Searched refs:rs (Results 26 - 50 of 227) sorted by relevance

12345678910

/external/chromium_org/v8/src/mips64/
H A Dassembler-mips64.cc343 Register rs; local
344 rs.code_ = (instr & kRsFieldMask) >> kRsShift;
345 return rs;
851 Register rs,
856 DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
857 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
864 Register rs,
869 DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
870 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
930 Register rs,
850 GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, uint16_t sa, SecondaryField func) argument
863 GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb, uint16_t lsb, SecondaryField func) argument
929 GenInstrImmediate(Opcode opcode, Register rs, Register rt, int32_t j) argument
940 GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF, int32_t j) argument
950 GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft, int32_t j) argument
1153 beq(Register rs, Register rt, int16_t offset) argument
1160 bgez(Register rs, int16_t offset) argument
1174 bgeuc(Register rs, Register rt, int16_t offset) argument
1183 bgec(Register rs, Register rt, int16_t offset) argument
1192 bgezal(Register rs, int16_t offset) argument
1201 bgtz(Register rs, int16_t offset) argument
1215 blez(Register rs, int16_t offset) argument
1236 bltuc(Register rs, Register rt, int16_t offset) argument
1245 bltc(Register rs, Register rt, int16_t offset) argument
1254 bltz(Register rs, int16_t offset) argument
1261 bltzal(Register rs, int16_t offset) argument
1270 bne(Register rs, Register rt, int16_t offset) argument
1277 bovc(Register rs, Register rt, int16_t offset) argument
1285 bnvc(Register rs, Register rt, int16_t offset) argument
1307 bgezall(Register rs, int16_t offset) argument
1342 beqc(Register rs, Register rt, int16_t offset) argument
1349 beqzc(Register rs, int32_t offset) argument
1357 bnec(Register rs, Register rt, int16_t offset) argument
1364 bnezc(Register rs, int32_t offset) argument
1384 jr(Register rs) argument
1411 jalr(Register rs, Register rd) argument
1419 j_or_jr(int64_t target, Register rs) argument
1432 jal_or_jalr(int64_t target, Register rs) argument
1449 addu(Register rd, Register rs, Register rt) argument
1454 addiu(Register rd, Register rs, int32_t j) argument
1459 subu(Register rd, Register rs, Register rt) argument
1464 mul(Register rd, Register rs, Register rt) argument
1473 muh(Register rd, Register rs, Register rt) argument
1479 mulu(Register rd, Register rs, Register rt) argument
1485 muhu(Register rd, Register rs, Register rt) argument
1491 dmul(Register rd, Register rs, Register rt) argument
1497 dmuh(Register rd, Register rs, Register rt) argument
1503 dmulu(Register rd, Register rs, Register rt) argument
1509 dmuhu(Register rd, Register rs, Register rt) argument
1515 mult(Register rs, Register rt) argument
1521 multu(Register rs, Register rt) argument
1527 daddiu(Register rd, Register rs, int32_t j) argument
1532 div(Register rs, Register rt) argument
1537 div(Register rd, Register rs, Register rt) argument
1543 mod(Register rd, Register rs, Register rt) argument
1549 divu(Register rs, Register rt) argument
1554 divu(Register rd, Register rs, Register rt) argument
1560 modu(Register rd, Register rs, Register rt) argument
1566 daddu(Register rd, Register rs, Register rt) argument
1571 dsubu(Register rd, Register rs, Register rt) argument
1576 dmult(Register rs, Register rt) argument
1581 dmultu(Register rs, Register rt) argument
1586 ddiv(Register rs, Register rt) argument
1591 ddiv(Register rd, Register rs, Register rt) argument
1597 dmod(Register rd, Register rs, Register rt) argument
1603 ddivu(Register rs, Register rt) argument
1608 ddivu(Register rd, Register rs, Register rt) argument
1614 dmodu(Register rd, Register rs, Register rt) argument
1622 and_(Register rd, Register rs, Register rt) argument
1627 andi(Register rt, Register rs, int32_t j) argument
1633 or_(Register rd, Register rs, Register rt) argument
1638 ori(Register rt, Register rs, int32_t j) argument
1644 xor_(Register rd, Register rs, Register rt) argument
1649 xori(Register rt, Register rs, int32_t j) argument
1655 nor(Register rd, Register rs, Register rt) argument
1674 sllv(Register rd, Register rt, Register rs) argument
1684 srlv(Register rd, Register rt, Register rs) argument
1694 srav(Register rd, Register rt, Register rs) argument
1709 rotrv(Register rd, Register rt, Register rs) argument
1724 dsllv(Register rd, Register rt, Register rs) argument
1734 dsrlv(Register rd, Register rt, Register rs) argument
1747 drotrv(Register rd, Register rt, Register rs) argument
1760 dsrav(Register rd, Register rt, Register rs) argument
1793 lb(Register rd, const MemOperand& rs) argument
1803 lbu(Register rd, const MemOperand& rs) argument
1813 lh(Register rd, const MemOperand& rs) argument
1823 lhu(Register rd, const MemOperand& rs) argument
1833 lw(Register rd, const MemOperand& rs) argument
1843 lwu(Register rd, const MemOperand& rs) argument
1853 lwl(Register rd, const MemOperand& rs) argument
1858 lwr(Register rd, const MemOperand& rs) argument
1863 sb(Register rd, const MemOperand& rs) argument
1873 sh(Register rd, const MemOperand& rs) argument
1883 sw(Register rd, const MemOperand& rs) argument
1893 swl(Register rd, const MemOperand& rs) argument
1898 swr(Register rd, const MemOperand& rs) argument
1909 aui(Register rs, Register rt, int32_t j) argument
1917 daui(Register rs, Register rt, int32_t j) argument
1923 dahi(Register rs, int32_t j) argument
1929 dati(Register rs, int32_t j) argument
1935 ldl(Register rd, const MemOperand& rs) argument
1940 ldr(Register rd, const MemOperand& rs) argument
1945 sdl(Register rd, const MemOperand& rs) argument
1950 sdr(Register rd, const MemOperand& rs) argument
1955 ld(Register rd, const MemOperand& rs) argument
1965 sd(Register rd, const MemOperand& rs) argument
2009 tge(Register rs, Register rt, uint16_t code) argument
2017 tgeu(Register rs, Register rt, uint16_t code) argument
2025 tlt(Register rs, Register rt, uint16_t code) argument
2033 tltu(Register rs, Register rt, uint16_t code) argument
2042 teq(Register rs, Register rt, uint16_t code) argument
2050 tne(Register rs, Register rt, uint16_t code) argument
2071 slt(Register rd, Register rs, Register rt) argument
2076 sltu(Register rd, Register rs, Register rt) argument
2081 slti(Register rt, Register rs, int32_t j) argument
2086 sltiu(Register rt, Register rs, int32_t j) argument
2092 movz(Register rd, Register rs, Register rt) argument
2097 movn(Register rd, Register rs, Register rt) argument
2102 movt(Register rd, Register rs, uint16_t cc) argument
2109 movf(Register rd, Register rs, uint16_t cc) argument
2129 seleqz(Register rs, Register rt, Register rd) argument
2149 selnez(Register rs, Register rt, Register rd) argument
2169 clz(Register rd, Register rs) argument
2179 ins_(Register rt, Register rs, uint16_t pos, uint16_t size) argument
2187 ext_(Register rt, Register rs, uint16_t pos, uint16_t size) argument
2195 pref(int32_t hint, const MemOperand& rs) argument
[all...]
H A Dmacro-assembler-mips64.cc616 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { argument
618 addu(rd, rs, rt.rm());
621 addiu(rd, rs, rt.imm64_);
624 DCHECK(!rs.is(at));
626 addu(rd, rs, at);
632 void MacroAssembler::Daddu(Register rd, Register rs, const Operand& rt) { argument
634 daddu(rd, rs, rt.rm());
637 daddiu(rd, rs, rt.imm64_);
640 DCHECK(!rs.is(at));
642 daddu(rd, rs, a
648 Subu(Register rd, Register rs, const Operand& rt) argument
664 Dsubu(Register rd, Register rs, const Operand& rt) argument
680 Mul(Register rd, Register rs, const Operand& rt) argument
692 Mulh(Register rd, Register rs, const Operand& rt) argument
714 Dmul(Register rd, Register rs, const Operand& rt) argument
736 Dmulh(Register rd, Register rs, const Operand& rt) argument
758 Mult(Register rs, const Operand& rt) argument
770 Dmult(Register rs, const Operand& rt) argument
782 Multu(Register rs, const Operand& rt) argument
794 Dmultu(Register rs, const Operand& rt) argument
806 Div(Register rs, const Operand& rt) argument
818 Ddiv(Register rs, const Operand& rt) argument
830 Ddiv(Register rd, Register rs, const Operand& rt) argument
855 Divu(Register rs, const Operand& rt) argument
867 Ddivu(Register rs, const Operand& rt) argument
879 Dmod(Register rd, Register rs, const Operand& rt) argument
904 And(Register rd, Register rs, const Operand& rt) argument
920 Or(Register rd, Register rs, const Operand& rt) argument
936 Xor(Register rd, Register rs, const Operand& rt) argument
952 Nor(Register rd, Register rs, const Operand& rt) argument
964 Neg(Register rs, const Operand& rt) argument
973 Slt(Register rd, Register rs, const Operand& rt) argument
989 Sltu(Register rd, Register rs, const Operand& rt) argument
1005 Ror(Register rd, Register rs, const Operand& rt) argument
1031 Dror(Register rd, Register rs, const Operand& rt) argument
1040 Pref(int32_t hint, const MemOperand& rs) argument
1047 Ulw(Register rd, const MemOperand& rs) argument
1053 Usw(Register rd, const MemOperand& rs) argument
1061 Uld(Register rd, const MemOperand& rs, Register scratch) argument
1075 Usd(Register rd, const MemOperand& rs, Register scratch) argument
1274 Ext(Register rt, Register rs, uint16_t pos, uint16_t size) argument
1278 DCHECK(pos < 32); DCHECK(pos + size < 33); ext_(rt, rs, pos, size); } void MacroAssembler::Ins(Register rt, Register rs, uint16_t pos, uint16_t size) { DCHECK(pos < 32); DCHECK(pos + size <= 32); DCHECK(size != 0); ins_(rt, rs, pos, size); } void MacroAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs, FPURegister scratch) { mfc1(t8, fs); Cvt_d_uw(fd, t8, scratch); } void MacroAssembler::Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch) { DCHECK(!fd.is(scratch)); DCHECK(!rs.is(t9)); DCHECK(!rs.is(at)); Ext(t9, rs, 31, 1); Ext(at, rs, 0, 31); mtc1(at, fd); mthc1(zero_reg, fd); cvt_d_w(fd, fd); Label conversion_done; Branch(&conversion_done, eq, t9, Operand(zero_reg)); li(at, 0x41E00000); mtc1(zero_reg, scratch); mthc1(at, scratch); add_d(fd, fd, scratch); bind(&conversion_done); } void MacroAssembler::Round_l_d(FPURegister fd, FPURegister fs) { round_l_d(fd, fs); } void MacroAssembler::Floor_l_d(FPURegister fd, FPURegister fs) { floor_l_d(fd, fs); } void MacroAssembler::Ceil_l_d(FPURegister fd, FPURegister fs) { ceil_l_d(fd, fs); } void MacroAssembler::Trunc_l_d(FPURegister fd, FPURegister fs) { trunc_l_d(fd, fs); } void MacroAssembler::Trunc_l_ud(FPURegister fd, FPURegister fs, FPURegister scratch) { dmfc1(t8, fs); li(at, 0x7fffffffffffffff); and_(t8, t8, at); dmtc1(t8, fs); trunc_l_d(fd, fs); } void MacroAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch) { Trunc_uw_d(fs, t8, scratch); mtc1(t8, fd); } void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) { trunc_w_d(fd, fs); } void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) { round_w_d(fd, fs); } void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) { floor_w_d(fd, fs); } void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) { ceil_w_d(fd, fs); } void MacroAssembler::Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch) { DCHECK(!fd.is(scratch)); DCHECK(!rs.is(at)); li(at, 0x41E00000); mtc1(zero_reg, scratch); mthc1(at, scratch); Label simple_convert; BranchF(&simple_convert, NULL, lt, fd, scratch); sub_d(scratch, fd, scratch); trunc_w_d(scratch, scratch); mfc1(rs, scratch); Or(rs, rs, 1 << 31); Label done; Branch(&done); bind(&simple_convert); trunc_w_d(scratch, fd); mfc1(rs, scratch); bind(&done); } void MacroAssembler::Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, FPURegister scratch) { if (0) { madd_d(fd, fr, fs, ft); } else { DCHECK(!fr.is(scratch) && !fs.is(scratch) && !ft.is(scratch)); mul_d(scratch, fs, ft); add_d(fd, fr, scratch); } } void MacroAssembler::BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1, FPURegister cmp2, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); if (cc == al) { Branch(bd, target); return; } DCHECK(nan || target); if (nan) { if (kArchVariant != kMips64r6) { c(UN, D, cmp1, cmp2); bc1t(nan); } else { DCHECK(!cmp1.is(f31) && !cmp2.is(f31)); cmp(UN, L, f31, cmp1, cmp2); bc1nez(nan, f31); } } if (kArchVariant != kMips64r6) { if (target) { switch (cc) { case lt: c(OLT, D, cmp1, cmp2); bc1t(target); break; case gt: c(ULE, D, cmp1, cmp2); bc1f(target); break; case ge: c(ULT, D, cmp1, cmp2); bc1f(target); break; case le: c(OLE, D, cmp1, cmp2); bc1t(target); break; case eq: c(EQ, D, cmp1, cmp2); bc1t(target); break; case ueq: c(UEQ, D, cmp1, cmp2); bc1t(target); break; case ne: c(EQ, D, cmp1, cmp2); bc1f(target); break; case nue: c(UEQ, D, cmp1, cmp2); bc1f(target); break; default: CHECK(0); } } } else { if (target) { DCHECK(!cmp1.is(f31) && !cmp2.is(f31)); switch (cc) { case lt: cmp(OLT, L, f31, cmp1, cmp2); bc1nez(target, f31); break; case gt: cmp(ULE, L, f31, cmp1, cmp2); bc1eqz(target, f31); break; case ge: cmp(ULT, L, f31, cmp1, cmp2); bc1eqz(target, f31); break; case le: cmp(OLE, L, f31, cmp1, cmp2); bc1nez(target, f31); break; case eq: cmp(EQ, L, f31, cmp1, cmp2); bc1nez(target, f31); break; case ueq: cmp(UEQ, L, f31, cmp1, cmp2); bc1nez(target, f31); break; case ne: cmp(EQ, L, f31, cmp1, cmp2); bc1eqz(target, f31); break; case nue: cmp(UEQ, L, f31, cmp1, cmp2); bc1eqz(target, f31); break; default: CHECK(0); } } } if (bd == PROTECT) { nop(); } } void MacroAssembler::Move(FPURegister dst, double imm) { static const DoubleRepresentation minus_zero(-0.0); static const DoubleRepresentation zero(0.0); DoubleRepresentation value_rep(imm); bool force_load = dst.is(kDoubleRegZero); if (value_rep == zero && !force_load) { mov_d(dst, kDoubleRegZero); } else if (value_rep == minus_zero && !force_load) { neg_d(dst, kDoubleRegZero); } else { uint32_t lo, hi; DoubleAsTwoUInt32(imm, &lo, &hi); if (lo != 0) { li(at, Operand(lo)); mtc1(at, dst); } else { mtc1(zero_reg, dst); } if (hi != 0) { li(at, Operand(hi)); mthc1(at, dst); } else { mthc1(zero_reg, dst); } } } void MacroAssembler::Movz(Register rd, Register rs, Register rt) { if (kArchVariant == kMips64r6) { Label done; Branch(&done, ne, rt, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movz(rd, rs, rt); } } void MacroAssembler::Movn(Register rd, Register rs, Register rt) { if (kArchVariant == kMips64r6) { Label done; Branch(&done, eq, rt, Operand(zero_reg)); mov(rd, rs); bind(&done); } else { movn(rd, rs, rt); } } void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) { movt(rd, rs, cc); } void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) { movf(rd, rs, cc); } void MacroAssembler::Clz(Register rd, Register rs) { clz(rd, rs); } void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode, Register result, DoubleRegister double_input, Register scratch, DoubleRegister double_scratch, Register except_flag, CheckForInexactConversion check_inexact) { DCHECK(!result.is(scratch)); DCHECK(!double_input.is(double_scratch)); DCHECK(!except_flag.is(scratch)); Label done; mov(except_flag, zero_reg); cvt_w_d(double_scratch, double_input); mfc1(result, double_scratch); cvt_d_w(double_scratch, double_scratch); BranchF(&done, NULL, eq, double_input, double_scratch); int32_t except_mask = kFCSRFlagMask; if (check_inexact == kDontCheckForInexactConversion) { except_mask &= ~kFCSRInexactFlagMask; } cfc1(scratch, FCSR); ctc1(zero_reg, FCSR); switch (rounding_mode) { case kRoundToNearest: Round_w_d(double_scratch, double_input); break; case kRoundToZero: Trunc_w_d(double_scratch, double_input); break; case kRoundToPlusInf: Ceil_w_d(double_scratch, double_input); break; case kRoundToMinusInf: Floor_w_d(double_scratch, double_input); break; } cfc1(except_flag, FCSR); ctc1(scratch, FCSR); mfc1(result, double_scratch); And(except_flag, except_flag, Operand(except_mask)); bind(&done); } void MacroAssembler::TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input, Label* done) { DoubleRegister single_scratch = kLithiumScratchDouble.low(); Register scratch = at; Register scratch2 = t9; cfc1(scratch2, FCSR); ctc1(zero_reg, FCSR); trunc_w_d(single_scratch, double_input); mfc1(result, single_scratch); cfc1(scratch, FCSR); ctc1(scratch2, FCSR); And(scratch, scratch, kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); Branch(done, eq, scratch, Operand(zero_reg)); } void MacroAssembler::TruncateDoubleToI(Register result, DoubleRegister double_input) { Label done; TryInlineTruncateDoubleToI(result, double_input, &done); push(ra); Dsubu(sp, sp, Operand(kDoubleSize)); sdc1(double_input, MemOperand(sp, 0)); DoubleToIStub stub(isolate(), sp, result, 0, true, true); CallStub(&stub); Daddu(sp, sp, Operand(kDoubleSize)); pop(ra); bind(&done); } void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) { Label done; DoubleRegister double_scratch = f12; DCHECK(!result.is(object)); ldc1(double_scratch, MemOperand(object, HeapNumber::kValueOffset - kHeapObjectTag)); TryInlineTruncateDoubleToI(result, double_scratch, &done); push(ra); DoubleToIStub stub(isolate(), object, result, HeapNumber::kValueOffset - kHeapObjectTag, true, true); CallStub(&stub); pop(ra); bind(&done); } void MacroAssembler::TruncateNumberToI(Register object, Register result, Register heap_number_map, Register scratch, Label* not_number) { Label done; DCHECK(!result.is(object)); UntagAndJumpIfSmi(result, object, &done); JumpIfNotHeapNumber(object, heap_number_map, scratch, not_number); TruncateHeapNumberToI(result, object); bind(&done); } void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits) { SmiUntag(dst, src); And(dst, dst, Operand((1 << num_least_bits) - 1)); } void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src, int num_least_bits) { DCHECK(!src.is(dst)); And(dst, src, Operand((1 << num_least_bits) - 1)); } void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) { BranchShort(offset, bdslot); } void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BranchShort(offset, cond, rs, rt, bdslot); } void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchShort(L, bdslot); } else { Jr(L, bdslot); } } else { if (is_trampoline_emitted()) { Jr(L, bdslot); } else { BranchShort(L, bdslot); } } } void MacroAssembler::Branch(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchShort(L, cond, rs, rt, bdslot); } else { if (cond != cc_always) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jr(L, bdslot); bind(&skip); } else { Jr(L, bdslot); } } } else { if (is_trampoline_emitted()) { if (cond != cc_always) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jr(L, bdslot); bind(&skip); } else { Jr(L, bdslot); } } else { BranchShort(L, cond, rs, rt, bdslot); } } } void MacroAssembler::Branch(Label* L, Condition cond, Register rs, Heap::RootListIndex index, BranchDelaySlot bdslot) { LoadRoot(at, index); Branch(L, cond, rs, Operand(at), bdslot); } void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) { b(offset); if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); DCHECK(!rs.is(zero_reg)); Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { BlockTrampolinePoolScope block_trampoline_pool(this); r2 = rt.rm_; switch (cond) { case cc_always: b(offset); break; case eq: beq(rs, r2, offset); break; case ne: bne(rs, r2, offset); break; case greater: if (r2.is(zero_reg)) { bgtz(rs, offset); } else { slt(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case greater_equal: if (r2.is(zero_reg)) { bgez(rs, offset); } else { slt(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case less: if (r2.is(zero_reg)) { bltz(rs, offset); } else { slt(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case less_equal: if (r2.is(zero_reg)) { blez(rs, offset); } else { slt(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; case Ugreater: if (r2.is(zero_reg)) { bgtz(rs, offset); } else { sltu(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (r2.is(zero_reg)) { bgez(rs, offset); } else { sltu(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case Uless: if (r2.is(zero_reg)) { return; } else { sltu(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (r2.is(zero_reg)) { b(offset); } else { sltu(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } else { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: b(offset); break; case eq: DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); beq(rs, r2, offset); break; case ne: DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); bne(rs, r2, offset); break; case greater: if (rt.imm64_ == 0) { bgtz(rs, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case greater_equal: if (rt.imm64_ == 0) { bgez(rs, offset); } else if (is_int16(rt.imm64_)) { slti(scratch, rs, rt.imm64_); beq(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case less: if (rt.imm64_ == 0) { bltz(rs, offset); } else if (is_int16(rt.imm64_)) { slti(scratch, rs, rt.imm64_); bne(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case less_equal: if (rt.imm64_ == 0) { blez(rs, offset); } else { r2 = scratch; li(r2, rt); slt(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; case Ugreater: if (rt.imm64_ == 0) { bgtz(rs, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (rt.imm64_ == 0) { bgez(rs, offset); } else if (is_int16(rt.imm64_)) { sltiu(scratch, rs, rt.imm64_); beq(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); beq(scratch, zero_reg, offset); } break; case Uless: if (rt.imm64_ == 0) { return; } else if (is_int16(rt.imm64_)) { sltiu(scratch, rs, rt.imm64_); bne(scratch, zero_reg, offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (rt.imm64_ == 0) { b(offset); } else { r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) { b(shifted_branch_offset(L, false)); if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); int32_t offset = 0; Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { BlockTrampolinePoolScope block_trampoline_pool(this); r2 = rt.rm_; switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); b(offset); break; case eq: offset = shifted_branch_offset(L, false); beq(rs, r2, offset); break; case ne: offset = shifted_branch_offset(L, false); bne(rs, r2, offset); break; case greater: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgtz(rs, offset); } else { slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case greater_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else { slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case less: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bltz(rs, offset); } else { slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case less_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); blez(rs, offset); } else { slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case Ugreater: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgtz(rs, offset); } else { sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else { sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case Uless: if (r2.is(zero_reg)) { return; } else { sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (r2.is(zero_reg)) { offset = shifted_branch_offset(L, false); b(offset); } else { sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } else { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); b(offset); break; case eq: DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); offset = shifted_branch_offset(L, false); beq(rs, r2, offset); break; case ne: DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); offset = shifted_branch_offset(L, false); bne(rs, r2, offset); break; case greater: if (rt.imm64_ == 0) { offset = shifted_branch_offset(L, false); bgtz(rs, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case greater_equal: if (rt.imm64_ == 0) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else if (is_int16(rt.imm64_)) { slti(scratch, rs, rt.imm64_); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case less: if (rt.imm64_ == 0) { offset = shifted_branch_offset(L, false); bltz(rs, offset); } else if (is_int16(rt.imm64_)) { slti(scratch, rs, rt.imm64_); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case less_equal: if (rt.imm64_ == 0) { offset = shifted_branch_offset(L, false); blez(rs, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); slt(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case Ugreater: if (rt.imm64_ == 0) { offset = shifted_branch_offset(L, false); bne(rs, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Ugreater_equal: if (rt.imm64_ == 0) { offset = shifted_branch_offset(L, false); bgez(rs, offset); } else if (is_int16(rt.imm64_)) { sltiu(scratch, rs, rt.imm64_); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; case Uless: if (rt.imm64_ == 0) { return; } else if (is_int16(rt.imm64_)) { sltiu(scratch, rs, rt.imm64_); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, rs, r2); offset = shifted_branch_offset(L, false); bne(scratch, zero_reg, offset); } break; case Uless_equal: if (rt.imm64_ == 0) { offset = shifted_branch_offset(L, false); beq(rs, zero_reg, offset); } else { DCHECK(!scratch.is(rs)); r2 = scratch; li(r2, rt); sltu(scratch, r2, rs); offset = shifted_branch_offset(L, false); beq(scratch, zero_reg, offset); } break; default: UNREACHABLE(); } } DCHECK(is_int16(offset)); if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) { BranchAndLinkShort(offset, bdslot); } void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BranchAndLinkShort(offset, cond, rs, rt, bdslot); } void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchAndLinkShort(L, bdslot); } else { Jalr(L, bdslot); } } else { if (is_trampoline_emitted()) { Jalr(L, bdslot); } else { BranchAndLinkShort(L, bdslot); } } } void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { if (L->is_bound()) { if (is_near(L)) { BranchAndLinkShort(L, cond, rs, rt, bdslot); } else { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jalr(L, bdslot); bind(&skip); } } else { if (is_trampoline_emitted()) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rs, rt); Jalr(L, bdslot); bind(&skip); } else { BranchAndLinkShort(L, cond, rs, rt, bdslot); } } } void MacroAssembler::BranchAndLinkShort(int16_t offset, BranchDelaySlot bdslot) { bal(offset); if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { r2 = rt.rm_; } else if (cond != cc_always) { r2 = scratch; li(r2, rt); } { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: bal(offset); break; case eq: bne(rs, r2, 2); nop(); bal(offset); break; case ne: beq(rs, r2, 2); nop(); bal(offset); break; case greater: slt(scratch, r2, rs); beq(scratch, zero_reg, 2); nop(); bal(offset); break; case greater_equal: slt(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); bal(offset); break; case less: slt(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); bal(offset); break; case less_equal: slt(scratch, r2, rs); bne(scratch, zero_reg, 2); nop(); bal(offset); break; case Ugreater: sltu(scratch, r2, rs); beq(scratch, zero_reg, 2); nop(); bal(offset); break; case Ugreater_equal: sltu(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); bal(offset); break; case Uless: sltu(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); bal(offset); break; case Uless_equal: sltu(scratch, r2, rs); bne(scratch, zero_reg, 2); nop(); bal(offset); break; default: UNREACHABLE(); } } if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) { bal(shifted_branch_offset(L, false)); if (bdslot == PROTECT) nop(); } void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bdslot) { BRANCH_ARGS_CHECK(cond, rs, rt); int32_t offset = 0; Register r2 = no_reg; Register scratch = at; if (rt.is_reg()) { r2 = rt.rm_; } else if (cond != cc_always) { r2 = scratch; li(r2, rt); } { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: offset = shifted_branch_offset(L, false); bal(offset); break; case eq: bne(rs, r2, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case ne: beq(rs, r2, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case greater: slt(scratch, r2, rs); beq(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case greater_equal: slt(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case less: slt(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case less_equal: slt(scratch, r2, rs); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case Ugreater: sltu(scratch, r2, rs); beq(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case Ugreater_equal: sltu(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case Uless: sltu(scratch, rs, r2); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; case Uless_equal: sltu(scratch, r2, rs); bne(scratch, zero_reg, 2); nop(); offset = shifted_branch_offset(L, false); bal(offset); break; default: UNREACHABLE(); } } DCHECK(is_int16(offset)); if (bdslot == PROTECT) nop(); } void MacroAssembler::Jump(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); if (cond == cc_always) { jr(target); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jr(target); } if (bd == PROTECT) nop(); } void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { Label skip; if (cond != cc_always) { Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt); } li(t9, Operand(target, rmode)); Jump(t9, al, zero_reg, Operand(zero_reg), bd); bind(&skip); } void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { DCHECK(!RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd); } void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { DCHECK(RelocInfo::IsCodeTarget(rmode)); AllowDeferredHandleDereference embedding_raw_address; Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd); } int MacroAssembler::CallSize(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { int size = 0; if (cond == cc_always) { size += 1; } else { size += 3; } if (bd == PROTECT) size += 1; return size * kInstrSize; } void MacroAssembler::Call(Register target, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); if (cond == cc_always) { jalr(target); } else { BRANCH_ARGS_CHECK(cond, rs, rt); Branch(2, NegateCondition(cond), rs, rt); jalr(target); } if (bd == PROTECT) nop(); DCHECK_EQ(CallSize(target, cond, rs, rt, bd), SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { int size = CallSize(t9, cond, rs, rt, bd); return size + 4 * kInstrSize; } void MacroAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); int64_t target_int = reinterpret_cast<int64_t>(target); positions_recorder()->WriteRecordedPositions(); li(t9, Operand(target_int, rmode), ADDRESS_LOAD); Call(t9, cond, rs, rt, bd); DCHECK_EQ(CallSize(target, rmode, cond, rs, rt, bd), SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { AllowDeferredHandleDereference using_raw_address; return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd); } void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, TypeFeedbackId ast_id, Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { BlockTrampolinePoolScope block_trampoline_pool(this); Label start; bind(&start); DCHECK(RelocInfo::IsCodeTarget(rmode)); if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) { SetRecordedAstId(ast_id); rmode = RelocInfo::CODE_TARGET_WITH_ID; } AllowDeferredHandleDereference embedding_raw_address; Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd); DCHECK_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd), SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::Ret(Condition cond, Register rs, const Operand& rt, BranchDelaySlot bd) { Jump(ra, cond, rs, rt, bd); } void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) { BlockTrampolinePoolScope block_trampoline_pool(this); uint64_t imm28; imm28 = jump_address(L); imm28 &= kImm28Mask; { BlockGrowBufferScope block_buf_growth(this); RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); j(imm28); } if (bdslot == PROTECT) nop(); } void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) { BlockTrampolinePoolScope block_trampoline_pool(this); uint64_t imm64; imm64 = jump_address(L); { BlockGrowBufferScope block_buf_growth(this); RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); li(at, Operand(imm64), ADDRESS_LOAD); } jr(at); if (bdslot == PROTECT) nop(); } void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) { BlockTrampolinePoolScope block_trampoline_pool(this); uint64_t imm64; imm64 = jump_address(L); { BlockGrowBufferScope block_buf_growth(this); RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); li(at, Operand(imm64), ADDRESS_LOAD); } jalr(at); if (bdslot == PROTECT) nop(); } void MacroAssembler::DropAndRet(int drop) { Ret(USE_DELAY_SLOT); daddiu(sp, sp, drop * kPointerSize); } void MacroAssembler::DropAndRet(int drop, Condition cond, Register r1, const Operand& r2) { Label skip; if (cond != cc_always) { Branch(&skip, NegateCondition(cond), r1, r2); } Drop(drop); Ret(); if (cond != cc_always) { bind(&skip); } } void MacroAssembler::Drop(int count, Condition cond, Register reg, const Operand& op) { if (count <= 0) { return; } Label skip; if (cond != al) { Branch(&skip, NegateCondition(cond), reg, op); } daddiu(sp, sp, count * kPointerSize); if (cond != al) { bind(&skip); } } void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) { if (scratch.is(no_reg)) { Xor(reg1, reg1, Operand(reg2)); Xor(reg2, reg2, Operand(reg1)); Xor(reg1, reg1, Operand(reg2)); } else { mov(scratch, reg1); mov(reg1, reg2); mov(reg2, scratch); } } void MacroAssembler::Call(Label* target) { BranchAndLink(target); } void MacroAssembler::Push(Handle<Object> handle) { li(at, Operand(handle)); push(at); } void MacroAssembler::PushRegisterAsTwoSmis(Register src, Register scratch) { DCHECK(!src.is(scratch)); mov(scratch, src); dsrl32(src, src, 0); dsll32(src, src, 0); push(src); dsll32(scratch, scratch, 0); push(scratch); } void MacroAssembler::PopRegisterAsTwoSmis(Register dst, Register scratch) { DCHECK(!dst.is(scratch)); pop(scratch); dsrl32(scratch, scratch, 0); pop(dst); dsrl32(dst, dst, 0); dsll32(dst, dst, 0); or_(dst, dst, scratch); } void MacroAssembler::DebugBreak() { PrepareCEntryArgs(0); PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate())); CEntryStub ces(isolate(), 1); DCHECK(AllowThisStubCall(&ces)); Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); } void MacroAssembler::PushTryHandler(StackHandler::Kind kind, int handler_index) { STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); unsigned state = StackHandler::IndexField::encode(handler_index) | StackHandler::KindField::encode(kind); li(a5, Operand(CodeObject()), CONSTANT_SIZE); li(a6, Operand(state)); if (kind == StackHandler::JS_ENTRY) { DCHECK_EQ(Smi::FromInt(0), 0); Push(zero_reg, zero_reg, a6, a5); } else { MultiPush(a5.bit() | a6.bit() | cp.bit() | fp.bit()); } li(a6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); ld(a5, MemOperand(a6)); push(a5); sd(sp, MemOperand(a6)); } void MacroAssembler::PopTryHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(a1); Daddu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); sd(a1, MemOperand(at)); } void MacroAssembler::JumpToHandlerEntry() { Uld(a3, FieldMemOperand(a1, Code::kHandlerTableOffset)); Daddu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); dsrl(a2, a2, StackHandler::kKindWidth); dsll(a2, a2, kPointerSizeLog2); Daddu(a2, a3, a2); ld(a2, MemOperand(a2)); Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); dsra32(t9, a2, 0); Daddu(t9, t9, a1); Jump(t9); } void MacroAssembler::Throw(Register value) { STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); Move(v0, value); li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); ld(sp, MemOperand(a3)); pop(a2); sd(a2, MemOperand(a3)); MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); Label done; Branch(&done, eq, cp, Operand(zero_reg)); sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); bind(&done); JumpToHandlerEntry(); } void MacroAssembler::ThrowUncatchable(Register value) { STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); if (!value.is(v0)) { mov(v0, value); } li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); ld(sp, MemOperand(a3)); Label fetch_next, check_kind; jmp(&check_kind); bind(&fetch_next); ld(sp, MemOperand(sp, StackHandlerConstants::kNextOffset)); bind(&check_kind); STATIC_ASSERT(StackHandler::JS_ENTRY == 0); ld(a2, MemOperand(sp, StackHandlerConstants::kStateOffset)); And(a2, a2, Operand(StackHandler::KindField::kMask)); Branch(&fetch_next, ne, a2, Operand(zero_reg)); pop(a2); sd(a2, MemOperand(a3)); MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); JumpToHandlerEntry(); } void MacroAssembler::Allocate(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); if (!FLAG_inline_new) { if (emit_debug_code()) { li(result, 0x7091); li(scratch1, 0x7191); li(scratch2, 0x7291); } jmp(gc_required); return; } DCHECK(!result.is(scratch1)); DCHECK(!result.is(scratch2)); DCHECK(!scratch1.is(scratch2)); DCHECK(!scratch1.is(t9)); DCHECK(!scratch2.is(t9)); DCHECK(!result.is(t9)); if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } DCHECK(0 == (object_size & kObjectAlignmentMask)); ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); Register topaddr = scratch1; li(topaddr, Operand(allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { ld(result, MemOperand(topaddr)); ld(t9, MemOperand(topaddr, kPointerSize)); } else { if (emit_debug_code()) { ld(t9, MemOperand(topaddr)); Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); } ld(t9, MemOperand(topaddr, limit - top)); } DCHECK(kPointerSize == kDoubleSize); if (emit_debug_code()) { And(at, result, Operand(kDoubleAlignmentMask)); Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg)); } Daddu(scratch2, result, Operand(object_size)); Branch(gc_required, Ugreater, scratch2, Operand(t9)); sd(scratch2, MemOperand(topaddr)); if ((flags & TAG_OBJECT) != 0) { Daddu(result, result, Operand(kHeapObjectTag)); } } void MacroAssembler::Allocate(Register object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { li(result, 0x7091); li(scratch1, 0x7191); li(scratch2, 0x7291); } jmp(gc_required); return; } DCHECK(!result.is(scratch1)); DCHECK(!result.is(scratch2)); DCHECK(!scratch1.is(scratch2)); DCHECK(!object_size.is(t9)); DCHECK(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9)); ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), flags); ExternalReference allocation_limit = AllocationUtils::GetAllocationLimitReference(isolate(), flags); intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address()); intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address()); DCHECK((limit - top) == kPointerSize); Register topaddr = scratch1; li(topaddr, Operand(allocation_top)); if ((flags & RESULT_CONTAINS_TOP) == 0) { ld(result, MemOperand(topaddr)); ld(t9, MemOperand(topaddr, kPointerSize)); } else { if (emit_debug_code()) { ld(t9, MemOperand(topaddr)); Check(eq, kUnexpectedAllocationTop, result, Operand(t9)); } ld(t9, MemOperand(topaddr, limit - top)); } DCHECK(kPointerSize == kDoubleSize); if (emit_debug_code()) { And(at, result, Operand(kDoubleAlignmentMask)); Check(eq, kAllocationIsNotDoubleAligned, at, Operand(zero_reg)); } if ((flags & SIZE_IN_WORDS) != 0) { dsll(scratch2, object_size, kPointerSizeLog2); Daddu(scratch2, result, scratch2); } else { Daddu(scratch2, result, Operand(object_size)); } Branch(gc_required, Ugreater, scratch2, Operand(t9)); if (emit_debug_code()) { And(t9, scratch2, Operand(kObjectAlignmentMask)); Check(eq, kUnalignedAllocationInNewSpace, t9, Operand(zero_reg)); } sd(scratch2, MemOperand(topaddr)); if ((flags & TAG_OBJECT) != 0) { Daddu(result, result, Operand(kHeapObjectTag)); } } void MacroAssembler::UndoAllocationInNewSpace(Register object, Register scratch) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); And(object, object, Operand(~kHeapObjectTagMask)); li(scratch, Operand(new_space_allocation_top)); ld(scratch, MemOperand(scratch)); Check(less, kUndoAllocationOfNonAllocatedMemory, object, Operand(scratch)); li(scratch, Operand(new_space_allocation_top)); sd(object, MemOperand(scratch)); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); dsll(scratch1, length, 1); daddiu(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); DCHECK(kCharSize == 1); daddiu(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize); And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateOneByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name) { STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); Label succeed; And(at, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask)); Branch(&succeed, eq, at, Operand(zero_reg)); Branch(not_unique_name, ne, reg, Operand(SYMBOL_TYPE)); bind(&succeed); } void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* need_gc, TaggingMode tagging_mode, MutableMode mode) { Allocate(HeapNumber::kSize, result, scratch1, scratch2, need_gc, tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS); Heap::RootListIndex map_index = mode == MUTABLE ? Heap::kMutableHeapNumberMapRootIndex : Heap::kHeapNumberMapRootIndex; AssertIsRoot(heap_number_map, map_index); if (tagging_mode == TAG_RESULT) { sd(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); } else { sd(heap_number_map, MemOperand(result, HeapObject::kMapOffset)); } } void MacroAssembler::AllocateHeapNumberWithValue(Register result, FPURegister value, Register scratch1, Register scratch2, Label* gc_required) { LoadRoot(t8, Heap::kHeapNumberMapRootIndex); AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required); sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset)); } void MacroAssembler::CopyFields(Register dst, Register src, RegList temps, int field_count) { DCHECK((temps & dst.bit()) == 0); DCHECK((temps & src.bit()) == 0); Register tmp = no_reg; for (int i = 0; i < kNumRegisters; i++) { if ((temps & (1 << i)) != 0) { tmp.code_ = i; break; } } DCHECK(!tmp.is(no_reg)); for (int i = 0; i < field_count; i++) { ld(tmp, FieldMemOperand(src, i * kPointerSize)); sd(tmp, FieldMemOperand(dst, i * kPointerSize)); } } void MacroAssembler::CopyBytes(Register src, Register dst, Register length, Register scratch) { Label align_loop_1, word_loop, byte_loop, byte_loop_1, done; Branch(&byte_loop, le, length, Operand(kPointerSize)); bind(&align_loop_1); And(scratch, src, kPointerSize - 1); Branch(&word_loop, eq, scratch, Operand(zero_reg)); lbu(scratch, MemOperand(src)); Daddu(src, src, 1); sb(scratch, MemOperand(dst)); Daddu(dst, dst, 1); Dsubu(length, length, Operand(1)); Branch(&align_loop_1, ne, length, Operand(zero_reg)); bind(&word_loop); if (emit_debug_code()) { And(scratch, src, kPointerSize - 1); Assert(eq, kExpectingAlignmentForCopyBytes, scratch, Operand(zero_reg)); } Branch(&byte_loop, lt, length, Operand(kPointerSize)); ld(scratch, MemOperand(src)); Daddu(src, src, kPointerSize); sb(scratch, MemOperand(dst, 0)); dsrl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 1)); dsrl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 2)); dsrl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 3)); dsrl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 4)); dsrl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 5)); dsrl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 6)); dsrl(scratch, scratch, 8); sb(scratch, MemOperand(dst, 7)); Daddu(dst, dst, 8); Dsubu(length, length, Operand(kPointerSize)); Branch(&word_loop); bind(&byte_loop); Branch(&done, eq, length, Operand(zero_reg)); bind(&byte_loop_1); lbu(scratch, MemOperand(src)); Daddu(src, src, 1); sb(scratch, MemOperand(dst)); Daddu(dst, dst, 1); Dsubu(length, length, Operand(1)); Branch(&byte_loop_1, ne, length, Operand(zero_reg)); bind(&done); } void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, Register end_offset, Register filler) { Label loop, entry; Branch(&entry); bind(&loop); sd(filler, MemOperand(start_offset)); Daddu(start_offset, start_offset, kPointerSize); bind(&entry); Branch(&loop, lt, start_offset, Operand(end_offset)); } void MacroAssembler::CheckFastElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); } void MacroAssembler::CheckFastObjectElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Branch(fail, ls, scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); } void MacroAssembler::CheckFastSmiElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); } void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, Register key_reg, Register elements_reg, Register scratch1, Register scratch2, Register scratch3, Label* fail, int elements_offset) { Label smi_value, maybe_nan, have_double_value, is_nan, done; Register mantissa_reg = scratch2; Register exponent_reg = scratch3; JumpIfSmi(value_reg, &smi_value); CheckMap(value_reg, scratch1, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32)); lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset)); Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1)); lwu(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); bind(&have_double_value); dsra(scratch1, key_reg, 32 - kDoubleSizeLog2); Daddu(scratch1, scratch1, elements_reg); sw(mantissa_reg, FieldMemOperand( scratch1, FixedDoubleArray::kHeaderSize - elements_offset)); uint32_t offset = FixedDoubleArray::kHeaderSize - elements_offset + sizeof(kHoleNanLower32); sw(exponent_reg, FieldMemOperand(scratch1, offset)); jmp(&done); bind(&maybe_nan); lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg)); bind(&is_nan); LoadRoot(at, Heap::kNanValueRootIndex); lw(mantissa_reg, FieldMemOperand(at, HeapNumber::kMantissaOffset)); lw(exponent_reg, FieldMemOperand(at, HeapNumber::kExponentOffset)); jmp(&have_double_value); bind(&smi_value); Daddu(scratch1, elements_reg, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag - elements_offset)); dsra(scratch2, key_reg, 32 - kDoubleSizeLog2); Daddu(scratch1, scratch1, scratch2); Register untagged_value = elements_reg; SmiUntag(untagged_value, value_reg); mtc1(untagged_value, f2); cvt_d_w(f0, f2); sdc1(f0, MemOperand(scratch1, 0)); bind(&done); } void MacroAssembler::CompareMapAndBranch(Register obj, Register scratch, Handle<Map> map, Label* early_success, Condition cond, Label* branch_to) { ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); CompareMapAndBranch(scratch, map, early_success, cond, branch_to); } void MacroAssembler::CompareMapAndBranch(Register obj_map, Handle<Map> map, Label* early_success, Condition cond, Label* branch_to) { Branch(branch_to, cond, obj_map, Operand(map)); } void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } Label success; CompareMapAndBranch(obj, scratch, map, &success, ne, fail); bind(&success); } void MacroAssembler::DispatchMap(Register obj, Register scratch, Handle<Map> map, Handle<Code> success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map)); bind(&fail); } void MacroAssembler::CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } ld(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); LoadRoot(at, index); Branch(fail, ne, scratch, Operand(at)); } void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) { if (IsMipsSoftFloatABI) { Move(dst, v0, v1); } else { Move(dst, f0); } } void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) { if (IsMipsSoftFloatABI) { Move(dst, a0, a1); } else { Move(dst, f12); } } void MacroAssembler::MovToFloatParameter(DoubleRegister src) { if (!IsMipsSoftFloatABI) { Move(f12, src); } else { Move(a0, a1, src); } } void MacroAssembler::MovToFloatResult(DoubleRegister src) { if (!IsMipsSoftFloatABI) { Move(f0, src); } else { Move(v0, v1, src); } } void MacroAssembler::MovToFloatParameters(DoubleRegister src1, DoubleRegister src2) { if (!IsMipsSoftFloatABI) { const DoubleRegister fparg2 = (kMipsAbi == kN64) ? f13 : f14; if (src2.is(f12)) { DCHECK(!src1.is(fparg2)); Move(fparg2, src2); Move(f12, src1); } else { Move(f12, src1); Move(fparg2, src2); } } else { Move(a0, a1, src1); Move(a2, a3, src2); } } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle<Code> code_constant, Register code_reg, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; DCHECK(actual.is_immediate() || actual.reg().is(a0)); DCHECK(expected.is_immediate() || expected.reg().is(a2)); DCHECK((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3)); if (expected.is_immediate()) { DCHECK(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { li(a0, Operand(actual.immediate())); const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { definitely_matches = true; } else { *definitely_mismatches = true; li(a2, Operand(expected.immediate())); } } } else if (actual.is_immediate()) { Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate())); li(a0, Operand(actual.immediate())); } else { Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg())); } if (!definitely_matches) { if (!code_constant.is_null()) { li(a3, Operand(code_constant)); daddiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); } Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor)); Call(adaptor); call_wrapper.AfterCall(); if (!