1# Copyright (c) 2004 Python Software Foundation. 2# All rights reserved. 3 4# Written by Eric Price <eprice at tjhsst.edu> 5# and Facundo Batista <facundo at taniquetil.com.ar> 6# and Raymond Hettinger <python at rcn.com> 7# and Aahz <aahz at pobox.com> 8# and Tim Peters 9 10# This module is currently Py2.3 compatible and should be kept that way 11# unless a major compelling advantage arises. IOW, 2.3 compatibility is 12# strongly preferred, but not guaranteed. 13 14# Also, this module should be kept in sync with the latest updates of 15# the IBM specification as it evolves. Those updates will be treated 16# as bug fixes (deviation from the spec is a compatibility, usability 17# bug) and will be backported. At this point the spec is stabilizing 18# and the updates are becoming fewer, smaller, and less significant. 19 20""" 21This is a Py2.3 implementation of decimal floating point arithmetic based on 22the General Decimal Arithmetic Specification: 23 24 http://speleotrove.com/decimal/decarith.html 25 26and IEEE standard 854-1987: 27 28 www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html 29 30Decimal floating point has finite precision with arbitrarily large bounds. 31 32The purpose of this module is to support arithmetic using familiar 33"schoolhouse" rules and to avoid some of the tricky representation 34issues associated with binary floating point. The package is especially 35useful for financial applications or for contexts where users have 36expectations that are at odds with binary floating point (for instance, 37in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead 38of the expected Decimal('0.00') returned by decimal floating point). 39 40Here are some examples of using the decimal module: 41 42>>> from decimal import * 43>>> setcontext(ExtendedContext) 44>>> Decimal(0) 45Decimal('0') 46>>> Decimal('1') 47Decimal('1') 48>>> Decimal('-.0123') 49Decimal('-0.0123') 50>>> Decimal(123456) 51Decimal('123456') 52>>> Decimal('123.45e12345678901234567890') 53Decimal('1.2345E+12345678901234567892') 54>>> Decimal('1.33') + Decimal('1.27') 55Decimal('2.60') 56>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41') 57Decimal('-2.20') 58>>> dig = Decimal(1) 59>>> print dig / Decimal(3) 600.333333333 61>>> getcontext().prec = 18 62>>> print dig / Decimal(3) 630.333333333333333333 64>>> print dig.sqrt() 651 66>>> print Decimal(3).sqrt() 671.73205080756887729 68>>> print Decimal(3) ** 123 694.85192780976896427E+58 70>>> inf = Decimal(1) / Decimal(0) 71>>> print inf 72Infinity 73>>> neginf = Decimal(-1) / Decimal(0) 74>>> print neginf 75-Infinity 76>>> print neginf + inf 77NaN 78>>> print neginf * inf 79-Infinity 80>>> print dig / 0 81Infinity 82>>> getcontext().traps[DivisionByZero] = 1 83>>> print dig / 0 84Traceback (most recent call last): 85 ... 86 ... 87 ... 88DivisionByZero: x / 0 89>>> c = Context() 90>>> c.traps[InvalidOperation] = 0 91>>> print c.flags[InvalidOperation] 920 93>>> c.divide(Decimal(0), Decimal(0)) 94Decimal('NaN') 95>>> c.traps[InvalidOperation] = 1 96>>> print c.flags[InvalidOperation] 971 98>>> c.flags[InvalidOperation] = 0 99>>> print c.flags[InvalidOperation] 1000 101>>> print c.divide(Decimal(0), Decimal(0)) 102Traceback (most recent call last): 103 ... 104 ... 105 ... 106InvalidOperation: 0 / 0 107>>> print c.flags[InvalidOperation] 1081 109>>> c.flags[InvalidOperation] = 0 110>>> c.traps[InvalidOperation] = 0 111>>> print c.divide(Decimal(0), Decimal(0)) 112NaN 113>>> print c.flags[InvalidOperation] 1141 115>>> 116""" 117 118__all__ = [ 119 # Two major classes 120 'Decimal', 'Context', 121 122 # Contexts 123 'DefaultContext', 'BasicContext', 'ExtendedContext', 124 125 # Exceptions 126 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero', 127 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow', 128 129 # Constants for use in setting up contexts 130 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING', 131 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP', 132 133 # Functions for manipulating contexts 134 'setcontext', 'getcontext', 'localcontext' 135] 136 137__version__ = '1.70' # Highest version of the spec this complies with 138 139import copy as _copy 140import math as _math 141import numbers as _numbers 142 143try: 144 from collections import namedtuple as _namedtuple 145 DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent') 146except ImportError: 147 DecimalTuple = lambda *args: args 148 149# Rounding 150ROUND_DOWN = 'ROUND_DOWN' 151ROUND_HALF_UP = 'ROUND_HALF_UP' 152ROUND_HALF_EVEN = 'ROUND_HALF_EVEN' 153ROUND_CEILING = 'ROUND_CEILING' 154ROUND_FLOOR = 'ROUND_FLOOR' 155ROUND_UP = 'ROUND_UP' 156ROUND_HALF_DOWN = 'ROUND_HALF_DOWN' 157ROUND_05UP = 'ROUND_05UP' 158 159# Errors 160 161class DecimalException(ArithmeticError): 162 """Base exception class. 163 164 Used exceptions derive from this. 165 If an exception derives from another exception besides this (such as 166 Underflow (Inexact, Rounded, Subnormal) that indicates that it is only 167 called if the others are present. This isn't actually used for 168 anything, though. 169 170 handle -- Called when context._raise_error is called and the 171 trap_enabler is not set. First argument is self, second is the 172 context. More arguments can be given, those being after 173 the explanation in _raise_error (For example, 174 context._raise_error(NewError, '(-x)!', self._sign) would 175 call NewError().handle(context, self._sign).) 176 177 To define a new exception, it should be sufficient to have it derive 178 from DecimalException. 179 """ 180 def handle(self, context, *args): 181 pass 182 183 184class Clamped(DecimalException): 185 """Exponent of a 0 changed to fit bounds. 186 187 This occurs and signals clamped if the exponent of a result has been 188 altered in order to fit the constraints of a specific concrete 189 representation. This may occur when the exponent of a zero result would 190 be outside the bounds of a representation, or when a large normal 191 number would have an encoded exponent that cannot be represented. In 192 this latter case, the exponent is reduced to fit and the corresponding 193 number of zero digits are appended to the coefficient ("fold-down"). 194 """ 195 196class InvalidOperation(DecimalException): 197 """An invalid operation was performed. 198 199 Various bad things cause this: 200 201 Something creates a signaling NaN 202 -INF + INF 203 0 * (+-)INF 204 (+-)INF / (+-)INF 205 x % 0 206 (+-)INF % x 207 x._rescale( non-integer ) 208 sqrt(-x) , x > 0 209 0 ** 0 210 x ** (non-integer) 211 x ** (+-)INF 212 An operand is invalid 213 214 The result of the operation after these is a quiet positive NaN, 215 except when the cause is a signaling NaN, in which case the result is 216 also a quiet NaN, but with the original sign, and an optional 217 diagnostic information. 218 """ 219 def handle(self, context, *args): 220 if args: 221 ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True) 222 return ans._fix_nan(context) 223 return _NaN 224 225class ConversionSyntax(InvalidOperation): 226 """Trying to convert badly formed string. 227 228 This occurs and signals invalid-operation if an string is being 229 converted to a number and it does not conform to the numeric string 230 syntax. The result is [0,qNaN]. 231 """ 232 def handle(self, context, *args): 233 return _NaN 234 235class DivisionByZero(DecimalException, ZeroDivisionError): 236 """Division by 0. 237 238 This occurs and signals division-by-zero if division of a finite number 239 by zero was attempted (during a divide-integer or divide operation, or a 240 power operation with negative right-hand operand), and the dividend was 241 not zero. 242 243 The result of the operation is [sign,inf], where sign is the exclusive 244 or of the signs of the operands for divide, or is 1 for an odd power of 245 -0, for power. 246 """ 247 248 def handle(self, context, sign, *args): 249 return _SignedInfinity[sign] 250 251class DivisionImpossible(InvalidOperation): 252 """Cannot perform the division adequately. 253 254 This occurs and signals invalid-operation if the integer result of a 255 divide-integer or remainder operation had too many digits (would be 256 longer than precision). The result is [0,qNaN]. 257 """ 258 259 def handle(self, context, *args): 260 return _NaN 261 262class DivisionUndefined(InvalidOperation, ZeroDivisionError): 263 """Undefined result of division. 264 265 This occurs and signals invalid-operation if division by zero was 266 attempted (during a divide-integer, divide, or remainder operation), and 267 the dividend is also zero. The result is [0,qNaN]. 268 """ 269 270 def handle(self, context, *args): 271 return _NaN 272 273class Inexact(DecimalException): 274 """Had to round, losing information. 275 276 This occurs and signals inexact whenever the result of an operation is 277 not exact (that is, it needed to be rounded and any discarded digits 278 were non-zero), or if an overflow or underflow condition occurs. The 279 result in all cases is unchanged. 280 281 The inexact signal may be tested (or trapped) to determine if a given 282 operation (or sequence of operations) was inexact. 283 """ 284 285class InvalidContext(InvalidOperation): 286 """Invalid context. Unknown rounding, for example. 287 288 This occurs and signals invalid-operation if an invalid context was 289 detected during an operation. This can occur if contexts are not checked 290 on creation and either the precision exceeds the capability of the 291 underlying concrete representation or an unknown or unsupported rounding 292 was specified. These aspects of the context need only be checked when 293 the values are required to be used. The result is [0,qNaN]. 294 """ 295 296 def handle(self, context, *args): 297 return _NaN 298 299class Rounded(DecimalException): 300 """Number got rounded (not necessarily changed during rounding). 301 302 This occurs and signals rounded whenever the result of an operation is 303 rounded (that is, some zero or non-zero digits were discarded from the 304 coefficient), or if an overflow or underflow condition occurs. The 305 result in all cases is unchanged. 306 307 The rounded signal may be tested (or trapped) to determine if a given 308 operation (or sequence of operations) caused a loss of precision. 309 """ 310 311class Subnormal(DecimalException): 312 """Exponent < Emin before rounding. 313 314 This occurs and signals subnormal whenever the result of a conversion or 315 operation is subnormal (that is, its adjusted exponent is less than 316 Emin, before any rounding). The result in all cases is unchanged. 317 318 The subnormal signal may be tested (or trapped) to determine if a given 319 or operation (or sequence of operations) yielded a subnormal result. 320 """ 321 322class Overflow(Inexact, Rounded): 323 """Numerical overflow. 324 325 This occurs and signals overflow if the adjusted exponent of a result 326 (from a conversion or from an operation that is not an attempt to divide 327 by zero), after rounding, would be greater than the largest value that 328 can be handled by the implementation (the value Emax). 329 330 The result depends on the rounding mode: 331 332 For round-half-up and round-half-even (and for round-half-down and 333 round-up, if implemented), the result of the operation is [sign,inf], 334 where sign is the sign of the intermediate result. For round-down, the 335 result is the largest finite number that can be represented in the 336 current precision, with the sign of the intermediate result. For 337 round-ceiling, the result is the same as for round-down if the sign of 338 the intermediate result is 1, or is [0,inf] otherwise. For round-floor, 339 the result is the same as for round-down if the sign of the intermediate 340 result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded 341 will also be raised. 342 """ 343 344 def handle(self, context, sign, *args): 345 if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN, 346 ROUND_HALF_DOWN, ROUND_UP): 347 return _SignedInfinity[sign] 348 if sign == 0: 349 if context.rounding == ROUND_CEILING: 350 return _SignedInfinity[sign] 351 return _dec_from_triple(sign, '9'*context.prec, 352 context.Emax-context.prec+1) 353 if sign == 1: 354 if context.rounding == ROUND_FLOOR: 355 return _SignedInfinity[sign] 356 return _dec_from_triple(sign, '9'*context.prec, 357 context.Emax-context.prec+1) 358 359 360class Underflow(Inexact, Rounded, Subnormal): 361 """Numerical underflow with result rounded to 0. 362 363 This occurs and signals underflow if a result is inexact and the 364 adjusted exponent of the result would be smaller (more negative) than 365 the smallest value that can be handled by the implementation (the value 366 Emin). That is, the result is both inexact and subnormal. 367 368 The result after an underflow will be a subnormal number rounded, if 369 necessary, so that its exponent is not less than Etiny. This may result 370 in 0 with the sign of the intermediate result and an exponent of Etiny. 371 372 In all cases, Inexact, Rounded, and Subnormal will also be raised. 373 """ 374 375# List of public traps and flags 376_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded, 377 Underflow, InvalidOperation, Subnormal] 378 379# Map conditions (per the spec) to signals 380_condition_map = {ConversionSyntax:InvalidOperation, 381 DivisionImpossible:InvalidOperation, 382 DivisionUndefined:InvalidOperation, 383 InvalidContext:InvalidOperation} 384 385##### Context Functions ################################################## 386 387# The getcontext() and setcontext() function manage access to a thread-local 388# current context. Py2.4 offers direct support for thread locals. If that 389# is not available, use threading.currentThread() which is slower but will 390# work for older Pythons. If threads are not part of the build, create a 391# mock threading object with threading.local() returning the module namespace. 392 393try: 394 import threading 395except ImportError: 396 # Python was compiled without threads; create a mock object instead 397 import sys 398 class MockThreading(object): 399 def local(self, sys=sys): 400 return sys.modules[__name__] 401 threading = MockThreading() 402 del sys, MockThreading 403 404try: 405 threading.local 406 407except AttributeError: 408 409 # To fix reloading, force it to create a new context 410 # Old contexts have different exceptions in their dicts, making problems. 411 if hasattr(threading.currentThread(), '__decimal_context__'): 412 del threading.currentThread().__decimal_context__ 413 414 def setcontext(context): 415 """Set this thread's context to context.""" 416 if context in (DefaultContext, BasicContext, ExtendedContext): 417 context = context.copy() 418 context.clear_flags() 419 threading.currentThread().__decimal_context__ = context 420 421 def getcontext(): 422 """Returns this thread's context. 423 424 If this thread does not yet have a context, returns 425 a new context and sets this thread's context. 426 New contexts are copies of DefaultContext. 427 """ 428 try: 429 return threading.currentThread().__decimal_context__ 430 except AttributeError: 431 context = Context() 432 threading.currentThread().__decimal_context__ = context 433 return context 434 435else: 436 437 local = threading.local() 438 if hasattr(local, '__decimal_context__'): 439 del local.__decimal_context__ 440 441 def getcontext(_local=local): 442 """Returns this thread's context. 443 444 If this thread does not yet have a context, returns 445 a new context and sets this thread's context. 446 New contexts are copies of DefaultContext. 447 """ 448 try: 449 return _local.__decimal_context__ 450 except AttributeError: 451 context = Context() 452 _local.__decimal_context__ = context 453 return context 454 455 def setcontext(context, _local=local): 456 """Set this thread's context to context.""" 457 if context in (DefaultContext, BasicContext, ExtendedContext): 458 context = context.copy() 459 context.clear_flags() 460 _local.__decimal_context__ = context 461 462 del threading, local # Don't contaminate the namespace 463 464def localcontext(ctx=None): 465 """Return a context manager for a copy of the supplied context 466 467 Uses a copy of the current context if no context is specified 468 The returned context manager creates a local decimal context 469 in a with statement: 470 def sin(x): 471 with localcontext() as ctx: 472 ctx.prec += 2 473 # Rest of sin calculation algorithm 474 # uses a precision 2 greater than normal 475 return +s # Convert result to normal precision 476 477 def sin(x): 478 with localcontext(ExtendedContext): 479 # Rest of sin calculation algorithm 480 # uses the Extended Context from the 481 # General Decimal Arithmetic Specification 482 return +s # Convert result to normal context 483 484 >>> setcontext(DefaultContext) 485 >>> print getcontext().prec 486 28 487 >>> with localcontext(): 488 ... ctx = getcontext() 489 ... ctx.prec += 2 490 ... print ctx.prec 491 ... 492 30 493 >>> with localcontext(ExtendedContext): 494 ... print getcontext().prec 495 ... 496 9 497 >>> print getcontext().prec 498 28 499 """ 500 if ctx is None: ctx = getcontext() 501 return _ContextManager(ctx) 502 503 504##### Decimal class ####################################################### 505 506class Decimal(object): 507 """Floating point class for decimal arithmetic.""" 508 509 __slots__ = ('_exp','_int','_sign', '_is_special') 510 # Generally, the value of the Decimal instance is given by 511 # (-1)**_sign * _int * 10**_exp 512 # Special values are signified by _is_special == True 513 514 # We're immutable, so use __new__ not __init__ 515 def __new__(cls, value="0", context=None): 516 """Create a decimal point instance. 517 518 >>> Decimal('3.14') # string input 519 Decimal('3.14') 520 >>> Decimal((0, (3, 1, 4), -2)) # tuple (sign, digit_tuple, exponent) 521 Decimal('3.14') 522 >>> Decimal(314) # int or long 523 Decimal('314') 524 >>> Decimal(Decimal(314)) # another decimal instance 525 Decimal('314') 526 >>> Decimal(' 3.14 \\n') # leading and trailing whitespace okay 527 Decimal('3.14') 528 """ 529 530 # Note that the coefficient, self._int, is actually stored as 531 # a string rather than as a tuple of digits. This speeds up 532 # the "digits to integer" and "integer to digits" conversions 533 # that are used in almost every arithmetic operation on 534 # Decimals. This is an internal detail: the as_tuple function 535 # and the Decimal constructor still deal with tuples of 536 # digits. 537 538 self = object.__new__(cls) 539 540 # From a string 541 # REs insist on real strings, so we can too. 542 if isinstance(value, basestring): 543 m = _parser(value.strip()) 544 if m is None: 545 if context is None: 546 context = getcontext() 547 return context._raise_error(ConversionSyntax, 548 "Invalid literal for Decimal: %r" % value) 549 550 if m.group('sign') == "-": 551 self._sign = 1 552 else: 553 self._sign = 0 554 intpart = m.group('int') 555 if intpart is not None: 556 # finite number 557 fracpart = m.group('frac') or '' 558 exp = int(m.group('exp') or '0') 559 self._int = str(int(intpart+fracpart)) 560 self._exp = exp - len(fracpart) 561 self._is_special = False 562 else: 563 diag = m.group('diag') 564 if diag is not None: 565 # NaN 566 self._int = str(int(diag or '0')).lstrip('0') 567 if m.group('signal'): 568 self._exp = 'N' 569 else: 570 self._exp = 'n' 571 else: 572 # infinity 573 self._int = '0' 574 self._exp = 'F' 575 self._is_special = True 576 return self 577 578 # From an integer 579 if isinstance(value, (int,long)): 580 if value >= 0: 581 self._sign = 0 582 else: 583 self._sign = 1 584 self._exp = 0 585 self._int = str(abs(value)) 586 self._is_special = False 587 return self 588 589 # From another decimal 590 if isinstance(value, Decimal): 591 self._exp = value._exp 592 self._sign = value._sign 593 self._int = value._int 594 self._is_special = value._is_special 595 return self 596 597 # From an internal working value 598 if isinstance(value, _WorkRep): 599 self._sign = value.sign 600 self._int = str(value.int) 601 self._exp = int(value.exp) 602 self._is_special = False 603 return self 604 605 # tuple/list conversion (possibly from as_tuple()) 606 if isinstance(value, (list,tuple)): 607 if len(value) != 3: 608 raise ValueError('Invalid tuple size in creation of Decimal ' 609 'from list or tuple. The list or tuple ' 610 'should have exactly three elements.') 611 # process sign. The isinstance test rejects floats 612 if not (isinstance(value[0], (int, long)) and value[0] in (0,1)): 613 raise ValueError("Invalid sign. The first value in the tuple " 614 "should be an integer; either 0 for a " 615 "positive number or 1 for a negative number.") 616 self._sign = value[0] 617 if value[2] == 'F': 618 # infinity: value[1] is ignored 619 self._int = '0' 620 self._exp = value[2] 621 self._is_special = True 622 else: 623 # process and validate the digits in value[1] 624 digits = [] 625 for digit in value[1]: 626 if isinstance(digit, (int, long)) and 0 <= digit <= 9: 627 # skip leading zeros 628 if digits or digit != 0: 629 digits.append(digit) 630 else: 631 raise ValueError("The second value in the tuple must " 632 "be composed of integers in the range " 633 "0 through 9.") 634 if value[2] in ('n', 'N'): 635 # NaN: digits form the diagnostic 636 self._int = ''.join(map(str, digits)) 637 self._exp = value[2] 638 self._is_special = True 639 elif isinstance(value[2], (int, long)): 640 # finite number: digits give the coefficient 641 self._int = ''.join(map(str, digits or [0])) 642 self._exp = value[2] 643 self._is_special = False 644 else: 645 raise ValueError("The third value in the tuple must " 646 "be an integer, or one of the " 647 "strings 'F', 'n', 'N'.") 648 return self 649 650 if isinstance(value, float): 651 value = Decimal.from_float(value) 652 self._exp = value._exp 653 self._sign = value._sign 654 self._int = value._int 655 self._is_special = value._is_special 656 return self 657 658 raise TypeError("Cannot convert %r to Decimal" % value) 659 660 # @classmethod, but @decorator is not valid Python 2.3 syntax, so 661 # don't use it (see notes on Py2.3 compatibility at top of file) 662 def from_float(cls, f): 663 """Converts a float to a decimal number, exactly. 664 665 Note that Decimal.from_float(0.1) is not the same as Decimal('0.1'). 666 Since 0.1 is not exactly representable in binary floating point, the 667 value is stored as the nearest representable value which is 668 0x1.999999999999ap-4. The exact equivalent of the value in decimal 669 is 0.1000000000000000055511151231257827021181583404541015625. 670 671 >>> Decimal.from_float(0.1) 672 Decimal('0.1000000000000000055511151231257827021181583404541015625') 673 >>> Decimal.from_float(float('nan')) 674 Decimal('NaN') 675 >>> Decimal.from_float(float('inf')) 676 Decimal('Infinity') 677 >>> Decimal.from_float(-float('inf')) 678 Decimal('-Infinity') 679 >>> Decimal.from_float(-0.0) 680 Decimal('-0') 681 682 """ 683 if isinstance(f, (int, long)): # handle integer inputs 684 return cls(f) 685 if _math.isinf(f) or _math.isnan(f): # raises TypeError if not a float 686 return cls(repr(f)) 687 if _math.copysign(1.0, f) == 1.0: 688 sign = 0 689 else: 690 sign = 1 691 n, d = abs(f).as_integer_ratio() 692 k = d.bit_length() - 1 693 result = _dec_from_triple(sign, str(n*5**k), -k) 694 if cls is Decimal: 695 return result 696 else: 697 return cls(result) 698 from_float = classmethod(from_float) 699 700 def _isnan(self): 701 """Returns whether the number is not actually one. 702 703 0 if a number 704 1 if NaN 705 2 if sNaN 706 """ 707 if self._is_special: 708 exp = self._exp 709 if exp == 'n': 710 return 1 711 elif exp == 'N': 712 return 2 713 return 0 714 715 def _isinfinity(self): 716 """Returns whether the number is infinite 717 718 0 if finite or not a number 719 1 if +INF 720 -1 if -INF 721 """ 722 if self._exp == 'F': 723 if self._sign: 724 return -1 725 return 1 726 return 0 727 728 def _check_nans(self, other=None, context=None): 729 """Returns whether the number is not actually one. 730 731 if self, other are sNaN, signal 732 if self, other are NaN return nan 733 return 0 734 735 Done before operations. 736 """ 737 738 self_is_nan = self._isnan() 739 if other is None: 740 other_is_nan = False 741 else: 742 other_is_nan = other._isnan() 743 744 if self_is_nan or other_is_nan: 745 if context is None: 746 context = getcontext() 747 748 if self_is_nan == 2: 749 return context._raise_error(InvalidOperation, 'sNaN', 750 self) 751 if other_is_nan == 2: 752 return context._raise_error(InvalidOperation, 'sNaN', 753 other) 754 if self_is_nan: 755 return self._fix_nan(context) 756 757 return other._fix_nan(context) 758 return 0 759 760 def _compare_check_nans(self, other, context): 761 """Version of _check_nans used for the signaling comparisons 762 compare_signal, __le__, __lt__, __ge__, __gt__. 