{ return _M_finish - _M_start; }
112
113	iterator
114	begin() const throw()
115	{ return this->_M_start; }
116
117	iterator
118	end() const throw()
119	{ return this->_M_finish; }
120
121	reference
122	back() const throw()
123	{ return *(this->end() - 1); }
124
125	reference
126	operator[](const size_type __pos) const throw()
127	{ return this->_M_start[__pos]; }
128
129	void
130	insert(iterator __pos, const_reference __x);
131
132	void
133	push_back(const_reference __x)
134	{
135	  if (this->_M_space_left())
136	    {
137	      *this->end() = __x;
138	      ++this->_M_finish;
139	    }
140	  else
141	    this->insert(this->end(), __x);
142	}
143
144	void
145	pop_back() throw()
146	{ --this->_M_finish; }
147
148	void
149	erase(iterator __pos) throw();
150
151	void
152	clear() throw()
153	{ this->_M_finish = this->_M_start; }
154      };
155
156    // Out of line function definitions.
157    template<typename _Tp>
158      void __mini_vector<_Tp>::
159      insert(iterator __pos, const_reference __x)
160      {
161	if (this->_M_space_left())
162	  {
163	    size_type __to_move = this->_M_finish - __pos;
164	    iterator __dest = this->end();
165	    iterator __src = this->end() - 1;
166
167	    ++this->_M_finish;
168	    while (__to_move)
169	      {
170		*__dest = *__src;
171		--__dest; --__src; --__to_move;
172	      }
173	    *__pos = __x;
174	  }
175	else
176	  {
177	    size_type __new_size = this->size() ? this->size() * 2 : 1;
178	    iterator __new_start = this->allocate(__new_size);
179	    iterator __first = this->begin();
180	    iterator __start = __new_start;
181	    while (__first != __pos)
182	      {
183		*__start = *__first;
184		++__start; ++__first;
185	      }
186	    *__start = __x;
187	    ++__start;
188	    while (__first != this->end())
189	      {
190		*__start = *__first;
191		++__start; ++__first;
192	      }
193	    if (this->_M_start)
194	      this->deallocate(this->_M_start, this->size());
195
196	    this->_M_start = __new_start;
197	    this->_M_finish = __start;
198	    this->_M_end_of_storage = this->_M_start + __new_size;
199	  }
200      }
201
202    template<typename _Tp>
203      void __mini_vector<_Tp>::
204      erase(iterator __pos) throw()
205      {
206	while (__pos + 1 != this->end())
207	  {
208	    *__pos = __pos[1];
209	    ++__pos;
210	  }
211	--this->_M_finish;
212      }
213
214
215    template<typename _Tp>
216      struct __mv_iter_traits
217      {
218	typedef typename _Tp::value_type value_type;
219	typedef typename _Tp::difference_type difference_type;
220      };
221
222    template<typename _Tp>
223      struct __mv_iter_traits<_Tp*>
224      {
225	typedef _Tp value_type;
226	typedef ptrdiff_t difference_type;
227      };
228
229    enum
230      {
231	bits_per_byte = 8,
232	bits_per_block = sizeof(size_t) * size_t(bits_per_byte)
233      };
234
235    template<typename _ForwardIterator, typename _Tp, typename _Compare>
236      _ForwardIterator
237      __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
238		    const _Tp& __val, _Compare __comp)
239      {
240	typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
241	  _DistanceType;
242
243	_DistanceType __len = __last - __first;
244	_DistanceType __half;
245	_ForwardIterator __middle;
246
247	while (__len > 0)
248	  {
249	    __half = __len >> 1;
250	    __middle = __first;
251	    __middle += __half;
252	    if (__comp(*__middle, __val))
253	      {
254		__first = __middle;
255		++__first;
256		__len = __len - __half - 1;
257	      }
258	    else
259	      __len = __half;
260	  }
261	return __first;
262      }
263
264    /** @brief The number of Blocks pointed to by the address pair
265     *  passed to the function.
266     */
267    template<typename _AddrPair>
268      inline size_t
269      __num_blocks(_AddrPair __ap)
270      { return (__ap.second - __ap.first) + 1; }
271
272    /** @brief The number of Bit-maps pointed to by the address pair
273     *  passed to the function.
