1/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include "dex/compiler_ir.h"
17#include "dex/compiler_internals.h"
18#include "dex/quick/arm/arm_lir.h"
19#include "dex/quick/mir_to_lir-inl.h"
20#include "entrypoints/quick/quick_entrypoints.h"
21#include "mirror/array.h"
22#include "mirror/object_array-inl.h"
23#include "mirror/object-inl.h"
24#include "mirror/object_reference.h"
25#include "verifier/method_verifier.h"
26#include <functional>
27
28namespace art {
29
30// Shortcuts to repeatedly used long types.
31typedef mirror::ObjectArray<mirror::Object> ObjArray;
32typedef mirror::ObjectArray<mirror::Class> ClassArray;
33
34/*
35 * This source files contains "gen" codegen routines that should
36 * be applicable to most targets.  Only mid-level support utilities
37 * and "op" calls may be used here.
38 */
39
40/*
41 * Generate a kPseudoBarrier marker to indicate the boundary of special
42 * blocks.
43 */
44void Mir2Lir::GenBarrier() {
45  LIR* barrier = NewLIR0(kPseudoBarrier);
46  /* Mark all resources as being clobbered */
47  DCHECK(!barrier->flags.use_def_invalid);
48  barrier->u.m.def_mask = &kEncodeAll;
49}
50
51void Mir2Lir::GenDivZeroException() {
52  LIR* branch = OpUnconditionalBranch(nullptr);
53  AddDivZeroCheckSlowPath(branch);
54}
55
56void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
57  LIR* branch = OpCondBranch(c_code, nullptr);
58  AddDivZeroCheckSlowPath(branch);
59}
60
61void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
62  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
63  AddDivZeroCheckSlowPath(branch);
64}
65
66void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
67  class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
68   public:
69    DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
70        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
71    }
72
73    void Compile() OVERRIDE {
74      m2l_->ResetRegPool();
75      m2l_->ResetDefTracking();
76      GenerateTargetLabel(kPseudoThrowTarget);
77      m2l_->CallRuntimeHelper(kQuickThrowDivZero, true);
78    }
79  };
80
81  AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
82}
83
84void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
85  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
86   public:
87    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
88        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
89          index_(index), length_(length) {
90    }
91
92    void Compile() OVERRIDE {
93      m2l_->ResetRegPool();
94      m2l_->ResetDefTracking();
95      GenerateTargetLabel(kPseudoThrowTarget);
96      m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, index_, length_, true);
97    }
98
99   private:
100    const RegStorage index_;
101    const RegStorage length_;
102  };
103
104  LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
105  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
106}
107
108void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
109  class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
110   public:
111    ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
112        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
113          index_(index), length_(length) {
114    }
115
116    void Compile() OVERRIDE {
117      m2l_->ResetRegPool();
118      m2l_->ResetDefTracking();
119      GenerateTargetLabel(kPseudoThrowTarget);
120
121      RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
122      RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
123
124      m2l_->OpRegCopy(arg1_32, length_);
125      m2l_->LoadConstant(arg0_32, index_);
126      m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, arg0_32, arg1_32, true);
127    }
128
129   private:
130    const int32_t index_;
131    const RegStorage length_;
132  };
133
134  LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
135  AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
136}
137
138LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
139  class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
140   public:
141    NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
142        : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
143    }
144
145    void Compile() OVERRIDE {
146      m2l_->ResetRegPool();
147      m2l_->ResetDefTracking();
148      GenerateTargetLabel(kPseudoThrowTarget);
149      m2l_->CallRuntimeHelper(kQuickThrowNullPointer, true);
150    }
151  };
152
153  LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
154  AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
155  return branch;
156}
157
158/* Perform null-check on a register.  */
159LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
160  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
161    return GenExplicitNullCheck(m_reg, opt_flags);
162  }
163  // If null check has not been eliminated, reset redundant store tracking.