763 764 Signal InvalidOperation if either self or other is a (quiet 765 or signaling) NaN. Signaling NaNs take precedence over quiet 766 NaNs. 767 768 Return 0 if neither operand is a NaN. 769 770 """ 771 if context is None: 772 context = getcontext() 773 774 if self._is_special or other._is_special: 775 if self.is_snan(): 776 return context._raise_error(InvalidOperation, 777 'comparison involving sNaN', 778 self) 779 elif other.is_snan(): 780 return context._raise_error(InvalidOperation, 781 'comparison involving sNaN', 782 other) 783 elif self.is_qnan(): 784 return context._raise_error(InvalidOperation, 785 'comparison involving NaN', 786 self) 787 elif other.is_qnan(): 788 return context._raise_error(InvalidOperation, 789 'comparison involving NaN', 790 other) 791 return 0 792 793 def __nonzero__(self): 794 """Return True if self is nonzero; otherwise return False. 795 796 NaNs and infinities are considered nonzero. 797 """ 798 return self._is_special or self._int != '0' 799 800 def _cmp(self, other): 801 """Compare the two non-NaN decimal instances self and other. 802 803 Returns -1 if self < other, 0 if self == other and 1 804 if self > other. This routine is for internal use only.""" 805 806 if self._is_special or other._is_special: 807 self_inf = self._isinfinity() 808 other_inf = other._isinfinity() 809 if self_inf == other_inf: 810 return 0 811 elif self_inf < other_inf: 812 return -1 813 else: 814 return 1 815 816 # check for zeros; Decimal('0') == Decimal('-0') 817 if not self: 818 if not other: 819 return 0 820 else: 821 return -((-1)**other._sign) 822 if not other: 823 return (-1)**self._sign 824 825 # If different signs, neg one is less 826 if other._sign < self._sign: 827 return -1 828 if self._sign < other._sign: 829 return 1 830 831 self_adjusted = self.adjusted() 832 other_adjusted = other.adjusted() 833 if self_adjusted == other_adjusted: 834 self_padded = self._int + '0'*(self._exp - other._exp) 835 other_padded = other._int + '0'*(other._exp - self._exp) 836 if self_padded == other_padded: 837 return 0 838 elif self_padded < other_padded: 839 return -(-1)**self._sign 840 else: 841 return (-1)**self._sign 842 elif self_adjusted > other_adjusted: 843 return (-1)**self._sign 844 else: # self_adjusted < other_adjusted 845 return -((-1)**self._sign) 846 847 # Note: The Decimal standard doesn't cover rich comparisons for 848 # Decimals. In particular, the specification is silent on the 849 # subject of what should happen for a comparison involving a NaN. 850 # We take the following approach: 851 # 852 # == comparisons involving a quiet NaN always return False 853 # != comparisons involving a quiet NaN always return True 854 # == or != comparisons involving a signaling NaN signal 855 # InvalidOperation, and return False or True as above if the 856 # InvalidOperation is not trapped. 857 # <, >, <= and >= comparisons involving a (quiet or signaling) 858 # NaN signal InvalidOperation, and return False if the 859 # InvalidOperation is not trapped. 860 # 861 # This behavior is designed to conform as closely as possible to 862 # that specified by IEEE 754. 863 864 def __eq__(self, other, context=None): 865 other = _convert_other(other, allow_float=True) 866 if other is NotImplemented: 867 return other 868 if self._check_nans(other, context): 869 return False 870 return self._cmp(other) == 0 871 872 def __ne__(self, other, context=None): 873 other = _convert_other(other, allow_float=True) 874 if other is NotImplemented: 875 return other 876 if self._check_nans(other, context): 877 return True 878 return self._cmp(other) != 0 879 880 def __lt__(self, other, context=None): 881 other = _convert_other(other, allow_float=True) 882 if other is NotImplemented: 883 return other 884 ans = self._compare_check_nans(other, context) 885 if ans: 886 return False 887 return self._cmp(other) < 0 888 889 def __le__(self, other, context=None): 890 other = _convert_other(other, allow_float=True) 891 if other is NotImplemented: 892 return other 893 ans = self._compare_check_nans(other, context) 894 if ans: 895 return False 896 return self._cmp(other) <= 0 897 898 def __gt__(self, other, context=None): 899 other = _convert_other(other, allow_float=True) 900 if other is NotImplemented: 901 return other 902 ans = self._compare_check_nans(other, context) 903 if ans: 904 return False 905 return self._cmp(other) > 0 906 907 def __ge__(self, other, context=None): 908 other = _convert_other(other, allow_float=True) 909 if other is NotImplemented: 910 return other 911 ans = self._compare_check_nans(other, context) 912 if ans: 913 return False 914 return self._cmp(other) >= 0 915 916 def compare(self, other, context=None): 917 """Compares one to another. 918 919 -1 => a < b 920 0 => a = b 921 1 => a > b 922 NaN => one is NaN 923 Like __cmp__, but returns Decimal instances. 924 """ 925 other = _convert_other(other, raiseit=True) 926 927 # Compare(NaN, NaN) = NaN 928 if (self._is_special or other and other._is_special): 929 ans = self._check_nans(other, context) 930 if ans: 931 return ans 932 933 return Decimal(self._cmp(other)) 934 935 def __hash__(self): 936 """x.__hash__() <==> hash(x)""" 937 # Decimal integers must hash the same as the ints 938 # 939 # The hash of a nonspecial noninteger Decimal must depend only 940 # on the value of that Decimal, and not on its representation. 941 # For example: hash(Decimal('100E-1')) == hash(Decimal('10')). 942 943 # Equality comparisons involving signaling nans can raise an 944 # exception; since equality checks are implicitly and 945 # unpredictably used when checking set and dict membership, we 946 # prevent signaling nans from being used as set elements or 947 # dict keys by making __hash__ raise an exception. 948 if self._is_special: 949 if self.is_snan(): 950 raise TypeError('Cannot hash a signaling NaN value.') 951 elif self.is_nan(): 952 # 0 to match hash(float('nan')) 953 return 0 954 else: 955 # values chosen to match hash(float('inf')) and 956 # hash(float('-inf')). 957 if self._sign: 958 return -271828 959 else: 960 return 314159 961 962 # In Python 2.7, we're allowing comparisons (but not 963 # arithmetic operations) between floats and Decimals; so if 964 # a Decimal instance is exactly representable as a float then 965 # its hash should match that of the float. 966 self_as_float = float(self) 967 if Decimal.from_float(self_as_float) == self: 968 return hash(self_as_float) 969 970 if self._isinteger(): 971 op = _WorkRep(self.to_integral_value()) 972 # to make computation feasible for Decimals with large 973 # exponent, we use the fact that hash(n) == hash(m) for 974 # any two nonzero integers n and m such that (i) n and m 975 # have the same sign, and (ii) n is congruent to m modulo 976 # 2**64-1. So we can replace hash((-1)**s*c*10**e) with 977 # hash((-1)**s*c*pow(10, e, 2**64-1). 978 return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1)) 979 # The value of a nonzero nonspecial Decimal instance is 980 # faithfully represented by the triple consisting of its sign, 981 # its adjusted exponent, and its coefficient with trailing 982 # zeros removed. 983 return hash((self._sign, 984 self._exp+len(self._int), 985 self._int.rstrip('0'))) 986 987 def as_tuple(self): 988 """Represents the number as a triple tuple. 989 990 To show the internals exactly as they are. 991 """ 992 return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp) 993 994 def __repr__(self): 995 """Represents the number as an instance of Decimal.""" 996 # Invariant: eval(repr(d)) == d 997 return "Decimal('%s')" % str(self) 998 999 def __str__(self, eng=False, context=None): 1000 """Return string representation of the number in scientific notation. 1001 1002 Captures all of the information in the underlying representation. 1003 """ 1004 1005 sign = ['', '-'][self._sign] 1006 if self._is_special: 1007 if self._exp == 'F': 1008 return sign + 'Infinity' 1009 elif self._exp == 'n': 1010 return sign + 'NaN' + self._int 1011 else: # self._exp == 'N' 1012 return sign + 'sNaN' + self._int 1013 1014 # number of digits of self._int to left of decimal point 1015 leftdigits = self._exp + len(self._int) 1016 1017 # dotplace is number of digits of self._int to the left of the 1018 # decimal point in the mantissa of the output string (that is, 1019 # after adjusting the exponent) 1020 if self._exp <= 0 and leftdigits > -6: 1021 # no exponent required 1022 dotplace = leftdigits 1023 elif not eng: 1024 # usual scientific notation: 1 digit on left of the point 1025 dotplace = 1 1026 elif self._int == '0': 1027 # engineering notation, zero 1028 dotplace = (leftdigits + 1) % 3 - 1 1029 else: 1030 # engineering notation, nonzero 1031 dotplace = (leftdigits - 1) % 3 + 1 1032 1033 if dotplace <= 0: 1034 intpart = '0' 1035 fracpart = '.' + '0'*(-dotplace) + self._int 1036 elif dotplace >= len(self._int): 1037 intpart = self._int+'0'*(dotplace-len(self._int)) 1038 fracpart = '' 1039 else: 1040 intpart = self._int[:dotplace] 1041 fracpart = '.' + self._int[dotplace:] 1042 if leftdigits == dotplace: 1043 exp = '' 1044 else: 1045 if context is None: 1046 context = getcontext() 1047 exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace) 1048 1049 return sign + intpart + fracpart + exp 1050 1051 def to_eng_string(self, context=None): 1052 """Convert to engineering-type string. 1053 1054 Engineering notation has an exponent which is a multiple of 3, so there 1055 are up to 3 digits left of the decimal place. 1056 1057 Same rules for when in exponential and when as a value as in __str__. 1058 """ 1059 return self.__str__(eng=True, context=context) 1060 1061 def __neg__(self, context=None): 1062 """Returns a copy with the sign switched. 1063 1064 Rounds, if it has reason. 1065 """ 1066 if self._is_special: 1067 ans = self._check_nans(context=context) 1068 if ans: 1069 return ans 1070 1071 if context is None: 1072 context = getcontext() 1073 1074 if not self and context.rounding != ROUND_FLOOR: 1075 # -Decimal('0') is Decimal('0'), not Decimal('-0'), except 1076 # in ROUND_FLOOR rounding mode. 1077 ans = self.copy_abs() 1078 else: 1079 ans = self.copy_negate() 1080 1081 return ans._fix(context) 1082 1083 def __pos__(self, context=None): 1084 """Returns a copy, unless it is a sNaN. 1085 1086 Rounds the number (if more then precision digits) 1087 """ 1088 if self._is_special: 1089 ans = self._check_nans(context=context) 1090 if ans: 1091 return ans 1092 1093 if context is None: 1094 context = getcontext() 1095 1096 if not self and context.rounding != ROUND_FLOOR: 1097 # + (-0) = 0, except in ROUND_FLOOR rounding mode. 1098 ans = self.copy_abs() 1099 else: 1100 ans = Decimal(self) 1101 1102 return ans._fix(context) 1103 1104 def __abs__(self, round=True, context=None): 1105 """Returns the absolute value of self. 1106 1107 If the keyword argument 'round' is false, do not round. The 1108 expression self.__abs__(round=False) is equivalent to 1109 self.copy_abs(). 1110 """ 1111 if not round: 1112 return self.copy_abs() 1113 1114 if self._is_special: 1115 ans = self._check_nans(context=context) 1116 if ans: 1117 return ans 1118 1119 if self._sign: 1120 ans = self.__neg__(context=context) 1121 else: 1122 ans = self.__pos__(context=context) 1123 1124 return ans 1125 1126 def __add__(self, other, context=None): 1127 """Returns self + other. 1128 1129 -INF + INF (or the reverse) cause InvalidOperation errors. 1130 """ 1131 other = _convert_other(other) 1132 if other is NotImplemented: 1133 return other 1134 1135 if context is None: 1136 context = getcontext() 1137 1138 if self._is_special or other._is_special: 1139 ans = self._check_nans(other, context) 1140 if ans: 1141 return ans 1142 1143 if self._isinfinity(): 1144 # If both INF, same sign => same as both, opposite => error. 1145 if self._sign != other._sign and other._isinfinity(): 1146 return context._raise_error(InvalidOperation, '-INF + INF') 1147 return Decimal(self) 1148 if other._isinfinity(): 1149 return Decimal(other) # Can't both be infinity here 1150 1151 exp = min(self._exp, other._exp) 1152 negativezero = 0 1153 if context.rounding == ROUND_FLOOR and self._sign != other._sign: 1154 # If the answer is 0, the sign should be negative, in this case. 1155 negativezero = 1 1156 1157 if not self and not other: 1158 sign = min(self._sign, other._sign) 1159 if negativezero: 1160 sign = 1 1161 ans = _dec_from_triple(sign, '0', exp) 1162 ans = ans._fix(context) 1163 return ans 1164 if not self: 1165 exp = max(exp, other._exp - context.prec-1) 1166 ans = other._rescale(exp, context.rounding) 1167 ans = ans._fix(context) 1168 return ans 1169 if not other: 1170 exp = max(exp, self._exp - context.prec-1) 1171 ans = self._rescale(exp, context.rounding) 1172 ans = ans._fix(context) 1173 return ans 1174 1175 op1 = _WorkRep(self) 1176 op2 = _WorkRep(other) 1177 op1, op2 = _normalize(op1, op2, context.prec) 1178 1179 result = _WorkRep() 1180 if op1.sign != op2.sign: 1181 # Equal and opposite 1182 if op1.int == op2.int: 1183 ans = _dec_from_triple(negativezero, '0', exp) 1184 ans = ans._fix(context) 1185 return ans 1186 if op1.int < op2.int: 1187 op1, op2 = op2, op1 1188 # OK, now abs(op1) > abs(op2) 1189 if op1.sign == 1: 1190 result.sign = 1 1191 op1.sign, op2.sign = op2.sign, op1.sign 1192 else: 1193 result.sign = 0 1194 # So we know the sign, and op1 > 0. 1195 elif op1.sign == 1: 1196 result.sign = 1 1197 op1.sign, op2.sign = (0, 0) 1198 else: 1199 result.sign = 0 1200 # Now, op1 > abs(op2) > 0 1201 1202 if op2.sign == 0: 1203 result.int = op1.int + op2.int 1204 else: 1205 result.int = op1.int - op2.int 1206 1207 result.exp = op1.exp 1208 ans = Decimal(result) 1209 ans = ans._fix(context) 1210 return ans 1211 1212 __radd__ = __add__ 1213 1214 def __sub__(self, other, context=None): 1215 """Return self - other""" 1216 other = _convert_other(other) 1217 if other is NotImplemented: 1218 return other 1219 1220 if self._is_special or other._is_special: 1221 ans = self._check_nans(other, context=context) 1222 if ans: 1223 return ans 1224 1225 # self - other is computed as self + other.copy_negate() 1226 return self.__add__(other.copy_negate(), context=context) 1227 1228 def __rsub__(self, other, context=None): 1229 """Return other - self""" 1230 other = _convert_other(other) 1231 if other is NotImplemented: 1232 return other 1233 1234 return other.__sub__(self, context=context) 1235 1236 def __mul__(self, other, context=None): 1237 """Return self * other. 1238 1239 (+-) INF * 0 (or its reverse) raise InvalidOperation. 1240 """ 1241 other = _convert_other(other) 1242 if other is NotImplemented: 1243 return other 1244 1245 if context is None: 1246 context = getcontext() 1247 1248 resultsign = self._sign ^ other._sign 1249 1250 if self._is_special or other._is_special: 1251 ans = self._check_nans(other, context) 1252 if ans: 1253 return ans 1254 1255 if self._isinfinity(): 1256 if not other: 1257 return context._raise_error(InvalidOperation, '(+-)INF * 0') 1258 return _SignedInfinity[resultsign] 1259 1260 if other._isinfinity(): 1261 if not self: 1262 return context._raise_error(InvalidOperation, '0 * (+-)INF') 1263 return _SignedInfinity[resultsign] 1264 1265 resultexp = self._exp + other._exp 1266 1267 # Special case for multiplying by zero 1268 if not self or not other: 1269 ans = _dec_from_triple(resultsign, '0', resultexp) 1270 # Fixing in case the exponent is out of bounds 1271 ans = ans._fix(context) 1272 return ans 1273 1274 # Special case for multiplying by power of 10 1275 if self._int == '1': 1276 ans = _dec_from_triple(resultsign, other._int, resultexp) 1277 ans = ans._fix(context) 1278 return ans 1279 if other._int == '1': 1280 ans = _dec_from_triple(resultsign, self._int, resultexp) 1281 ans = ans._fix(context) 1282 return ans 1283 1284 op1 = _WorkRep(self) 1285 op2 = _WorkRep(other) 1286 1287 ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp) 1288 ans = ans._fix(context) 1289 1290 return ans 1291 __rmul__ = __mul__ 1292 1293 def __truediv__(self, other, context=None): 1294 """Return self / other.""" 1295 other = _convert_other(other) 1296 if other is NotImplemented: 1297 return NotImplemented 1298 1299 if context is None: 1300 context = getcontext() 1301 1302 sign = self._sign ^ other._sign 1303 1304 if self._is_special or other._is_special: 1305 ans = self._check_nans(other, context) 1306 if ans: 1307 return ans 1308 1309 if self._isinfinity() and other._isinfinity(): 1310 return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF') 1311 1312 if self._isinfinity(): 1313 return _SignedInfinity[sign] 1314 1315 if other._isinfinity(): 1316 context._raise_error(Clamped, 'Division by infinity') 1317 return _dec_from_triple(sign, '0', context.Etiny()) 1318 1319 # Special cases for zeroes 1320 if not other: 1321 if not self: 1322 return context._raise_error(DivisionUndefined, '0 / 0') 1323 return context._raise_error(DivisionByZero, 'x / 0', sign) 1324 1325 if not self: 1326 exp = self._exp - other._exp 1327 coeff = 0 1328 else: 1329 # OK, so neither = 0, INF or NaN 1330 shift = len(other._int) - len(self._int) + context.prec + 1 1331 exp = self._exp - other._exp - shift 1332 op1 = _WorkRep(self) 1333 op2 = _WorkRep(other) 1334 if shift >= 0: 1335 coeff, remainder = divmod(op1.int * 10**shift, op2.int) 1336 else: 1337 coeff, remainder = divmod(op1.int, op2.int * 10**-shift) 1338 if remainder: 1339 # result is not exact; adjust to ensure correct rounding 1340 if coeff % 5 == 0: 1341 coeff += 1 1342 else: 1343 # result is exact; get as close to ideal exponent as possible 1344 ideal_exp = self._exp - other._exp 1345 while exp < ideal_exp and coeff % 10 == 0: 1346 coeff //= 10 1347 exp += 1 1348 1349 ans = _dec_from_triple(sign, str(coeff), exp) 1350 return ans._fix(context) 1351 1352 def _divide(self, other, context): 1353 """Return (self // other, self % other), to context.prec precision. 1354 1355 Assumes that neither self nor other is a NaN, that self is not 1356 infinite and that other is nonzero. 1357 """ 1358 sign = self._sign ^ other._sign 1359 if other._isinfinity(): 1360 ideal_exp = self._exp 1361 else: 1362 ideal_exp = min(self._exp, other._exp) 1363 1364 expdiff = self.adjusted() - other.adjusted() 1365 if not self or other._isinfinity() or expdiff <= -2: 1366 return (_dec_from_triple(sign, '0', 0), 1367 self._rescale(ideal_exp, context.rounding)) 1368 if expdiff <= context.prec: 1369 op1 = _WorkRep(self) 1370 op2 = _WorkRep(other) 1371 if op1.exp >= op2.exp: 1372 op1.int *= 10**(op1.exp - op2.exp) 1373 else: 1374 op2.int *= 10**(op2.exp - op1.exp) 1375 q, r = divmod(op1.int, op2.int) 1376 if q < 10**context.prec: 1377 return (_dec_from_triple(sign, str(q), 0), 1378 _dec_from_triple(self._sign, str(r), ideal_exp)) 1379 1380 # Here the quotient is too large to be representable 1381 ans = context._raise_error(DivisionImpossible, 1382 'quotient too large in //, % or divmod') 1383 return ans, ans 1384 1385 def __rtruediv__(self, other, context=None): 1386 """Swaps self/other and returns __truediv__.""" 1387 other = _convert_other(other) 1388 if other is NotImplemented: 1389 return other 1390 return other.__truediv__(self, context=context) 1391 1392 __div__ = __truediv__ 1393 __rdiv__ = __rtruediv__ 1394 1395 def __divmod__(self, other, context=None): 1396 """ 1397 Return (self // other, self % other) 1398 """ 1399 other = _convert_other(other) 1400 if other is NotImplemented: 1401 return other 1402 1403 if context is None: 1404 context = getcontext() 1405 1406 ans = self._check_nans(other, context) 1407 if ans: 1408 return (ans, ans) 1409 1410 sign = self._sign ^ other._sign 1411 if self._isinfinity(): 1412 if other._isinfinity(): 1413 ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)') 1414 return ans, ans 1415 else: 1416 return (_SignedInfinity[sign], 1417 context._raise_error(InvalidOperation, 'INF % x')) 1418 1419 if not other: 1420 if not self: 1421 ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)') 1422 return ans, ans 1423 else: 1424 return (context._raise_error(DivisionByZero, 'x // 0', sign), 1425 context._raise_error(InvalidOperation, 'x % 0')) 1426 1427 quotient, remainder = self._divide(other, context) 1428 remainder = remainder._fix(context) 1429 return quotient, remainder 1430 1431 def __rdivmod__(self, other, context=None): 1432 """Swaps self/other and returns __divmod__.""" 1433 other = _convert_other(other) 1434 if other is NotImplemented: 1435 return other 1436 return other.__divmod__(self, context=context) 1437 1438 def __mod__(self, other, context=None): 1439 """ 1440 self % other 1441 """ 1442 other = _convert_other(other) 1443 if other is NotImplemented: 1444 return other 1445 1446 if context is None: 1447 context = getcontext() 1448 1449 ans = self._check_nans(other, context) 1450 if ans: 1451 return ans 1452 1453 if self._isinfinity(): 1454 return context._raise_error(InvalidOperation, 'INF % x') 1455 elif not other: 1456 if self: 1457 return context._raise_error(InvalidOperation, 'x % 0') 1458 else: 1459 return context._raise_error(DivisionUndefined, '0 % 0') 1460 1461 remainder = self._divide(other, context)[1] 1462 remainder = remainder._fix(context) 1463 return remainder 1464 1465 def __rmod__(self, other, context=None): 1466 """Swaps self/other and returns __mod__.""" 1467 other = _convert_other(other) 1468 if other is NotImplemented: 1469 return other 1470 return other.__mod__(self, context=context) 1471 1472 def remainder_near(self, other, context=None): 1473 """ 1474 Remainder nearest to 0- abs(remainder-near) <= other/2 1475 """ 1476 if context is None: 1477 context = getcontext() 1478 1479 other = _convert_other(other, raiseit=True) 1480 1481 ans = self._check_nans(other, context) 1482 if ans: 1483 return ans 1484 1485 # self == +/-infinity -> InvalidOperation 1486 if self._isinfinity(): 1487 return context._raise_error(InvalidOperation, 1488 'remainder_near(infinity, x)') 1489 1490 # other == 0 -> either InvalidOperation or DivisionUndefined 1491 if not other: 1492 if self: 1493 return context._raise_error(InvalidOperation, 1494 'remainder_near(x, 0)') 1495 else: 1496 return context._raise_error(DivisionUndefined, 1497 'remainder_near(0, 0)') 1498 1499 # other = +/-infinity -> remainder = self 1500 if other._isinfinity(): 1501 ans = Decimal(self) 1502 return ans._fix(context) 1503 1504 # self = 0 -> remainder = self, with ideal exponent 1505 ideal_exponent = min(self._exp, other._exp) 1506 if not self: 1507 ans = _dec_from_triple(self._sign, '0', ideal_exponent) 1508 return ans._fix(context) 1509 1510 # catch most cases of large or small quotient 1511 expdiff = self.adjusted() - other.adjusted() 1512 if expdiff >= context.prec + 1: 1513 # expdiff >= prec+1 => abs(self/other) > 10**prec 1514 return context._raise_error(DivisionImpossible) 1515 if expdiff <= -2: 1516 # expdiff <= -2 => abs(self/other) < 0.1 1517 ans = self._rescale(ideal_exponent, context.rounding) 1518 return ans._fix(context) 1519 1520 # adjust both arguments to have the same exponent, then divide 1521 op1 = _WorkRep(self) 1522 op2 = _WorkRep(other) 1523 if op1.exp >= op2.exp: 1524 op1.int *= 10**(op1.exp - op2.exp) 1525 else: 1526 op2.int *= 10**(op2.exp - op1.exp) 1527 q, r = divmod(op1.int, op2.int) 1528 # remainder is r*10**ideal_exponent; other is +/-op2.int * 1529 # 10**ideal_exponent. Apply correction to ensure that 1530 # abs(remainder) <= abs(other)/2 1531 if 2*r + (q&1) > op2.int: 1532 r -= op2.int 1533 q += 1 1534 1535 if q >= 10**context.prec: 1536 return context._raise_error(DivisionImpossible) 1537 1538 # result has same sign as self unless r is negative 1539 sign = self._sign 1540 if r < 0: 1541 sign = 1-sign 1542 r = -r 1543 1544 ans = _dec_from_triple(sign, str(r), ideal_exponent) 1545 return ans._fix(context) 1546 1547 def __floordiv__(self, other, context=None): 1548 """self // other""" 1549 other = _convert_other(other) 1550 if other is NotImplemented: 1551 return other 1552 1553 if context is None: 1554 context = getcontext() 1555 1556 ans = self._check_nans(other, context) 1557 if ans: 1558 return ans 1559 1560 if self._isinfinity(): 1561 if other._isinfinity(): 1562 return context._raise_error(InvalidOperation, 'INF // INF') 1563 else: 1564 return _SignedInfinity[self._sign ^ other._sign] 1565 1566 if not other: 1567 if self: 1568 return context._raise_error(DivisionByZero, 'x // 0', 1569 self._sign ^ other._sign) 1570 else: 1571 return context._raise_error(DivisionUndefined, '0 // 0') 1572 1573 return self._divide(other, context)[0] 1574 1575 def __rfloordiv__(self, other, context=None): 1576 """Swaps self/other and returns __floordiv__.""" 1577 other = _convert_other(other) 1578 if other is NotImplemented: 1579 return other 1580 return other.__floordiv__(self, context=context) 1581 1582 def __float__(self): 1583 """Float representation.""" 1584 if self._isnan(): 1585 if self.is_snan(): 1586 raise ValueError("Cannot convert signaling NaN to float") 1587 s = "-nan" if self._sign else "nan" 1588 else: 1589 s = str(self) 1590 return float(s) 1591 1592 def __int__(self): 1593 """Converts self to an int, truncating if necessary.""" 1594 if self._is_special: 1595 if self._isnan(): 1596 raise ValueError("Cannot convert NaN to integer") 1597 elif self._isinfinity(): 1598 raise OverflowError("Cannot convert infinity to integer") 1599 s = (-1)**self._sign 1600 if self._exp >= 0: 1601 return s*int(self._int)*10**self._exp 1602 else: 1603 return s*int(self._int[:self._exp] or '0') 1604 1605 __trunc__ = __int__ 1606 1607 def real(self): 1608 return self 1609 real = property(real) 1610 1611 def imag(self): 1612 return Decimal(0) 1613 imag = property(imag) 1614 1615 def conjugate(self): 1616 return self 1617 1618 def __complex__(self): 1619 return complex(float(self)) 1620 1621 def __long__(self): 1622 """Converts to a long. 1623 1624 Equivalent to long(int(self)) 1625 """ 1626 return long(self.