274     */
275    template<typename _AddrPair>
276      inline size_t
277      __num_bitmaps(_AddrPair __ap)
278      { return __num_blocks(__ap) / size_t(bits_per_block); }
279
280    // _Tp should be a pointer type.
281    template<typename _Tp>
282      class _Inclusive_between
283      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
284      {
285	typedef _Tp pointer;
286	pointer _M_ptr_value;
287	typedef typename std::pair<_Tp, _Tp> _Block_pair;
288
289      public:
290	_Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
291	{ }
292
293	bool
294	operator()(_Block_pair __bp) const throw()
295	{
296	  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
297	      && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
298	    return true;
299	  else
300	    return false;
301	}
302      };
303
304    // Used to pass a Functor to functions by reference.
305    template<typename _Functor>
306      class _Functor_Ref
307      : public std::unary_function<typename _Functor::argument_type,
308				   typename _Functor::result_type>
309      {
310	_Functor& _M_fref;
311
312      public:
313	typedef typename _Functor::argument_type argument_type;
314	typedef typename _Functor::result_type result_type;
315
316	_Functor_Ref(_Functor& __fref) : _M_fref(__fref)
317	{ }
318
319	result_type
320	operator()(argument_type __arg)
321	{ return _M_fref(__arg); }
322      };
323
324    /** @class  _Ffit_finder bitmap_allocator.h bitmap_allocator.h
325     *
326     *  @brief  The class which acts as a predicate for applying the
327     *  first-fit memory allocation policy for the bitmap allocator.
328     */
329    // _Tp should be a pointer type, and _Alloc is the Allocator for
330    // the vector.
331    template<typename _Tp>
332      class _Ffit_finder
333      : public std::unary_function<typename std::pair<_Tp, _Tp>, bool>
334      {
335	typedef typename std::pair<_Tp, _Tp> _Block_pair;
336	typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
337	typedef typename _BPVector::difference_type _Counter_type;
338
339	size_t* _M_pbitmap;
340	_Counter_type _M_data_offset;
341
342      public:
343	_Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
344	{ }
345
346	bool
347	operator()(_Block_pair __bp) throw()
348	{
349	  // Set the _rover to the last physical location bitmap,
350	  // which is the bitmap which belongs to the first free
351	  // block. Thus, the bitmaps are in exact reverse order of
352	  // the actual memory layout. So, we count down the bitmaps,
353	  // which is the same as moving up the memory.
354
355	  // If the used count stored at the start of the Bit Map headers
356	  // is equal to the number of Objects that the current Block can
357	  // store, then there is definitely no space for another single
358	  // object, so just return false.
359	  _Counter_type __diff = __detail::__num_bitmaps(__bp);
360
361	  if (*(reinterpret_cast<size_t*>
362		(__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
363	    return false;
364
365	  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
366
367	  for (_Counter_type __i = 0; __i < __diff; ++__i)
368	    {
369	      _M_data_offset = __i;
370	      if (*__rover)
371		{
372		  _M_pbitmap = __rover;
373		  return true;
374		}
375	      --__rover;
376	    }
377	  return false;
378	}
379
380	size_t*
381	_M_get() const throw()
382	{ return _M_pbitmap; }
383
384	_Counter_type
385	_M_offset() const throw()
386	{ return _M_data_offset * size_t(bits_per_block); }
387      };
388
389    /** @class  _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
390     *
391     *  @brief  The bitmap counter which acts as the bitmap
392     *  manipulator, and manages the bit-manipulation functions and
393     *  the searching and identification functions on the bit-map.
394     */
395    // _Tp should be a pointer type.
396    template<typename _Tp>
397      class _Bitmap_counter
398      {
399	typedef typename
400	__detail::__mini_vector<typename std::pair<_Tp, _Tp> > _BPVector;
401	typedef typename _BPVector::size_type _Index_type;
402	typedef _Tp pointer;
403
404	_BPVector& _M_vbp;
405	size_t* _M_curr_bmap;
406	size_t* _M_last_bmap_in_block;
407	_Index_type _M_curr_index;
408
409      public:
410	// Use the 2nd parameter with care. Make sure that such an
411	// entry exists in the vector before passing that particular
412	// index to this ctor.