164  if ((opt_flags & MIR_IGNORE_NULL_CHECK) == 0) {
165    ResetDefTracking();
166  }
167  return nullptr;
168}
169
170/* Perform an explicit null-check on a register.  */
171LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
172  if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
173    return NULL;
174  }
175  return GenNullCheck(m_reg);
176}
177
178void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
179  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
180    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
181      return;
182    }
183    // Insert after last instruction.
184    MarkSafepointPC(last_lir_insn_);
185  }
186}
187
188void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
189  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
190    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
191      return;
192    }
193    MarkSafepointPCAfter(after);
194  }
195}
196
197void Mir2Lir::MarkPossibleStackOverflowException() {
198  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
199    MarkSafepointPC(last_lir_insn_);
200  }
201}
202
203void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
204  if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
205    if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
206      return;
207    }
208    // Force an implicit null check by performing a memory operation (load) from the given
209    // register with offset 0.  This will cause a signal if the register contains 0 (null).
210    RegStorage tmp = AllocTemp();
211    // TODO: for Mips, would be best to use rZERO as the bogus register target.
212    LIR* load = Load32Disp(reg, 0, tmp);
213    FreeTemp(tmp);
214    MarkSafepointPC(load);
215  }
216}
217
218void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
219                                  RegLocation rl_src2, LIR* taken,
220                                  LIR* fall_through) {
221  DCHECK(!rl_src1.fp);
222  DCHECK(!rl_src2.fp);
223  ConditionCode cond;
224  switch (opcode) {
225    case Instruction::IF_EQ:
226      cond = kCondEq;
227      break;
228    case Instruction::IF_NE:
229      cond = kCondNe;
230      break;
231    case Instruction::IF_LT:
232      cond = kCondLt;
233      break;
234    case Instruction::IF_GE:
235      cond = kCondGe;
236      break;
237    case Instruction::IF_GT:
238      cond = kCondGt;
239      break;
240    case Instruction::IF_LE:
241      cond = kCondLe;
242      break;
243    default:
244      cond = static_cast<ConditionCode>(0);
245      LOG(FATAL) << "Unexpected opcode " << opcode;
246  }
247
248  // Normalize such that if either operand is constant, src2 will be constant
249  if (rl_src1.is_const) {
250    RegLocation rl_temp = rl_src1;
251    rl_src1 = rl_src2;
252    rl_src2 = rl_temp;
253    cond = FlipComparisonOrder(cond);
254  }
255
256  rl_src1 = LoadValue(rl_src1);
257  // Is this really an immediate comparison?
258  if (rl_src2.is_const) {
259    // If it's already live in a register or not easily materialized, just keep going
260    RegLocation rl_temp = UpdateLoc(rl_src2);
261    int32_t constant_value = mir_graph_->ConstantValue(rl_src2);
262    if ((rl_temp.location == kLocDalvikFrame) &&
263        InexpensiveConstantInt(constant_value, opcode)) {
264      // OK - convert this to a compare immediate and branch
265      OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
266      return;
267    }
268
269    // It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse
270    // for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register
271    // mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses
272    // the 32b literal 0 for null.
273    if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) {
274      // Use the OpCmpImmBranch and ignore the value in the register.