__int__()) 1627 1628 def _fix_nan(self, context): 1629 """Decapitate the payload of a NaN to fit the context""" 1630 payload = self._int 1631 1632 # maximum length of payload is precision if _clamp=0, 1633 # precision-1 if _clamp=1. 1634 max_payload_len = context.prec - context._clamp 1635 if len(payload) > max_payload_len: 1636 payload = payload[len(payload)-max_payload_len:].lstrip('0') 1637 return _dec_from_triple(self._sign, payload, self._exp, True) 1638 return Decimal(self) 1639 1640 def _fix(self, context): 1641 """Round if it is necessary to keep self within prec precision. 1642 1643 Rounds and fixes the exponent. Does not raise on a sNaN. 1644 1645 Arguments: 1646 self - Decimal instance 1647 context - context used. 1648 """ 1649 1650 if self._is_special: 1651 if self._isnan(): 1652 # decapitate payload if necessary 1653 return self._fix_nan(context) 1654 else: 1655 # self is +/-Infinity; return unaltered 1656 return Decimal(self) 1657 1658 # if self is zero then exponent should be between Etiny and 1659 # Emax if _clamp==0, and between Etiny and Etop if _clamp==1. 1660 Etiny = context.Etiny() 1661 Etop = context.Etop() 1662 if not self: 1663 exp_max = [context.Emax, Etop][context._clamp] 1664 new_exp = min(max(self._exp, Etiny), exp_max) 1665 if new_exp != self._exp: 1666 context._raise_error(Clamped) 1667 return _dec_from_triple(self._sign, '0', new_exp) 1668 else: 1669 return Decimal(self) 1670 1671 # exp_min is the smallest allowable exponent of the result, 1672 # equal to max(self.adjusted()-context.prec+1, Etiny) 1673 exp_min = len(self._int) + self._exp - context.prec 1674 if exp_min > Etop: 1675 # overflow: exp_min > Etop iff self.adjusted() > Emax 1676 ans = context._raise_error(Overflow, 'above Emax', self._sign) 1677 context._raise_error(Inexact) 1678 context._raise_error(Rounded) 1679 return ans 1680 1681 self_is_subnormal = exp_min < Etiny 1682 if self_is_subnormal: 1683 exp_min = Etiny 1684 1685 # round if self has too many digits 1686 if self._exp < exp_min: 1687 digits = len(self._int) + self._exp - exp_min 1688 if digits < 0: 1689 self = _dec_from_triple(self._sign, '1', exp_min-1) 1690 digits = 0 1691 rounding_method = self._pick_rounding_function[context.rounding] 1692 changed = rounding_method(self, digits) 1693 coeff = self._int[:digits] or '0' 1694 if changed > 0: 1695 coeff = str(int(coeff)+1) 1696 if len(coeff) > context.prec: 1697 coeff = coeff[:-1] 1698 exp_min += 1 1699 1700 # check whether the rounding pushed the exponent out of range 1701 if exp_min > Etop: 1702 ans = context._raise_error(Overflow, 'above Emax', self._sign) 1703 else: 1704 ans = _dec_from_triple(self._sign, coeff, exp_min) 1705 1706 # raise the appropriate signals, taking care to respect 1707 # the precedence described in the specification 1708 if changed and self_is_subnormal: 1709 context._raise_error(Underflow) 1710 if self_is_subnormal: 1711 context._raise_error(Subnormal) 1712 if changed: 1713 context._raise_error(Inexact) 1714 context._raise_error(Rounded) 1715 if not ans: 1716 # raise Clamped on underflow to 0 1717 context._raise_error(Clamped) 1718 return ans 1719 1720 if self_is_subnormal: 1721 context._raise_error(Subnormal) 1722 1723 # fold down if _clamp == 1 and self has too few digits 1724 if context._clamp == 1 and self._exp > Etop: 1725 context._raise_error(Clamped) 1726 self_padded = self._int + '0'*(self._exp - Etop) 1727 return _dec_from_triple(self._sign, self_padded, Etop) 1728 1729 # here self was representable to begin with; return unchanged 1730 return Decimal(self) 1731 1732 # for each of the rounding functions below: 1733 # self is a finite, nonzero Decimal 1734 # prec is an integer satisfying 0 <= prec < len(self._int) 1735 # 1736 # each function returns either -1, 0, or 1, as follows: 1737 # 1 indicates that self should be rounded up (away from zero) 1738 # 0 indicates that self should be truncated, and that all the 1739 # digits to be truncated are zeros (so the value is unchanged) 1740 # -1 indicates that there are nonzero digits to be truncated 1741 1742 def _round_down(self, prec): 1743 """Also known as round-towards-0, truncate.""" 1744 if _all_zeros(self._int, prec): 1745 return 0 1746 else: 1747 return -1 1748 1749 def _round_up(self, prec): 1750 """Rounds away from 0.""" 1751 return -self._round_down(prec) 1752 1753 def _round_half_up(self, prec): 1754 """Rounds 5 up (away from 0)""" 1755 if self._int[prec] in '56789': 1756 return 1 1757 elif _all_zeros(self._int, prec): 1758 return 0 1759 else: 1760 return -1 1761 1762 def _round_half_down(self, prec): 1763 """Round 5 down""" 1764 if _exact_half(self._int, prec): 1765 return -1 1766 else: 1767 return self._round_half_up(prec) 1768 1769 def _round_half_even(self, prec): 1770 """Round 5 to even, rest to nearest.""" 1771 if _exact_half(self._int, prec) and \ 1772 (prec == 0 or self._int[prec-1] in '02468'): 1773 return -1 1774 else: 1775 return self._round_half_up(prec) 1776 1777 def _round_ceiling(self, prec): 1778 """Rounds up (not away from 0 if negative.)""" 1779 if self._sign: 1780 return self._round_down(prec) 1781 else: 1782 return -self._round_down(prec) 1783 1784 def _round_floor(self, prec): 1785 """Rounds down (not towards 0 if negative)""" 1786 if not self._sign: 1787 return self._round_down(prec) 1788 else: 1789 return -self._round_down(prec) 1790 1791 def _round_05up(self, prec): 1792 """Round down unless digit prec-1 is 0 or 5.""" 1793 if prec and self._int[prec-1] not in '05': 1794 return self._round_down(prec) 1795 else: 1796 return -self._round_down(prec) 1797 1798 _pick_rounding_function = dict( 1799 ROUND_DOWN = _round_down, 1800 ROUND_UP = _round_up, 1801 ROUND_HALF_UP = _round_half_up, 1802 ROUND_HALF_DOWN = _round_half_down, 1803 ROUND_HALF_EVEN = _round_half_even, 1804 ROUND_CEILING = _round_ceiling, 1805 ROUND_FLOOR = _round_floor, 1806 ROUND_05UP = _round_05up, 1807 ) 1808 1809 def fma(self, other, third, context=None): 1810 """Fused multiply-add. 1811 1812 Returns self*other+third with no rounding of the intermediate 1813 product self*other. 1814 1815 self and other are multiplied together, with no rounding of 1816 the result. The third operand is then added to the result, 1817 and a single final rounding is performed. 1818 """ 1819 1820 other = _convert_other(other, raiseit=True) 1821 1822 # compute product; raise InvalidOperation if either operand is 1823 # a signaling NaN or if the product is zero times infinity. 1824 if self._is_special or other._is_special: 1825 if context is None: 1826 context = getcontext() 1827 if self._exp == 'N': 1828 return context._raise_error(InvalidOperation, 'sNaN', self) 1829 if other._exp == 'N': 1830 return context._raise_error(InvalidOperation, 'sNaN', other) 1831 if self._exp == 'n': 1832 product = self 1833 elif other._exp == 'n': 1834 product = other 1835 elif self._exp == 'F': 1836 if not other: 1837 return context._raise_error(InvalidOperation, 1838 'INF * 0 in fma') 1839 product = _SignedInfinity[self._sign ^ other._sign] 1840 elif other._exp == 'F': 1841 if not self: 1842 return context._raise_error(InvalidOperation, 1843 '0 * INF in fma') 1844 product = _SignedInfinity[self._sign ^ other._sign] 1845 else: 1846 product = _dec_from_triple(self._sign ^ other._sign, 1847 str(int(self._int) * int(other._int)), 1848 self._exp + other._exp) 1849 1850 third = _convert_other(third, raiseit=True) 1851 return product.__add__(third, context) 1852 1853 def _power_modulo(self, other, modulo, context=None): 1854 """Three argument version of __pow__""" 1855 1856 # if can't convert other and modulo to Decimal, raise 1857 # TypeError; there's no point returning NotImplemented (no 1858 # equivalent of __rpow__ for three argument pow) 1859 other = _convert_other(other, raiseit=True) 1860 modulo = _convert_other(modulo, raiseit=True) 1861 1862 if context is None: 1863 context = getcontext() 1864 1865 # deal with NaNs: if there are any sNaNs then first one wins, 1866 # (i.e. behaviour for NaNs is identical to that of fma) 1867 self_is_nan = self._isnan() 1868 other_is_nan = other._isnan() 1869 modulo_is_nan = modulo._isnan() 1870 if self_is_nan or other_is_nan or modulo_is_nan: 1871 if self_is_nan == 2: 1872 return context._raise_error(InvalidOperation, 'sNaN', 1873 self) 1874 if other_is_nan == 2: 1875 return context._raise_error(InvalidOperation, 'sNaN', 1876 other) 1877 if modulo_is_nan == 2: 1878 return context._raise_error(InvalidOperation, 'sNaN', 1879 modulo) 1880 if self_is_nan: 1881 return self._fix_nan(context) 1882 if other_is_nan: 1883 return other._fix_nan(context) 1884 return modulo._fix_nan(context) 1885 1886 # check inputs: we apply same restrictions as Python's pow() 1887 if not (self._isinteger() and 1888 other._isinteger() and 1889 modulo._isinteger()): 1890 return context._raise_error(InvalidOperation, 1891 'pow() 3rd argument not allowed ' 1892 'unless all arguments are integers') 1893 if other < 0: 1894 return context._raise_error(InvalidOperation, 1895 'pow() 2nd argument cannot be ' 1896 'negative when 3rd argument specified') 1897 if not modulo: 1898 return context._raise_error(InvalidOperation, 1899 'pow() 3rd argument cannot be 0') 1900 1901 # additional restriction for decimal: the modulus must be less 1902 # than 10**prec in absolute value 1903 if modulo.adjusted() >= context.prec: 1904 return context._raise_error(InvalidOperation, 1905 'insufficient precision: pow() 3rd ' 1906 'argument must not have more than ' 1907 'precision digits') 1908 1909 # define 0**0 == NaN, for consistency with two-argument pow 1910 # (even though it hurts!) 1911 if not other and not self: 1912 return context._raise_error(InvalidOperation, 1913 'at least one of pow() 1st argument ' 1914 'and 2nd argument must be nonzero ;' 1915 '0**0 is not defined') 1916 1917 # compute sign of result 1918 if other._iseven(): 1919 sign = 0 1920 else: 1921 sign = self._sign 1922 1923 # convert modulo to a Python integer, and self and other to 1924 # Decimal integers (i.e. force their exponents to be >= 0) 1925 modulo = abs(int(modulo)) 1926 base = _WorkRep(self.to_integral_value()) 1927 exponent = _WorkRep(other.to_integral_value()) 1928 1929 # compute result using integer pow() 1930 base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo 1931 for i in xrange(exponent.exp): 1932 base = pow(base, 10, modulo) 1933 base = pow(base, exponent.int, modulo) 1934 1935 return _dec_from_triple(sign, str(base), 0) 1936 1937 def _power_exact(self, other, p): 1938 """Attempt to compute self**other exactly. 1939 1940 Given Decimals self and other and an integer p, attempt to 1941 compute an exact result for the power self**other, with p 1942 digits of precision. Return None if self**other is not 1943 exactly representable in p digits. 1944 1945 Assumes that elimination of special cases has already been 1946 performed: self and other must both be nonspecial; self must 1947 be positive and not numerically equal to 1; other must be 1948 nonzero. For efficiency, other._exp should not be too large, 1949 so that 10**abs(other._exp) is a feasible calculation.""" 1950 1951 # In the comments below, we write x for the value of self and y for the 1952 # value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc 1953 # and yc positive integers not divisible by 10. 1954 1955 # The main purpose of this method is to identify the *failure* 1956 # of x**y to be exactly representable with as little effort as 1957 # possible. So we look for cheap and easy tests that 1958 # eliminate the possibility of x**y being exact. Only if all 1959 # these tests are passed do we go on to actually compute x**y. 1960 1961 # Here's the main idea. Express y as a rational number m/n, with m and 1962 # n relatively prime and n>0. Then for x**y to be exactly 1963 # representable (at *any* precision), xc must be the nth power of a 1964 # positive integer and xe must be divisible by n. If y is negative 1965 # then additionally xc must be a power of either 2 or 5, hence a power 1966 # of 2**n or 5**n. 1967 # 1968 # There's a limit to how small |y| can be: if y=m/n as above 1969 # then: 1970 # 1971 # (1) if xc != 1 then for the result to be representable we 1972 # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So 1973 # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <= 1974 # 2**(1/|y|), hence xc**|y| < 2 and the result is not 1975 # representable. 1976 # 1977 # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if 1978 # |y| < 1/|xe| then the result is not representable. 1979 # 1980 # Note that since x is not equal to 1, at least one of (1) and 1981 # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) < 1982 # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye. 1983 # 1984 # There's also a limit to how large y can be, at least if it's 1985 # positive: the normalized result will have coefficient xc**y, 1986 # so if it's representable then xc**y < 10**p, and y < 1987 # p/log10(xc). Hence if y*log10(xc) >= p then the result is 1988 # not exactly representable. 1989 1990 # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye, 1991 # so |y| < 1/xe and the result is not representable. 1992 # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y| 1993 # < 1/nbits(xc). 1994 1995 x = _WorkRep(self) 1996 xc, xe = x.int, x.exp 1997 while xc % 10 == 0: 1998 xc //= 10 1999 xe += 1 2000 2001 y = _WorkRep(other) 2002 yc, ye = y.int, y.exp 2003 while yc % 10 == 0: 2004 yc //= 10 2005 ye += 1 2006 2007 # case where xc == 1: result is 10**(xe*y), with xe*y 2008 # required to be an integer 2009 if xc == 1: 2010 xe *= yc 2011 # result is now 10**(xe * 10**ye); xe * 10**ye must be integral 2012 while xe % 10 == 0: 2013 xe //= 10 2014 ye += 1 2015 if ye < 0: 2016 return None 2017 exponent = xe * 10**ye 2018 if y.sign == 1: 2019 exponent = -exponent 2020 # if other is a nonnegative integer, use ideal exponent 2021 if other._isinteger() and other._sign == 0: 2022 ideal_exponent = self._exp*int(other) 2023 zeros = min(exponent-ideal_exponent, p-1) 2024 else: 2025 zeros = 0 2026 return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros) 2027 2028 # case where y is negative: xc must be either a power 2029 # of 2 or a power of 5. 2030 if y.sign == 1: 2031 last_digit = xc % 10 2032 if last_digit in (2,4,6,8): 2033 # quick test for power of 2 2034 if xc & -xc != xc: 2035 return None 2036 # now xc is a power of 2; e is its exponent 2037 e = _nbits(xc)-1 2038 2039 # We now have: 2040 # 2041 # x = 2**e * 10**xe, e > 0, and y < 0. 2042 # 2043 # The exact result is: 2044 # 2045 # x**y = 5**(-e*y) * 10**(e*y + xe*y) 2046 # 2047 # provided that both e*y and xe*y are integers. Note that if 2048 # 5**(-e*y) >= 10**p, then the result can't be expressed 2049 # exactly with p digits of precision. 2050 # 2051 # Using the above, we can guard against large values of ye. 2052 # 93/65 is an upper bound for log(10)/log(5), so if 2053 # 2054 # ye >= len(str(93*p//65)) 2055 # 2056 # then 2057 # 2058 # -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5), 2059 # 2060 # so 5**(-e*y) >= 10**p, and the coefficient of the result 2061 # can't be expressed in p digits. 2062 2063 # emax >= largest e such that 5**e < 10**p. 2064 emax = p*93//65 2065 if ye >= len(str(emax)): 2066 return None 2067 2068 # Find -e*y and -xe*y; both must be integers 2069 e = _decimal_lshift_exact(e * yc, ye) 2070 xe = _decimal_lshift_exact(xe * yc, ye) 2071 if e is None or xe is None: 2072 return None 2073 2074 if e > emax: 2075 return None 2076 xc = 5**e 2077 2078 elif last_digit == 5: 2079 # e >= log_5(xc) if xc is a power of 5; we have 2080 # equality all the way up to xc=5**2658 2081 e = _nbits(xc)*28//65 2082 xc, remainder = divmod(5**e, xc) 2083 if remainder: 2084 return None 2085 while xc % 5 == 0: 2086 xc //= 5 2087 e -= 1 2088 2089 # Guard against large values of ye, using the same logic as in 2090 # the 'xc is a power of 2' branch. 10/3 is an upper bound for 2091 # log(10)/log(2). 2092 emax = p*10//3 2093 if ye >= len(str(emax)): 2094 return None 2095 2096 e = _decimal_lshift_exact(e * yc, ye) 2097 xe = _decimal_lshift_exact(xe * yc, ye) 2098 if e is None or xe is None: 2099 return None 2100 2101 if e > emax: 2102 return None 2103 xc = 2**e 2104 else: 2105 return None 2106 2107 if xc >= 10**p: 2108 return None 2109 xe = -e-xe 2110 return _dec_from_triple(0, str(xc), xe) 2111 2112 # now y is positive; find m and n such that y = m/n 2113 if ye >= 0: 2114 m, n = yc*10**ye, 1 2115 else: 2116 if xe != 0 and len(str(abs(yc*xe))) <= -ye: 2117 return None 2118 xc_bits = _nbits(xc) 2119 if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye: 2120 return None 2121 m, n = yc, 10**(-ye) 2122 while m % 2 == n % 2 == 0: 2123 m //= 2 2124 n //= 2 2125 while m % 5 == n % 5 == 0: 2126 m //= 5 2127 n //= 5 2128 2129 # compute nth root of xc*10**xe 2130 if n > 1: 2131 # if 1 < xc < 2**n then xc isn't an nth power 2132 if xc != 1 and xc_bits <= n: 2133 return None 2134 2135 xe, rem = divmod(xe, n) 2136 if rem != 0: 2137 return None 2138 2139 # compute nth root of xc using Newton's method 2140 a = 1L << -(-_nbits(xc)//n) # initial estimate 2141 while True: 2142 q, r = divmod(xc, a**(n-1)) 2143 if a <= q: 2144 break 2145 else: 2146 a = (a*(n-1) + q)//n 2147 if not (a == q and r == 0): 2148 return None 2149 xc = a 2150 2151 # now xc*10**xe is the nth root of the original xc*10**xe 2152 # compute mth power of xc*10**xe 2153 2154 # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m > 2155 # 10**p and the result is not representable. 2156 if xc > 1 and m > p*100//_log10_lb(xc): 2157 return None 2158 xc = xc**m 2159 xe *= m 2160 if xc > 10**p: 2161 return None 2162 2163 # by this point the result *is* exactly representable 2164 # adjust the exponent to get as close as possible to the ideal 2165 # exponent, if necessary 2166 str_xc = str(xc) 2167 if other._isinteger() and other._sign == 0: 2168 ideal_exponent = self._exp*int(other) 2169 zeros = min(xe-ideal_exponent, p-len(str_xc)) 2170 else: 2171 zeros = 0 2172 return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros) 2173 2174 def __pow__(self, other, modulo=None, context=None): 2175 """Return self ** other [ % modulo]. 2176 2177 With two arguments, compute self**other. 2178 2179 With three arguments, compute (self**other) % modulo. For the 2180 three argument form, the following restrictions on the 2181 arguments hold: 2182 2183 - all three arguments must be integral 2184 - other must be nonnegative 2185 - either self or other (or both) must be nonzero 2186 - modulo must be nonzero and must have at most p digits, 2187 where p is the context precision. 2188 2189 If any of these restrictions is violated the InvalidOperation 2190 flag is raised. 2191 2192 The result of pow(self, other, modulo) is identical to the 2193 result that would be obtained by computing (self**other) % 2194 modulo with unbounded precision, but is computed more 2195 efficiently. It is always exact. 2196 """ 2197 2198 if modulo is not None: 2199 return self._power_modulo(other, modulo, context) 2200 2201 other = _convert_other(other) 2202 if other is NotImplemented: 2203 return other 2204 2205 if context is None: 2206 context = getcontext() 2207 2208 # either argument is a NaN => result is NaN 2209 ans = self._check_nans(other, context) 2210 if ans: 2211 return ans 2212 2213 # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity) 2214 if not other: 2215 if not self: 2216 return context._raise_error(InvalidOperation, '0 ** 0') 2217 else: 2218 return _One 2219 2220 # result has sign 1 iff self._sign is 1 and other is an odd integer 2221 result_sign = 0 2222 if self._sign == 1: 2223 if other._isinteger(): 2224 if not other._iseven(): 2225 result_sign = 1 2226 else: 2227 # -ve**noninteger = NaN 2228 # (-0)**noninteger = 0**noninteger 2229 if self: 2230 return context._raise_error(InvalidOperation, 2231 'x ** y with x negative and y not an integer') 2232 # negate self, without doing any unwanted rounding 2233 self = self.copy_negate() 2234 2235 # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity 2236 if not self: 2237 if other._sign == 0: 2238 return _dec_from_triple(result_sign, '0', 0) 2239 else: 2240 return _SignedInfinity[result_sign] 2241 2242 # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0 2243 if self._isinfinity(): 2244 if other._sign == 0: 2245 return _SignedInfinity[result_sign] 2246 else: 2247 return _dec_from_triple(result_sign, '0', 0) 2248 2249 # 1**other = 1, but the choice of exponent and the flags 2250 # depend on the exponent of self, and on whether other is a 2251 # positive integer, a negative integer, or neither 2252 if self == _One: 2253 if other._isinteger(): 2254 # exp = max(self._exp*max(int(other), 0), 2255 # 1-context.prec) but evaluating int(other) directly 2256 # is dangerous until we know other is small (other 2257 # could be 1e999999999) 2258 if other._sign == 1: 2259 multiplier = 0 2260 elif other > context.prec: 2261 multiplier = context.prec 2262 else: 2263 multiplier = int(other) 2264 2265 exp = self._exp * multiplier 2266 if exp < 1-context.prec: 2267 exp = 1-context.prec 2268 context._raise_error(Rounded) 2269 else: 2270 context._raise_error(Inexact) 2271 context._raise_error(Rounded) 2272 exp = 1-context.prec 2273 2274 return _dec_from_triple(result_sign, '1'+'0'*-exp, exp) 2275 2276 # compute adjusted exponent of self 2277 self_adj = self.adjusted() 2278 2279 # self ** infinity is infinity if self > 1, 0 if self < 1 2280 # self ** -infinity is infinity if self < 1, 0 if self > 1 2281 if other._isinfinity(): 2282 if (other._sign == 0) == (self_adj < 0): 2283 return _dec_from_triple(result_sign, '0', 0) 2284 else: 2285 return _SignedInfinity[result_sign] 2286 2287 # from here on, the result always goes through the call 2288 # to _fix at the end of this function. 2289 ans = None 2290 exact = False 2291 2292 # crude test to catch cases of extreme overflow/underflow. If 2293 # log10(self)*other >= 10**bound and bound >= len(str(Emax)) 2294 # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence 2295 # self**other >= 10**(Emax+1), so overflow occurs. The test 2296 # for underflow is similar. 2297 bound = self._log10_exp_bound() + other.adjusted() 2298 if (self_adj >= 0) == (other._sign == 0): 2299 # self > 1 and other +ve, or self < 1 and other -ve 2300 # possibility of overflow 2301 if bound >= len(str(context.Emax)): 2302 ans = _dec_from_triple(result_sign, '1', context.Emax+1) 2303 else: 2304 # self > 1 and other -ve, or self < 1 and other +ve 2305 # possibility of underflow to 0 2306 Etiny = context.Etiny() 2307 if bound >= len(str(-Etiny)): 2308 ans = _dec_from_triple(result_sign, '1', Etiny-1) 2309 2310 # try for an exact result with precision +1 2311 if ans is None: 2312 ans = self._power_exact(other, context.prec + 1) 2313 if ans is not None: 2314 if result_sign == 1: 2315 ans = _dec_from_triple(1, ans._int, ans._exp) 2316 exact = True 2317 2318 # usual case: inexact result, x**y computed directly as exp(y*log(x)) 2319 if ans is None: 2320 p = context.prec 2321 x = _WorkRep(self) 2322 xc, xe = x.int, x.exp 2323 y = _WorkRep(other) 2324 yc, ye = y.int, y.exp 2325 if y.sign == 1: 2326 yc = -yc 2327 2328 # compute correctly rounded result: start with precision +3, 2329 # then increase precision until result is unambiguously roundable 2330 extra = 3 2331 while True: 2332 coeff, exp = _dpower(xc, xe, yc, ye, p+extra) 2333 if coeff % (5*10**(len(str(coeff))-p-1)): 2334 break 2335 extra += 3 2336 2337 ans = _dec_from_triple(result_sign, str(coeff), exp) 2338 2339 # unlike exp, ln and log10, the power function respects the 2340 # rounding mode; no need to switch to ROUND_HALF_EVEN here 2341 2342 # There's a difficulty here when 'other' is not an integer and 2343 # the result is exact. In this case, the specification 2344 # requires that the Inexact flag be raised (in spite of 2345 # exactness), but since the result is exact _fix won't do this 2346 # for us. (Correspondingly, the Underflow signal should also 2347 # be raised for subnormal results.) We can't directly raise 2348 # these signals either before or after calling _fix, since 2349 # that would violate the precedence for signals. So we wrap 2350 # the ._fix call in a temporary context, and reraise 2351 # afterwards. 2352 if exact and not other._isinteger(): 2353 # pad with zeros up to length context.prec+1 if necessary; this 2354 # ensures that the Rounded signal will be raised. 