413	_Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
414	{ this->_M_reset(__index); }
415
416	void
417	_M_reset(long __index = -1) throw()
418	{
419	  if (__index == -1)
420	    {
421	      _M_curr_bmap = 0;
422	      _M_curr_index = static_cast<_Index_type>(-1);
423	      return;
424	    }
425
426	  _M_curr_index = __index;
427	  _M_curr_bmap = reinterpret_cast<size_t*>
428	    (_M_vbp[_M_curr_index].first) - 1;
429
430	  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
431
432	  _M_last_bmap_in_block = _M_curr_bmap
433	    - ((_M_vbp[_M_curr_index].second
434		- _M_vbp[_M_curr_index].first + 1)
435	       / size_t(bits_per_block) - 1);
436	}
437
438	// Dangerous Function! Use with extreme care. Pass to this
439	// function ONLY those values that are known to be correct,
440	// otherwise this will mess up big time.
441	void
442	_M_set_internal_bitmap(size_t* __new_internal_marker) throw()
443	{ _M_curr_bmap = __new_internal_marker; }
444
445	bool
446	_M_finished() const throw()
447	{ return(_M_curr_bmap == 0); }
448
449	_Bitmap_counter&
450	operator++() throw()
451	{
452	  if (_M_curr_bmap == _M_last_bmap_in_block)
453	    {
454	      if (++_M_curr_index == _M_vbp.size())
455		_M_curr_bmap = 0;
456	      else
457		this->_M_reset(_M_curr_index);
458	    }
459	  else
460	    --_M_curr_bmap;
461	  return *this;
462	}
463
464	size_t*
465	_M_get() const throw()
466	{ return _M_curr_bmap; }
467
468	pointer
469	_M_base() const throw()
470	{ return _M_vbp[_M_curr_index].first; }
471
472	_Index_type
473	_M_offset() const throw()
474	{
475	  return size_t(bits_per_block)
476	    * ((reinterpret_cast<size_t*>(this->_M_base())
477		- _M_curr_bmap) - 1);
478	}
479
480	_Index_type
481	_M_where() const throw()
482	{ return _M_curr_index; }
483      };
484
485    /** @brief  Mark a memory address as allocated by re-setting the
486     *  corresponding bit in the bit-map.
487     */
488    inline void
489    __bit_allocate(size_t* __pbmap, size_t __pos) throw()
490    {
491      size_t __mask = 1 << __pos;
492      __mask = ~__mask;
493      *__pbmap &= __mask;
494    }
495
496    /** @brief  Mark a memory address as free by setting the
497     *  corresponding bit in the bit-map.
498     */
499    inline void
500    __bit_free(size_t* __pbmap, size_t __pos) throw()
501    {
502      size_t __mask = 1 << __pos;
503      *__pbmap |= __mask;
504    }
505
506  _GLIBCXX_END_NAMESPACE_VERSION
507  } // namespace __detail
508
509_GLIBCXX_BEGIN_NAMESPACE_VERSION
510
511  /** @brief  Generic Version of the bsf instruction.
512   */
513  inline size_t
514  _Bit_scan_forward(size_t __num)
515  { return static_cast<size_t>(__builtin_ctzl(__num)); }
516
517  /** @class  free_list bitmap_allocator.h bitmap_allocator.h
518   *
519   *  @brief  The free list class for managing chunks of memory to be
520   *  given to and returned by the bitmap_allocator.
521   */
522  class free_list
523  {
524  public:
525    typedef size_t* 				value_type;
526    typedef __detail::__mini_vector<value_type> vector_type;
527    typedef vector_type::iterator 		iterator;
528    typedef __mutex				__mutex_type;
529
530  private:
531    struct _LT_pointer_compare
532    {
533      bool
534      operator()(const size_t* __pui,
535		 const size_t __cui) const throw()
536      { return *__pui < __cui; }
537    };
538
539#if defined __GTHREADS
540    __mutex_type&
541    _M_get_mutex()
542    {
543      static __mutex_type _S_mutex;
544      return _S_mutex;
545    }
546#endif
547
548    vector_type&
549    _M_get_free_list()
550    {
551      static vector_type _S_free_list;
552      return _S_free_list;
553    }
554
555    /** @brief  Performs validation of memory based on their size.
556     *
557     *  @param  __addr The pointer to the memory block to be
558     *  validated.
559     *
560     *  Validates the memory block passed to this function and
561     *  appropriately performs the action of managing the free list of
562     *  blocks by adding this block to the free list or deleting this
563     *  or larger blocks from the free list.