275      OpCmpImmBranch(cond, rl_src1.reg, 0, taken);
276      return;
277    }
278  }
279
280  rl_src2 = LoadValue(rl_src2);
281  OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
282}
283
284void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
285                                      LIR* fall_through) {
286  ConditionCode cond;
287  DCHECK(!rl_src.fp);
288  rl_src = LoadValue(rl_src);
289  switch (opcode) {
290    case Instruction::IF_EQZ:
291      cond = kCondEq;
292      break;
293    case Instruction::IF_NEZ:
294      cond = kCondNe;
295      break;
296    case Instruction::IF_LTZ:
297      cond = kCondLt;
298      break;
299    case Instruction::IF_GEZ:
300      cond = kCondGe;
301      break;
302    case Instruction::IF_GTZ:
303      cond = kCondGt;
304      break;
305    case Instruction::IF_LEZ:
306      cond = kCondLe;
307      break;
308    default:
309      cond = static_cast<ConditionCode>(0);
310      LOG(FATAL) << "Unexpected opcode " << opcode;
311  }
312  OpCmpImmBranch(cond, rl_src.reg, 0, taken);
313}
314
315void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
316  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
317  if (rl_src.location == kLocPhysReg) {
318    OpRegCopy(rl_result.reg, rl_src.reg);
319  } else {
320    LoadValueDirect(rl_src, rl_result.reg.GetLow());
321  }
322  OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
323  StoreValueWide(rl_dest, rl_result);
324}
325
326void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
327                              RegLocation rl_src) {
328  rl_src = LoadValue(rl_src, kCoreReg);
329  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
330  OpKind op = kOpInvalid;
331  switch (opcode) {
332    case Instruction::INT_TO_BYTE:
333      op = kOp2Byte;
334      break;
335    case Instruction::INT_TO_SHORT:
336       op = kOp2Short;
337       break;
338    case Instruction::INT_TO_CHAR:
339       op = kOp2Char;
340       break;
341    default:
342      LOG(ERROR) << "Bad int conversion type";
343  }
344  OpRegReg(op, rl_result.reg, rl_src.reg);
345  StoreValue(rl_dest, rl_result);
346}
347
348/*
349 * Let helper function take care of everything.  Will call
350 * Array::AllocFromCode(type_idx, method, count);
351 * Note: AllocFromCode will handle checks for errNegativeArraySize.
352 */
353void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
354                          RegLocation rl_src) {
355  FlushAllRegs();  /* Everything to home location */
356  const DexFile* dex_file = cu_->dex_file;
357  CompilerDriver* driver = cu_->compiler_driver;
358  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
359    bool is_type_initialized;  // Ignored as an array does not have an initializer.
360    bool use_direct_type_ptr;
361    uintptr_t direct_type_ptr;
362    bool is_finalizable;
363    if (kEmbedClassInCode &&
364        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
365                                   &direct_type_ptr, &is_finalizable)) {
366      // The fast path.
367      if (!use_direct_type_ptr) {
368        LoadClassType(type_idx, kArg0);
369        CallRuntimeHelperRegMethodRegLocation(kQuickAllocArrayResolved, TargetReg(kArg0, kNotWide),
370                                              rl_src, true);
371      } else {
372        // Use the direct pointer.
373        CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayResolved, direct_type_ptr, rl_src,
374                                              true);
375      }
376    } else {
377      // The slow path.
378      CallRuntimeHelperImmMethodRegLocation(kQuickAllocArray, type_idx, rl_src, true);
379    }
380  } else {
381    CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayWithAccessCheck, type_idx, rl_src, true);
382  }
383  StoreValue(rl_dest, GetReturn(kRefReg));
384}
385
386/*
387 * Similar to GenNewArray, but with post-allocation initialization.
388 * Verifier guarantees we're dealing with an array class.  Current
389 * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
390 * Current code also throws internal unimp if not 'L', '[' or 'I'.
391 */
392void Mir2Lir::GenFilledNewArray(CallInfo* info) {
393  int elems = info->num_arg_words;
394  int type_idx = info->index;
395  FlushAllRegs();  /* Everything to home location */
396  QuickEntrypointEnum target;
397  if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
398                                                       type_idx)) {
399    target = kQuickCheckAndAllocArray;
400  } else {
401    target = kQuickCheckAndAllocArrayWithAccessCheck;
402  }
403  CallRuntimeHelperImmMethodImm(target, type_idx, elems, true);
404  FreeTemp(TargetReg(kArg2, kNotWide));
405  FreeTemp(TargetReg(kArg1, kNotWide));
406  /*
407   * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
408   * return region.  Because AllocFromCode placed the new array
409   * in kRet0, we'll just lock it into place.  When debugger support is
410   * added, it may be necessary to additionally copy all return
411   * values to a home location in thread-local storage
412   */
413  RegStorage ref_reg = TargetReg(kRet0, kRef);
414  LockTemp(ref_reg);
415
416  // TODO: use the correct component size, currently all supported types
417  // share array alignment with ints (see comment at head of function)
418  size_t component_size = sizeof(int32_t);
419
420  // Having a range of 0 is legal
421  if (info->is_range && (elems > 0)) {
422    /*
423     * Bit of ugliness here.  We're going generate a mem copy loop
424     * on the register range, but it is possible that some regs
425     * in the range have been promoted.  This is unlikely, but
426     * before generating the copy, we'll just force a flush
427     * of any regs in the source range that have been promoted to
428     * home location.