2355 if len(ans._int) <= context.prec: 2356 expdiff = context.prec + 1 - len(ans._int) 2357 ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff, 2358 ans._exp-expdiff) 2359 2360 # create a copy of the current context, with cleared flags/traps 2361 newcontext = context.copy() 2362 newcontext.clear_flags() 2363 for exception in _signals: 2364 newcontext.traps[exception] = 0 2365 2366 # round in the new context 2367 ans = ans._fix(newcontext) 2368 2369 # raise Inexact, and if necessary, Underflow 2370 newcontext._raise_error(Inexact) 2371 if newcontext.flags[Subnormal]: 2372 newcontext._raise_error(Underflow) 2373 2374 # propagate signals to the original context; _fix could 2375 # have raised any of Overflow, Underflow, Subnormal, 2376 # Inexact, Rounded, Clamped. Overflow needs the correct 2377 # arguments. Note that the order of the exceptions is 2378 # important here. 2379 if newcontext.flags[Overflow]: 2380 context._raise_error(Overflow, 'above Emax', ans._sign) 2381 for exception in Underflow, Subnormal, Inexact, Rounded, Clamped: 2382 if newcontext.flags[exception]: 2383 context._raise_error(exception) 2384 2385 else: 2386 ans = ans._fix(context) 2387 2388 return ans 2389 2390 def __rpow__(self, other, context=None): 2391 """Swaps self/other and returns __pow__.""" 2392 other = _convert_other(other) 2393 if other is NotImplemented: 2394 return other 2395 return other.__pow__(self, context=context) 2396 2397 def normalize(self, context=None): 2398 """Normalize- strip trailing 0s, change anything equal to 0 to 0e0""" 2399 2400 if context is None: 2401 context = getcontext() 2402 2403 if self._is_special: 2404 ans = self._check_nans(context=context) 2405 if ans: 2406 return ans 2407 2408 dup = self._fix(context) 2409 if dup._isinfinity(): 2410 return dup 2411 2412 if not dup: 2413 return _dec_from_triple(dup._sign, '0', 0) 2414 exp_max = [context.Emax, context.Etop()][context._clamp] 2415 end = len(dup._int) 2416 exp = dup._exp 2417 while dup._int[end-1] == '0' and exp < exp_max: 2418 exp += 1 2419 end -= 1 2420 return _dec_from_triple(dup._sign, dup._int[:end], exp) 2421 2422 def quantize(self, exp, rounding=None, context=None, watchexp=True): 2423 """Quantize self so its exponent is the same as that of exp. 2424 2425 Similar to self._rescale(exp._exp) but with error checking. 2426 """ 2427 exp = _convert_other(exp, raiseit=True) 2428 2429 if context is None: 2430 context = getcontext() 2431 if rounding is None: 2432 rounding = context.rounding 2433 2434 if self._is_special or exp._is_special: 2435 ans = self._check_nans(exp, context) 2436 if ans: 2437 return ans 2438 2439 if exp._isinfinity() or self._isinfinity(): 2440 if exp._isinfinity() and self._isinfinity(): 2441 return Decimal(self) # if both are inf, it is OK 2442 return context._raise_error(InvalidOperation, 2443 'quantize with one INF') 2444 2445 # if we're not watching exponents, do a simple rescale 2446 if not watchexp: 2447 ans = self._rescale(exp._exp, rounding) 2448 # raise Inexact and Rounded where appropriate 2449 if ans._exp > self._exp: 2450 context._raise_error(Rounded) 2451 if ans != self: 2452 context._raise_error(Inexact) 2453 return ans 2454 2455 # exp._exp should be between Etiny and Emax 2456 if not (context.Etiny() <= exp._exp <= context.Emax): 2457 return context._raise_error(InvalidOperation, 2458 'target exponent out of bounds in quantize') 2459 2460 if not self: 2461 ans = _dec_from_triple(self._sign, '0', exp._exp) 2462 return ans._fix(context) 2463 2464 self_adjusted = self.adjusted() 2465 if self_adjusted > context.Emax: 2466 return context._raise_error(InvalidOperation, 2467 'exponent of quantize result too large for current context') 2468 if self_adjusted - exp._exp + 1 > context.prec: 2469 return context._raise_error(InvalidOperation, 2470 'quantize result has too many digits for current context') 2471 2472 ans = self._rescale(exp._exp, rounding) 2473 if ans.adjusted() > context.Emax: 2474 return context._raise_error(InvalidOperation, 2475 'exponent of quantize result too large for current context') 2476 if len(ans._int) > context.prec: 2477 return context._raise_error(InvalidOperation, 2478 'quantize result has too many digits for current context') 2479 2480 # raise appropriate flags 2481 if ans and ans.adjusted() < context.Emin: 2482 context._raise_error(Subnormal) 2483 if ans._exp > self._exp: 2484 if ans != self: 2485 context._raise_error(Inexact) 2486 context._raise_error(Rounded) 2487 2488 # call to fix takes care of any necessary folddown, and 2489 # signals Clamped if necessary 2490 ans = ans._fix(context) 2491 return ans 2492 2493 def same_quantum(self, other): 2494 """Return True if self and other have the same exponent; otherwise 2495 return False. 2496 2497 If either operand is a special value, the following rules are used: 2498 * return True if both operands are infinities 2499 * return True if both operands are NaNs 2500 * otherwise, return False. 2501 """ 2502 other = _convert_other(other, raiseit=True) 2503 if self._is_special or other._is_special: 2504 return (self.is_nan() and other.is_nan() or 2505 self.is_infinite() and other.is_infinite()) 2506 return self._exp == other._exp 2507 2508 def _rescale(self, exp, rounding): 2509 """Rescale self so that the exponent is exp, either by padding with zeros 2510 or by truncating digits, using the given rounding mode. 2511 2512 Specials are returned without change. This operation is 2513 quiet: it raises no flags, and uses no information from the 2514 context. 2515 2516 exp = exp to scale to (an integer) 2517 rounding = rounding mode 2518 """ 2519 if self._is_special: 2520 return Decimal(self) 2521 if not self: 2522 return _dec_from_triple(self._sign, '0', exp) 2523 2524 if self._exp >= exp: 2525 # pad answer with zeros if necessary 2526 return _dec_from_triple(self._sign, 2527 self._int + '0'*(self._exp - exp), exp) 2528 2529 # too many digits; round and lose data. If self.adjusted() < 2530 # exp-1, replace self by 10**(exp-1) before rounding 2531 digits = len(self._int) + self._exp - exp 2532 if digits < 0: 2533 self = _dec_from_triple(self._sign, '1', exp-1) 2534 digits = 0 2535 this_function = self._pick_rounding_function[rounding] 2536 changed = this_function(self, digits) 2537 coeff = self._int[:digits] or '0' 2538 if changed == 1: 2539 coeff = str(int(coeff)+1) 2540 return _dec_from_triple(self._sign, coeff, exp) 2541 2542 def _round(self, places, rounding): 2543 """Round a nonzero, nonspecial Decimal to a fixed number of 2544 significant figures, using the given rounding mode. 2545 2546 Infinities, NaNs and zeros are returned unaltered. 2547 2548 This operation is quiet: it raises no flags, and uses no 2549 information from the context. 2550 2551 """ 2552 if places <= 0: 2553 raise ValueError("argument should be at least 1 in _round") 2554 if self._is_special or not self: 2555 return Decimal(self) 2556 ans = self._rescale(self.adjusted()+1-places, rounding) 2557 # it can happen that the rescale alters the adjusted exponent; 2558 # for example when rounding 99.97 to 3 significant figures. 2559 # When this happens we end up with an extra 0 at the end of 2560 # the number; a second rescale fixes this. 2561 if ans.adjusted() != self.adjusted(): 2562 ans = ans._rescale(ans.adjusted()+1-places, rounding) 2563 return ans 2564 2565 def to_integral_exact(self, rounding=None, context=None): 2566 """Rounds to a nearby integer. 2567 2568 If no rounding mode is specified, take the rounding mode from 2569 the context. This method raises the Rounded and Inexact flags 2570 when appropriate. 2571 2572 See also: to_integral_value, which does exactly the same as 2573 this method except that it doesn't raise Inexact or Rounded. 2574 """ 2575 if self._is_special: 2576 ans = self._check_nans(context=context) 2577 if ans: 2578 return ans 2579 return Decimal(self) 2580 if self._exp >= 0: 2581 return Decimal(self) 2582 if not self: 2583 return _dec_from_triple(self._sign, '0', 0) 2584 if context is None: 2585 context = getcontext() 2586 if rounding is None: 2587 rounding = context.rounding 2588 ans = self._rescale(0, rounding) 2589 if ans != self: 2590 context._raise_error(Inexact) 2591 context._raise_error(Rounded) 2592 return ans 2593 2594 def to_integral_value(self, rounding=None, context=None): 2595 """Rounds to the nearest integer, without raising inexact, rounded.""" 2596 if context is None: 2597 context = getcontext() 2598 if rounding is None: 2599 rounding = context.rounding 2600 if self._is_special: 2601 ans = self._check_nans(context=context) 2602 if ans: 2603 return ans 2604 return Decimal(self) 2605 if self._exp >= 0: 2606 return Decimal(self) 2607 else: 2608 return self._rescale(0, rounding) 2609 2610 # the method name changed, but we provide also the old one, for compatibility 2611 to_integral = to_integral_value 2612 2613 def sqrt(self, context=None): 2614 """Return the square root of self.""" 2615 if context is None: 2616 context = getcontext() 2617 2618 if self._is_special: 2619 ans = self._check_nans(context=context) 2620 if ans: 2621 return ans 2622 2623 if self._isinfinity() and self._sign == 0: 2624 return Decimal(self) 2625 2626 if not self: 2627 # exponent = self._exp // 2. sqrt(-0) = -0 2628 ans = _dec_from_triple(self._sign, '0', self._exp // 2) 2629 return ans._fix(context) 2630 2631 if self._sign == 1: 2632 return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0') 2633 2634 # At this point self represents a positive number. Let p be 2635 # the desired precision and express self in the form c*100**e 2636 # with c a positive real number and e an integer, c and e 2637 # being chosen so that 100**(p-1) <= c < 100**p. Then the 2638 # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1) 2639 # <= sqrt(c) < 10**p, so the closest representable Decimal at 2640 # precision p is n*10**e where n = round_half_even(sqrt(c)), 2641 # the closest integer to sqrt(c) with the even integer chosen 2642 # in the case of a tie. 2643 # 2644 # To ensure correct rounding in all cases, we use the 2645 # following trick: we compute the square root to an extra 2646 # place (precision p+1 instead of precision p), rounding down. 2647 # Then, if the result is inexact and its last digit is 0 or 5, 2648 # we increase the last digit to 1 or 6 respectively; if it's 2649 # exact we leave the last digit alone. Now the final round to 2650 # p places (or fewer in the case of underflow) will round 2651 # correctly and raise the appropriate flags. 2652 2653 # use an extra digit of precision 2654 prec = context.prec+1 2655 2656 # write argument in the form c*100**e where e = self._exp//2 2657 # is the 'ideal' exponent, to be used if the square root is 2658 # exactly representable. l is the number of 'digits' of c in 2659 # base 100, so that 100**(l-1) <= c < 100**l. 2660 op = _WorkRep(self) 2661 e = op.exp >> 1 2662 if op.exp & 1: 2663 c = op.int * 10 2664 l = (len(self._int) >> 1) + 1 2665 else: 2666 c = op.int 2667 l = len(self._int)+1 >> 1 2668 2669 # rescale so that c has exactly prec base 100 'digits' 2670 shift = prec-l 2671 if shift >= 0: 2672 c *= 100**shift 2673 exact = True 2674 else: 2675 c, remainder = divmod(c, 100**-shift) 2676 exact = not remainder 2677 e -= shift 2678 2679 # find n = floor(sqrt(c)) using Newton's method 2680 n = 10**prec 2681 while True: 2682 q = c//n 2683 if n <= q: 2684 break 2685 else: 2686 n = n + q >> 1 2687 exact = exact and n*n == c 2688 2689 if exact: 2690 # result is exact; rescale to use ideal exponent e 2691 if shift >= 0: 2692 # assert n % 10**shift == 0 2693 n //= 10**shift 2694 else: 2695 n *= 10**-shift 2696 e += shift 2697 else: 2698 # result is not exact; fix last digit as described above 2699 if n % 5 == 0: 2700 n += 1 2701 2702 ans = _dec_from_triple(0, str(n), e) 2703 2704 # round, and fit to current context 2705 context = context._shallow_copy() 2706 rounding = context._set_rounding(ROUND_HALF_EVEN) 2707 ans = ans._fix(context) 2708 context.rounding = rounding 2709 2710 return ans 2711 2712 def max(self, other, context=None): 2713 """Returns the larger value. 2714 2715 Like max(self, other) except if one is not a number, returns 2716 NaN (and signals if one is sNaN). Also rounds. 2717 """ 2718 other = _convert_other(other, raiseit=True) 2719 2720 if context is None: 2721 context = getcontext() 2722 2723 if self._is_special or other._is_special: 2724 # If one operand is a quiet NaN and the other is number, then the 2725 # number is always returned 2726 sn = self._isnan() 2727 on = other._isnan() 2728 if sn or on: 2729 if on == 1 and sn == 0: 2730 return self._fix(context) 2731 if sn == 1 and on == 0: 2732 return other._fix(context) 2733 return self._check_nans(other, context) 2734 2735 c = self._cmp(other) 2736 if c == 0: 2737 # If both operands are finite and equal in numerical value 2738 # then an ordering is applied: 2739 # 2740 # If the signs differ then max returns the operand with the 2741 # positive sign and min returns the operand with the negative sign 2742 # 2743 # If the signs are the same then the exponent is used to select 2744 # the result. This is exactly the ordering used in compare_total. 2745 c = self.compare_total(other) 2746 2747 if c == -1: 2748 ans = other 2749 else: 2750 ans = self 2751 2752 return ans._fix(context) 2753 2754 def min(self, other, context=None): 2755 """Returns the smaller value. 2756 2757 Like min(self, other) except if one is not a number, returns 2758 NaN (and signals if one is sNaN). Also rounds. 2759 """ 2760 other = _convert_other(other, raiseit=True) 2761 2762 if context is None: 2763 context = getcontext() 2764 2765 if self._is_special or other._is_special: 2766 # If one operand is a quiet NaN and the other is number, then the 2767 # number is always returned 2768 sn = self._isnan() 2769 on = other._isnan() 2770 if sn or on: 2771 if on == 1 and sn == 0: 2772 return self._fix(context) 2773 if sn == 1 and on == 0: 2774 return other._fix(context) 2775 return self._check_nans(other, context) 2776 2777 c = self._cmp(other) 2778 if c == 0: 2779 c = self.compare_total(other) 2780 2781 if c == -1: 2782 ans = self 2783 else: 2784 ans = other 2785 2786 return ans._fix(context) 2787 2788 def _isinteger(self): 2789 """Returns whether self is an integer""" 2790 if self._is_special: 2791 return False 2792 if self._exp >= 0: 2793 return True 2794 rest = self._int[self._exp:] 2795 return rest == '0'*len(rest) 2796 2797 def _iseven(self): 2798 """Returns True if self is even. Assumes self is an integer.""" 2799 if not self or self._exp > 0: 2800 return True 2801 return self._int[-1+self._exp] in '02468' 2802 2803 def adjusted(self): 2804 """Return the adjusted exponent of self""" 2805 try: 2806 return self._exp + len(self._int) - 1 2807 # If NaN or Infinity, self._exp is string 2808 except TypeError: 2809 return 0 2810 2811 def canonical(self, context=None): 2812 """Returns the same Decimal object. 2813 2814 As we do not have different encodings for the same number, the 2815 received object already is in its canonical form. 2816 """ 2817 return self 2818 2819 def compare_signal(self, other, context=None): 2820 """Compares self to the other operand numerically. 2821 2822 It's pretty much like compare(), but all NaNs signal, with signaling 2823 NaNs taking precedence over quiet NaNs. 2824 """ 2825 other = _convert_other(other, raiseit = True) 2826 ans = self._compare_check_nans(other, context) 2827 if ans: 2828 return ans 2829 return self.compare(other, context=context) 2830 2831 def compare_total(self, other): 2832 """Compares self to other using the abstract representations. 2833 2834 This is not like the standard compare, which use their numerical 2835 value. Note that a total ordering is defined for all possible abstract 2836 representations. 2837 """ 2838 other = _convert_other(other, raiseit=True) 2839 2840 # if one is negative and the other is positive, it's easy 2841 if self._sign and not other._sign: 2842 return _NegativeOne 2843 if not self._sign and other._sign: 2844 return _One 2845 sign = self._sign 2846 2847 # let's handle both NaN types 2848 self_nan = self._isnan() 2849 other_nan = other._isnan() 2850 if self_nan or other_nan: 2851 if self_nan == other_nan: 2852 # compare payloads as though they're integers 2853 self_key = len(self._int), self._int 2854 other_key = len(other._int), other._int 2855 if self_key < other_key: 2856 if sign: 2857 return _One 2858 else: 2859 return _NegativeOne 2860 if self_key > other_key: 2861 if sign: 2862 return _NegativeOne 2863 else: 2864 return _One 2865 return _Zero 2866 2867 if sign: 2868 if self_nan == 1: 2869 return _NegativeOne 2870 if other_nan == 1: 2871 return _One 2872 if self_nan == 2: 2873 return _NegativeOne 2874 if other_nan == 2: 2875 return _One 2876 else: 2877 if self_nan == 1: 2878 return _One 2879 if other_nan == 1: 2880 return _NegativeOne 2881 if self_nan == 2: 2882 return _One 2883 if other_nan == 2: 2884 return _NegativeOne 2885 2886 if self < other: 2887 return _NegativeOne 2888 if self > other: 2889 return _One 2890 2891 if self._exp < other._exp: 2892 if sign: 2893 return _One 2894 else: 2895 return _NegativeOne 2896 if self._exp > other._exp: 2897 if sign: 2898 return _NegativeOne 2899 else: 2900 return _One 2901 return _Zero 2902 2903 2904 def compare_total_mag(self, other): 2905 """Compares self to other using abstract repr., ignoring sign. 2906 2907 Like compare_total, but with operand's sign ignored and assumed to be 0. 2908 """ 2909 other = _convert_other(other, raiseit=True) 2910 2911 s = self.copy_abs() 2912 o = other.copy_abs() 2913 return s.compare_total(o) 2914 2915 def copy_abs(self): 2916 """Returns a copy with the sign set to 0. """ 2917 return _dec_from_triple(0, self._int, self._exp, self._is_special) 2918 2919 def copy_negate(self): 2920 """Returns a copy with the sign inverted.""" 2921 if self._sign: 2922 return _dec_from_triple(0, self._int, self._exp, self._is_special) 2923 else: 2924 return _dec_from_triple(1, self._int, self._exp, self._is_special) 2925 2926 def copy_sign(self, other): 2927 """Returns self with the sign of other.""" 2928 other = _convert_other(other, raiseit=True) 2929 return _dec_from_triple(other._sign, self._int, 2930 self._exp, self._is_special) 2931 2932 def exp(self, context=None): 2933 """Returns e ** self.""" 2934 2935 if context is None: 2936 context = getcontext() 2937 2938 # exp(NaN) = NaN 2939 ans = self._check_nans(context=context) 2940 if ans: 2941 return ans 2942 2943 # exp(-Infinity) = 0 2944 if self._isinfinity() == -1: 2945 return _Zero 2946 2947 # exp(0) = 1 2948 if not self: 2949 return _One 2950 2951 # exp(Infinity) = Infinity 2952 if self._isinfinity() == 1: 2953 return Decimal(self) 2954 2955 # the result is now guaranteed to be inexact (the true 2956 # mathematical result is transcendental). There's no need to 2957 # raise Rounded and Inexact here---they'll always be raised as 2958 # a result of the call to _fix. 2959 p = context.prec 2960 adj = self.adjusted() 2961 2962 # we only need to do any computation for quite a small range 2963 # of adjusted exponents---for example, -29 <= adj <= 10 for 2964 # the default context. For smaller exponent the result is 2965 # indistinguishable from 1 at the given precision, while for 2966 # larger exponent the result either overflows or underflows. 2967 if self._sign == 0 and adj > len(str((context.Emax+1)*3)): 2968 # overflow 2969 ans = _dec_from_triple(0, '1', context.Emax+1) 2970 elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)): 2971 # underflow to 0 2972 ans = _dec_from_triple(0, '1', context.Etiny()-1) 2973 elif self._sign == 0 and adj < -p: 2974 # p+1 digits; final round will raise correct flags 2975 ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p) 2976 elif self._sign == 1 and adj < -p-1: 2977 # p+1 digits; final round will raise correct flags 2978 ans = _dec_from_triple(0, '9'*(p+1), -p-1) 2979 # general case 2980 else: 2981 op = _WorkRep(self) 2982 c, e = op.int, op.exp 2983 if op.sign == 1: 2984 c = -c 2985 2986 # compute correctly rounded result: increase precision by 2987 # 3 digits at a time until we get an unambiguously 2988 # roundable result 2989 extra = 3 2990 while True: 2991 coeff, exp = _dexp(c, e, p+extra) 2992 if coeff % (5*10**(len(str(coeff))-p-1)): 2993 break 2994 extra += 3 2995 2996 ans = _dec_from_triple(0, str(coeff), exp) 2997 2998 # at this stage, ans should round correctly with *any* 2999 # rounding mode, not just with ROUND_HALF_EVEN 3000 context = context._shallow_copy() 3001 rounding = context._set_rounding(ROUND_HALF_EVEN) 3002 ans = ans._fix(context) 3003 context.rounding = rounding 3004 3005 return ans 3006 3007 def is_canonical(self): 3008 """Return True if self is canonical; otherwise return False. 3009 3010 Currently, the encoding of a Decimal instance is always 3011 canonical, so this method returns True for any Decimal. 3012 """ 3013 return True 3014 3015 def is_finite(self): 3016 """Return True if self is finite; otherwise return False. 3017 3018 A Decimal instance is considered finite if it is neither 3019 infinite nor a NaN. 3020 """ 3021 return not self._is_special 3022 3023 def is_infinite(self): 3024 """Return True if self is infinite; otherwise return False.""" 3025 return self._exp == 'F' 3026 3027 def is_nan(self): 3028 """Return True if self is a qNaN or sNaN; otherwise return False.""" 3029 return self._exp in ('n', 'N') 3030 3031 def is_normal(self, context=None): 3032 """Return True if self is a normal number; otherwise return False.""" 3033 if self._is_special or not self: 3034 return False 3035 if context is None: 3036 context = getcontext() 3037 return context.Emin <= self.adjusted() 3038 3039 def is_qnan(self): 3040 """Return True if self is a quiet NaN; otherwise return False.""" 3041 return self._exp == 'n' 3042 3043 def is_signed(self): 3044 """Return True if self is negative; otherwise return False.""" 3045 return self._sign == 1 3046 3047 def is_snan(self): 3048 """Return True if self is a signaling NaN; otherwise return False.""" 3049 return self._exp == 'N' 3050 3051 def is_subnormal(self, context=None): 3052 """Return True if self is subnormal; otherwise return False.""" 3053 if self._is_special or not self: 3054 return False 3055 if context is None: 3056 context = getcontext() 3057 return self.adjusted() < context.Emin 3058 3059 def is_zero(self): 3060 """Return True if self is a zero; otherwise return False.""" 3061 return not self._is_special and self._int == '0' 3062 3063 def _ln_exp_bound(self): 3064 """Compute a lower bound for the adjusted exponent of self.ln(). 3065 In other words, compute r such that self.ln() >= 10**r. Assumes 3066 that self is finite and positive and that self != 1. 3067 """ 3068 3069 # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1 3070 adj = self._exp + len(self._int) - 1 3071 if adj >= 1: 3072 # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10) 3073 return len(str(adj*23//10)) - 1 3074 if adj <= -2: 3075 # argument <= 0.1 3076 return len(str((-1-adj)*23//10)) - 1 3077 op = _WorkRep(self) 3078 c, e = op.int, op.exp 3079 if adj == 0: 3080 # 1 < self < 10 3081 num = str(c-10**-e) 3082 den = str(c) 3083 return len(num) - len(den) - (num < den) 3084 # adj == -1, 0.1 <= self < 1 3085 return e + len(str(10**-e - c)) - 1 3086 3087 3088 def ln(self, context=None): 3089 """Returns the natural (base e) logarithm of self.""" 3090 3091 if context is None: 3092 context = getcontext() 3093 3094 # ln(NaN) = NaN 3095 ans = self._check_nans(context=context) 3096 if ans: 3097 return ans 3098 3099 # ln(0.0) == -Infinity 3100 if not self: 3101 return _NegativeInfinity 3102 3103 # ln(Infinity) = Infinity 3104 if self._isinfinity() == 1: 3105 return _Infinity 3106 3107 # ln(1.0) == 0.0 3108 if self == _One: 3109 return _Zero 3110 3111 # ln(negative) raises InvalidOperation 3112 if self._sign == 1: 3113 return context._raise_error(InvalidOperation, 3114 'ln of a negative value') 3115 3116 # result is irrational, so necessarily inexact 3117 op = _WorkRep(self) 3118 c, e = op.int, op.exp 3119 p = context.prec 3120 3121 # correctly rounded result: repeatedly increase precision by 3 3122 # until we get an unambiguously roundable result 3123 places = p - self._ln_exp_bound() + 2 # at least p+3 places 3124 while True: 3125 coeff = _dlog(c, e, places) 3126 # assert len(str(abs(coeff)))-p >= 1 3127 if coeff % (5*10**(len(str(abs(coeff)))-p-1)): 3128 break 3129 places += 3 3130 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) 3131 3132 context = context._shallow_copy() 3133 rounding = context._set_rounding(ROUND_HALF_EVEN) 3134 ans = ans._fix(context) 3135 context.rounding = rounding 3136 return ans 3137 3138 def _log10_exp_bound(self): 3139 """Compute a lower bound for the adjusted exponent of self.log10(). 3140 In other words, find r such that self.log10() >= 10**r. 3141 Assumes that self is finite and positive and that self != 1. 