564     */
565    void
566    _M_validate(size_t* __addr) throw()
567    {
568      vector_type& __free_list = _M_get_free_list();
569      const vector_type::size_type __max_size = 64;
570      if (__free_list.size() >= __max_size)
571	{
572	  // Ok, the threshold value has been reached.  We determine
573	  // which block to remove from the list of free blocks.
574	  if (*__addr >= *__free_list.back())
575	    {
576	      // Ok, the new block is greater than or equal to the
577	      // last block in the list of free blocks. We just free
578	      // the new block.
579	      ::operator delete(static_cast<void*>(__addr));
580	      return;
581	    }
582	  else
583	    {
584	      // Deallocate the last block in the list of free lists,
585	      // and insert the new one in its correct position.
586	      ::operator delete(static_cast<void*>(__free_list.back()));
587	      __free_list.pop_back();
588	    }
589	}
590
591      // Just add the block to the list of free lists unconditionally.
592      iterator __temp = __detail::__lower_bound
593	(__free_list.begin(), __free_list.end(),
594	 *__addr, _LT_pointer_compare());
595
596      // We may insert the new free list before _temp;
597      __free_list.insert(__temp, __addr);
598    }
599
600    /** @brief  Decides whether the wastage of memory is acceptable for
601     *  the current memory request and returns accordingly.
602     *
603     *  @param __block_size The size of the block available in the free
604     *  list.
605     *
606     *  @param __required_size The required size of the memory block.
607     *
608     *  @return true if the wastage incurred is acceptable, else returns
609     *  false.
610     */
611    bool
612    _M_should_i_give(size_t __block_size,
613		     size_t __required_size) throw()
614    {
615      const size_t __max_wastage_percentage = 36;
616      if (__block_size >= __required_size &&
617	  (((__block_size - __required_size) * 100 / __block_size)
618	   < __max_wastage_percentage))
619	return true;
620      else
621	return false;
622    }
623
624  public:
625    /** @brief This function returns the block of memory to the
626     *  internal free list.
627     *
628     *  @param  __addr The pointer to the memory block that was given
629     *  by a call to the _M_get function.
630     */
631    inline void
632    _M_insert(size_t* __addr) throw()
633    {
634#if defined __GTHREADS
635      __scoped_lock __bfl_lock(_M_get_mutex());
636#endif
637      // Call _M_validate to decide what should be done with
638      // this particular free list.
639      this->_M_validate(reinterpret_cast<size_t*>(__addr) - 1);
640      // See discussion as to why this is 1!
641    }
642
643    /** @brief  This function gets a block of memory of the specified
644     *  size from the free list.
645     *
646     *  @param  __sz The size in bytes of the memory required.
647     *
648     *  @return  A pointer to the new memory block of size at least
649     *  equal to that requested.
650     */
651    size_t*
652    _M_get(size_t __sz) throw(std::bad_alloc);
653
654    /** @brief  This function just clears the internal Free List, and
655     *  gives back all the memory to the OS.
656     */
657    void
658    _M_clear();
659  };
660
661
662  // Forward declare the class.
663  template<typename _Tp>
664    class bitmap_allocator;
665
666  // Specialize for void:
667  template<>
668    class bitmap_allocator<void>
669    {
670    public:
671      typedef void*       pointer;
672      typedef const void* const_pointer;
673
674      // Reference-to-void members are impossible.
675      typedef void  value_type;
676      template<typename _Tp1>
677        struct rebind
678	{
679	  typedef bitmap_allocator<_Tp1> other;
680	};
681    };
682
683  /**
684   * @brief Bitmap Allocator, primary template.