429     */
430    for (int i = 0; i < elems; i++) {
431      RegLocation loc = UpdateLoc(info->args[i]);
432      if (loc.location == kLocPhysReg) {
433        ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
434        Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
435      }
436    }
437    /*
438     * TUNING note: generated code here could be much improved, but
439     * this is an uncommon operation and isn't especially performance
440     * critical.
441     */
442    // This is addressing the stack, which may be out of the 4G area.
443    RegStorage r_src = AllocTempRef();
444    RegStorage r_dst = AllocTempRef();
445    RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
446    RegStorage r_val;
447    switch (cu_->instruction_set) {
448      case kThumb2:
449      case kArm64:
450        r_val = TargetReg(kLr, kNotWide);
451        break;
452      case kX86:
453      case kX86_64:
454        FreeTemp(ref_reg);
455        r_val = AllocTemp();
456        break;
457      case kMips:
458        r_val = AllocTemp();
459        break;
460      default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
461    }
462    // Set up source pointer
463    RegLocation rl_first = info->args[0];
464    OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
465    // Set up the target pointer
466    OpRegRegImm(kOpAdd, r_dst, ref_reg,
467                mirror::Array::DataOffset(component_size).Int32Value());
468    // Set up the loop counter (known to be > 0)
469    LoadConstant(r_idx, elems - 1);
470    // Generate the copy loop.  Going backwards for convenience
471    LIR* target = NewLIR0(kPseudoTargetLabel);
472    // Copy next element
473    {
474      ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
475      LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
476      // NOTE: No dalvik register annotation, local optimizations will be stopped
477      // by the loop boundaries.
478    }
479    StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
480    FreeTemp(r_val);
481    OpDecAndBranch(kCondGe, r_idx, target);
482    if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
483      // Restore the target pointer
484      OpRegRegImm(kOpAdd, ref_reg, r_dst,
485                  -mirror::Array::DataOffset(component_size).Int32Value());
486    }
487  } else if (!info->is_range) {
488    // TUNING: interleave
489    for (int i = 0; i < elems; i++) {
490      RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
491      Store32Disp(ref_reg,
492                  mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
493      // If the LoadValue caused a temp to be allocated, free it
494      if (IsTemp(rl_arg.reg)) {
495        FreeTemp(rl_arg.reg);
496      }
497    }
498  }
499  if (info->result.location != kLocInvalid) {
500    StoreValue(info->result, GetReturn(kRefReg));
501  }
502}
503
504//
505// Slow path to ensure a class is initialized for sget/sput.
506//
507class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
508 public:
509  StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
510                      RegStorage r_base) :
511    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
512               storage_index_(storage_index), r_base_(r_base) {
513  }
514
515  void Compile() {
516    LIR* unresolved_target = GenerateTargetLabel();
517    uninit_->target = unresolved_target;
518    m2l_->CallRuntimeHelperImm(kQuickInitializeStaticStorage, storage_index_, true);
519    // Copy helper's result into r_base, a no-op on all but MIPS.
520    m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
521
522    m2l_->OpUnconditionalBranch(cont_);
523  }
524
525 private:
526  LIR* const uninit_;
527  const int storage_index_;
528  const RegStorage r_base_;
529};
530
531void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
532                      bool is_object) {
533  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
534  cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
535  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
536  if (!SLOW_FIELD_PATH && field_info.FastPut()) {
537    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
538    RegStorage r_base;
539    if (field_info.IsReferrersClass()) {
540      // Fast path, static storage base is this method's class
541      RegLocation rl_method = LoadCurrMethod();
542      r_base = AllocTempRef();
543      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
544                  kNotVolatile);
545      if (IsTemp(rl_method.reg)) {
546        FreeTemp(rl_method.reg);
547      }
548    } else {
549      // Medium path, static storage base in a different class which requires checks that the other
550      // class is initialized.