3142 """ 3143 3144 # For x >= 10 or x < 0.1 we only need a bound on the integer 3145 # part of log10(self), and this comes directly from the 3146 # exponent of x. For 0.1 <= x <= 10 we use the inequalities 3147 # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| > 3148 # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0 3149 3150 adj = self._exp + len(self._int) - 1 3151 if adj >= 1: 3152 # self >= 10 3153 return len(str(adj))-1 3154 if adj <= -2: 3155 # self < 0.1 3156 return len(str(-1-adj))-1 3157 op = _WorkRep(self) 3158 c, e = op.int, op.exp 3159 if adj == 0: 3160 # 1 < self < 10 3161 num = str(c-10**-e) 3162 den = str(231*c) 3163 return len(num) - len(den) - (num < den) + 2 3164 # adj == -1, 0.1 <= self < 1 3165 num = str(10**-e-c) 3166 return len(num) + e - (num < "231") - 1 3167 3168 def log10(self, context=None): 3169 """Returns the base 10 logarithm of self.""" 3170 3171 if context is None: 3172 context = getcontext() 3173 3174 # log10(NaN) = NaN 3175 ans = self._check_nans(context=context) 3176 if ans: 3177 return ans 3178 3179 # log10(0.0) == -Infinity 3180 if not self: 3181 return _NegativeInfinity 3182 3183 # log10(Infinity) = Infinity 3184 if self._isinfinity() == 1: 3185 return _Infinity 3186 3187 # log10(negative or -Infinity) raises InvalidOperation 3188 if self._sign == 1: 3189 return context._raise_error(InvalidOperation, 3190 'log10 of a negative value') 3191 3192 # log10(10**n) = n 3193 if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1): 3194 # answer may need rounding 3195 ans = Decimal(self._exp + len(self._int) - 1) 3196 else: 3197 # result is irrational, so necessarily inexact 3198 op = _WorkRep(self) 3199 c, e = op.int, op.exp 3200 p = context.prec 3201 3202 # correctly rounded result: repeatedly increase precision 3203 # until result is unambiguously roundable 3204 places = p-self._log10_exp_bound()+2 3205 while True: 3206 coeff = _dlog10(c, e, places) 3207 # assert len(str(abs(coeff)))-p >= 1 3208 if coeff % (5*10**(len(str(abs(coeff)))-p-1)): 3209 break 3210 places += 3 3211 ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places) 3212 3213 context = context._shallow_copy() 3214 rounding = context._set_rounding(ROUND_HALF_EVEN) 3215 ans = ans._fix(context) 3216 context.rounding = rounding 3217 return ans 3218 3219 def logb(self, context=None): 3220 """ Returns the exponent of the magnitude of self's MSD. 3221 3222 The result is the integer which is the exponent of the magnitude 3223 of the most significant digit of self (as though it were truncated 3224 to a single digit while maintaining the value of that digit and 3225 without limiting the resulting exponent). 3226 """ 3227 # logb(NaN) = NaN 3228 ans = self._check_nans(context=context) 3229 if ans: 3230 return ans 3231 3232 if context is None: 3233 context = getcontext() 3234 3235 # logb(+/-Inf) = +Inf 3236 if self._isinfinity(): 3237 return _Infinity 3238 3239 # logb(0) = -Inf, DivisionByZero 3240 if not self: 3241 return context._raise_error(DivisionByZero, 'logb(0)', 1) 3242 3243 # otherwise, simply return the adjusted exponent of self, as a 3244 # Decimal. Note that no attempt is made to fit the result 3245 # into the current context. 3246 ans = Decimal(self.adjusted()) 3247 return ans._fix(context) 3248 3249 def _islogical(self): 3250 """Return True if self is a logical operand. 3251 3252 For being logical, it must be a finite number with a sign of 0, 3253 an exponent of 0, and a coefficient whose digits must all be 3254 either 0 or 1. 3255 """ 3256 if self._sign != 0 or self._exp != 0: 3257 return False 3258 for dig in self._int: 3259 if dig not in '01': 3260 return False 3261 return True 3262 3263 def _fill_logical(self, context, opa, opb): 3264 dif = context.prec - len(opa) 3265 if dif > 0: 3266 opa = '0'*dif + opa 3267 elif dif < 0: 3268 opa = opa[-context.prec:] 3269 dif = context.prec - len(opb) 3270 if dif > 0: 3271 opb = '0'*dif + opb 3272 elif dif < 0: 3273 opb = opb[-context.prec:] 3274 return opa, opb 3275 3276 def logical_and(self, other, context=None): 3277 """Applies an 'and' operation between self and other's digits.""" 3278 if context is None: 3279 context = getcontext() 3280 3281 other = _convert_other(other, raiseit=True) 3282 3283 if not self._islogical() or not other._islogical(): 3284 return context._raise_error(InvalidOperation) 3285 3286 # fill to context.prec 3287 (opa, opb) = self._fill_logical(context, self._int, other._int) 3288 3289 # make the operation, and clean starting zeroes 3290 result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)]) 3291 return _dec_from_triple(0, result.lstrip('0') or '0', 0) 3292 3293 def logical_invert(self, context=None): 3294 """Invert all its digits.""" 3295 if context is None: 3296 context = getcontext() 3297 return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0), 3298 context) 3299 3300 def logical_or(self, other, context=None): 3301 """Applies an 'or' operation between self and other's digits.""" 3302 if context is None: 3303 context = getcontext() 3304 3305 other = _convert_other(other, raiseit=True) 3306 3307 if not self._islogical() or not other._islogical(): 3308 return context._raise_error(InvalidOperation) 3309 3310 # fill to context.prec 3311 (opa, opb) = self._fill_logical(context, self._int, other._int) 3312 3313 # make the operation, and clean starting zeroes 3314 result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)]) 3315 return _dec_from_triple(0, result.lstrip('0') or '0', 0) 3316 3317 def logical_xor(self, other, context=None): 3318 """Applies an 'xor' operation between self and other's digits.""" 3319 if context is None: 3320 context = getcontext() 3321 3322 other = _convert_other(other, raiseit=True) 3323 3324 if not self._islogical() or not other._islogical(): 3325 return context._raise_error(InvalidOperation) 3326 3327 # fill to context.prec 3328 (opa, opb) = self._fill_logical(context, self._int, other._int) 3329 3330 # make the operation, and clean starting zeroes 3331 result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)]) 3332 return _dec_from_triple(0, result.lstrip('0') or '0', 0) 3333 3334 def max_mag(self, other, context=None): 3335 """Compares the values numerically with their sign ignored.""" 3336 other = _convert_other(other, raiseit=True) 3337 3338 if context is None: 3339 context = getcontext() 3340 3341 if self._is_special or other._is_special: 3342 # If one operand is a quiet NaN and the other is number, then the 3343 # number is always returned 3344 sn = self._isnan() 3345 on = other._isnan() 3346 if sn or on: 3347 if on == 1 and sn == 0: 3348 return self._fix(context) 3349 if sn == 1 and on == 0: 3350 return other._fix(context) 3351 return self._check_nans(other, context) 3352 3353 c = self.copy_abs()._cmp(other.copy_abs()) 3354 if c == 0: 3355 c = self.compare_total(other) 3356 3357 if c == -1: 3358 ans = other 3359 else: 3360 ans = self 3361 3362 return ans._fix(context) 3363 3364 def min_mag(self, other, context=None): 3365 """Compares the values numerically with their sign ignored.""" 3366 other = _convert_other(other, raiseit=True) 3367 3368 if context is None: 3369 context = getcontext() 3370 3371 if self._is_special or other._is_special: 3372 # If one operand is a quiet NaN and the other is number, then the 3373 # number is always returned 3374 sn = self._isnan() 3375 on = other._isnan() 3376 if sn or on: 3377 if on == 1 and sn == 0: 3378 return self._fix(context) 3379 if sn == 1 and on == 0: 3380 return other._fix(context) 3381 return self._check_nans(other, context) 3382 3383 c = self.copy_abs()._cmp(other.copy_abs()) 3384 if c == 0: 3385 c = self.compare_total(other) 3386 3387 if c == -1: 3388 ans = self 3389 else: 3390 ans = other 3391 3392 return ans._fix(context) 3393 3394 def next_minus(self, context=None): 3395 """Returns the largest representable number smaller than itself.""" 3396 if context is None: 3397 context = getcontext() 3398 3399 ans = self._check_nans(context=context) 3400 if ans: 3401 return ans 3402 3403 if self._isinfinity() == -1: 3404 return _NegativeInfinity 3405 if self._isinfinity() == 1: 3406 return _dec_from_triple(0, '9'*context.prec, context.Etop()) 3407 3408 context = context.copy() 3409 context._set_rounding(ROUND_FLOOR) 3410 context._ignore_all_flags() 3411 new_self = self._fix(context) 3412 if new_self != self: 3413 return new_self 3414 return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1), 3415 context) 3416 3417 def next_plus(self, context=None): 3418 """Returns the smallest representable number larger than itself.""" 3419 if context is None: 3420 context = getcontext() 3421 3422 ans = self._check_nans(context=context) 3423 if ans: 3424 return ans 3425 3426 if self._isinfinity() == 1: 3427 return _Infinity 3428 if self._isinfinity() == -1: 3429 return _dec_from_triple(1, '9'*context.prec, context.Etop()) 3430 3431 context = context.copy() 3432 context._set_rounding(ROUND_CEILING) 3433 context._ignore_all_flags() 3434 new_self = self._fix(context) 3435 if new_self != self: 3436 return new_self 3437 return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1), 3438 context) 3439 3440 def next_toward(self, other, context=None): 3441 """Returns the number closest to self, in the direction towards other. 3442 3443 The result is the closest representable number to self 3444 (excluding self) that is in the direction towards other, 3445 unless both have the same value. If the two operands are 3446 numerically equal, then the result is a copy of self with the 3447 sign set to be the same as the sign of other. 3448 """ 3449 other = _convert_other(other, raiseit=True) 3450 3451 if context is None: 3452 context = getcontext() 3453 3454 ans = self._check_nans(other, context) 3455 if ans: 3456 return ans 3457 3458 comparison = self._cmp(other) 3459 if comparison == 0: 3460 return self.copy_sign(other) 3461 3462 if comparison == -1: 3463 ans = self.next_plus(context) 3464 else: # comparison == 1 3465 ans = self.next_minus(context) 3466 3467 # decide which flags to raise using value of ans 3468 if ans._isinfinity(): 3469 context._raise_error(Overflow, 3470 'Infinite result from next_toward', 3471 ans._sign) 3472 context._raise_error(Inexact) 3473 context._raise_error(Rounded) 3474 elif ans.adjusted() < context.Emin: 3475 context._raise_error(Underflow) 3476 context._raise_error(Subnormal) 3477 context._raise_error(Inexact) 3478 context._raise_error(Rounded) 3479 # if precision == 1 then we don't raise Clamped for a 3480 # result 0E-Etiny. 3481 if not ans: 3482 context._raise_error(Clamped) 3483 3484 return ans 3485 3486 def number_class(self, context=None): 3487 """Returns an indication of the class of self. 3488 3489 The class is one of the following strings: 3490 sNaN 3491 NaN 3492 -Infinity 3493 -Normal 3494 -Subnormal 3495 -Zero 3496 +Zero 3497 +Subnormal 3498 +Normal 3499 +Infinity 3500 """ 3501 if self.is_snan(): 3502 return "sNaN" 3503 if self.is_qnan(): 3504 return "NaN" 3505 inf = self._isinfinity() 3506 if inf == 1: 3507 return "+Infinity" 3508 if inf == -1: 3509 return "-Infinity" 3510 if self.is_zero(): 3511 if self._sign: 3512 return "-Zero" 3513 else: 3514 return "+Zero" 3515 if context is None: 3516 context = getcontext() 3517 if self.is_subnormal(context=context): 3518 if self._sign: 3519 return "-Subnormal" 3520 else: 3521 return "+Subnormal" 3522 # just a normal, regular, boring number, :) 3523 if self._sign: 3524 return "-Normal" 3525 else: 3526 return "+Normal" 3527 3528 def radix(self): 3529 """Just returns 10, as this is Decimal, :)""" 3530 return Decimal(10) 3531 3532 def rotate(self, other, context=None): 3533 """Returns a rotated copy of self, value-of-other times.""" 3534 if context is None: 3535 context = getcontext() 3536 3537 other = _convert_other(other, raiseit=True) 3538 3539 ans = self._check_nans(other, context) 3540 if ans: 3541 return ans 3542 3543 if other._exp != 0: 3544 return context._raise_error(InvalidOperation) 3545 if not (-context.prec <= int(other) <= context.prec): 3546 return context._raise_error(InvalidOperation) 3547 3548 if self._isinfinity(): 3549 return Decimal(self) 3550 3551 # get values, pad if necessary 3552 torot = int(other) 3553 rotdig = self._int 3554 topad = context.prec - len(rotdig) 3555 if topad > 0: 3556 rotdig = '0'*topad + rotdig 3557 elif topad < 0: 3558 rotdig = rotdig[-topad:] 3559 3560 # let's rotate! 3561 rotated = rotdig[torot:] + rotdig[:torot] 3562 return _dec_from_triple(self._sign, 3563 rotated.lstrip('0') or '0', self._exp) 3564 3565 def scaleb(self, other, context=None): 3566 """Returns self operand after adding the second value to its exp.""" 3567 if context is None: 3568 context = getcontext() 3569 3570 other = _convert_other(other, raiseit=True) 3571 3572 ans = self._check_nans(other, context) 3573 if ans: 3574 return ans 3575 3576 if other._exp != 0: 3577 return context._raise_error(InvalidOperation) 3578 liminf = -2 * (context.Emax + context.prec) 3579 limsup = 2 * (context.Emax + context.prec) 3580 if not (liminf <= int(other) <= limsup): 3581 return context._raise_error(InvalidOperation) 3582 3583 if self._isinfinity(): 3584 return Decimal(self) 3585 3586 d = _dec_from_triple(self._sign, self._int, self._exp + int(other)) 3587 d = d._fix(context) 3588 return d 3589 3590 def shift(self, other, context=None): 3591 """Returns a shifted copy of self, value-of-other times.""" 3592 if context is None: 3593 context = getcontext() 3594 3595 other = _convert_other(other, raiseit=True) 3596 3597 ans = self._check_nans(other, context) 3598 if ans: 3599 return ans 3600 3601 if other._exp != 0: 3602 return context._raise_error(InvalidOperation) 3603 if not (-context.prec <= int(other) <= context.prec): 3604 return context._raise_error(InvalidOperation) 3605 3606 if self._isinfinity(): 3607 return Decimal(self) 3608 3609 # get values, pad if necessary 3610 torot = int(other) 3611 rotdig = self._int 3612 topad = context.prec - len(rotdig) 3613 if topad > 0: 3614 rotdig = '0'*topad + rotdig 3615 elif topad < 0: 3616 rotdig = rotdig[-topad:] 3617 3618 # let's shift! 3619 if torot < 0: 3620 shifted = rotdig[:torot] 3621 else: 3622 shifted = rotdig + '0'*torot 3623 shifted = shifted[-context.prec:] 3624 3625 return _dec_from_triple(self._sign, 3626 shifted.lstrip('0') or '0', self._exp) 3627 3628 # Support for pickling, copy, and deepcopy 3629 def __reduce__(self): 3630 return (self.__class__, (str(self),)) 3631 3632 def __copy__(self): 3633 if type(self) is Decimal: 3634 return self # I'm immutable; therefore I am my own clone 3635 return self.__class__(str(self)) 3636 3637 def __deepcopy__(self, memo): 3638 if type(self) is Decimal: 3639 return self # My components are also immutable 3640 return self.__class__(str(self)) 3641 3642 # PEP 3101 support. the _localeconv keyword argument should be 3643 # considered private: it's provided for ease of testing only. 3644 def __format__(self, specifier, context=None, _localeconv=None): 3645 """Format a Decimal instance according to the given specifier. 3646 3647 The specifier should be a standard format specifier, with the 3648 form described in PEP 3101. Formatting types 'e', 'E', 'f', 3649 'F', 'g', 'G', 'n' and '%' are supported. If the formatting 3650 type is omitted it defaults to 'g' or 'G', depending on the 3651 value of context.capitals. 3652 """ 3653 3654 # Note: PEP 3101 says that if the type is not present then 3655 # there should be at least one digit after the decimal point. 3656 # We take the liberty of ignoring this requirement for 3657 # Decimal---it's presumably there to make sure that 3658 # format(float, '') behaves similarly to str(float). 3659 if context is None: 3660 context = getcontext() 3661 3662 spec = _parse_format_specifier(specifier, _localeconv=_localeconv) 3663 3664 # special values don't care about the type or precision 3665 if self._is_special: 3666 sign = _format_sign(self._sign, spec) 3667 body = str(self.copy_abs()) 3668 return _format_align(sign, body, spec) 3669 3670 # a type of None defaults to 'g' or 'G', depending on context 3671 if spec['type'] is None: 3672 spec['type'] = ['g', 'G'][context.capitals] 3673 3674 # if type is '%', adjust exponent of self accordingly 3675 if spec['type'] == '%': 3676 self = _dec_from_triple(self._sign, self._int, self._exp+2) 3677 3678 # round if necessary, taking rounding mode from the context 3679 rounding = context.rounding 3680 precision = spec['precision'] 3681 if precision is not None: 3682 if spec['type'] in 'eE': 3683 self = self._round(precision+1, rounding) 3684 elif spec['type'] in 'fF%': 3685 self = self._rescale(-precision, rounding) 3686 elif spec['type'] in 'gG' and len(self._int) > precision: 3687 self = self._round(precision, rounding) 3688 # special case: zeros with a positive exponent can't be 3689 # represented in fixed point; rescale them to 0e0. 3690 if not self and self._exp > 0 and spec['type'] in 'fF%': 3691 self = self._rescale(0, rounding) 3692 3693 # figure out placement of the decimal point 3694 leftdigits = self._exp + len(self._int) 3695 if spec['type'] in 'eE': 3696 if not self and precision is not None: 3697 dotplace = 1 - precision 3698 else: 3699 dotplace = 1 3700 elif spec['type'] in 'fF%': 3701 dotplace = leftdigits 3702 elif spec['type'] in 'gG': 3703 if self._exp <= 0 and leftdigits > -6: 3704 dotplace = leftdigits 3705 else: 3706 dotplace = 1 3707 3708 # find digits before and after decimal point, and get exponent 3709 if dotplace < 0: 3710 intpart = '0' 3711 fracpart = '0'*(-dotplace) + self._int 3712 elif dotplace > len(self._int): 3713 intpart = self._int + '0'*(dotplace-len(self._int)) 3714 fracpart = '' 3715 else: 3716 intpart = self._int[:dotplace] or '0' 3717 fracpart = self._int[dotplace:] 3718 exp = leftdigits-dotplace 3719 3720 # done with the decimal-specific stuff; hand over the rest 3721 # of the formatting to the _format_number function 3722 return _format_number(self._sign, intpart, fracpart, exp, spec) 3723 3724def _dec_from_triple(sign, coefficient, exponent, special=False): 3725 """Create a decimal instance directly, without any validation, 3726 normalization (e.g. removal of leading zeros) or argument 3727 conversion. 3728 3729 This function is for *internal use only*. 3730 """ 3731 3732 self = object.__new__(Decimal) 3733 self._sign = sign 3734 self._int = coefficient 3735 self._exp = exponent 3736 self._is_special = special 3737 3738 return self 3739 3740# Register Decimal as a kind of Number (an abstract base class). 3741# However, do not register it as Real (because Decimals are not 3742# interoperable with floats). 3743_numbers.Number.register(Decimal) 3744 3745 3746##### Context class ####################################################### 3747 3748class _ContextManager(object): 3749 """Context manager class to support localcontext(). 3750 3751 Sets a copy of the supplied context in __enter__() and restores 3752 the previous decimal context in __exit__() 3753 """ 3754 def __init__(self, new_context): 3755 self.new_context = new_context.copy() 3756 def __enter__(self): 3757 self.saved_context = getcontext() 3758 setcontext(self.new_context) 3759 return self.new_context 3760 def __exit__(self, t, v, tb): 3761 setcontext(self.saved_context) 3762 3763class Context(object): 3764 """Contains the context for a Decimal instance. 3765 3766 Contains: 3767 prec - precision (for use in rounding, division, square roots..) 3768 rounding - rounding type (how you round) 3769 traps - If traps[exception] = 1, then the exception is 3770 raised when it is caused. Otherwise, a value is 3771 substituted in. 3772 flags - When an exception is caused, flags[exception] is set. 3773 (Whether or not the trap_enabler is set) 3774 Should be reset by user of Decimal instance. 3775 Emin - Minimum exponent 3776 Emax - Maximum exponent 3777 capitals - If 1, 1*10^1 is printed as 1E+1. 3778 If 0, printed as 1e1 3779 _clamp - If 1, change exponents if too high (Default 0) 3780 """ 3781 3782 def __init__(self, prec=None, rounding=None, 3783 traps=None, flags=None, 3784 Emin=None, Emax=None, 3785 capitals=None, _clamp=0, 3786 _ignored_flags=None): 3787 # Set defaults; for everything except flags and _ignored_flags, 3788 # inherit from DefaultContext. 3789 try: 3790 dc = DefaultContext 3791 except NameError: 3792 pass 3793 3794 self.prec = prec if prec is not None else dc.prec 3795 self.rounding = rounding if rounding is not None else dc.rounding 3796 self.Emin = Emin if Emin is not None else dc.Emin 3797 self.Emax = Emax if Emax is not None else dc.Emax 3798 self.capitals = capitals if capitals is not None else dc.capitals 3799 self._clamp = _clamp if _clamp is not None else dc._clamp 3800 3801 if _ignored_flags is None: 3802 self._ignored_flags = [] 3803 else: 3804 self._ignored_flags = _ignored_flags 3805 3806 if traps is None: 3807 self.traps = dc.traps.copy() 3808 elif not isinstance(traps, dict): 3809 self.traps = dict((s, int(s in traps)) for s in _signals) 3810 else: 3811 self.traps = traps 3812 3813 if flags is None: 3814 self.flags = dict.fromkeys(_signals, 0) 3815 elif not isinstance(flags, dict): 3816 self.flags = dict((s, int(s in flags)) for s in _signals) 3817 else: 3818 self.flags = flags 3819 3820 def __repr__(self): 3821 """Show the current context.""" 3822 s = [] 3823 s.append('Context(prec=%(prec)d, rounding=%(rounding)s, ' 3824 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d' 3825 % vars(self)) 3826 names = [f.__name__ for f, v in self.flags.items() if v] 3827 s.append('flags=[' + ', '.join(names) + ']') 3828 names = [t.__name__ for t, v in self.traps.items() if v] 3829 s.append('traps=[' + ', '.join(names) + ']') 3830 return ', '.join(s) + ')' 3831 3832 def clear_flags(self): 3833 """Reset all flags to zero""" 3834 for flag in self.flags: 3835 self.flags[flag] = 0 3836 3837 def _shallow_copy(self): 3838 """Returns a shallow copy from self.""" 3839 nc = Context(self.prec, self.rounding, self.traps, 3840 self.flags, self.Emin, self.Emax, 3841 self.capitals, self._clamp, self._ignored_flags) 3842 return nc 3843 3844 def copy(self): 3845 """Returns a deep copy from self.""" 3846 nc = Context(self.prec, self.rounding, self.traps.copy(), 3847 self.flags.copy(), self.Emin, self.Emax, 3848 self.capitals, self._clamp, self._ignored_flags) 3849 return nc 3850 __copy__ = copy 3851 3852 def _raise_error(self, condition, explanation = None, *args): 3853 """Handles an error 3854 3855 If the flag is in _ignored_flags, returns the default response. 3856 Otherwise, it sets the flag, then, if the corresponding 3857 trap_enabler is set, it reraises the exception. Otherwise, it returns 3858 the default value after setting the flag. 3859 """ 3860 error = _condition_map.get(condition, condition) 3861 if error in self._ignored_flags: 3862 # Don't touch the flag 3863 return error().handle(self, *args) 3864 3865 self.flags[error] = 1 3866 if not self.traps[error]: 3867 # The errors define how to handle themselves. 3868 return condition().handle(self, *args) 3869 3870 # Errors should only be risked on copies of the context 3871 # self._ignored_flags = [] 3872 raise error(explanation) 3873 3874 def _ignore_all_flags(self): 3875 """Ignore all flags, if they are raised""" 3876 return self._ignore_flags(*_signals) 3877 3878 def _ignore_flags(self, *flags): 3879 """Ignore the flags, if they are raised""" 3880 # Do not mutate-- This way, copies of a context leave the original 3881 # alone. 3882 self._ignored_flags = (self._ignored_flags + list(flags)) 3883 return list(flags) 3884 3885 def _regard_flags(self, *flags): 3886 """Stop ignoring the flags, if they are raised""" 3887 if flags and isinstance(flags[0], (tuple,list)): 3888 flags = flags[0] 3889 for flag in flags: 3890 self._ignored_flags.remove(flag) 3891 3892 # We inherit object.__hash__, so we must deny this explicitly 3893 __hash__ = None 3894 3895 def Etiny(self): 3896 """Returns Etiny (= Emin - prec + 1)""" 3897 return int(self.Emin - self.prec + 1) 3898 3899 def Etop(self): 3900 """Returns maximum exponent (= Emax - prec + 1)""" 3901 return int(self.Emax - self.prec + 1) 3902 3903 def _set_rounding(self, type): 3904 """Sets the rounding type. 3905 3906 Sets the rounding type, and returns the current (previous) 3907 rounding type. Often used like: 3908 3909 context = context.copy() 3910 # so you don't change the calling context 3911 # if an error occurs in the middle. 3912 rounding = context._set_rounding(ROUND_UP) 3913 val = self.__sub__(other, context=context) 3914 context._set_rounding(rounding) 3915 3916 This will make it round up for that operation. 3917 """ 3918 rounding = self.rounding 3919 self.rounding= type 3920 return rounding 3921 3922 def create_decimal(self, num='0'): 3923 """Creates a new Decimal instance but using self as context. 3924 3925 This method implements the to-number operation of the 3926 IBM Decimal specification.""" 3927 3928 if isinstance(num, basestring) and num != num.strip(): 3929 return self._raise_error(ConversionSyntax, 3930 "no trailing or leading whitespace is " 3931 "permitted.") 3932 3933 d = Decimal(num, context=self) 3934 if d._isnan() and len(d._int) > self.prec - self._clamp: 3935 return self._raise_error(ConversionSyntax, 3936 "diagnostic info too long in NaN") 3937 return d._fix(self) 3938 3939 def create_decimal_from_float(self, f): 3940 """Creates a new Decimal instance from a float but rounding using self 3941 as the context. 3942 3943 >>> context = Context(prec=5, rounding=ROUND_DOWN) 3944 >>> context.create_decimal_from_float(3.1415926535897932) 3945 Decimal('3.1415') 3946 >>> context = Context(prec=5, traps=[Inexact]) 3947 >>> context.create_decimal_from_float(3.1415926535897932) 3948 Traceback (most recent call last): 3949 ... 3950 Inexact: None 3951 3952 """ 3953 d = Decimal.from_float(f) # An exact conversion 3954 return d._fix(self) # Apply the context rounding 3955 3956 # Methods 3957 def abs(self, a): 3958 """Returns the absolute value of the operand. 3959 3960 If the operand is negative, the result is the same as using the minus 3961 operation on the operand. Otherwise, the result is the same as using 3962 the plus operation on the operand. 