685   * @ingroup allocators
686   */
687  template<typename _Tp>
688    class bitmap_allocator : private free_list
689    {
690    public:
691      typedef size_t    		size_type;
692      typedef ptrdiff_t 		difference_type;
693      typedef _Tp*        		pointer;
694      typedef const _Tp*  		const_pointer;
695      typedef _Tp&        		reference;
696      typedef const _Tp&  		const_reference;
697      typedef _Tp         		value_type;
698      typedef free_list::__mutex_type 	__mutex_type;
699
700      template<typename _Tp1>
701        struct rebind
702	{
703	  typedef bitmap_allocator<_Tp1> other;
704	};
705
706    private:
707      template<size_t _BSize, size_t _AlignSize>
708        struct aligned_size
709	{
710	  enum
711	    {
712	      modulus = _BSize % _AlignSize,
713	      value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
714	    };
715	};
716
717      struct _Alloc_block
718      {
719	char __M_unused[aligned_size<sizeof(value_type),
720			_BALLOC_ALIGN_BYTES>::value];
721      };
722
723
724      typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
725
726      typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
727      typedef typename _BPVector::iterator _BPiter;
728
729      template<typename _Predicate>
730        static _BPiter
731        _S_find(_Predicate __p)
732        {
733	  _BPiter __first = _S_mem_blocks.begin();
734	  while (__first != _S_mem_blocks.end() && !__p(*__first))
735	    ++__first;
736	  return __first;
737	}
738
739#if defined _GLIBCXX_DEBUG
740      // Complexity: O(lg(N)). Where, N is the number of block of size
741      // sizeof(value_type).
742      void
743      _S_check_for_free_blocks() throw()
744      {
745	typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
746	_BPiter __bpi = _S_find(_FFF());
747
748	_GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
749      }
750#endif
751
752      /** @brief  Responsible for exponentially growing the internal
753       *  memory pool.
754       *
755       *  @throw  std::bad_alloc. If memory can not be allocated.
756       *
757       *  Complexity: O(1), but internally depends upon the
758       *  complexity of the function free_list::_M_get. The part where
759       *  the bitmap headers are written has complexity: O(X),where X
760       *  is the number of blocks of size sizeof(value_type) within
761       *  the newly acquired block. Having a tight bound.
762       */
763      void
764      _S_refill_pool() throw(std::bad_alloc)
765      {
766#if defined _GLIBCXX_DEBUG
767	_S_check_for_free_blocks();
768#endif
769
770	const size_t __num_bitmaps = (_S_block_size
771				      / size_t(__detail::bits_per_block));
772	const size_t __size_to_allocate = sizeof(size_t)
773	  + _S_block_size * sizeof(_Alloc_block)
774	  + __num_bitmaps * sizeof(size_t);
775
776	size_t* __temp =
777	  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
778	*__temp = 0;
779	++__temp;
780
781	// The Header information goes at the Beginning of the Block.
782	_Block_pair __bp =
783	  std::make_pair(reinterpret_cast<_Alloc_block*>
784			 (__temp + __num_bitmaps),
785			 reinterpret_cast<_Alloc_block*>
786			 (__temp + __num_bitmaps)
787			 + _S_block_size - 1);
788
789	// Fill the Vector with this information.
790	_S_mem_blocks.push_back(__bp);
791
792	for (size_t __i = 0; __i < __num_bitmaps; ++__i)
793	  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
794
795	_S_block_size *= 2;
796      }
797
798      static _BPVector _S_mem_blocks;
799      static size_t _S_block_size;
800      static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
801      static typename _BPVector::size_type _S_last_dealloc_index;
802#if defined __GTHREADS
803      static __mutex_type _S_mut;
804#endif
805
806    public:
807
808      /** @brief  Allocates memory for a single object of size
809       *  sizeof(_Tp).
810       *
811       *  @throw  std::bad_alloc. If memory can not be allocated.
812       *
813       *  Complexity: Worst case complexity is O(N), but that
814       *  is hardly ever hit. If and when this particular case is
815       *  encountered, the next few cases are guaranteed to have a
816       *  worst case complexity of O(1)!  That's why this function
817       *  performs very well on average. You can consider this
818       *  function to have a complexity referred to commonly as:
819       *  Amortized Constant time.
820       */
821      pointer
822      _M_allocate_single_object() throw(std::bad_alloc)
823      {
824#if defined __GTHREADS
825	__scoped_lock __bit_lock(_S_mut);
826#endif
827
828	// The algorithm is something like this: The last_request
829	// variable points to the last accessed Bit Map. When such a
830	// condition occurs, we try to find a free block in the
831	// current bitmap, or succeeding bitmaps until the last bitmap
832	// is reached. If no free block turns up, we resort to First
833	// Fit method.
834
835	// WARNING: Do not re-order the condition in the while
836	// statement below, because it relies on C++'s short-circuit
837	// evaluation. The return from _S_last_request->_M_get() will
838	// NOT be dereference able if _S_last_request->_M_finished()
839	// returns true. This would inevitably lead to a NULL pointer
840	// dereference if tinkered with.
