Searched refs:eigenvalues (Results 1 - 25 of 40) sorted by relevance

12

/external/eigen/doc/snippets/
H A DComplexEigenSolver_eigenvalues.cpp3 cout << "The eigenvalues of the 3x3 matrix of ones are:"
4 << endl << ces.eigenvalues() << endl;
H A DEigenSolver_eigenvalues.cpp3 cout << "The eigenvalues of the 3x3 matrix of ones are:"
4 << endl << es.eigenvalues() << endl;
H A DMatrixBase_eigenvalues.cpp2 VectorXcd eivals = ones.eigenvalues();
3 cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
H A DSelfAdjointEigenSolver_eigenvalues.cpp3 cout << "The eigenvalues of the 3x3 matrix of ones are:"
4 << endl << es.eigenvalues() << endl;
H A DSelfAdjointView_eigenvalues.cpp2 VectorXd eivals = ones.selfadjointView<Lower>().eigenvalues();
3 cout << "The eigenvalues of the 3x3 matrix of ones are:" << endl << eivals << endl;
H A DEigenSolver_compute.cpp4 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
5 es.compute(A + MatrixXf::Identity(4,4), false); // re-use es to compute eigenvalues of A+I
6 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
H A DSelfAdjointEigenSolver_SelfAdjointEigenSolver.cpp5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
6 es.compute(A + Matrix4f::Identity(4,4)); // re-use es to compute eigenvalues of A+I
7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
H A DSelfAdjointEigenSolver_compute_MatrixType.cpp5 cout << "The eigenvalues of A are: " << es.eigenvalues().transpose() << endl;
6 es.compute(A + MatrixXf::Identity(4,4)); // re-use es to compute eigenvalues of A+I
7 cout << "The eigenvalues of A+I are: " << es.eigenvalues().transpose() << endl;
H A DSelfAdjointEigenSolver_compute_MatrixType2.cpp7 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl;
9 cout << "The eigenvalues of the pencil (B,A) are:" << endl << es.eigenvalues() << endl;
H A DComplexEigenSolver_compute.cpp6 cout << "The eigenvalues of A are:" << endl << ces.eigenvalues() << endl;
9 complex<float> lambda = ces.eigenvalues()[0];
16 << ces.eigenvectors() * ces.eigenvalues().asDiagonal() * ces.eigenvectors().inverse() << endl;
H A DEigenSolver_EigenSolver_MatrixType.cpp5 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl;
8 complex<double> lambda = es.eigenvalues()[0];
14 MatrixXcd D = es.eigenvalues().asDiagonal();
H A DSelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType.cpp6 cout << "The eigenvalues of A are:" << endl << es.eigenvalues() << endl;
9 double lambda = es.eigenvalues()[0];
15 MatrixXd D = es.eigenvalues().asDiagonal();
H A DGeneralizedEigenSolver.cpp5 cout << "The (complex) numerators of the generalzied eigenvalues are: " << ges.alphas().transpose() << endl;
6 cout << "The (real) denominatore of the generalzied eigenvalues are: " << ges.betas().transpose() << endl;
7 cout << "The (complex) generalzied eigenvalues are (alphas./beta): " << ges.eigenvalues().transpose() << endl;
H A DSelfAdjointEigenSolver_SelfAdjointEigenSolver_MatrixType2.cpp9 cout << "The eigenvalues of the pencil (A,B) are:" << endl << es.eigenvalues() << endl;
12 double lambda = es.eigenvalues()[0];
/external/eigen/Eigen/src/Eigenvalues/
H A DMatrixBaseEigenvalues.h27 return ComplexEigenSolver<PlainObject>(m_eval, false).eigenvalues();
39 return EigenSolver<PlainObject>(m_eval, false).eigenvalues();
45 /** \brief Computes the eigenvalues of a matrix
46 * \returns Column vector containing the eigenvalues.
49 * This function computes the eigenvalues with the help of the EigenSolver
53 * The eigenvalues are repeated according to their algebraic multiplicity,
54 * so there are as many eigenvalues as rows in the matrix.
62 * \sa EigenSolver::eigenvalues(), ComplexEigenSolver::eigenvalues(),
63 * SelfAdjointView::eigenvalues()
67 MatrixBase<Derived>::eigenvalues() const function in class:Eigen::MatrixBase
89 SelfAdjointView<MatrixType, UpLo>::eigenvalues() const function in class:Eigen::SelfAdjointView
[all...]
/external/chromium_org/ui/gfx/geometry/
H A Dmatrix3_f.cc134 float eigenvalues[3]; local
142 eigenvalues[0] = data_[M00];
143 eigenvalues[1] = data_[M11];
144 eigenvalues[2] = data_[M22];
169 eigenvalues[0] = q + 2 * p * static_cast<float>(cos(phi));
170 eigenvalues[2] = q + 2 * p *
172 eigenvalues[1] = 3 * q - eigenvalues[0] - eigenvalues[2];
175 // Put eigenvalues i
[all...]
/external/eigen/doc/examples/
H A DTutorialLinAlgSelfAdjointEigenSolver.cpp14 cout << "The eigenvalues of A are:\n" << eigensolver.eigenvalues() << endl;
16 << "corresponding to these eigenvalues:\n"
/external/eigen/test/
H A Deigensolver_complex.cpp50 VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
54 VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
55 // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
57 verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
63 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
72 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
77 VERIFY((eiz.eigenvalues()
[all...]
H A Deigensolver_generic.cpp37 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
43 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
45 VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues());
51 VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
60 VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
81 VERIFY_RAISES_ASSERT(eig.eigenvalues());
H A Deigensolver_selfadjoint.cpp47 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
48 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
52 eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps));
53 VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues());
57 VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
63 symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
69 (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues()
[all...]
H A Deigensolver_generalized_real.cpp37 VERIFY_IS_EQUAL(eig.eigenvalues().imag().cwiseAbs().maxCoeff(), 0);
39 VectorType realEigenvalues = eig.eigenvalues().real();
41 VERIFY_IS_APPROX(realEigenvalues, symmEig.eigenvalues());
/external/eigen/Eigen/src/Eigen2Support/
H A DLeastSquares.h161 *soundness = eig.eigenvalues().coeff(0)/eig.eigenvalues().coeff(1);
/external/eigen/test/eigen2/
H A Deigen2_eigensolver.cpp66 VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
78 VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
89 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
93 symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
123 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
128 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
/external/eigen/lapack/
H A Deigenvalues.cpp74 vector(w,*n) = eig.eigenvalues();
/external/eigen/unsupported/test/
H A Dmatrix_functions.h16 // for real matrices, make sure none of the eigenvalues are negative
24 typename EigenSolver<MatrixType>::EigenvalueType eivals = es.eigenvalues();

Completed in 236 milliseconds

12