*definitely_mismatches) { Branch(done); } } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(&regular_invoke); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { DCHECK(flag == JUMP_FUNCTION || has_frame()); Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, &definitely_mismatches, flag, call_wrapper); if (!definitely_mismatches) { if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); Call(code); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); Jump(code); } bind(&done); } } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function.is(a1)); Register expected_reg = a2; Register code_reg = a3; ld(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); lw(expected_reg, FieldMemOperand(code_reg, SharedFunctionInfo::kFormalParameterCountOffset)); ld(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); ParameterCount expected(expected_reg); InvokeCode(code_reg, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Register function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(function.is(a1)); ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); ld(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); InvokeCode(a3, expected, actual, flag, call_wrapper); } void MacroAssembler::InvokeFunction(Handle<JSFunction> function, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper) { li(a1, function); InvokeFunction(a1, expected, actual, flag, call_wrapper); } void MacroAssembler::IsObjectJSObjectType(Register heap_object, Register map, Register scratch, Label* fail) { ld(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); IsInstanceJSObjectType(map, scratch, fail); } void MacroAssembler::IsInstanceJSObjectType(Register map, Register scratch, Label* fail) { lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); } void MacroAssembler::IsObjectJSStringType(Register object, Register scratch, Label* fail) { DCHECK(kNotStringTag != 0); ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); And(scratch, scratch, Operand(kIsNotStringMask)); Branch(fail, ne, scratch, Operand(zero_reg)); } void MacroAssembler::IsObjectNameType(Register object, Register scratch, Label* fail) { ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); Branch(fail, hi, scratch, Operand(LAST_NAME_TYPE)); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss, bool miss_on_bound_function) { Label non_instance; if (miss_on_bound_function) { JumpIfSmi(function, miss); GetObjectType(function, result, scratch); Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE)); ld(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); lwu(scratch, FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); And(scratch, scratch, Operand(1 << SharedFunctionInfo::kBoundFunction)); Branch(miss, ne, scratch, Operand(zero_reg)); lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); Branch(&non_instance, ne, scratch, Operand(zero_reg)); } ld(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); LoadRoot(t8, Heap::kTheHoleValueRootIndex); Branch(miss, eq, result, Operand(t8)); Label done; GetObjectType(result, scratch, scratch); Branch(&done, ne, scratch, Operand(MAP_TYPE)); ld(result, FieldMemOperand(result, Map::kPrototypeOffset)); if (miss_on_bound_function) { jmp(&done); bind(&non_instance); ld(result, FieldMemOperand(result, Map::kConstructorOffset)); } bind(&done); } void MacroAssembler::GetObjectType(Register object, Register map, Register type_reg) { ld(map, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); } void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id, Condition cond, Register r1, const Operand& r2, BranchDelaySlot bd) { DCHECK(AllowThisStubCall(stub)); Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond, r1, r2, bd); } void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond, Register r1, const Operand& r2, BranchDelaySlot bd) { Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2, bd); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { int64_t offset = (ref0.address() - ref1.address()); DCHECK(static_cast<int>(offset) == offset); return static_cast<int>(offset); } void MacroAssembler::CallApiFunctionAndReturn( Register function_address, ExternalReference thunk_ref, int stack_space, MemOperand return_value_operand, MemOperand* context_restore_operand) { ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate()); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate()), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate()), next_address); DCHECK(function_address.is(a1) || function_address.is(a2)); Label profiler_disabled; Label end_profiler_check; li(t9, Operand(ExternalReference::is_profiling_address(isolate()))); lb(t9, MemOperand(t9, 0)); Branch(&profiler_disabled, eq, t9, Operand(zero_reg)); li(t9, Operand(thunk_ref)); jmp(&end_profiler_check); bind(&profiler_disabled); mov(t9, function_address); bind(&end_profiler_check); li(s3, Operand(next_address)); ld(s0, MemOperand(s3, kNextOffset)); ld(s1, MemOperand(s3, kLimitOffset)); ld(s2, MemOperand(s3, kLevelOffset)); Daddu(s2, s2, Operand(1)); sd(s2, MemOperand(s3, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(this, StackFrame::MANUAL); PushSafepointRegisters(); PrepareCallCFunction(1, a0); li(a0, Operand(ExternalReference::isolate_address(isolate()))); CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1); PopSafepointRegisters(); } DirectCEntryStub stub(isolate()); stub.GenerateCall(this, t9); if (FLAG_log_timer_events) { FrameScope frame(this, StackFrame::MANUAL); PushSafepointRegisters(); PrepareCallCFunction(1, a0); li(a0, Operand(ExternalReference::isolate_address(isolate()))); CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1); PopSafepointRegisters(); } Label promote_scheduled_exception; Label exception_handled; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; ld(v0, return_value_operand); bind(&return_value_loaded); sd(s0, MemOperand(s3, kNextOffset)); if (emit_debug_code()) { ld(a1, MemOperand(s3, kLevelOffset)); Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2)); } Dsubu(s2, s2, Operand(1)); sd(s2, MemOperand(s3, kLevelOffset)); ld(at, MemOperand(s3, kLimitOffset)); Branch(&delete_allocated_handles, ne, s1, Operand(at)); bind(&leave_exit_frame); LoadRoot(a4, Heap::kTheHoleValueRootIndex); li(at, Operand(ExternalReference::scheduled_exception_address(isolate()))); ld(a5, MemOperand(at)); Branch(&promote_scheduled_exception, ne, a4, Operand(a5)); bind(&exception_handled); bool restore_context = context_restore_operand != NULL; if (restore_context) { ld(cp, *context_restore_operand); } li(s0, Operand(stack_space)); LeaveExitFrame(false, s0, !restore_context, EMIT_RETURN); bind(&promote_scheduled_exception); { FrameScope frame(this, StackFrame::INTERNAL); CallExternalReference( ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0); } jmp(&exception_handled); bind(&delete_allocated_handles); sd(s1, MemOperand(s3, kLimitOffset)); mov(s0, v0); mov(a0, v0); PrepareCallCFunction(1, s1); li(a0, Operand(ExternalReference::isolate_address(isolate()))); CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()), 1); mov(v0, s0); jmp(&leave_exit_frame); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { return has_frame_ || !stub->SometimesSetsUpAFrame(); } void MacroAssembler::IndexFromHash(Register hash, Register index) { DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash); } void MacroAssembler::ObjectToDoubleFPURegister(Register object, FPURegister result, Register scratch1, Register scratch2, Register heap_number_map, Label* not_number, ObjectToDoubleFlags flags) { Label done; if ((flags & OBJECT_NOT_SMI) == 0) { Label not_smi; JumpIfNotSmi(object, &not_smi); dsra32(scratch1, object, 0); mtc1(scratch1, result); cvt_d_w(result, result); Branch(&done); bind(&not_smi); } ld(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); Branch(not_number, ne, scratch1, Operand(heap_number_map)); if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { Register exponent = scratch1; Register mask_reg = scratch2; lwu(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset)); li(mask_reg, HeapNumber::kExponentMask); And(exponent, exponent, mask_reg); Branch(not_number, eq, exponent, Operand(mask_reg)); } ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset)); bind(&done); } void MacroAssembler::SmiToDoubleFPURegister(Register smi, FPURegister value, Register scratch1) { dsra32(scratch1, smi, 0); mtc1(scratch1, value); cvt_d_w(value, value); } void MacroAssembler::AdduAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch) { DCHECK(!dst.is(overflow_dst)); DCHECK(!dst.is(scratch)); DCHECK(!overflow_dst.is(scratch)); DCHECK(!overflow_dst.is(left)); DCHECK(!overflow_dst.is(right)); if (left.is(right) && dst.is(left)) { DCHECK(!dst.is(t9)); DCHECK(!scratch.is(t9)); DCHECK(!left.is(t9)); DCHECK(!right.is(t9)); DCHECK(!overflow_dst.is(t9)); mov(t9, right); right = t9; } if (dst.is(left)) { mov(scratch, left); daddu(dst, left, right); xor_(scratch, dst, scratch); xor_(overflow_dst, dst, right); and_(overflow_dst, overflow_dst, scratch); } else if (dst.is(right)) { mov(scratch, right); daddu(dst, left, right); xor_(scratch, dst, scratch); xor_(overflow_dst, dst, left); and_(overflow_dst, overflow_dst, scratch); } else { daddu(dst, left, right); xor_(overflow_dst, dst, left); xor_(scratch, dst, right); and_(overflow_dst, scratch, overflow_dst); } } void MacroAssembler::SubuAndCheckForOverflow(Register dst, Register left, Register right, Register overflow_dst, Register scratch) { DCHECK(!dst.is(overflow_dst)); DCHECK(!dst.is(scratch)); DCHECK(!overflow_dst.is(scratch)); DCHECK(!overflow_dst.is(left)); DCHECK(!overflow_dst.is(right)); DCHECK(!scratch.is(left)); DCHECK(!scratch.is(right)); if (left.is(right)) { mov(dst, zero_reg); mov(overflow_dst, zero_reg); return; } if (dst.is(left)) { mov(scratch, left); dsubu(dst, left, right); xor_(overflow_dst, dst, scratch); xor_(scratch, scratch, right); and_(overflow_dst, scratch, overflow_dst); } else if (dst.is(right)) { mov(scratch, right); dsubu(dst, left, right); xor_(overflow_dst, dst, left); xor_(scratch, left, scratch); and_(overflow_dst, scratch, overflow_dst); } else { dsubu(dst, left, right); xor_(overflow_dst, dst, left); xor_(scratch, left, right); and_(overflow_dst, scratch, overflow_dst); } } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { CHECK(f->nargs < 0 || f->nargs == num_arguments); PrepareCEntryArgs(num_arguments); PrepareCEntryFunction(ExternalReference(f, isolate())); CEntryStub stub(isolate(), 1, save_doubles); CallStub(&stub); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments, BranchDelaySlot bd) { PrepareCEntryArgs(num_arguments); PrepareCEntryFunction(ext); CEntryStub stub(isolate(), 1); CallStub(&stub, TypeFeedbackId::None(), al, zero_reg, Operand(zero_reg), bd); } void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size) { PrepareCEntryArgs(num_arguments); JumpToExternalReference(ext); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments, result_size); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, BranchDelaySlot bd) { PrepareCEntryFunction(builtin); CEntryStub stub(isolate(), 1); Jump(stub.GetCode(), RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg), bd); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper& call_wrapper) { DCHECK(flag == JUMP_FUNCTION || has_frame()); GetBuiltinEntry(t9, id); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(t9)); Call(t9); call_wrapper.AfterCall(); } else { DCHECK(flag == JUMP_FUNCTION); Jump(t9); } } void MacroAssembler::GetBuiltinFunction(Register target, Builtins::JavaScript id) { ld(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); ld(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); ld(target, FieldMemOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id))); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { DCHECK(!target.is(a1)); GetBuiltinFunction(a1, id); ld(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); } void MacroAssembler::SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (FLAG_native_code_counters && counter->Enabled()) { li(scratch1, Operand(value)); li(scratch2, Operand(ExternalReference(counter))); sd(scratch1, MemOperand(scratch2)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { li(scratch2, Operand(ExternalReference(counter))); ld(scratch1, MemOperand(scratch2)); Daddu(scratch1, scratch1, Operand(value)); sd(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { li(scratch2, Operand(ExternalReference(counter))); ld(scratch1, MemOperand(scratch2)); Dsubu(scratch1, scratch1, Operand(value)); sd(scratch1, MemOperand(scratch2)); } } void MacroAssembler::Assert(Condition cc, BailoutReason reason, Register rs, Operand rt) { if (emit_debug_code()) Check(cc, reason, rs, rt); } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { DCHECK(!elements.is(at)); Label ok; push(elements); ld(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); LoadRoot(at, Heap::kFixedArrayMapRootIndex); Branch(&ok, eq, elements, Operand(at)); LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex); Branch(&ok, eq, elements, Operand(at)); LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); Branch(&ok, eq, elements, Operand(at)); Abort(kJSObjectWithFastElementsMapHasSlowElements); bind(&ok); pop(elements); } } void MacroAssembler::Check(Condition cc, BailoutReason reason, Register rs, Operand rt) { Label L; Branch(&L, cc, rs, rt); Abort(reason); bind(&L); } void MacroAssembler::Abort(BailoutReason reason) { Label abort_start; bind(&abort_start); const char* msg = GetBailoutReason(reason); if (msg != NULL) { RecordComment(�); RecordComment(msg); } if (FLAG_trap_on_abort) { stop(msg); return; } li(a0, Operand(Smi::FromInt(reason))); push(a0); if (!has_frame_) { FrameScope scope(this, StackFrame::NONE); CallRuntime(Runtime::kAbort, 1); } else { CallRuntime(Runtime::kAbort, 1); } if (is_trampoline_pool_blocked()) { static const int kExpectedAbortInstructions = 10; int abort_instructions = InstructionsGeneratedSince(&abort_start); DCHECK(abort_instructions <= kExpectedAbortInstructions); while (abort_instructions++ < kExpectedAbortInstructions) { nop(); } } } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { ld(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { ld(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { Move(dst, cp); } } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match) { ld(scratch, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); ld(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset)); ld(scratch, MemOperand(scratch, Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX))); size_t offset = expected_kind * kPointerSize + FixedArrayBase::kHeaderSize; ld(at, FieldMemOperand(scratch, offset)); Branch(no_map_match, ne, map_in_out, Operand(at)); offset = transitioned_kind * kPointerSize + FixedArrayBase::kHeaderSize; ld(map_in_out, FieldMemOperand(scratch, offset)); } void MacroAssembler::LoadGlobalFunction(int index, Register function) { ld(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); ld(function, FieldMemOperand(function, GlobalObject::kNativeContextOffset)); ld(function, MemOperand(function, Context::SlotOffset(index))); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch) { ld(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); Branch(&ok); bind(&fail); Abort(kGlobalFunctionsMustHaveInitialMap); bind(&ok); } } void MacroAssembler::StubPrologue() { Push(ra, fp, cp); Push(Smi::FromInt(StackFrame::STUB)); Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); } void MacroAssembler::Prologue(bool code_pre_aging) { PredictableCodeSizeScope predictible_code_size_scope( this, kNoCodeAgeSequenceLength); if (code_pre_aging) { Code* stub = Code::GetPreAgedCodeAgeStub(isolate()); nop(Assembler::CODE_AGE_MARKER_NOP); li(t9, Operand(reinterpret_cast<uint64_t>(stub->instruction_start())), ADDRESS_LOAD); nop(); jalr(t9, a0); nop(); nop(); } else { Push(ra, fp, cp, a1); nop(Assembler::CODE_AGE_SEQUENCE_NOP); nop(Assembler::CODE_AGE_SEQUENCE_NOP); nop(Assembler::CODE_AGE_SEQUENCE_NOP); Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); } } void MacroAssembler::EnterFrame(StackFrame::Type type) { daddiu(sp, sp, -5 * kPointerSize); li(t8, Operand(Smi::FromInt(type))); li(t9, Operand(CodeObject()), CONSTANT_SIZE); sd(ra, MemOperand(sp, 4 * kPointerSize)); sd(fp, MemOperand(sp, 3 * kPointerSize)); sd(cp, MemOperand(sp, 2 * kPointerSize)); sd(t8, MemOperand(sp, 1 * kPointerSize)); sd(t9, MemOperand(sp, 0 * kPointerSize)); Daddu(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); } void MacroAssembler::LeaveFrame(StackFrame::Type type) { mov(sp, fp); ld(fp, MemOperand(sp, 0 * kPointerSize)); ld(ra, MemOperand(sp, 1 * kPointerSize)); daddiu(sp, sp, 2 * kPointerSize); } void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) { STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); daddiu(sp, sp, -4 * kPointerSize); sd(ra, MemOperand(sp, 3 * kPointerSize)); sd(fp, MemOperand(sp, 2 * kPointerSize)); daddiu(fp, sp, 2 * kPointerSize); if (emit_debug_code()) { sd(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); } li(t8, Operand(CodeObject()), CONSTANT_SIZE); sd(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); sd(fp, MemOperand(t8)); li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); sd(cp, MemOperand(t8)); const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); if (save_doubles) { int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2; int space = kNumOfSavedRegisters * kDoubleSize ; Dsubu(sp, sp, Operand(space)); for (int i = 0; i < kNumOfSavedRegisters; i++) { FPURegister reg = FPURegister::from_code(2 * i); sdc1(reg, MemOperand(sp, i * kDoubleSize)); } } DCHECK(stack_space >= 0); Dsubu(sp, sp, Operand((stack_space + 2) * kPointerSize)); if (frame_alignment > 0) { DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); } daddiu(at, sp, kPointerSize); sd(at, MemOperand(fp, ExitFrameConstants::kSPOffset)); } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, bool restore_context, bool do_return) { if (save_doubles) { int kNumOfSavedRegisters = FPURegister::kMaxNumRegisters / 2; Dsubu(t8, fp, Operand(ExitFrameConstants::kFrameSize + kNumOfSavedRegisters * kDoubleSize)); for (int i = 0; i < kNumOfSavedRegisters; i++) { FPURegister reg = FPURegister::from_code(2 * i); ldc1(reg, MemOperand(t8, i * kDoubleSize)); } } li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); sd(zero_reg, MemOperand(t8)); if (restore_context) { li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); ld(cp, MemOperand(t8)); } li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); sd(a3, MemOperand(t8)); mov(sp, fp); ld(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); ld(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); if (argument_count.is_valid()) { dsll(t8, argument_count, kPointerSizeLog2); daddu(sp, sp, t8); } if (do_return) { Ret(USE_DELAY_SLOT); } daddiu(sp, sp, 2 * kPointerSize); } void MacroAssembler::InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2) { dsll32(scratch1, length, 0); LoadRoot(scratch2, map_index); sd(scratch1, FieldMemOperand(string, String::kLengthOffset)); li(scratch1, Operand(String::kEmptyHashField)); sd(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); sd(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); } int MacroAssembler::ActivationFrameAlignment() { return base::OS::ActivationFrameAlignment(); } void MacroAssembler::AssertStackIsAligned() { if (emit_debug_code()) { const int frame_alignment = ActivationFrameAlignment(); const int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { Label alignment_as_expected; DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); andi(at, sp, frame_alignment_mask); Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); stop(�); bind(&alignment_as_expected); } } } void MacroAssembler::JumpIfNotPowerOfTwoOrZero( Register reg, Register scratch, Label* not_power_of_two_or_zero) { Dsubu(scratch, reg, Operand(1)); Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt, scratch, Operand(zero_reg)); and_(at, scratch, reg); Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg)); } void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { DCHECK(!reg.is(overflow)); mov(overflow, reg); SmiTag(reg); xor_(overflow, overflow, reg); } void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src, Register overflow) { if (dst.is(src)) { SmiTagCheckOverflow(dst, overflow); } else { DCHECK(!dst.is(src)); DCHECK(!dst.is(overflow)); DCHECK(!src.is(overflow)); SmiTag(dst, src); xor_(overflow, dst, src); } } void MacroAssembler::SmiLoadUntag(Register dst, MemOperand src) { if (SmiValuesAre32Bits()) { lw(dst, UntagSmiMemOperand(src.rm(), src.offset())); } else { lw(dst, src); SmiUntag(dst); } } void MacroAssembler::SmiLoadScale(Register dst, MemOperand src, int scale) { if (SmiValuesAre32Bits()) { lw(dst, UntagSmiMemOperand(src.rm(), src.offset())); dsll(dst, dst, scale); } else { lw(dst, src); DCHECK(scale >= kSmiTagSize); sll(dst, dst, scale - kSmiTagSize); } } void MacroAssembler::SmiLoadWithScale(Register d_smi, Register d_scaled, MemOperand src, int scale) { if (SmiValuesAre32Bits()) { ld(d_smi, src); dsra(d_scaled, d_smi, kSmiShift - scale); } else { lw(d_smi, src); DCHECK(scale >= kSmiTagSize); sll(d_scaled, d_smi, scale - kSmiTagSize); } } void MacroAssembler::SmiLoadUntagWithScale(Register d_int, Register d_scaled, MemOperand src, int scale) { if (SmiValuesAre32Bits()) { lw(d_int, UntagSmiMemOperand(src.rm(), src.offset())); dsll(d_scaled, d_int, scale); } else { lw(d_int, src); SmiUntag(d_int); sll(d_scaled, d_int, scale); } } void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case) { JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT); SmiUntag(dst, src); } void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case) { JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT); SmiUntag(dst, src); } void