841	while (_S_last_request._M_finished() == false
842	       && (*(_S_last_request._M_get()) == 0))
843	  _S_last_request.operator++();
844
845	if (__builtin_expect(_S_last_request._M_finished() == true, false))
846	  {
847	    // Fall Back to First Fit algorithm.
848	    typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
849	    _FFF __fff;
850	    _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
851
852	    if (__bpi != _S_mem_blocks.end())
853	      {
854		// Search was successful. Ok, now mark the first bit from
855		// the right as 0, meaning Allocated. This bit is obtained
856		// by calling _M_get() on __fff.
857		size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
858		__detail::__bit_allocate(__fff._M_get(), __nz_bit);
859
860		_S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
861
862		// Now, get the address of the bit we marked as allocated.
863		pointer __ret = reinterpret_cast<pointer>
864		  (__bpi->first + __fff._M_offset() + __nz_bit);
865		size_t* __puse_count =
866		  reinterpret_cast<size_t*>
867		  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
868
869		++(*__puse_count);
870		return __ret;
871	      }
872	    else
873	      {
874		// Search was unsuccessful. We Add more memory to the
875		// pool by calling _S_refill_pool().
876		_S_refill_pool();
877
878		// _M_Reset the _S_last_request structure to the first
879		// free block's bit map.
880		_S_last_request._M_reset(_S_mem_blocks.size() - 1);
881
882		// Now, mark that bit as allocated.
883	      }
884	  }
885
886	// _S_last_request holds a pointer to a valid bit map, that
887	// points to a free block in memory.
888	size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
889	__detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
890
891	pointer __ret = reinterpret_cast<pointer>
892	  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
893
894	size_t* __puse_count = reinterpret_cast<size_t*>
895	  (_S_mem_blocks[_S_last_request._M_where()].first)
896	  - (__detail::
897	     __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
898
899	++(*__puse_count);
900	return __ret;
901      }
902
903      /** @brief  Deallocates memory that belongs to a single object of
904       *  size sizeof(_Tp).
905       *
906       *  Complexity: O(lg(N)), but the worst case is not hit
907       *  often!  This is because containers usually deallocate memory
908       *  close to each other and this case is handled in O(1) time by
909       *  the deallocate function.
910       */
911      void
912      _M_deallocate_single_object(pointer __p) throw()
913      {
914#if defined __GTHREADS
915	__scoped_lock __bit_lock(_S_mut);
916#endif
917	_Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
918
919	typedef typename _BPVector::iterator _Iterator;
920	typedef typename _BPVector::difference_type _Difference_type;
921
922	_Difference_type __diff;
923	long __displacement;
924
925	_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
926
927	__detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
928	if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
929	  {
930	    _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
931				  <= _S_mem_blocks.size() - 1);
932
933	    // Initial Assumption was correct!
934	    __diff = _S_last_dealloc_index;
935	    __displacement = __real_p - _S_mem_blocks[__diff].first;
936	  }
937	else
938	  {
939	    _Iterator _iter = _S_find(__ibt);
940
941	    _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
942
943	    __diff = _iter - _S_mem_blocks.begin();
944	    __displacement = __real_p - _S_mem_blocks[__diff].first;
945	    _S_last_dealloc_index = __diff;
946	  }
947
948	// Get the position of the iterator that has been found.
949	const size_t __rotate = (__displacement
950				 % size_t(__detail::bits_per_block));
951	size_t* __bitmapC =
952	  reinterpret_cast<size_t*>
953	  (_S_mem_blocks[__diff].first) - 1;
954	__bitmapC -= (__displacement / size_t(__detail::bits_per_block));
955
956	__detail::__bit_free(__bitmapC, __rotate);
957	size_t* __puse_count = reinterpret_cast<size_t*>
958	  (_S_mem_blocks[__diff].first)
959	  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
960
961	_GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
962
963	--(*__puse_count);
964
965	if (__builtin_expect(*__puse_count == 0, false))
966	  {
967	    _S_block_size /= 2;
968
969	    // We can safely remove this block.
970	    // _Block_pair __bp = _S_mem_blocks[__diff];
971	    this->_M_insert(__puse_count);
972	    _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
973
974	    // Reset the _S_last_request variable to reflect the
975	    // erased block. We do this to protect future requests
976	    // after the last block has been removed from a particular
977	    // memory Chunk, which in turn has been returned to the
978	    // free list, and hence had been erased from the vector,
979	    // so the size of the vector gets reduced by 1.