3963 3964 >>> ExtendedContext.abs(Decimal('2.1')) 3965 Decimal('2.1') 3966 >>> ExtendedContext.abs(Decimal('-100')) 3967 Decimal('100') 3968 >>> ExtendedContext.abs(Decimal('101.5')) 3969 Decimal('101.5') 3970 >>> ExtendedContext.abs(Decimal('-101.5')) 3971 Decimal('101.5') 3972 >>> ExtendedContext.abs(-1) 3973 Decimal('1') 3974 """ 3975 a = _convert_other(a, raiseit=True) 3976 return a.__abs__(context=self) 3977 3978 def add(self, a, b): 3979 """Return the sum of the two operands. 3980 3981 >>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) 3982 Decimal('19.00') 3983 >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) 3984 Decimal('1.02E+4') 3985 >>> ExtendedContext.add(1, Decimal(2)) 3986 Decimal('3') 3987 >>> ExtendedContext.add(Decimal(8), 5) 3988 Decimal('13') 3989 >>> ExtendedContext.add(5, 5) 3990 Decimal('10') 3991 """ 3992 a = _convert_other(a, raiseit=True) 3993 r = a.__add__(b, context=self) 3994 if r is NotImplemented: 3995 raise TypeError("Unable to convert %s to Decimal" % b) 3996 else: 3997 return r 3998 3999 def _apply(self, a): 4000 return str(a._fix(self)) 4001 4002 def canonical(self, a): 4003 """Returns the same Decimal object. 4004 4005 As we do not have different encodings for the same number, the 4006 received object already is in its canonical form. 4007 4008 >>> ExtendedContext.canonical(Decimal('2.50')) 4009 Decimal('2.50') 4010 """ 4011 return a.canonical(context=self) 4012 4013 def compare(self, a, b): 4014 """Compares values numerically. 4015 4016 If the signs of the operands differ, a value representing each operand 4017 ('-1' if the operand is less than zero, '0' if the operand is zero or 4018 negative zero, or '1' if the operand is greater than zero) is used in 4019 place of that operand for the comparison instead of the actual 4020 operand. 4021 4022 The comparison is then effected by subtracting the second operand from 4023 the first and then returning a value according to the result of the 4024 subtraction: '-1' if the result is less than zero, '0' if the result is 4025 zero or negative zero, or '1' if the result is greater than zero. 4026 4027 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) 4028 Decimal('-1') 4029 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) 4030 Decimal('0') 4031 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) 4032 Decimal('0') 4033 >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) 4034 Decimal('1') 4035 >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) 4036 Decimal('1') 4037 >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) 4038 Decimal('-1') 4039 >>> ExtendedContext.compare(1, 2) 4040 Decimal('-1') 4041 >>> ExtendedContext.compare(Decimal(1), 2) 4042 Decimal('-1') 4043 >>> ExtendedContext.compare(1, Decimal(2)) 4044 Decimal('-1') 4045 """ 4046 a = _convert_other(a, raiseit=True) 4047 return a.compare(b, context=self) 4048 4049 def compare_signal(self, a, b): 4050 """Compares the values of the two operands numerically. 4051 4052 It's pretty much like compare(), but all NaNs signal, with signaling 4053 NaNs taking precedence over quiet NaNs. 4054 4055 >>> c = ExtendedContext 4056 >>> c.compare_signal(Decimal('2.1'), Decimal('3')) 4057 Decimal('-1') 4058 >>> c.compare_signal(Decimal('2.1'), Decimal('2.1')) 4059 Decimal('0') 4060 >>> c.flags[InvalidOperation] = 0 4061 >>> print c.flags[InvalidOperation] 4062 0 4063 >>> c.compare_signal(Decimal('NaN'), Decimal('2.1')) 4064 Decimal('NaN') 4065 >>> print c.flags[InvalidOperation] 4066 1 4067 >>> c.flags[InvalidOperation] = 0 4068 >>> print c.flags[InvalidOperation] 4069 0 4070 >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1')) 4071 Decimal('NaN') 4072 >>> print c.flags[InvalidOperation] 4073 1 4074 >>> c.compare_signal(-1, 2) 4075 Decimal('-1') 4076 >>> c.compare_signal(Decimal(-1), 2) 4077 Decimal('-1') 4078 >>> c.compare_signal(-1, Decimal(2)) 4079 Decimal('-1') 4080 """ 4081 a = _convert_other(a, raiseit=True) 4082 return a.compare_signal(b, context=self) 4083 4084 def compare_total(self, a, b): 4085 """Compares two operands using their abstract representation. 4086 4087 This is not like the standard compare, which use their numerical 4088 value. Note that a total ordering is defined for all possible abstract 4089 representations. 4090 4091 >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9')) 4092 Decimal('-1') 4093 >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12')) 4094 Decimal('-1') 4095 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3')) 4096 Decimal('-1') 4097 >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30')) 4098 Decimal('0') 4099 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300')) 4100 Decimal('1') 4101 >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN')) 4102 Decimal('-1') 4103 >>> ExtendedContext.compare_total(1, 2) 4104 Decimal('-1') 4105 >>> ExtendedContext.compare_total(Decimal(1), 2) 4106 Decimal('-1') 4107 >>> ExtendedContext.compare_total(1, Decimal(2)) 4108 Decimal('-1') 4109 """ 4110 a = _convert_other(a, raiseit=True) 4111 return a.compare_total(b) 4112 4113 def compare_total_mag(self, a, b): 4114 """Compares two operands using their abstract representation ignoring sign. 4115 4116 Like compare_total, but with operand's sign ignored and assumed to be 0. 4117 """ 4118 a = _convert_other(a, raiseit=True) 4119 return a.compare_total_mag(b) 4120 4121 def copy_abs(self, a): 4122 """Returns a copy of the operand with the sign set to 0. 4123 4124 >>> ExtendedContext.copy_abs(Decimal('2.1')) 4125 Decimal('2.1') 4126 >>> ExtendedContext.copy_abs(Decimal('-100')) 4127 Decimal('100') 4128 >>> ExtendedContext.copy_abs(-1) 4129 Decimal('1') 4130 """ 4131 a = _convert_other(a, raiseit=True) 4132 return a.copy_abs() 4133 4134 def copy_decimal(self, a): 4135 """Returns a copy of the decimal object. 4136 4137 >>> ExtendedContext.copy_decimal(Decimal('2.1')) 4138 Decimal('2.1') 4139 >>> ExtendedContext.copy_decimal(Decimal('-1.00')) 4140 Decimal('-1.00') 4141 >>> ExtendedContext.copy_decimal(1) 4142 Decimal('1') 4143 """ 4144 a = _convert_other(a, raiseit=True) 4145 return Decimal(a) 4146 4147 def copy_negate(self, a): 4148 """Returns a copy of the operand with the sign inverted. 4149 4150 >>> ExtendedContext.copy_negate(Decimal('101.5')) 4151 Decimal('-101.5') 4152 >>> ExtendedContext.copy_negate(Decimal('-101.5')) 4153 Decimal('101.5') 4154 >>> ExtendedContext.copy_negate(1) 4155 Decimal('-1') 4156 """ 4157 a = _convert_other(a, raiseit=True) 4158 return a.copy_negate() 4159 4160 def copy_sign(self, a, b): 4161 """Copies the second operand's sign to the first one. 4162 4163 In detail, it returns a copy of the first operand with the sign 4164 equal to the sign of the second operand. 4165 4166 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33')) 4167 Decimal('1.50') 4168 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33')) 4169 Decimal('1.50') 4170 >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33')) 4171 Decimal('-1.50') 4172 >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33')) 4173 Decimal('-1.50') 4174 >>> ExtendedContext.copy_sign(1, -2) 4175 Decimal('-1') 4176 >>> ExtendedContext.copy_sign(Decimal(1), -2) 4177 Decimal('-1') 4178 >>> ExtendedContext.copy_sign(1, Decimal(-2)) 4179 Decimal('-1') 4180 """ 4181 a = _convert_other(a, raiseit=True) 4182 return a.copy_sign(b) 4183 4184 def divide(self, a, b): 4185 """Decimal division in a specified context. 4186 4187 >>> ExtendedContext.divide(Decimal('1'), Decimal('3')) 4188 Decimal('0.333333333') 4189 >>> ExtendedContext.divide(Decimal('2'), Decimal('3')) 4190 Decimal('0.666666667') 4191 >>> ExtendedContext.divide(Decimal('5'), Decimal('2')) 4192 Decimal('2.5') 4193 >>> ExtendedContext.divide(Decimal('1'), Decimal('10')) 4194 Decimal('0.1') 4195 >>> ExtendedContext.divide(Decimal('12'), Decimal('12')) 4196 Decimal('1') 4197 >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) 4198 Decimal('4.00') 4199 >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) 4200 Decimal('1.20') 4201 >>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) 4202 Decimal('10') 4203 >>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) 4204 Decimal('1000') 4205 >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) 4206 Decimal('1.20E+6') 4207 >>> ExtendedContext.divide(5, 5) 4208 Decimal('1') 4209 >>> ExtendedContext.divide(Decimal(5), 5) 4210 Decimal('1') 4211 >>> ExtendedContext.divide(5, Decimal(5)) 4212 Decimal('1') 4213 """ 4214 a = _convert_other(a, raiseit=True) 4215 r = a.__div__(b, context=self) 4216 if r is NotImplemented: 4217 raise TypeError("Unable to convert %s to Decimal" % b) 4218 else: 4219 return r 4220 4221 def divide_int(self, a, b): 4222 """Divides two numbers and returns the integer part of the result. 4223 4224 >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) 4225 Decimal('0') 4226 >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) 4227 Decimal('3') 4228 >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) 4229 Decimal('3') 4230 >>> ExtendedContext.divide_int(10, 3) 4231 Decimal('3') 4232 >>> ExtendedContext.divide_int(Decimal(10), 3) 4233 Decimal('3') 4234 >>> ExtendedContext.divide_int(10, Decimal(3)) 4235 Decimal('3') 4236 """ 4237 a = _convert_other(a, raiseit=True) 4238 r = a.__floordiv__(b, context=self) 4239 if r is NotImplemented: 4240 raise TypeError("Unable to convert %s to Decimal" % b) 4241 else: 4242 return r 4243 4244 def divmod(self, a, b): 4245 """Return (a // b, a % b). 4246 4247 >>> ExtendedContext.divmod(Decimal(8), Decimal(3)) 4248 (Decimal('2'), Decimal('2')) 4249 >>> ExtendedContext.divmod(Decimal(8), Decimal(4)) 4250 (Decimal('2'), Decimal('0')) 4251 >>> ExtendedContext.divmod(8, 4) 4252 (Decimal('2'), Decimal('0')) 4253 >>> ExtendedContext.divmod(Decimal(8), 4) 4254 (Decimal('2'), Decimal('0')) 4255 >>> ExtendedContext.divmod(8, Decimal(4)) 4256 (Decimal('2'), Decimal('0')) 4257 """ 4258 a = _convert_other(a, raiseit=True) 4259 r = a.__divmod__(b, context=self) 4260 if r is NotImplemented: 4261 raise TypeError("Unable to convert %s to Decimal" % b) 4262 else: 4263 return r 4264 4265 def exp(self, a): 4266 """Returns e ** a. 4267 4268 >>> c = ExtendedContext.copy() 4269 >>> c.Emin = -999 4270 >>> c.Emax = 999 4271 >>> c.exp(Decimal('-Infinity')) 4272 Decimal('0') 4273 >>> c.exp(Decimal('-1')) 4274 Decimal('0.367879441') 4275 >>> c.exp(Decimal('0')) 4276 Decimal('1') 4277 >>> c.exp(Decimal('1')) 4278 Decimal('2.71828183') 4279 >>> c.exp(Decimal('0.693147181')) 4280 Decimal('2.00000000') 4281 >>> c.exp(Decimal('+Infinity')) 4282 Decimal('Infinity') 4283 >>> c.exp(10) 4284 Decimal('22026.4658') 4285 """ 4286 a =_convert_other(a, raiseit=True) 4287 return a.exp(context=self) 4288 4289 def fma(self, a, b, c): 4290 """Returns a multiplied by b, plus c. 4291 4292 The first two operands are multiplied together, using multiply, 4293 the third operand is then added to the result of that 4294 multiplication, using add, all with only one final rounding. 4295 4296 >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7')) 4297 Decimal('22') 4298 >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7')) 4299 Decimal('-8') 4300 >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578')) 4301 Decimal('1.38435736E+12') 4302 >>> ExtendedContext.fma(1, 3, 4) 4303 Decimal('7') 4304 >>> ExtendedContext.fma(1, Decimal(3), 4) 4305 Decimal('7') 4306 >>> ExtendedContext.fma(1, 3, Decimal(4)) 4307 Decimal('7') 4308 """ 4309 a = _convert_other(a, raiseit=True) 4310 return a.fma(b, c, context=self) 4311 4312 def is_canonical(self, a): 4313 """Return True if the operand is canonical; otherwise return False. 4314 4315 Currently, the encoding of a Decimal instance is always 4316 canonical, so this method returns True for any Decimal. 4317 4318 >>> ExtendedContext.is_canonical(Decimal('2.50')) 4319 True 4320 """ 4321 return a.is_canonical() 4322 4323 def is_finite(self, a): 4324 """Return True if the operand is finite; otherwise return False. 4325 4326 A Decimal instance is considered finite if it is neither 4327 infinite nor a NaN. 4328 4329 >>> ExtendedContext.is_finite(Decimal('2.50')) 4330 True 4331 >>> ExtendedContext.is_finite(Decimal('-0.3')) 4332 True 4333 >>> ExtendedContext.is_finite(Decimal('0')) 4334 True 4335 >>> ExtendedContext.is_finite(Decimal('Inf')) 4336 False 4337 >>> ExtendedContext.is_finite(Decimal('NaN')) 4338 False 4339 >>> ExtendedContext.is_finite(1) 4340 True 4341 """ 4342 a = _convert_other(a, raiseit=True) 4343 return a.is_finite() 4344 4345 def is_infinite(self, a): 4346 """Return True if the operand is infinite; otherwise return False. 4347 4348 >>> ExtendedContext.is_infinite(Decimal('2.50')) 4349 False 4350 >>> ExtendedContext.is_infinite(Decimal('-Inf')) 4351 True 4352 >>> ExtendedContext.is_infinite(Decimal('NaN')) 4353 False 4354 >>> ExtendedContext.is_infinite(1) 4355 False 4356 """ 4357 a = _convert_other(a, raiseit=True) 4358 return a.is_infinite() 4359 4360 def is_nan(self, a): 4361 """Return True if the operand is a qNaN or sNaN; 4362 otherwise return False. 4363 4364 >>> ExtendedContext.is_nan(Decimal('2.50')) 4365 False 4366 >>> ExtendedContext.is_nan(Decimal('NaN')) 4367 True 4368 >>> ExtendedContext.is_nan(Decimal('-sNaN')) 4369 True 4370 >>> ExtendedContext.is_nan(1) 4371 False 4372 """ 4373 a = _convert_other(a, raiseit=True) 4374 return a.is_nan() 4375 4376 def is_normal(self, a): 4377 """Return True if the operand is a normal number; 4378 otherwise return False. 4379 4380 >>> c = ExtendedContext.copy() 4381 >>> c.Emin = -999 4382 >>> c.Emax = 999 4383 >>> c.is_normal(Decimal('2.50')) 4384 True 4385 >>> c.is_normal(Decimal('0.1E-999')) 4386 False 4387 >>> c.is_normal(Decimal('0.00')) 4388 False 4389 >>> c.is_normal(Decimal('-Inf')) 4390 False 4391 >>> c.is_normal(Decimal('NaN')) 4392 False 4393 >>> c.is_normal(1) 4394 True 4395 """ 4396 a = _convert_other(a, raiseit=True) 4397 return a.is_normal(context=self) 4398 4399 def is_qnan(self, a): 4400 """Return True if the operand is a quiet NaN; otherwise return False. 4401 4402 >>> ExtendedContext.is_qnan(Decimal('2.50')) 4403 False 4404 >>> ExtendedContext.is_qnan(Decimal('NaN')) 4405 True 4406 >>> ExtendedContext.is_qnan(Decimal('sNaN')) 4407 False 4408 >>> ExtendedContext.is_qnan(1) 4409 False 4410 """ 4411 a = _convert_other(a, raiseit=True) 4412 return a.is_qnan() 4413 4414 def is_signed(self, a): 4415 """Return True if the operand is negative; otherwise return False. 4416 4417 >>> ExtendedContext.is_signed(Decimal('2.50')) 4418 False 4419 >>> ExtendedContext.is_signed(Decimal('-12')) 4420 True 4421 >>> ExtendedContext.is_signed(Decimal('-0')) 4422 True 4423 >>> ExtendedContext.is_signed(8) 4424 False 4425 >>> ExtendedContext.is_signed(-8) 4426 True 4427 """ 4428 a = _convert_other(a, raiseit=True) 4429 return a.is_signed() 4430 4431 def is_snan(self, a): 4432 """Return True if the operand is a signaling NaN; 4433 otherwise return False. 4434 4435 >>> ExtendedContext.is_snan(Decimal('2.50')) 4436 False 4437 >>> ExtendedContext.is_snan(Decimal('NaN')) 4438 False 4439 >>> ExtendedContext.is_snan(Decimal('sNaN')) 4440 True 4441 >>> ExtendedContext.is_snan(1) 4442 False 4443 """ 4444 a = _convert_other(a, raiseit=True) 4445 return a.is_snan() 4446 4447 def is_subnormal(self, a): 4448 """Return True if the operand is subnormal; otherwise return False. 4449 4450 >>> c = ExtendedContext.copy() 4451 >>> c.Emin = -999 4452 >>> c.Emax = 999 4453 >>> c.is_subnormal(Decimal('2.50')) 4454 False 4455 >>> c.is_subnormal(Decimal('0.1E-999')) 4456 True 4457 >>> c.is_subnormal(Decimal('0.00')) 4458 False 4459 >>> c.is_subnormal(Decimal('-Inf')) 4460 False 4461 >>> c.is_subnormal(Decimal('NaN')) 4462 False 4463 >>> c.is_subnormal(1) 4464 False 4465 """ 4466 a = _convert_other(a, raiseit=True) 4467 return a.is_subnormal(context=self) 4468 4469 def is_zero(self, a): 4470 """Return True if the operand is a zero; otherwise return False. 4471 4472 >>> ExtendedContext.is_zero(Decimal('0')) 4473 True 4474 >>> ExtendedContext.is_zero(Decimal('2.50')) 4475 False 4476 >>> ExtendedContext.is_zero(Decimal('-0E+2')) 4477 True 4478 >>> ExtendedContext.is_zero(1) 4479 False 4480 >>> ExtendedContext.is_zero(0) 4481 True 4482 """ 4483 a = _convert_other(a, raiseit=True) 4484 return a.is_zero() 4485 4486 def ln(self, a): 4487 """Returns the natural (base e) logarithm of the operand. 4488 4489 >>> c = ExtendedContext.copy() 4490 >>> c.Emin = -999 4491 >>> c.Emax = 999 4492 >>> c.ln(Decimal('0')) 4493 Decimal('-Infinity') 4494 >>> c.ln(Decimal('1.000')) 4495 Decimal('0') 4496 >>> c.ln(Decimal('2.71828183')) 4497 Decimal('1.00000000') 4498 >>> c.ln(Decimal('10')) 4499 Decimal('2.30258509') 4500 >>> c.ln(Decimal('+Infinity')) 4501 Decimal('Infinity') 4502 >>> c.ln(1) 4503 Decimal('0') 4504 """ 4505 a = _convert_other(a, raiseit=True) 4506 return a.ln(context=self) 4507 4508 def log10(self, a): 4509 """Returns the base 10 logarithm of the operand. 4510 4511 >>> c = ExtendedContext.copy() 4512 >>> c.Emin = -999 4513 >>> c.Emax = 999 4514 >>> c.log10(Decimal('0')) 4515 Decimal('-Infinity') 4516 >>> c.log10(Decimal('0.001')) 4517 Decimal('-3') 4518 >>> c.log10(Decimal('1.000')) 4519 Decimal('0') 4520 >>> c.log10(Decimal('2')) 4521 Decimal('0.301029996') 4522 >>> c.log10(Decimal('10')) 4523 Decimal('1') 4524 >>> c.log10(Decimal('70')) 4525 Decimal('1.84509804') 4526 >>> c.log10(Decimal('+Infinity')) 4527 Decimal('Infinity') 4528 >>> c.log10(0) 4529 Decimal('-Infinity') 4530 >>> c.log10(1) 4531 Decimal('0') 4532 """ 4533 a = _convert_other(a, raiseit=True) 4534 return a.log10(context=self) 4535 4536 def logb(self, a): 4537 """ Returns the exponent of the magnitude of the operand's MSD. 4538 4539 The result is the integer which is the exponent of the magnitude 4540 of the most significant digit of the operand (as though the 4541 operand were truncated to a single digit while maintaining the 4542 value of that digit and without limiting the resulting exponent). 4543 4544 >>> ExtendedContext.logb(Decimal('250')) 4545 Decimal('2') 4546 >>> ExtendedContext.logb(Decimal('2.50')) 4547 Decimal('0') 4548 >>> ExtendedContext.logb(Decimal('0.03')) 4549 Decimal('-2') 4550 >>> ExtendedContext.logb(Decimal('0')) 4551 Decimal('-Infinity') 4552 >>> ExtendedContext.logb(1) 4553 Decimal('0') 4554 >>> ExtendedContext.logb(10) 4555 Decimal('1') 4556 >>> ExtendedContext.logb(100) 4557 Decimal('2') 4558 """ 4559 a = _convert_other(a, raiseit=True) 4560 return a.logb(context=self) 4561 4562 def logical_and(self, a, b): 4563 """Applies the logical operation 'and' between each operand's digits. 4564 4565 The operands must be both logical numbers. 4566 4567 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0')) 4568 Decimal('0') 4569 >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1')) 4570 Decimal('0') 4571 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0')) 4572 Decimal('0') 4573 >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1')) 4574 Decimal('1') 4575 >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010')) 4576 Decimal('1000') 4577 >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10')) 4578 Decimal('10') 4579 >>> ExtendedContext.logical_and(110, 1101) 4580 Decimal('100') 4581 >>> ExtendedContext.logical_and(Decimal(110), 1101) 4582 Decimal('100') 4583 >>> ExtendedContext.logical_and(110, Decimal(1101)) 4584 Decimal('100') 4585 """ 4586 a = _convert_other(a, raiseit=True) 4587 return a.logical_and(b, context=self) 4588 4589 def logical_invert(self, a): 4590 """Invert all the digits in the operand. 4591 4592 The operand must be a logical number. 4593 4594 >>> ExtendedContext.logical_invert(Decimal('0')) 4595 Decimal('111111111') 4596 >>> ExtendedContext.logical_invert(Decimal('1')) 4597 Decimal('111111110') 4598 >>> ExtendedContext.logical_invert(Decimal('111111111')) 4599 Decimal('0') 4600 >>> ExtendedContext.logical_invert(Decimal('101010101')) 4601 Decimal('10101010') 4602 >>> ExtendedContext.logical_invert(1101) 4603 Decimal('111110010') 4604 """ 4605 a = _convert_other(a, raiseit=True) 4606 return a.logical_invert(context=self) 4607 4608 def logical_or(self, a, b): 4609 """Applies the logical operation 'or' between each operand's digits. 4610 4611 The operands must be both logical numbers. 4612 4613 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0')) 4614 Decimal('0') 4615 >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1')) 4616 Decimal('1') 4617 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0')) 4618 Decimal('1') 4619 >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1')) 4620 Decimal('1') 4621 >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010')) 4622 Decimal('1110') 4623 >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10')) 4624 Decimal('1110') 4625 >>> ExtendedContext.logical_or(110, 1101) 4626 Decimal('1111') 4627 >>> ExtendedContext.logical_or(Decimal(110), 1101) 4628 Decimal('1111') 4629 >>> ExtendedContext.logical_or(110, Decimal(1101)) 4630 Decimal('1111') 4631 """ 4632 a = _convert_other(a, raiseit=True) 4633 return a.logical_or(b, context=self) 4634 4635 def logical_xor(self, a, b): 4636 """Applies the logical operation 'xor' between each operand's digits. 4637 4638 The operands must be both logical numbers. 4639 4640 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0')) 4641 Decimal('0') 4642 >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1')) 4643 Decimal('1') 4644 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0')) 4645 Decimal('1') 4646 >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1')) 4647 Decimal('0') 4648 >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010')) 4649 Decimal('110') 4650 >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10')) 4651 Decimal('1101') 4652 >>> ExtendedContext.logical_xor(110, 1101) 4653 Decimal('1011') 4654 >>> ExtendedContext.logical_xor(Decimal(110), 1101) 4655 Decimal('1011') 4656 >>> ExtendedContext.logical_xor(110, Decimal(1101)) 4657 Decimal('1011') 4658 """ 4659 a = _convert_other(a, raiseit=True) 4660 return a.logical_xor(b, context=self) 4661 4662 def max(self, a, b): 4663 """max compares two values numerically and returns the maximum. 4664 4665 If either operand is a NaN then the general rules apply. 4666 Otherwise, the operands are compared as though by the compare 4667 operation. If they are numerically equal then the left-hand operand 4668 is chosen as the result. Otherwise the maximum (closer to positive 4669 infinity) of the two operands is chosen as the result. 4670 4671 >>> ExtendedContext.max(Decimal('3'), Decimal('2')) 4672 Decimal('3') 4673 >>> ExtendedContext.max(Decimal('-10'), Decimal('3')) 4674 Decimal('3') 4675 >>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) 4676 Decimal('1') 4677 >>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) 4678 Decimal('7') 4679 >>> ExtendedContext.max(1, 2) 4680 Decimal('2') 4681 >>> ExtendedContext.max(Decimal(1), 2) 4682 Decimal('2') 4683 >>> ExtendedContext.max(1, Decimal(2)) 4684 Decimal('2') 4685 """ 4686 a = _convert_other(a, raiseit=True) 4687 return a.max(b, context=self) 4688 4689 def max_mag(self, a, b): 4690 """Compares the values numerically with their sign ignored. 4691 4692 >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN')) 4693 Decimal('7') 4694 >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10')) 4695 Decimal('-10') 4696 >>> ExtendedContext.max_mag(1, -2) 4697 Decimal('-2') 4698 >>> ExtendedContext.max_mag(Decimal(1), -2) 4699 Decimal('-2') 4700 >>> ExtendedContext.max_mag(1, Decimal(-2)) 4701 Decimal('-2') 4702 """ 4703 a = _convert_other(a, raiseit=True) 4704 return a.max_mag(b, context=self) 4705 4706 def min(self, a, b): 4707 """min compares two values numerically and returns the minimum. 4708 4709 If either operand is a NaN then the general rules apply. 4710 Otherwise, the operands are compared as though by the compare 4711 operation. If they are numerically equal then the left-hand operand 4712 is chosen as the result. Otherwise the minimum (closer to negative 4713 infinity) of the two operands is chosen as the result. 4714 4715 >>> ExtendedContext.min(Decimal('3'), Decimal('2')) 4716 Decimal('2') 4717 >>> ExtendedContext.min(Decimal('-10'), Decimal('3')) 4718 Decimal('-10') 4719 >>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) 4720 Decimal('1.0') 4721 >>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) 4722 Decimal('7') 4723 >>> ExtendedContext.min(1, 2) 4724 Decimal('1') 4725 >>> ExtendedContext.min(Decimal(1), 2) 4726 Decimal('1') 4727 >>> ExtendedContext.min(1, Decimal(29)) 4728 Decimal('1') 4729 """ 4730 a = _convert_other(a, raiseit=True) 4731 return a.min(b, context=self) 4732 4733 def min_mag(self, a, b): 4734 """Compares the values numerically with their sign ignored. 4735 4736 >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2')) 4737 Decimal('-2') 4738 >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN')) 4739 Decimal('-3') 4740 >>> ExtendedContext.min_mag(1, -2) 4741 Decimal('1') 4742 >>> ExtendedContext.min_mag(Decimal(1), -2) 4743 Decimal('1') 4744 >>> ExtendedContext.min_mag(1, Decimal(-2)) 4745 Decimal('1') 4746 """ 4747 a = _convert_other(a, raiseit=True) 4748 return a.min_mag(b, context=self) 4749 4750 def minus(self, a): 4751 """Minus corresponds to unary prefix minus in Python. 