551      // TODO: remove initialized check now that we are initializing classes in the compiler driver.
552      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
553      // May do runtime call so everything to home locations.
554      FlushAllRegs();
555      // Using fixed register to sync with possible call to runtime support.
556      RegStorage r_method = TargetReg(kArg1, kRef);
557      LockTemp(r_method);
558      LoadCurrMethodDirect(r_method);
559      r_base = TargetReg(kArg0, kRef);
560      LockTemp(r_base);
561      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
562                  kNotVolatile);
563      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
564      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
565      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
566      if (!field_info.IsInitialized() &&
567          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
568        // Check if r_base is NULL or a not yet initialized class.
569
570        // The slow path is invoked if the r_base is NULL or the class pointed
571        // to by it is not initialized.
572        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
573        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
574        LockTemp(r_tmp);
575        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
576                                          mirror::Class::StatusOffset().Int32Value(),
577                                          mirror::Class::kStatusInitialized, nullptr, nullptr);
578        LIR* cont = NewLIR0(kPseudoTargetLabel);
579
580        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
581                                                     field_info.StorageIndex(), r_base));
582
583        FreeTemp(r_tmp);
584        // Ensure load of status and store of value don't re-order.
585        // TODO: Presumably the actual value store is control-dependent on the status load,
586        // and will thus not be reordered in any case, since stores are never speculated.
587        // Does later code "know" that the class is now initialized?  If so, we still
588        // need the barrier to guard later static loads.
589        GenMemBarrier(kLoadAny);
590      }
591      FreeTemp(r_method);
592    }
593    // rBase now holds static storage base
594    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
595    if (is_long_or_double) {
596      rl_src = LoadValueWide(rl_src, reg_class);
597    } else {
598      rl_src = LoadValue(rl_src, reg_class);
599    }
600    if (is_object) {
601      StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
602                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
603    } else {
604      StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
605                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
606    }
607    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
608      MarkGCCard(rl_src.reg, r_base);
609    }
610    FreeTemp(r_base);
611  } else {
612    FlushAllRegs();  // Everything to home locations
613    QuickEntrypointEnum target =
614        is_long_or_double ? kQuickSet64Static
615            : (is_object ? kQuickSetObjStatic : kQuickSet32Static);
616    CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_src, true);
617  }
618}
619
620void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
621                      bool is_long_or_double, bool is_object) {
622  const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
623  cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
624  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
625  if (!SLOW_FIELD_PATH && field_info.FastGet()) {
626    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
627    RegStorage r_base;
628    if (field_info.IsReferrersClass()) {
629      // Fast path, static storage base is this method's class
630      RegLocation rl_method  = LoadCurrMethod();
631      r_base = AllocTempRef();
632      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
633                  kNotVolatile);
634    } else {
635      // Medium path, static storage base in a different class which requires checks that the other
636      // class is initialized
637      DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
638      // May do runtime call so everything to home locations.
639      FlushAllRegs();
640      // Using fixed register to sync with possible call to runtime support.
641      RegStorage r_method = TargetReg(kArg1, kRef);
642      LockTemp(r_method);
643      LoadCurrMethodDirect(r_method);
644      r_base = TargetReg(kArg0, kRef);
645      LockTemp(r_base);
646      LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
647                  kNotVolatile);
648      int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
649      LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
650      // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
651      if (!field_info.IsInitialized() &&
652          (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
653        // Check if r_base is NULL or a not yet initialized class.
654
655        // The slow path is invoked if the r_base is NULL or the class pointed
656        // to by it is not initialized.
657        LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
658        RegStorage r_tmp = TargetReg(kArg2, kNotWide);
659        LockTemp(r_tmp);
660        LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
661                                          mirror::Class::StatusOffset().Int32Value(),
662                                          mirror::Class::kStatusInitialized, nullptr, nullptr);
663        LIR* cont = NewLIR0(kPseudoTargetLabel);
664
665        AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
666                                                     field_info.StorageIndex(), r_base));
667
668        FreeTemp(r_tmp);
669        // Ensure load of status and load of value don't re-order.