MacroAssembler::JumpIfSmi(Register value, Label* smi_label, Register scratch, BranchDelaySlot bd) { DCHECK_EQ(0, kSmiTag); andi(scratch, value, kSmiTagMask); Branch(bd, smi_label, eq, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label, Register scratch, BranchDelaySlot bd) { DCHECK_EQ(0, kSmiTag); andi(scratch, value, kSmiTagMask); Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi) { STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(1, kSmiTagMask); or_(at, reg1, reg2); JumpIfNotSmi(at, on_not_both_smi); } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(1, kSmiTagMask); and_(at, reg1, reg2); JumpIfSmi(at, on_either_smi); } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); andi(at, object, kSmiTagMask); Check(ne, kOperandIsASmi, at, Operand(zero_reg)); } } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); andi(at, object, kSmiTagMask); Check(eq, kOperandIsASmi, at, Operand(zero_reg)); } } void MacroAssembler::AssertString(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); SmiTst(object, a4); Check(ne, kOperandIsASmiAndNotAString, a4, Operand(zero_reg)); push(object); ld(object, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); Check(lo, kOperandIsNotAString, object, Operand(FIRST_NONSTRING_TYPE)); pop(object); } } void MacroAssembler::AssertName(Register object) { if (emit_debug_code()) { STATIC_ASSERT(kSmiTag == 0); SmiTst(object, a4); Check(ne, kOperandIsASmiAndNotAName, a4, Operand(zero_reg)); push(object); ld(object, FieldMemOperand(object, HeapObject::kMapOffset)); lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); Check(le, kOperandIsNotAName, object, Operand(LAST_NAME_TYPE)); pop(object); } } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); LoadRoot(scratch, Heap::kUndefinedValueRootIndex); Branch(&done_checking, eq, object, Operand(scratch)); push(object); ld(object, FieldMemOperand(object, HeapObject::kMapOffset)); LoadRoot(scratch, Heap::kAllocationSiteMapRootIndex); Assert(eq, kExpectedUndefinedOrCell, object, Operand(scratch)); pop(object); bind(&done_checking); } } void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) { if (emit_debug_code()) { DCHECK(!reg.is(at)); LoadRoot(at, index); Check(eq, kHeapNumberMapRegisterClobbered, reg, Operand(at)); } } void MacroAssembler::JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number) { ld(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map)); } void MacroAssembler::LookupNumberStringCache(Register object, Register result, Register scratch1, Register scratch2, Register scratch3, Label* not_found) { Register number_string_cache = result; Register mask = scratch3; LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex); ld(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset)); dsra32(mask, mask, 1); Daddu(mask, mask, -1); Label is_smi; Label load_result_from_cache; JumpIfSmi(object, &is_smi); CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found, DONT_DO_SMI_CHECK); STATIC_ASSERT(8 == kDoubleSize); Daddu(scratch1, object, Operand(HeapNumber::kValueOffset - kHeapObjectTag)); ld(scratch2, MemOperand(scratch1, kPointerSize)); ld(scratch1, MemOperand(scratch1, 0)); Xor(scratch1, scratch1, Operand(scratch2)); And(scratch1, scratch1, Operand(mask)); dsll(scratch1, scratch1, kPointerSizeLog2 + 1); Daddu(scratch1, number_string_cache, scratch1); Register probe = mask; ld(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); JumpIfSmi(probe, not_found); ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset)); ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset)); BranchF(&load_result_from_cache, NULL, eq, f12, f14); Branch(not_found); bind(&is_smi); Register scratch = scratch1; dsra32(scratch, scratch, 0); And(scratch, mask, Operand(scratch)); dsll(scratch, scratch, kPointerSizeLog2 + 1); Daddu(scratch, number_string_cache, scratch); ld(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize)); Branch(not_found, ne, object, Operand(probe)); bind(&load_result_from_cache); ld(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize)); IncrementCounter(isolate()->counters()->number_to_string_native(), 1, scratch1, scratch2); } void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { ld(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); ld(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure) { STATIC_ASSERT(kSmiTag == 0); And(scratch1, first, Operand(second)); JumpIfSmi(scratch1, failure); JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1, scratch2, failure); } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; DCHECK(kFlatOneByteStringTag <= 0xffff); andi(scratch1, first, kFlatOneByteStringMask); Branch(failure, ne, scratch1, Operand(kFlatOneByteStringTag)); andi(scratch2, second, kFlatOneByteStringMask); Branch(failure, ne, scratch2, Operand(kFlatOneByteStringTag)); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, Label* failure) { const int kFlatOneByteStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; const int kFlatOneByteStringTag = kStringTag | kOneByteStringTag | kSeqStringTag; And(scratch, type, Operand(kFlatOneByteStringMask)); Branch(failure, ne, scratch, Operand(kFlatOneByteStringTag)); } static const int kRegisterPassedArguments = (kMipsAbi == kN64) ? 8 : 4; int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; num_reg_arguments += 2 * num_double_arguments; if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } stack_passed_words += kCArgSlotCount; return stack_passed_words; } void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index, Register value, Register scratch, uint32_t encoding_mask) { Label is_object; SmiTst(string, at); Check(ne, kNonObject, at, Operand(zero_reg)); ld(at, FieldMemOperand(string, HeapObject::kMapOffset)); lbu(at, FieldMemOperand(at, Map::kInstanceTypeOffset)); andi(at, at, kStringRepresentationMask | kStringEncodingMask); li(scratch, Operand(encoding_mask)); Check(eq, kUnexpectedStringType, at, Operand(scratch)); ld(at, FieldMemOperand(string, String::kLengthOffset)); Check(lt, kIndexIsTooLarge, index, Operand(at)); DCHECK(Smi::FromInt(0) == 0); Check(ge, kIndexIsNegative, index, Operand(zero_reg)); } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (frame_alignment > kPointerSize) { mov(scratch, sp); Dsubu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); sd(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { Dsubu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, Register scratch) { PrepareCallCFunction(num_reg_arguments, 0, scratch); } void MacroAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { li(t8, Operand(function)); CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { DCHECK(has_frame()); if (emit_debug_code()) { int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); Label alignment_as_expected; And(at, sp, Operand(frame_alignment_mask)); Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); stop(�); bind(&alignment_as_expected); } } if (!function.is(t9)) { mov(t9, function); function = t9; } Call(function); int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (base::OS::ActivationFrameAlignment() > kPointerSize) argument
[all...]
/external/chromium_org/third_party/icu/source/samples/layout/
H A Dgdiglue.cpp44 GDISurface *rs = (GDISurface *) surface; local
46 rs->setHDC(hdc);
51 GDISurface *rs = (GDISurface *) surface; local
53 delete rs;
H A Dgnomeglue.cpp47 GnomeSurface *rs = (GnomeSurface *) surface; local
49 delete rs;
/external/chromium_org/third_party/libsrtp/srtp/crypto/include/
H A Dstat.h64 stat_test_rand_source(rand_source_func_t rs);
/external/icu/icu4c/source/samples/layout/
H A Dgdiglue.cpp44 GDISurface *rs = (GDISurface *) surface; local
46 rs->setHDC(hdc);
51 GDISurface *rs = (GDISurface *) surface; local
53 delete rs;
H A Dgnomeglue.cpp47 GnomeSurface *rs = (GnomeSurface *) surface; local
49 delete rs;
/external/srtp/crypto/include/
H A Dstat.h64 stat_test_rand_source(rand_source_func_t rs);
/external/chromium_org/third_party/mesa/src/src/gallium/drivers/r300/
H A Dr300_state_derived.c198 static void r300_rs_col(struct r300_rs_block* rs, int id, int ptr, argument
201 rs->ip[id] |= R300_RS_COL_PTR(ptr);
203 rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_0001);
205 rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_RGBA);
207 rs->inst[id] |= R300_RS_INST_COL_ID(id);
210 static void r300_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset, argument
214 rs->inst[id] |= R300_RS_INST_COL_CN_WRITE |
218 static void r300_rs_tex(struct r300_rs_block* rs, int id, int ptr, argument
222 rs->ip[id] |= R300_RS_TEX_PTR(ptr) |
228 rs
243 r300_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset) argument
249 r500_rs_col(struct r300_rs_block* rs, int id, int ptr, enum r300_rs_swizzle swiz) argument
261 r500_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset, enum r300_rs_col_write_type type) argument
273 r500_rs_tex(struct r300_rs_block* rs, int id, int ptr, enum r300_rs_swizzle swiz) argument
295 r500_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset) argument
317 struct r300_rs_block rs = {0}; local
[all...]
/external/fio/os/
H A Dos-solaris.h72 static inline void os_random_seed(unsigned long seed, os_random_state_t *rs) argument
74 rs->r[0] = seed & 0xffff;
76 rs->r[1] = seed & 0xffff;
78 rs->r[2] = seed & 0xffff;
79 seed48(rs->r);
82 static inline long os_random_long(os_random_state_t *rs) argument
84 return nrand48(rs->r);
/external/mesa3d/src/gallium/drivers/r300/
H A Dr300_state_derived.c198 static void r300_rs_col(struct r300_rs_block* rs, int id, int ptr, argument
201 rs->ip[id] |= R300_RS_COL_PTR(ptr);
203 rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_0001);
205 rs->ip[id] |= R300_RS_COL_FMT(R300_RS_COL_FMT_RGBA);
207 rs->inst[id] |= R300_RS_INST_COL_ID(id);
210 static void r300_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset, argument
214 rs->inst[id] |= R300_RS_INST_COL_CN_WRITE |
218 static void r300_rs_tex(struct r300_rs_block* rs, int id, int ptr, argument
222 rs->ip[id] |= R300_RS_TEX_PTR(ptr) |
228 rs
243 r300_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset) argument
249 r500_rs_col(struct r300_rs_block* rs, int id, int ptr, enum r300_rs_swizzle swiz) argument
261 r500_rs_col_write(struct r300_rs_block* rs, int id, int fp_offset, enum r300_rs_col_write_type type) argument
273 r500_rs_tex(struct r300_rs_block* rs, int id, int ptr, enum r300_rs_swizzle swiz) argument
295 r500_rs_tex_write(struct r300_rs_block* rs, int id, int fp_offset) argument
317 struct r300_rs_block rs = {0}; local
[all...]
/external/valgrind/main/none/tests/arm/
H A Dv6intARM.stdout.exp376 add r0, r1, r2, lsl r3 :: rd 0xffffffff rm 0x00000000, rn 0xffffffff rs 0x00000000, carryin 0, cpsr 0x00000000
377 add r0, r1, r2, lsl r3 :: rd 0xfffffffe rm 0x00000000, rn 0xffffffff rs 0x00000001, carryin 0, cpsr 0x00000000
378 add r0, r1, r2, lsl r3 :: rd 0x80000000 rm 0x00000000, rn 0xffffffff rs 0x0000001f, carryin 0, cpsr 0x00000000
379 add r0, r1, r2, lsl r3 :: rd 0x00000000 rm 0x00000000, rn 0xffffffff rs 0x00000020, carryin 0, cpsr 0x00000000
380 add r0, r1, r2, lsl r3 :: rd 0x00000000 rm 0x00000000, rn 0xffffffff rs 0x000000ff, carryin 0, cpsr 0x00000000
381 add r0, r1, r2, lsl r3 :: rd 0xffffffff rm 0x00000000, rn 0xffffffff rs 0x00000100, carryin 0, cpsr 0x00000000
382 add r0, r1, r2, lsr r3 :: rd 0xffffffff rm 0x00000000, rn 0xffffffff rs 0x00000000, carryin 0, cpsr 0x00000000
383 add r0, r1, r2, lsr r3 :: rd 0x7fffffff rm 0x00000000, rn 0xffffffff rs 0x00000001, carryin 0, cpsr 0x00000000
384 add r0, r1, r2, lsr r3 :: rd 0x00000001 rm 0x00000000, rn 0xffffffff rs 0x0000001f, carryin 0, cpsr 0x00000000
385 add r0, r1, r2, lsr r3 :: rd 0x00000000 rm 0x00000000, rn 0xffffffff rs
[all...]