4752 4753 The operation is evaluated using the same rules as subtract; the 4754 operation minus(a) is calculated as subtract('0', a) where the '0' 4755 has the same exponent as the operand. 4756 4757 >>> ExtendedContext.minus(Decimal('1.3')) 4758 Decimal('-1.3') 4759 >>> ExtendedContext.minus(Decimal('-1.3')) 4760 Decimal('1.3') 4761 >>> ExtendedContext.minus(1) 4762 Decimal('-1') 4763 """ 4764 a = _convert_other(a, raiseit=True) 4765 return a.__neg__(context=self) 4766 4767 def multiply(self, a, b): 4768 """multiply multiplies two operands. 4769 4770 If either operand is a special value then the general rules apply. 4771 Otherwise, the operands are multiplied together 4772 ('long multiplication'), resulting in a number which may be as long as 4773 the sum of the lengths of the two operands. 4774 4775 >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) 4776 Decimal('3.60') 4777 >>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) 4778 Decimal('21') 4779 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) 4780 Decimal('0.72') 4781 >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) 4782 Decimal('-0.0') 4783 >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) 4784 Decimal('4.28135971E+11') 4785 >>> ExtendedContext.multiply(7, 7) 4786 Decimal('49') 4787 >>> ExtendedContext.multiply(Decimal(7), 7) 4788 Decimal('49') 4789 >>> ExtendedContext.multiply(7, Decimal(7)) 4790 Decimal('49') 4791 """ 4792 a = _convert_other(a, raiseit=True) 4793 r = a.__mul__(b, context=self) 4794 if r is NotImplemented: 4795 raise TypeError("Unable to convert %s to Decimal" % b) 4796 else: 4797 return r 4798 4799 def next_minus(self, a): 4800 """Returns the largest representable number smaller than a. 4801 4802 >>> c = ExtendedContext.copy() 4803 >>> c.Emin = -999 4804 >>> c.Emax = 999 4805 >>> ExtendedContext.next_minus(Decimal('1')) 4806 Decimal('0.999999999') 4807 >>> c.next_minus(Decimal('1E-1007')) 4808 Decimal('0E-1007') 4809 >>> ExtendedContext.next_minus(Decimal('-1.00000003')) 4810 Decimal('-1.00000004') 4811 >>> c.next_minus(Decimal('Infinity')) 4812 Decimal('9.99999999E+999') 4813 >>> c.next_minus(1) 4814 Decimal('0.999999999') 4815 """ 4816 a = _convert_other(a, raiseit=True) 4817 return a.next_minus(context=self) 4818 4819 def next_plus(self, a): 4820 """Returns the smallest representable number larger than a. 4821 4822 >>> c = ExtendedContext.copy() 4823 >>> c.Emin = -999 4824 >>> c.Emax = 999 4825 >>> ExtendedContext.next_plus(Decimal('1')) 4826 Decimal('1.00000001') 4827 >>> c.next_plus(Decimal('-1E-1007')) 4828 Decimal('-0E-1007') 4829 >>> ExtendedContext.next_plus(Decimal('-1.00000003')) 4830 Decimal('-1.00000002') 4831 >>> c.next_plus(Decimal('-Infinity')) 4832 Decimal('-9.99999999E+999') 4833 >>> c.next_plus(1) 4834 Decimal('1.00000001') 4835 """ 4836 a = _convert_other(a, raiseit=True) 4837 return a.next_plus(context=self) 4838 4839 def next_toward(self, a, b): 4840 """Returns the number closest to a, in direction towards b. 4841 4842 The result is the closest representable number from the first 4843 operand (but not the first operand) that is in the direction 4844 towards the second operand, unless the operands have the same 4845 value. 4846 4847 >>> c = ExtendedContext.copy() 4848 >>> c.Emin = -999 4849 >>> c.Emax = 999 4850 >>> c.next_toward(Decimal('1'), Decimal('2')) 4851 Decimal('1.00000001') 4852 >>> c.next_toward(Decimal('-1E-1007'), Decimal('1')) 4853 Decimal('-0E-1007') 4854 >>> c.next_toward(Decimal('-1.00000003'), Decimal('0')) 4855 Decimal('-1.00000002') 4856 >>> c.next_toward(Decimal('1'), Decimal('0')) 4857 Decimal('0.999999999') 4858 >>> c.next_toward(Decimal('1E-1007'), Decimal('-100')) 4859 Decimal('0E-1007') 4860 >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10')) 4861 Decimal('-1.00000004') 4862 >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000')) 4863 Decimal('-0.00') 4864 >>> c.next_toward(0, 1) 4865 Decimal('1E-1007') 4866 >>> c.next_toward(Decimal(0), 1) 4867 Decimal('1E-1007') 4868 >>> c.next_toward(0, Decimal(1)) 4869 Decimal('1E-1007') 4870 """ 4871 a = _convert_other(a, raiseit=True) 4872 return a.next_toward(b, context=self) 4873 4874 def normalize(self, a): 4875 """normalize reduces an operand to its simplest form. 4876 4877 Essentially a plus operation with all trailing zeros removed from the 4878 result. 4879 4880 >>> ExtendedContext.normalize(Decimal('2.1')) 4881 Decimal('2.1') 4882 >>> ExtendedContext.normalize(Decimal('-2.0')) 4883 Decimal('-2') 4884 >>> ExtendedContext.normalize(Decimal('1.200')) 4885 Decimal('1.2') 4886 >>> ExtendedContext.normalize(Decimal('-120')) 4887 Decimal('-1.2E+2') 4888 >>> ExtendedContext.normalize(Decimal('120.00')) 4889 Decimal('1.2E+2') 4890 >>> ExtendedContext.normalize(Decimal('0.00')) 4891 Decimal('0') 4892 >>> ExtendedContext.normalize(6) 4893 Decimal('6') 4894 """ 4895 a = _convert_other(a, raiseit=True) 4896 return a.normalize(context=self) 4897 4898 def number_class(self, a): 4899 """Returns an indication of the class of the operand. 4900 4901 The class is one of the following strings: 4902 -sNaN 4903 -NaN 4904 -Infinity 4905 -Normal 4906 -Subnormal 4907 -Zero 4908 +Zero 4909 +Subnormal 4910 +Normal 4911 +Infinity 4912 4913 >>> c = Context(ExtendedContext) 4914 >>> c.Emin = -999 4915 >>> c.Emax = 999 4916 >>> c.number_class(Decimal('Infinity')) 4917 '+Infinity' 4918 >>> c.number_class(Decimal('1E-10')) 4919 '+Normal' 4920 >>> c.number_class(Decimal('2.50')) 4921 '+Normal' 4922 >>> c.number_class(Decimal('0.1E-999')) 4923 '+Subnormal' 4924 >>> c.number_class(Decimal('0')) 4925 '+Zero' 4926 >>> c.number_class(Decimal('-0')) 4927 '-Zero' 4928 >>> c.number_class(Decimal('-0.1E-999')) 4929 '-Subnormal' 4930 >>> c.number_class(Decimal('-1E-10')) 4931 '-Normal' 4932 >>> c.number_class(Decimal('-2.50')) 4933 '-Normal' 4934 >>> c.number_class(Decimal('-Infinity')) 4935 '-Infinity' 4936 >>> c.number_class(Decimal('NaN')) 4937 'NaN' 4938 >>> c.number_class(Decimal('-NaN')) 4939 'NaN' 4940 >>> c.number_class(Decimal('sNaN')) 4941 'sNaN' 4942 >>> c.number_class(123) 4943 '+Normal' 4944 """ 4945 a = _convert_other(a, raiseit=True) 4946 return a.number_class(context=self) 4947 4948 def plus(self, a): 4949 """Plus corresponds to unary prefix plus in Python. 4950 4951 The operation is evaluated using the same rules as add; the 4952 operation plus(a) is calculated as add('0', a) where the '0' 4953 has the same exponent as the operand. 4954 4955 >>> ExtendedContext.plus(Decimal('1.3')) 4956 Decimal('1.3') 4957 >>> ExtendedContext.plus(Decimal('-1.3')) 4958 Decimal('-1.3') 4959 >>> ExtendedContext.plus(-1) 4960 Decimal('-1') 4961 """ 4962 a = _convert_other(a, raiseit=True) 4963 return a.__pos__(context=self) 4964 4965 def power(self, a, b, modulo=None): 4966 """Raises a to the power of b, to modulo if given. 4967 4968 With two arguments, compute a**b. If a is negative then b 4969 must be integral. The result will be inexact unless b is 4970 integral and the result is finite and can be expressed exactly 4971 in 'precision' digits. 4972 4973 With three arguments, compute (a**b) % modulo. For the 4974 three argument form, the following restrictions on the 4975 arguments hold: 4976 4977 - all three arguments must be integral 4978 - b must be nonnegative 4979 - at least one of a or b must be nonzero 4980 - modulo must be nonzero and have at most 'precision' digits 4981 4982 The result of pow(a, b, modulo) is identical to the result 4983 that would be obtained by computing (a**b) % modulo with 4984 unbounded precision, but is computed more efficiently. It is 4985 always exact. 4986 4987 >>> c = ExtendedContext.copy() 4988 >>> c.Emin = -999 4989 >>> c.Emax = 999 4990 >>> c.power(Decimal('2'), Decimal('3')) 4991 Decimal('8') 4992 >>> c.power(Decimal('-2'), Decimal('3')) 4993 Decimal('-8') 4994 >>> c.power(Decimal('2'), Decimal('-3')) 4995 Decimal('0.125') 4996 >>> c.power(Decimal('1.7'), Decimal('8')) 4997 Decimal('69.7575744') 4998 >>> c.power(Decimal('10'), Decimal('0.301029996')) 4999 Decimal('2.00000000') 5000 >>> c.power(Decimal('Infinity'), Decimal('-1')) 5001 Decimal('0') 5002 >>> c.power(Decimal('Infinity'), Decimal('0')) 5003 Decimal('1') 5004 >>> c.power(Decimal('Infinity'), Decimal('1')) 5005 Decimal('Infinity') 5006 >>> c.power(Decimal('-Infinity'), Decimal('-1')) 5007 Decimal('-0') 5008 >>> c.power(Decimal('-Infinity'), Decimal('0')) 5009 Decimal('1') 5010 >>> c.power(Decimal('-Infinity'), Decimal('1')) 5011 Decimal('-Infinity') 5012 >>> c.power(Decimal('-Infinity'), Decimal('2')) 5013 Decimal('Infinity') 5014 >>> c.power(Decimal('0'), Decimal('0')) 5015 Decimal('NaN') 5016 5017 >>> c.power(Decimal('3'), Decimal('7'), Decimal('16')) 5018 Decimal('11') 5019 >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16')) 5020 Decimal('-11') 5021 >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16')) 5022 Decimal('1') 5023 >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16')) 5024 Decimal('11') 5025 >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789')) 5026 Decimal('11729830') 5027 >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729')) 5028 Decimal('-0') 5029 >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537')) 5030 Decimal('1') 5031 >>> ExtendedContext.power(7, 7) 5032 Decimal('823543') 5033 >>> ExtendedContext.power(Decimal(7), 7) 5034 Decimal('823543') 5035 >>> ExtendedContext.power(7, Decimal(7), 2) 5036 Decimal('1') 5037 """ 5038 a = _convert_other(a, raiseit=True) 5039 r = a.__pow__(b, modulo, context=self) 5040 if r is NotImplemented: 5041 raise TypeError("Unable to convert %s to Decimal" % b) 5042 else: 5043 return r 5044 5045 def quantize(self, a, b): 5046 """Returns a value equal to 'a' (rounded), having the exponent of 'b'. 5047 5048 The coefficient of the result is derived from that of the left-hand 5049 operand. It may be rounded using the current rounding setting (if the 5050 exponent is being increased), multiplied by a positive power of ten (if 5051 the exponent is being decreased), or is unchanged (if the exponent is 5052 already equal to that of the right-hand operand). 5053 5054 Unlike other operations, if the length of the coefficient after the 5055 quantize operation would be greater than precision then an Invalid 5056 operation condition is raised. This guarantees that, unless there is 5057 an error condition, the exponent of the result of a quantize is always 5058 equal to that of the right-hand operand. 5059 5060 Also unlike other operations, quantize will never raise Underflow, even 5061 if the result is subnormal and inexact. 5062 5063 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) 5064 Decimal('2.170') 5065 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) 5066 Decimal('2.17') 5067 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) 5068 Decimal('2.2') 5069 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) 5070 Decimal('2') 5071 >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) 5072 Decimal('0E+1') 5073 >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) 5074 Decimal('-Infinity') 5075 >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) 5076 Decimal('NaN') 5077 >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) 5078 Decimal('-0') 5079 >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) 5080 Decimal('-0E+5') 5081 >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) 5082 Decimal('NaN') 5083 >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) 5084 Decimal('NaN') 5085 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) 5086 Decimal('217.0') 5087 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) 5088 Decimal('217') 5089 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) 5090 Decimal('2.2E+2') 5091 >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) 5092 Decimal('2E+2') 5093 >>> ExtendedContext.quantize(1, 2) 5094 Decimal('1') 5095 >>> ExtendedContext.quantize(Decimal(1), 2) 5096 Decimal('1') 5097 >>> ExtendedContext.quantize(1, Decimal(2)) 5098 Decimal('1') 5099 """ 5100 a = _convert_other(a, raiseit=True) 5101 return a.quantize(b, context=self) 5102 5103 def radix(self): 5104 """Just returns 10, as this is Decimal, :) 5105 5106 >>> ExtendedContext.radix() 5107 Decimal('10') 5108 """ 5109 return Decimal(10) 5110 5111 def remainder(self, a, b): 5112 """Returns the remainder from integer division. 5113 5114 The result is the residue of the dividend after the operation of 5115 calculating integer division as described for divide-integer, rounded 5116 to precision digits if necessary. The sign of the result, if 5117 non-zero, is the same as that of the original dividend. 5118 5119 This operation will fail under the same conditions as integer division 5120 (that is, if integer division on the same two operands would fail, the 5121 remainder cannot be calculated). 5122 5123 >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) 5124 Decimal('2.1') 5125 >>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) 5126 Decimal('1') 5127 >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) 5128 Decimal('-1') 5129 >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) 5130 Decimal('0.2') 5131 >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) 5132 Decimal('0.1') 5133 >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) 5134 Decimal('1.0') 5135 >>> ExtendedContext.remainder(22, 6) 5136 Decimal('4') 5137 >>> ExtendedContext.remainder(Decimal(22), 6) 5138 Decimal('4') 5139 >>> ExtendedContext.remainder(22, Decimal(6)) 5140 Decimal('4') 5141 """ 5142 a = _convert_other(a, raiseit=True) 5143 r = a.__mod__(b, context=self) 5144 if r is NotImplemented: 5145 raise TypeError("Unable to convert %s to Decimal" % b) 5146 else: 5147 return r 5148 5149 def remainder_near(self, a, b): 5150 """Returns to be "a - b * n", where n is the integer nearest the exact 5151 value of "x / b" (if two integers are equally near then the even one 5152 is chosen). If the result is equal to 0 then its sign will be the 5153 sign of a. 5154 5155 This operation will fail under the same conditions as integer division 5156 (that is, if integer division on the same two operands would fail, the 5157 remainder cannot be calculated). 5158 5159 >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) 5160 Decimal('-0.9') 5161 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) 5162 Decimal('-2') 5163 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) 5164 Decimal('1') 5165 >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) 5166 Decimal('-1') 5167 >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) 5168 Decimal('0.2') 5169 >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) 5170 Decimal('0.1') 5171 >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) 5172 Decimal('-0.3') 5173 >>> ExtendedContext.remainder_near(3, 11) 5174 Decimal('3') 5175 >>> ExtendedContext.remainder_near(Decimal(3), 11) 5176 Decimal('3') 5177 >>> ExtendedContext.remainder_near(3, Decimal(11)) 5178 Decimal('3') 5179 """ 5180 a = _convert_other(a, raiseit=True) 5181 return a.remainder_near(b, context=self) 5182 5183 def rotate(self, a, b): 5184 """Returns a rotated copy of a, b times. 5185 5186 The coefficient of the result is a rotated copy of the digits in 5187 the coefficient of the first operand. The number of places of 5188 rotation is taken from the absolute value of the second operand, 5189 with the rotation being to the left if the second operand is 5190 positive or to the right otherwise. 5191 5192 >>> ExtendedContext.rotate(Decimal('34'), Decimal('8')) 5193 Decimal('400000003') 5194 >>> ExtendedContext.rotate(Decimal('12'), Decimal('9')) 5195 Decimal('12') 5196 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2')) 5197 Decimal('891234567') 5198 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0')) 5199 Decimal('123456789') 5200 >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2')) 5201 Decimal('345678912') 5202 >>> ExtendedContext.rotate(1333333, 1) 5203 Decimal('13333330') 5204 >>> ExtendedContext.rotate(Decimal(1333333), 1) 5205 Decimal('13333330') 5206 >>> ExtendedContext.rotate(1333333, Decimal(1)) 5207 Decimal('13333330') 5208 """ 5209 a = _convert_other(a, raiseit=True) 5210 return a.rotate(b, context=self) 5211 5212 def same_quantum(self, a, b): 5213 """Returns True if the two operands have the same exponent. 5214 5215 The result is never affected by either the sign or the coefficient of 5216 either operand. 5217 5218 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) 5219 False 5220 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) 5221 True 5222 >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) 5223 False 5224 >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) 5225 True 5226 >>> ExtendedContext.same_quantum(10000, -1) 5227 True 5228 >>> ExtendedContext.same_quantum(Decimal(10000), -1) 5229 True 5230 >>> ExtendedContext.same_quantum(10000, Decimal(-1)) 5231 True 5232 """ 5233 a = _convert_other(a, raiseit=True) 5234 return a.same_quantum(b) 5235 5236 def scaleb (self, a, b): 5237 """Returns the first operand after adding the second value its exp. 5238 5239 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2')) 5240 Decimal('0.0750') 5241 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0')) 5242 Decimal('7.50') 5243 >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3')) 5244 Decimal('7.50E+3') 5245 >>> ExtendedContext.scaleb(1, 4) 5246 Decimal('1E+4') 5247 >>> ExtendedContext.scaleb(Decimal(1), 4) 5248 Decimal('1E+4') 5249 >>> ExtendedContext.scaleb(1, Decimal(4)) 5250 Decimal('1E+4') 5251 """ 5252 a = _convert_other(a, raiseit=True) 5253 return a.scaleb(b, context=self) 5254 5255 def shift(self, a, b): 5256 """Returns a shifted copy of a, b times. 5257 5258 The coefficient of the result is a shifted copy of the digits 5259 in the coefficient of the first operand. The number of places 5260 to shift is taken from the absolute value of the second operand, 5261 with the shift being to the left if the second operand is 5262 positive or to the right otherwise. Digits shifted into the 5263 coefficient are zeros. 5264 5265 >>> ExtendedContext.shift(Decimal('34'), Decimal('8')) 5266 Decimal('400000000') 5267 >>> ExtendedContext.shift(Decimal('12'), Decimal('9')) 5268 Decimal('0') 5269 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2')) 5270 Decimal('1234567') 5271 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0')) 5272 Decimal('123456789') 5273 >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2')) 5274 Decimal('345678900') 5275 >>> ExtendedContext.shift(88888888, 2) 5276 Decimal('888888800') 5277 >>> ExtendedContext.shift(Decimal(88888888), 2) 5278 Decimal('888888800') 5279 >>> ExtendedContext.shift(88888888, Decimal(2)) 5280 Decimal('888888800') 5281 """ 5282 a = _convert_other(a, raiseit=True) 5283 return a.shift(b, context=self) 5284 5285 def sqrt(self, a): 5286 """Square root of a non-negative number to context precision. 5287 5288 If the result must be inexact, it is rounded using the round-half-even 5289 algorithm. 5290 5291 >>> ExtendedContext.sqrt(Decimal('0')) 5292 Decimal('0') 5293 >>> ExtendedContext.sqrt(Decimal('-0')) 5294 Decimal('-0') 5295 >>> ExtendedContext.sqrt(Decimal('0.39')) 5296 Decimal('0.624499800') 5297 >>> ExtendedContext.sqrt(Decimal('100')) 5298 Decimal('10') 5299 >>> ExtendedContext.sqrt(Decimal('1')) 5300 Decimal('1') 5301 >>> ExtendedContext.sqrt(Decimal('1.0')) 5302 Decimal('1.0') 5303 >>> ExtendedContext.sqrt(Decimal('1.00')) 5304 Decimal('1.0') 5305 >>> ExtendedContext.sqrt(Decimal('7')) 5306 Decimal('2.64575131') 5307 >>> ExtendedContext.sqrt(Decimal('10')) 5308 Decimal('3.16227766') 5309 >>> ExtendedContext.sqrt(2) 5310 Decimal('1.41421356') 5311 >>> ExtendedContext.prec 5312 9 5313 """ 5314 a = _convert_other(a, raiseit=True) 5315 return a.sqrt(context=self) 5316 5317 def subtract(self, a, b): 5318 """Return the difference between the two operands. 5319 5320 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) 5321 Decimal('0.23') 5322 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) 5323 Decimal('0.00') 5324 >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) 5325 Decimal('-0.77') 5326 >>> ExtendedContext.subtract(8, 5) 5327 Decimal('3') 5328 >>> ExtendedContext.subtract(Decimal(8), 5) 5329 Decimal('3') 5330 >>> ExtendedContext.subtract(8, Decimal(5)) 5331 Decimal('3') 5332 """ 5333 a = _convert_other(a, raiseit=True) 5334 r = a.__sub__(b, context=self) 5335 if r is NotImplemented: 5336 raise TypeError("Unable to convert %s to Decimal" % b) 5337 else: 5338 return r 5339 5340 def to_eng_string(self, a): 5341 """Converts a number to a string, using scientific notation. 5342 5343 The operation is not affected by the context. 5344 """ 5345 a = _convert_other(a, raiseit=True) 5346 return a.to_eng_string(context=self) 5347 5348 def to_sci_string(self, a): 5349 """Converts a number to a string, using scientific notation. 5350 5351 The operation is not affected by the context. 5352 """ 5353 a = _convert_other(a, raiseit=True) 5354 return a.__str__(context=self) 5355 5356 def to_integral_exact(self, a): 5357 """Rounds to an integer. 5358 5359 When the operand has a negative exponent, the result is the same 5360 as using the quantize() operation using the given operand as the 5361 left-hand-operand, 1E+0 as the right-hand-operand, and the precision 5362 of the operand as the precision setting; Inexact and Rounded flags 5363 are allowed in this operation. The rounding mode is taken from the 5364 context. 5365 5366 >>> ExtendedContext.to_integral_exact(Decimal('2.1')) 5367 Decimal('2') 5368 >>> ExtendedContext.to_integral_exact(Decimal('100')) 5369 Decimal('100') 5370 >>> ExtendedContext.to_integral_exact(Decimal('100.0')) 5371 Decimal('100') 5372 >>> ExtendedContext.to_integral_exact(Decimal('101.5')) 5373 Decimal('102') 5374 >>> ExtendedContext.to_integral_exact(Decimal('-101.5')) 5375 Decimal('-102') 5376 >>> ExtendedContext.to_integral_exact(Decimal('10E+5')) 5377 Decimal('1.0E+6') 5378 >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77')) 5379 Decimal('7.89E+77') 5380 >>> ExtendedContext.to_integral_exact(Decimal('-Inf')) 5381 Decimal('-Infinity') 5382 """ 5383 a = _convert_other(a, raiseit=True) 5384 return a.to_integral_exact(context=self) 5385 5386 def to_integral_value(self, a): 5387 """Rounds to an integer. 5388 5389 When the operand has a negative exponent, the result is the same 5390 as using the quantize() operation using the given operand as the 5391 left-hand-operand, 1E+0 as the right-hand-operand, and the precision 5392 of the operand as the precision setting, except that no flags will 5393 be set. The rounding mode is taken from the context. 5394 5395 >>> ExtendedContext.to_integral_value(Decimal('2.1')) 5396 Decimal('2') 5397 >>> ExtendedContext.to_integral_value(Decimal('100')) 5398 Decimal('100') 5399 >>> ExtendedContext.to_integral_value(Decimal('100.0')) 5400 Decimal('100') 5401 >>> ExtendedContext.to_integral_value(Decimal('101.5')) 5402 Decimal('102') 5403 >>> ExtendedContext.to_integral_value(Decimal('-101.5')) 5404 Decimal('-102') 5405 >>> ExtendedContext.to_integral_value(Decimal('10E+5')) 5406 Decimal('1.0E+6') 5407 >>> ExtendedContext.to_integral_value(Decimal('7.89E+77')) 5408 Decimal('7.89E+77') 5409 >>> ExtendedContext.to_integral_value(Decimal('-Inf')) 5410 Decimal('-Infinity') 5411 """ 5412 a = _convert_other(a, raiseit=True) 5413 return a.to_integral_value(context=self) 5414 5415 # the method name changed, but we provide also the old one, for compatibility 5416 to_integral = to_integral_value 5417 5418class _WorkRep(object): 5419 __slots__ = ('sign','int','exp') 5420 # sign: 0 or 1 5421 # int: int or long 5422 # exp: None, int, or string 5423 5424 def __init__(self, value=None): 5425 if value is None: 5426 self.sign = None 5427 self.int = 0 5428 self.exp = None 5429 elif isinstance(value, Decimal): 5430 self.sign = value._sign 5431 self.int = int(value._int) 5432 self.exp = value._exp 5433 else: 5434 # assert isinstance(value, tuple) 5435 self.sign = value[0] 5436 self.int = value[1] 5437 self.exp = value[2] 5438 5439 def __repr__(self): 5440 return "(%r, %r, %r)" % (self.sign, self.int, self.exp) 5441 5442 __str__ = __repr__ 5443 5444 5445 5446def _normalize(op1, op2, prec = 0): 5447 """Normalizes op1, op2 to have the same exp and length of coefficient. 5448 5449 Done during addition. 5450 """ 5451 if op1.exp < op2.exp: 5452 tmp = op2 5453 other = op1 5454 else: 5455 tmp = op1 5456 other = op2 5457 5458 # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1). 5459 # Then adding 10**exp to tmp has the same effect (after rounding) 5460 # as adding any positive quantity smaller than 10**exp; similarly 5461 # for subtraction. So if other is smaller than 10**exp we replace 5462 # it with 10**exp. This avoids tmp.exp - other.exp getting too large. 