980	    if ((_Difference_type)_S_last_request._M_where() >= __diff--)
981	      _S_last_request._M_reset(__diff);
982
983	    // If the Index into the vector of the region of memory
984	    // that might hold the next address that will be passed to
985	    // deallocated may have been invalidated due to the above
986	    // erase procedure being called on the vector, hence we
987	    // try to restore this invariant too.
988	    if (_S_last_dealloc_index >= _S_mem_blocks.size())
989	      {
990		_S_last_dealloc_index =(__diff != -1 ? __diff : 0);
991		_GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
992	      }
993	  }
994      }
995
996    public:
997      bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
998      { }
999
1000      bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1001      { }
1002
1003      template<typename _Tp1>
1004        bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1005        { }
1006
1007      ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1008      { }
1009
1010      pointer
1011      allocate(size_type __n)
1012      {
1013	if (__n > this->max_size())
1014	  std::__throw_bad_alloc();
1015
1016	if (__builtin_expect(__n == 1, true))
1017	  return this->_M_allocate_single_object();
1018	else
1019	  {
1020	    const size_type __b = __n * sizeof(value_type);
1021	    return reinterpret_cast<pointer>(::operator new(__b));
1022	  }
1023      }
1024
1025      pointer
1026      allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1027      { return allocate(__n); }
1028
1029      void
1030      deallocate(pointer __p, size_type __n) throw()
1031      {
1032	if (__builtin_expect(__p != 0, true))
1033	  {
1034	    if (__builtin_expect(__n == 1, true))
1035	      this->_M_deallocate_single_object(__p);
1036	    else
1037	      ::operator delete(__p);
1038	  }
1039      }
1040
1041      pointer
1042      address(reference __r) const _GLIBCXX_NOEXCEPT
1043      { return std::__addressof(__r); }
1044
1045      const_pointer
1046      address(const_reference __r) const _GLIBCXX_NOEXCEPT
1047      { return std::__addressof(__r); }
1048
1049      size_type
1050      max_size() const _GLIBCXX_USE_NOEXCEPT
1051      { return size_type(-1) / sizeof(value_type); }
1052
1053#ifdef __GXX_EXPERIMENTAL_CXX0X__
1054      template<typename _Up, typename... _Args>
1055        void
1056        construct(_Up* __p, _Args&&... __args)
1057	{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1058
1059      template<typename _Up>
1060        void
1061        destroy(_Up* __p)
1062        { __p->~_Up(); }
1063#else
1064      void
1065      construct(pointer __p, const_reference __data)
1066      { ::new((void *)__p) value_type(__data); }
1067
1068      void
1069      destroy(pointer __p)
1070      { __p->~value_type(); }
1071#endif
1072    };
1073
1074  template<typename _Tp1, typename _Tp2>
1075    bool
1076    operator==(const bitmap_allocator<_Tp1>&,
1077	       const bitmap_allocator<_Tp2>&) throw()
1078    { return true; }
1079
1080  template<typename _Tp1, typename _Tp2>
1081    bool
1082    operator!=(const bitmap_allocator<_Tp1>&,
1083	       const bitmap_allocator<_Tp2>&) throw()
1084  { return false; }
1085
1086  // Static member definitions.
1087  template<typename _Tp>
1088    typename bitmap_allocator<_Tp>::_BPVector
1089    bitmap_allocator<_Tp>::_S_mem_blocks;
1090
1091  template<typename _Tp>
1092    size_t bitmap_allocator<_Tp>::_S_block_size =
1093    2 * size_t(__detail::bits_per_block);
1094
1095  template<typename _Tp>
1096    typename bitmap_allocator<_Tp>::_BPVector::size_type
1097    bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1098
1099  template<typename _Tp>
1100    __detail::_Bitmap_counter
1101      <typename bitmap_allocator<_Tp>::_Alloc_block*>
1102    bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1103
1104#if defined __GTHREADS
1105  template<typename _Tp>
1106    typename bitmap_allocator<_Tp>::__mutex_type
1107    bitmap_allocator<_Tp>::_S_mut;
1108#endif
1109
1110_GLIBCXX_END_NAMESPACE_VERSION
1111} // namespace __gnu_cxx
1112
1113#endif
1114
1115