H A Dintdiv.c30 Int rs = do_sdiv32(x,y); local
31 printf( "%08x %08x -> u:%08x s:%08x\n", x, y, ru, (UInt)rs);
/external/chromium_org/v8/src/mips/
H A Dassembler-mips.cc365 Register rs; local
366 rs.code_ = (instr & kRsFieldMask) >> kRsShift;
367 return rs;
867 Register rs,
872 DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
873 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
880 Register rs,
885 DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
886 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift)
946 Register rs,
866 GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, uint16_t sa, SecondaryField func) argument
879 GenInstrRegister(Opcode opcode, Register rs, Register rt, uint16_t msb, uint16_t lsb, SecondaryField func) argument
945 GenInstrImmediate(Opcode opcode, Register rs, Register rt, int32_t j) argument
956 GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF, int32_t j) argument
966 GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft, int32_t j) argument
1174 beq(Register rs, Register rt, int16_t offset) argument
1181 bgez(Register rs, int16_t offset) argument
1195 bgeuc(Register rs, Register rt, int16_t offset) argument
1204 bgec(Register rs, Register rt, int16_t offset) argument
1213 bgezal(Register rs, int16_t offset) argument
1222 bgtz(Register rs, int16_t offset) argument
1236 blez(Register rs, int16_t offset) argument
1257 bltuc(Register rs, Register rt, int16_t offset) argument
1266 bltc(Register rs, Register rt, int16_t offset) argument
1275 bltz(Register rs, int16_t offset) argument
1282 bltzal(Register rs, int16_t offset) argument
1291 bne(Register rs, Register rt, int16_t offset) argument
1298 bovc(Register rs, Register rt, int16_t offset) argument
1306 bnvc(Register rs, Register rt, int16_t offset) argument
1328 bgezall(Register rs, int16_t offset) argument
1363 beqc(Register rs, Register rt, int16_t offset) argument
1370 beqzc(Register rs, int32_t offset) argument
1378 bnec(Register rs, Register rt, int16_t offset) argument
1385 bnezc(Register rs, int32_t offset) argument
1405 jr(Register rs) argument
1432 jalr(Register rs, Register rd) argument
1440 j_or_jr(int32_t target, Register rs) argument
1453 jal_or_jalr(int32_t target, Register rs) argument
1470 addu(Register rd, Register rs, Register rt) argument
1475 addiu(Register rd, Register rs, int32_t j) argument
1480 subu(Register rd, Register rs, Register rt) argument
1485 mul(Register rd, Register rs, Register rt) argument
1494 mulu(Register rd, Register rs, Register rt) argument
1500 muh(Register rd, Register rs, Register rt) argument
1506 muhu(Register rd, Register rs, Register rt) argument
1512 mod(Register rd, Register rs, Register rt) argument
1518 modu(Register rd, Register rs, Register rt) argument
1524 mult(Register rs, Register rt) argument
1529 multu(Register rs, Register rt) argument
1534 div(Register rs, Register rt) argument
1539 div(Register rd, Register rs, Register rt) argument
1545 divu(Register rs, Register rt) argument
1550 divu(Register rd, Register rs, Register rt) argument
1558 and_(Register rd, Register rs, Register rt) argument
1563 andi(Register rt, Register rs, int32_t j) argument
1569 or_(Register rd, Register rs, Register rt) argument
1574 ori(Register rt, Register rs, int32_t j) argument
1580 xor_(Register rd, Register rs, Register rt) argument
1585 xori(Register rt, Register rs, int32_t j) argument
1591 nor(Register rd, Register rs, Register rt) argument
1610 sllv(Register rd, Register rt, Register rs) argument
1620 srlv(Register rd, Register rt, Register rs) argument
1630 srav(Register rd, Register rt, Register rs) argument
1645 rotrv(Register rd, Register rt, Register rs) argument
1666 lb(Register rd, const MemOperand& rs) argument
1676 lbu(Register rd, const MemOperand& rs) argument
1686 lh(Register rd, const MemOperand& rs) argument
1696 lhu(Register rd, const MemOperand& rs) argument
1706 lw(Register rd, const MemOperand& rs) argument
1716 lwl(Register rd, const MemOperand& rs) argument
1721 lwr(Register rd, const MemOperand& rs) argument
1726 sb(Register rd, const MemOperand& rs) argument
1736 sh(Register rd, const MemOperand& rs) argument
1746 sw(Register rd, const MemOperand& rs) argument
1756 swl(Register rd, const MemOperand& rs) argument
1761 swr(Register rd, const MemOperand& rs) argument
1772 aui(Register rs, Register rt, int32_t j) argument
1814 tge(Register rs, Register rt, uint16_t code) argument
1822 tgeu(Register rs, Register rt, uint16_t code) argument
1830 tlt(Register rs, Register rt, uint16_t code) argument
1838 tltu(Register rs, Register rt, uint16_t code) argument
1847 teq(Register rs, Register rt, uint16_t code) argument
1855 tne(Register rs, Register rt, uint16_t code) argument
1876 slt(Register rd, Register rs, Register rt) argument
1881 sltu(Register rd, Register rs, Register rt) argument
1886 slti(Register rt, Register rs, int32_t j) argument
1891 sltiu(Register rt, Register rs, int32_t j) argument
1897 movz(Register rd, Register rs, Register rt) argument
1902 movn(Register rd, Register rs, Register rt) argument
1907 movt(Register rd, Register rs, uint16_t cc) argument
1914 movf(Register rd, Register rs, uint16_t cc) argument
1922 clz(Register rd, Register rs) argument
1932 ins_(Register rt, Register rs, uint16_t pos, uint16_t size) argument
1940 ext_(Register rt, Register rs, uint16_t pos, uint16_t size) argument
1948 pref(int32_t hint, const MemOperand& rs) argument
[all...]
H A Dmacro-assembler-mips.cc611 void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { argument
613 addu(rd, rs, rt.rm());
616 addiu(rd, rs, rt.imm32_);
619 DCHECK(!rs.is(at));
621 addu(rd, rs, at);
627 void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) { argument
629 subu(rd, rs, rt.rm());
632 addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm).
635 DCHECK(!rs.is(at));
637 subu(rd, rs, a
643 Mul(Register rd, Register rs, const Operand& rt) argument
665 Mul(Register rd_hi, Register rd_lo, Register rs, const Operand& rt) argument
708 Mulh(Register rd, Register rs, const Operand& rt) argument
730 Mult(Register rs, const Operand& rt) argument
742 Multu(Register rs, const Operand& rt) argument
754 Div(Register rs, const Operand& rt) argument
766 Div(Register rem, Register res, Register rs, const Operand& rt) argument
793 Mod(Register rd, Register rs, const Operand& rt) argument
815 Divu(Register rs, const Operand& rt) argument
827 And(Register rd, Register rs, const Operand& rt) argument
843 Or(Register rd, Register rs, const Operand& rt) argument
859 Xor(Register rd, Register rs, const Operand& rt) argument
875 Nor(Register rd, Register rs, const Operand& rt) argument
887 Neg(Register rs, const Operand& rt) argument
896 Slt(Register rd, Register rs, const Operand& rt) argument
912 Sltu(Register rd, Register rs, const Operand& rt) argument
928 Ror(Register rd, Register rs, const Operand& rt) argument
954 Pref(int32_t hint, const MemOperand& rs) argument
965 Ulw(Register rd, const MemOperand& rs) argument
971 Usw(Register rd, const MemOperand& rs) argument
1144 Ext(Register rt, Register rs, uint16_t pos, uint16_t size) argument
4704 Assert(Condition cc, BailoutReason reason, Register rs, Operand rt) argument
4730 Check(Condition cc, BailoutReason reason, Register rs, Operand rt) argument
[all...]
/external/libunwind/src/dwarf/
H A DGparser.c31 #define free_reg_state(rs) (mempool_free (&dwarf_reg_state_pool, rs))
561 cache_match (dwarf_reg_state_t *rs, unw_word_t ip) argument
563 if (rs->valid && (ip == rs->ip))
571 dwarf_reg_state_t *rs = cache->buckets + c->hint; local
577 if (cache_match (rs, ip))
578 return rs;
584 rs = cache->buckets + index;
587 if (cache_match (rs, i
603 dwarf_reg_state_t *rs, *prev, *tmp; local
710 apply_reg_state(struct dwarf_cursor *c, struct dwarf_reg_state *rs) argument
860 dwarf_reg_state_t *rs; local
[all...]
/external/chromium_org/third_party/mesa/src/src/gallium/drivers/svga/
H A Dsvga_state_rss.c40 SVGA3dRenderState rs[SVGA3D_RS_MAX]; member in struct:rs_queue
46 assert(SVGA3D_RS_##token < Elements(svga->state.hw_draw.rs)); \
47 if (svga->state.hw_draw.rs[SVGA3D_RS_##token] != value) { \
49 svga->state.hw_draw.rs[SVGA3D_RS_##token] = value; \
56 assert(SVGA3D_RS_##token < Elements(svga->state.hw_draw.rs)); \
57 if (svga->state.hw_draw.rs[SVGA3D_RS_##token] != value) { \
59 svga->state.hw_draw.rs[SVGA3D_RS_##token] = value; \
69 q->rs[q->rs_count].state = rss;
70 q->rs[q->rs_count].uintValue = value;
269 SVGA3dRenderState *rs; local
[all...]
/external/chromium_org/third_party/pexpect/
H A Dscreen.py105 def fill_region (self, rs,cs, re,ce, ch=SPACE):
107 rs = constrain (rs, 1, self.rows)
111 if rs > re:
112 rs, re = re, rs
115 for r in range (rs, re+1):
196 def get_region (self, rs,cs, re,ce):
201 rs = constrain (rs,
[all...]
/external/chromium_org/third_party/webrtc/video_engine/
H A Dvie_render_impl.cc93 ViERenderManagerScoped rs(*(shared_data_->render_manager()));
94 if (rs.Renderer(render_id)) {
138 ViERenderManagerScoped rs(*(shared_data_->render_manager()));
139 renderer = rs.Renderer(render_id);
175 ViERenderManagerScoped rs(*(shared_data_->render_manager()));
176 ViERenderer* renderer = rs.Renderer(render_id);
190 ViERenderManagerScoped rs(*(shared_data_->render_manager()));
191 ViERenderer* renderer = rs.Renderer(render_id);
206 ViERenderManagerScoped rs(*(shared_data_->render_manager()));
207 ViERenderer* renderer = rs
[all...]
/external/lldb/test/pexpect-2.4/
H A Dscreen.py89 def fill_region (self, rs,cs, re,ce, ch=SPACE):
91 rs = constrain (rs, 1, self.rows)
95 if rs > re:
96 rs, re = re, rs
99 for r in range (rs, re+1):
180 def get_region (self, rs,cs, re,ce):
185 rs = constrain (rs,
[all...]
/external/mesa3d/src/gallium/drivers/svga/
H A Dsvga_state_rss.c40 SVGA3dRenderState rs[SVGA3D_RS_MAX]; member in struct:rs_queue
46 assert(SVGA3D_RS_##token < Elements(svga->state.hw_draw.rs)); \
47 if (svga->state.hw_draw.rs[SVGA3D_RS_##token] != value) { \
49 svga->state.hw_draw.rs[SVGA3D_RS_##token] = value; \
56 assert(SVGA3D_RS_##token < Elements(svga->state.hw_draw.rs)); \
57 if (svga->state.hw_draw.rs[SVGA3D_RS_##token] != value) { \
59 svga->state.hw_draw.rs[SVGA3D_RS_##token] = value; \
69 q->rs[q->rs_count].state = rss;
70 q->rs[q->rs_count].uintValue = value;
269 SVGA3dRenderState *rs; local
[all...]
/external/javasqlite/src/main/java/SQLite/JDBC2z/
H A DJDBCStatement.java9 protected JDBCResultSet rs; field in class:JDBCStatement
17 this.rs = null;
82 return rs;
88 if (rs != null) {
89 rs.close();
90 rs = null;
149 rs = new JDBCResultSet(new TableResultX(tr), this);
151 return rs;
228 if (rs != null) {
229 rs
[all...]
/external/dexmaker/src/dx/java/com/android/dx/ssa/
H A DPhiTypeResolver.java138 RegisterSpec rs = sources.get(i);
140 if (rs.getBasicType() != Type.BT_VOID) {
141 first = rs;
159 RegisterSpec rs = sources.get(i);
162 if (rs.getBasicType() == Type.BT_VOID){
167 && equalsHandlesNulls(firstLocal, rs.getLocalItem());
169 mergedType = Merger.mergeType(mergedType, rs.getType());
/external/valgrind/main/VEX/priv/
H A Dguest_mips_toIR.c466 assign(t1, binop(Iop_Add32, getIReg(rs), \
469 assign(t1, binop(Iop_Add64, getIReg(rs), \
503 getIReg(rs), \
515 mkNarrowTo32(ty, getIReg(rs)), \
526 putIReg(rd, binop(op, getIReg(rs), getIReg(rt)));
529 putIReg(rt, binop(op, getIReg(rs), mkU32(imm)));
532 putIReg(rt, binop(op, getIReg(rs), mkU64(imm)));
536 mkNarrowTo32(ty, getIReg(rs)), \
942 static IRExpr *genRORV32(IRExpr * src, IRExpr * rs) argument
947 assign(t0, unop(Iop_32to8, binop(Iop_And32, rs, mkU3
2376 UInt opcode, rs, rt, rd, sa, function, ac, ac_mfhilo, rddsp_mask, local
11688 UInt opcode, cins, rs, rt, rd, sa, ft, fs, fd, fmt, tf, nd, function, local
[all...]
/external/robolectric/src/main/java/com/xtremelabs/robolectric/shadows/
H A DShadowSQLiteCursor.java28 private void cacheColumnNames(ResultSet rs) { argument
30 ResultSetMetaData metaData = rs.getMetaData();
217 * @param rs
221 private Map<String,Object> fillRowValues(ResultSet rs) throws SQLException { argument
224 row.put(s, rs.getObject(s));
232 ResultSet rs = statement.executeQuery(sql);
234 if (rs.next()) {
236 Map<String,Object> row = fillRowValues(rs);
239 } while (rs.next());
241 rs
[all...]

Completed in 991 milliseconds

12345678910