5463 tmp_len = len(str(tmp.int)) 5464 other_len = len(str(other.int)) 5465 exp = tmp.exp + min(-1, tmp_len - prec - 2) 5466 if other_len + other.exp - 1 < exp: 5467 other.int = 1 5468 other.exp = exp 5469 5470 tmp.int *= 10 ** (tmp.exp - other.exp) 5471 tmp.exp = other.exp 5472 return op1, op2 5473 5474##### Integer arithmetic functions used by ln, log10, exp and __pow__ ##### 5475 5476# This function from Tim Peters was taken from here: 5477# http://mail.python.org/pipermail/python-list/1999-July/007758.html 5478# The correction being in the function definition is for speed, and 5479# the whole function is not resolved with math.log because of avoiding 5480# the use of floats. 5481def _nbits(n, correction = { 5482 '0': 4, '1': 3, '2': 2, '3': 2, 5483 '4': 1, '5': 1, '6': 1, '7': 1, 5484 '8': 0, '9': 0, 'a': 0, 'b': 0, 5485 'c': 0, 'd': 0, 'e': 0, 'f': 0}): 5486 """Number of bits in binary representation of the positive integer n, 5487 or 0 if n == 0. 5488 """ 5489 if n < 0: 5490 raise ValueError("The argument to _nbits should be nonnegative.") 5491 hex_n = "%x" % n 5492 return 4*len(hex_n) - correction[hex_n[0]] 5493 5494def _decimal_lshift_exact(n, e): 5495 """ Given integers n and e, return n * 10**e if it's an integer, else None. 5496 5497 The computation is designed to avoid computing large powers of 10 5498 unnecessarily. 5499 5500 >>> _decimal_lshift_exact(3, 4) 5501 30000 5502 >>> _decimal_lshift_exact(300, -999999999) # returns None 5503 5504 """ 5505 if n == 0: 5506 return 0 5507 elif e >= 0: 5508 return n * 10**e 5509 else: 5510 # val_n = largest power of 10 dividing n. 5511 str_n = str(abs(n)) 5512 val_n = len(str_n) - len(str_n.rstrip('0')) 5513 return None if val_n < -e else n // 10**-e 5514 5515def _sqrt_nearest(n, a): 5516 """Closest integer to the square root of the positive integer n. a is 5517 an initial approximation to the square root. Any positive integer 5518 will do for a, but the closer a is to the square root of n the 5519 faster convergence will be. 5520 5521 """ 5522 if n <= 0 or a <= 0: 5523 raise ValueError("Both arguments to _sqrt_nearest should be positive.") 5524 5525 b=0 5526 while a != b: 5527 b, a = a, a--n//a>>1 5528 return a 5529 5530def _rshift_nearest(x, shift): 5531 """Given an integer x and a nonnegative integer shift, return closest 5532 integer to x / 2**shift; use round-to-even in case of a tie. 5533 5534 """ 5535 b, q = 1L << shift, x >> shift 5536 return q + (2*(x & (b-1)) + (q&1) > b) 5537 5538def _div_nearest(a, b): 5539 """Closest integer to a/b, a and b positive integers; rounds to even 5540 in the case of a tie. 5541 5542 """ 5543 q, r = divmod(a, b) 5544 return q + (2*r + (q&1) > b) 5545 5546def _ilog(x, M, L = 8): 5547 """Integer approximation to M*log(x/M), with absolute error boundable 5548 in terms only of x/M. 5549 5550 Given positive integers x and M, return an integer approximation to 5551 M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference 5552 between the approximation and the exact result is at most 22. For 5553 L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In 5554 both cases these are upper bounds on the error; it will usually be 5555 much smaller.""" 5556 5557 # The basic algorithm is the following: let log1p be the function 5558 # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use 5559 # the reduction 5560 # 5561 # log1p(y) = 2*log1p(y/(1+sqrt(1+y))) 5562 # 5563 # repeatedly until the argument to log1p is small (< 2**-L in 5564 # absolute value). For small y we can use the Taylor series 5565 # expansion 5566 # 5567 # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T 5568 # 5569 # truncating at T such that y**T is small enough. The whole 5570 # computation is carried out in a form of fixed-point arithmetic, 5571 # with a real number z being represented by an integer 5572 # approximation to z*M. To avoid loss of precision, the y below 5573 # is actually an integer approximation to 2**R*y*M, where R is the 5574 # number of reductions performed so far. 5575 5576 y = x-M 5577 # argument reduction; R = number of reductions performed 5578 R = 0 5579 while (R <= L and long(abs(y)) << L-R >= M or 5580 R > L and abs(y) >> R-L >= M): 5581 y = _div_nearest(long(M*y) << 1, 5582 M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M)) 5583 R += 1 5584 5585 # Taylor series with T terms 5586 T = -int(-10*len(str(M))//(3*L)) 5587 yshift = _rshift_nearest(y, R) 5588 w = _div_nearest(M, T) 5589 for k in xrange(T-1, 0, -1): 5590 w = _div_nearest(M, k) - _div_nearest(yshift*w, M) 5591 5592 return _div_nearest(w*y, M) 5593 5594def _dlog10(c, e, p): 5595 """Given integers c, e and p with c > 0, p >= 0, compute an integer 5596 approximation to 10**p * log10(c*10**e), with an absolute error of 5597 at most 1. Assumes that c*10**e is not exactly 1.""" 5598 5599 # increase precision by 2; compensate for this by dividing 5600 # final result by 100 5601 p += 2 5602 5603 # write c*10**e as d*10**f with either: 5604 # f >= 0 and 1 <= d <= 10, or 5605 # f <= 0 and 0.1 <= d <= 1. 5606 # Thus for c*10**e close to 1, f = 0 5607 l = len(str(c)) 5608 f = e+l - (e+l >= 1) 5609 5610 if p > 0: 5611 M = 10**p 5612 k = e+p-f 5613 if k >= 0: 5614 c *= 10**k 5615 else: 5616 c = _div_nearest(c, 10**-k) 5617 5618 log_d = _ilog(c, M) # error < 5 + 22 = 27 5619 log_10 = _log10_digits(p) # error < 1 5620 log_d = _div_nearest(log_d*M, log_10) 5621 log_tenpower = f*M # exact 5622 else: 5623 log_d = 0 # error < 2.31 5624 log_tenpower = _div_nearest(f, 10**-p) # error < 0.5 5625 5626 return _div_nearest(log_tenpower+log_d, 100) 5627 5628def _dlog(c, e, p): 5629 """Given integers c, e and p with c > 0, compute an integer 5630 approximation to 10**p * log(c*10**e), with an absolute error of 5631 at most 1. Assumes that c*10**e is not exactly 1.""" 5632 5633 # Increase precision by 2. The precision increase is compensated 5634 # for at the end with a division by 100. 5635 p += 2 5636 5637 # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10, 5638 # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e) 5639 # as 10**p * log(d) + 10**p*f * log(10). 5640 l = len(str(c)) 5641 f = e+l - (e+l >= 1) 5642 5643 # compute approximation to 10**p*log(d), with error < 27 5644 if p > 0: 5645 k = e+p-f 5646 if k >= 0: 5647 c *= 10**k 5648 else: 5649 c = _div_nearest(c, 10**-k) # error of <= 0.5 in c 5650 5651 # _ilog magnifies existing error in c by a factor of at most 10 5652 log_d = _ilog(c, 10**p) # error < 5 + 22 = 27 5653 else: 5654 # p <= 0: just approximate the whole thing by 0; error < 2.31 5655 log_d = 0 5656 5657 # compute approximation to f*10**p*log(10), with error < 11. 5658 if f: 5659 extra = len(str(abs(f)))-1 5660 if p + extra >= 0: 5661 # error in f * _log10_digits(p+extra) < |f| * 1 = |f| 5662 # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11 5663 f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra) 5664 else: 5665 f_log_ten = 0 5666 else: 5667 f_log_ten = 0 5668 5669 # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1 5670 return _div_nearest(f_log_ten + log_d, 100) 5671 5672class _Log10Memoize(object): 5673 """Class to compute, store, and allow retrieval of, digits of the 5674 constant log(10) = 2.302585.... This constant is needed by 5675 Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__.""" 5676 def __init__(self): 5677 self.digits = "23025850929940456840179914546843642076011014886" 5678 5679 def getdigits(self, p): 5680 """Given an integer p >= 0, return floor(10**p)*log(10). 5681 5682 For example, self.getdigits(3) returns 2302. 5683 """ 5684 # digits are stored as a string, for quick conversion to 5685 # integer in the case that we've already computed enough 5686 # digits; the stored digits should always be correct 5687 # (truncated, not rounded to nearest). 5688 if p < 0: 5689 raise ValueError("p should be nonnegative") 5690 5691 if p >= len(self.digits): 5692 # compute p+3, p+6, p+9, ... digits; continue until at 5693 # least one of the extra digits is nonzero 5694 extra = 3 5695 while True: 5696 # compute p+extra digits, correct to within 1ulp 5697 M = 10**(p+extra+2) 5698 digits = str(_div_nearest(_ilog(10*M, M), 100)) 5699 if digits[-extra:] != '0'*extra: 5700 break 5701 extra += 3 5702 # keep all reliable digits so far; remove trailing zeros 5703 # and next nonzero digit 5704 self.digits = digits.rstrip('0')[:-1] 5705 return int(self.digits[:p+1]) 5706 5707_log10_digits = _Log10Memoize().getdigits 5708 5709def _iexp(x, M, L=8): 5710 """Given integers x and M, M > 0, such that x/M is small in absolute 5711 value, compute an integer approximation to M*exp(x/M). For 0 <= 5712 x/M <= 2.4, the absolute error in the result is bounded by 60 (and 5713 is usually much smaller).""" 5714 5715 # Algorithm: to compute exp(z) for a real number z, first divide z 5716 # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then 5717 # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor 5718 # series 5719 # 5720 # expm1(x) = x + x**2/2! + x**3/3! + ... 5721 # 5722 # Now use the identity 5723 # 5724 # expm1(2x) = expm1(x)*(expm1(x)+2) 5725 # 5726 # R times to compute the sequence expm1(z/2**R), 5727 # expm1(z/2**(R-1)), ... , exp(z/2), exp(z). 5728 5729 # Find R such that x/2**R/M <= 2**-L 5730 R = _nbits((long(x)<<L)//M) 5731 5732 # Taylor series. (2**L)**T > M 5733 T = -int(-10*len(str(M))//(3*L)) 5734 y = _div_nearest(x, T) 5735 Mshift = long(M)<<R 5736 for i in xrange(T-1, 0, -1): 5737 y = _div_nearest(x*(Mshift + y), Mshift * i) 5738 5739 # Expansion 5740 for k in xrange(R-1, -1, -1): 5741 Mshift = long(M)<<(k+2) 5742 y = _div_nearest(y*(y+Mshift), Mshift) 5743 5744 return M+y 5745 5746def _dexp(c, e, p): 5747 """Compute an approximation to exp(c*10**e), with p decimal places of 5748 precision. 5749 5750 Returns integers d, f such that: 5751 5752 10**(p-1) <= d <= 10**p, and 5753 (d-1)*10**f < exp(c*10**e) < (d+1)*10**f 5754 5755 In other words, d*10**f is an approximation to exp(c*10**e) with p 5756 digits of precision, and with an error in d of at most 1. This is 5757 almost, but not quite, the same as the error being < 1ulp: when d 5758 = 10**(p-1) the error could be up to 10 ulp.""" 5759 5760 # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision 5761 p += 2 5762 5763 # compute log(10) with extra precision = adjusted exponent of c*10**e 5764 extra = max(0, e + len(str(c)) - 1) 5765 q = p + extra 5766 5767 # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q), 5768 # rounding down 5769 shift = e+q 5770 if shift >= 0: 5771 cshift = c*10**shift 5772 else: 5773 cshift = c//10**-shift 5774 quot, rem = divmod(cshift, _log10_digits(q)) 5775 5776 # reduce remainder back to original precision 5777 rem = _div_nearest(rem, 10**extra) 5778 5779 # error in result of _iexp < 120; error after division < 0.62 5780 return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3 5781 5782def _dpower(xc, xe, yc, ye, p): 5783 """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and 5784 y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that: 5785 5786 10**(p-1) <= c <= 10**p, and 5787 (c-1)*10**e < x**y < (c+1)*10**e 5788 5789 in other words, c*10**e is an approximation to x**y with p digits 5790 of precision, and with an error in c of at most 1. (This is 5791 almost, but not quite, the same as the error being < 1ulp: when c 5792 == 10**(p-1) we can only guarantee error < 10ulp.) 5793 5794 We assume that: x is positive and not equal to 1, and y is nonzero. 5795 """ 5796 5797 # Find b such that 10**(b-1) <= |y| <= 10**b 5798 b = len(str(abs(yc))) + ye 5799 5800 # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point 5801 lxc = _dlog(xc, xe, p+b+1) 5802 5803 # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1) 5804 shift = ye-b 5805 if shift >= 0: 5806 pc = lxc*yc*10**shift 5807 else: 5808 pc = _div_nearest(lxc*yc, 10**-shift) 5809 5810 if pc == 0: 5811 # we prefer a result that isn't exactly 1; this makes it 5812 # easier to compute a correctly rounded result in __pow__ 5813 if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1: 5814 coeff, exp = 10**(p-1)+1, 1-p 5815 else: 5816 coeff, exp = 10**p-1, -p 5817 else: 5818 coeff, exp = _dexp(pc, -(p+1), p+1) 5819 coeff = _div_nearest(coeff, 10) 5820 exp += 1 5821 5822 return coeff, exp 5823 5824def _log10_lb(c, correction = { 5825 '1': 100, '2': 70, '3': 53, '4': 40, '5': 31, 5826 '6': 23, '7': 16, '8': 10, '9': 5}): 5827 """Compute a lower bound for 100*log10(c) for a positive integer c.""" 5828 if c <= 0: 5829 raise ValueError("The argument to _log10_lb should be nonnegative.") 5830 str_c = str(c) 5831 return 100*len(str_c) - correction[str_c[0]] 5832 5833##### Helper Functions #################################################### 5834 5835def _convert_other(other, raiseit=False, allow_float=False): 5836 """Convert other to Decimal. 5837 5838 Verifies that it's ok to use in an implicit construction. 5839 If allow_float is true, allow conversion from float; this 5840 is used in the comparison methods (__eq__ and friends). 5841 5842 """ 5843 if isinstance(other, Decimal): 5844 return other 5845 if isinstance(other, (int, long)): 5846 return Decimal(other) 5847 if allow_float and isinstance(other, float): 5848 return Decimal.from_float(other) 5849 5850 if raiseit: 5851 raise TypeError("Unable to convert %s to Decimal" % other) 5852 return NotImplemented 5853 5854##### Setup Specific Contexts ############################################ 5855 5856# The default context prototype used by Context() 5857# Is mutable, so that new contexts can have different default values 5858 5859DefaultContext = Context( 5860 prec=28, rounding=ROUND_HALF_EVEN, 5861 traps=[DivisionByZero, Overflow, InvalidOperation], 5862 flags=[], 5863 Emax=999999999, 5864 Emin=-999999999, 5865 capitals=1 5866) 5867 5868# Pre-made alternate contexts offered by the specification 5869# Don't change these; the user should be able to select these 5870# contexts and be able to reproduce results from other implementations 5871# of the spec. 5872 5873BasicContext = Context( 5874 prec=9, rounding=ROUND_HALF_UP, 5875 traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow], 5876 flags=[], 5877) 5878 5879ExtendedContext = Context( 5880 prec=9, rounding=ROUND_HALF_EVEN, 5881 traps=[], 5882 flags=[], 5883) 5884 5885 5886##### crud for parsing strings ############################################# 5887# 5888# Regular expression used for parsing numeric strings. Additional 5889# comments: 5890# 5891# 1. Uncomment the two '\s*' lines to allow leading and/or trailing 5892# whitespace. But note that the specification disallows whitespace in 5893# a numeric string. 5894# 5895# 2. For finite numbers (not infinities and NaNs) the body of the 5896# number between the optional sign and the optional exponent must have 5897# at least one decimal digit, possibly after the decimal point. The 5898# lookahead expression '(?=\d|\.\d)' checks this. 5899 5900import re 5901_parser = re.compile(r""" # A numeric string consists of: 5902# \s* 5903 (?P<sign>[-+])? # an optional sign, followed by either... 5904 ( 5905 (?=\d|\.\d) # ...a number (with at least one digit) 5906 (?P<int>\d*) # having a (possibly empty) integer part 5907 (\.(?P<frac>\d*))? # followed by an optional fractional part 5908 (E(?P<exp>[-+]?\d+))? # followed by an optional exponent, or... 5909 | 5910 Inf(inity)? # ...an infinity, or... 5911 | 5912 (?P<signal>s)? # ...an (optionally signaling) 5913 NaN # NaN 5914 (?P<diag>\d*) # with (possibly empty) diagnostic info. 5915 ) 5916# \s* 5917 \Z 5918""", re.VERBOSE | re.IGNORECASE | re.UNICODE).match 5919 5920_all_zeros = re.compile('0*$').match 5921_exact_half = re.compile('50*$').match 5922 5923##### PEP3101 support functions ############################################## 5924# The functions in this section have little to do with the Decimal 5925# class, and could potentially be reused or adapted for other pure 5926# Python numeric classes that want to implement __format__ 5927# 5928# A format specifier for Decimal looks like: 5929# 5930# [[fill]align][sign][0][minimumwidth][,][.precision][type] 5931 5932_parse_format_specifier_regex = re.compile(r"""\A 5933(?: 5934 (?P<fill>.)? 5935 (?P<align>[<>=^]) 5936)? 5937(?P<sign>[-+ ])? 5938(?P<zeropad>0)? 5939(?P<minimumwidth>(?!0)\d+)? 5940(?P<thousands_sep>,)? 5941(?:\.(?P<precision>0|(?!0)\d+))? 5942(?P<type>[eEfFgGn%])? 5943\Z 5944""", re.VERBOSE) 5945 5946del re 5947 5948# The locale module is only needed for the 'n' format specifier. The 5949# rest of the PEP 3101 code functions quite happily without it, so we 5950# don't care too much if locale isn't present. 5951try: 5952 import locale as _locale 5953except ImportError: 5954 pass 5955 5956def _parse_format_specifier(format_spec, _localeconv=None): 5957 """Parse and validate a format specifier. 5958 5959 Turns a standard numeric format specifier into a dict, with the 5960 following entries: 5961 5962 fill: fill character to pad field to minimum width 5963 align: alignment type, either '<', '>', '=' or '^' 5964 sign: either '+', '-' or ' ' 5965 minimumwidth: nonnegative integer giving minimum width 5966 zeropad: boolean, indicating whether to pad with zeros 5967 thousands_sep: string to use as thousands separator, or '' 5968 grouping: grouping for thousands separators, in format 5969 used by localeconv 5970 decimal_point: string to use for decimal point 5971 precision: nonnegative integer giving precision, or None 5972 type: one of the characters 'eEfFgG%', or None 5973 unicode: boolean (always True for Python 3.x) 5974 5975 """ 5976 m = _parse_format_specifier_regex.match(format_spec) 5977 if m is None: 5978 raise ValueError("Invalid format specifier: " + format_spec) 5979 5980 # get the dictionary 5981 format_dict = m.groupdict() 5982 5983 # zeropad; defaults for fill and alignment. If zero padding 5984 # is requested, the fill and align fields should be absent. 5985 fill = format_dict['fill'] 5986 align = format_dict['align'] 5987 format_dict['zeropad'] = (format_dict['zeropad'] is not None) 5988 if format_dict['zeropad']: 5989 if fill is not None: 5990 raise ValueError("Fill character conflicts with '0'" 5991 " in format specifier: " + format_spec) 5992 if align is not None: 5993 raise ValueError("Alignment conflicts with '0' in " 5994 "format specifier: " + format_spec) 5995 format_dict['fill'] = fill or ' ' 5996 # PEP 3101 originally specified that the default alignment should 5997 # be left; it was later agreed that right-aligned makes more sense 5998 # for numeric types. See http://bugs.python.org/issue6857. 5999 format_dict['align'] = align or '>' 6000 6001 # default sign handling: '-' for negative, '' for positive 6002 if format_dict['sign'] is None: 6003 format_dict['sign'] = '-' 6004 6005 # minimumwidth defaults to 0; precision remains None if not given 6006 format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0') 6007 if format_dict['precision'] is not None: 6008 format_dict['precision'] = int(format_dict['precision']) 6009 6010 # if format type is 'g' or 'G' then a precision of 0 makes little 6011 # sense; convert it to 1. Same if format type is unspecified. 6012 if format_dict['precision'] == 0: 6013 if format_dict['type'] is None or format_dict['type'] in 'gG': 6014 format_dict['precision'] = 1 6015 6016 # determine thousands separator, grouping, and decimal separator, and 6017 # add appropriate entries to format_dict 6018 if format_dict['type'] == 'n': 6019 # apart from separators, 'n' behaves just like 'g' 6020 format_dict['type'] = 'g' 6021 if _localeconv is None: 6022 _localeconv = _locale.localeconv() 6023 if format_dict['thousands_sep'] is not None: 6024 raise ValueError("Explicit thousands separator conflicts with " 6025 "'n' type in format specifier: " + format_spec) 6026 format_dict['thousands_sep'] = _localeconv['thousands_sep'] 6027 format_dict['grouping'] = _localeconv['grouping'] 6028 format_dict['decimal_point'] = _localeconv['decimal_point'] 6029 else: 6030 if format_dict['thousands_sep'] is None: 6031 format_dict['thousands_sep'] = '' 6032 format_dict['grouping'] = [3, 0] 6033 format_dict['decimal_point'] = '.' 6034 6035 # record whether return type should be str or unicode 6036 format_dict['unicode'] = isinstance(format_spec, unicode) 6037 6038 return format_dict 6039 6040def _format_align(sign, body, spec): 6041 """Given an unpadded, non-aligned numeric string 'body' and sign 6042 string 'sign', add padding and alignment conforming to the given 6043 format specifier dictionary 'spec' (as produced by 6044 parse_format_specifier). 6045 6046 Also converts result to unicode if necessary. 6047 6048 """ 6049 # how much extra space do we have to play with? 6050 minimumwidth = spec['minimumwidth'] 6051 fill = spec['fill'] 6052 padding = fill*(minimumwidth - len(sign) - len(body)) 6053 6054 align = spec['align'] 6055 if align == '<': 6056 result = sign + body + padding 6057 elif align == '>': 6058 result = padding + sign + body 6059 elif align == '=': 6060 result = sign + padding + body 6061 elif align == '^': 6062 half = len(padding)//2 6063 result = padding[:half] + sign + body + padding[half:] 6064 else: 6065 raise ValueError('Unrecognised alignment field') 6066 6067 # make sure that result is unicode if necessary 6068 if spec['unicode']: 6069 result = unicode(result) 6070 6071 return result 6072 6073def _group_lengths(grouping): 6074 """Convert a localeconv-style grouping into a (possibly infinite) 6075 iterable of integers representing group lengths. 6076 6077 """ 6078 # The result from localeconv()['grouping'], and the input to this 6079 # function, should be a list of integers in one of the 6080 # following three forms: 6081 # 6082 # (1) an empty list, or 6083 # (2) nonempty list of positive integers + [0] 6084 # (3) list of positive integers + [locale.CHAR_MAX], or 6085 6086 from itertools import chain, repeat 6087 if not grouping: 6088 return [] 6089 elif grouping[-1] == 0 and len(grouping) >= 2: 6090 return chain(grouping[:-1], repeat(grouping[-2])) 6091 elif grouping[-1] == _locale.CHAR_MAX: 6092 return grouping[:-1] 6093 else: 6094 raise ValueError('unrecognised format for grouping') 6095 6096def _insert_thousands_sep(digits, spec, min_width=1): 6097 """Insert thousands separators into a digit string. 6098 6099 spec is a dictionary whose keys should include 'thousands_sep' and 6100 'grouping'; typically it's the result of parsing the format 6101 specifier using _parse_format_specifier. 6102 6103 The min_width keyword argument gives the minimum length of the 6104 result, which will be padded on the left with zeros if necessary. 6105 6106 If necessary, the zero padding adds an extra '0' on the left to 6107 avoid a leading thousands separator. For example, inserting 6108 commas every three digits in '123456', with min_width=8, gives 6109 '0,123,456', even though that has length 9. 6110 6111 """ 6112 6113 sep = spec['thousands_sep'] 6114 grouping = spec['grouping'] 6115 6116 groups = [] 6117 for l in _group_lengths(grouping): 6118 if l <= 0: 6119 raise ValueError("group length should be positive") 6120 # max(..., 1) forces at least 1 digit to the left of a separator 6121 l = min(max(len(digits), min_width, 1), l) 6122 groups.append('0'*(l - len(digits)) + digits[-l:]) 6123 digits = digits[:-l] 6124 min_width -= l 6125 if not digits and min_width <= 0: 6126 break 6127 min_width -= len(sep) 6128 else: 6129 l = max(len(digits), min_width, 1) 6130 groups.append('0'*(l - len(digits)) + digits[-l:]) 6131 return sep.join(reversed(groups)) 6132 6133def _format_sign(is_negative, spec): 6134 """Determine sign character.""" 6135 6136 if is_negative: 6137 return '-' 6138 elif spec['sign'] in ' +': 6139 return spec['sign'] 6140 else: 6141 return '' 6142 6143def _format_number(is_negative, intpart, fracpart, exp, spec): 6144 """Format a number, given the following data: 6145 6146 is_negative: true if the number is negative, else false 6147 intpart: string of digits that must appear before the decimal point 6148 fracpart: string of digits that must come after the point 6149 exp: exponent, as an integer 6150 spec: dictionary resulting from parsing the format specifier 6151 6152 This function uses the information in spec to: 6153 insert separators (decimal separator and thousands separators) 6154 format the sign 6155 format the exponent 6156 add trailing '%' for the '%' type 6157 zero-pad if necessary 6158 fill and align if necessary 6159 """ 6160 6161 sign = _format_sign(is_negative, spec) 6162 6163 if fracpart: 6164 fracpart = spec['decimal_point'] + fracpart 6165 6166 if exp != 0 or spec['type'] in 'eE': 6167 echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']] 6168 fracpart += "{0}{1:+}".format(echar, exp) 6169 if spec['type'] == '%': 6170 fracpart += '%' 6171 6172 if spec['zeropad']: 6173 min_width = spec['minimumwidth'] - len(fracpart) - len(sign) 6174 else: 6175 min_width = 0 6176 intpart = _insert_thousands_sep(intpart, spec, min_width) 6177 6178 return _format_align(sign, intpart+fracpart, spec) 6179 6180 6181##### Useful Constants (internal use only) ################################ 6182 6183# Reusable defaults 6184_Infinity = Decimal('Inf') 6185_NegativeInfinity = Decimal('-Inf') 6186_NaN = Decimal('NaN') 6187_Zero = Decimal(0) 6188_One = Decimal(1) 6189_NegativeOne = Decimal(-1) 6190 6191# _SignedInfinity[sign] is infinity w/ that sign 6192_SignedInfinity = (_Infinity, _NegativeInfinity) 6193 6194 6195 6196if __name__ == '__main__': 6197 import doctest, sys 6198 doctest.testmod(sys.modules[__name__]) 6199