670        GenMemBarrier(kLoadAny);
671      }
672      FreeTemp(r_method);
673    }
674    // r_base now holds static storage base
675    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
676    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
677
678    int field_offset = field_info.FieldOffset().Int32Value();
679    if (is_object) {
680      LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
681          kNotVolatile);
682    } else {
683      LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
684          kVolatile : kNotVolatile);
685    }
686    FreeTemp(r_base);
687
688    if (is_long_or_double) {
689      StoreValueWide(rl_dest, rl_result);
690    } else {
691      StoreValue(rl_dest, rl_result);
692    }
693  } else {
694    FlushAllRegs();  // Everything to home locations
695    QuickEntrypointEnum target =
696        is_long_or_double ? kQuickGet64Static
697            : (is_object ? kQuickGetObjStatic : kQuickGet32Static);
698    CallRuntimeHelperImm(target, field_info.FieldIndex(), true);
699
700    // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
701    if (is_long_or_double) {
702      RegLocation rl_result = GetReturnWide(kCoreReg);
703      StoreValueWide(rl_dest, rl_result);
704    } else {
705      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
706      StoreValue(rl_dest, rl_result);
707    }
708  }
709}
710
711// Generate code for all slow paths.
712void Mir2Lir::HandleSlowPaths() {
713  // We should check slow_paths_.Size() every time, because a new slow path
714  // may be created during slowpath->Compile().
715  for (size_t i = 0; i < slow_paths_.Size(); ++i) {
716    LIRSlowPath* slowpath = slow_paths_.Get(i);
717    slowpath->Compile();
718  }
719  slow_paths_.Reset();
720}
721
722void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
723                      RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
724                      bool is_object) {
725  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
726  cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
727  OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
728  if (!SLOW_FIELD_PATH && field_info.FastGet()) {
729    RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
730    // A load of the class will lead to an iget with offset 0.
731    DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
732    rl_obj = LoadValue(rl_obj, kRefReg);
733    GenNullCheck(rl_obj.reg, opt_flags);
734    RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
735    int field_offset = field_info.FieldOffset().Int32Value();
736    LIR* load_lir;
737    if (is_object) {
738      load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
739          kVolatile : kNotVolatile);
740    } else {
741      load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
742                              field_info.IsVolatile() ? kVolatile : kNotVolatile);
743    }
744    MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
745    if (is_long_or_double) {
746      StoreValueWide(rl_dest, rl_result);
747    } else {
748      StoreValue(rl_dest, rl_result);
749    }
750  } else {
751    QuickEntrypointEnum target =
752        is_long_or_double ? kQuickGet64Instance
753            : (is_object ? kQuickGetObjInstance : kQuickGet32Instance);
754    // Second argument of pGetXXInstance is always a reference.
755    DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U);
756    CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_obj, true);
757
758    // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
759    if (is_long_or_double) {
760      RegLocation rl_result = GetReturnWide(kCoreReg);
761      StoreValueWide(rl_dest, rl_result);
762    } else {
763      RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
764      StoreValue(rl_dest, rl_result);
765    }
766  }
767}
768
769void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
770                      RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
771                      bool is_object) {
772  const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
773  cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
774  OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
775  if (!SLOW_FIELD_PATH && field_info.FastPut()) {
776    RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
777    // Dex code never writes to the class field.
778    DCHECK_GE(static_cast<uint32_t>(field_info.FieldOffset().Int32Value()),
779              sizeof(mirror::HeapReference<mirror::Class>));
780    rl_obj = LoadValue(rl_obj, kRefReg);
781    if (is_long_or_double) {
782      rl_src = LoadValueWide(rl_src, reg_class);
783    } else {
784      rl_src = LoadValue(rl_src, reg_class);
785    }
786    GenNullCheck(rl_obj.reg, opt_flags);
787    int field_offset = field_info.FieldOffset().Int32Value();
788    LIR* null_ck_insn;
789    if (is_object) {
790      null_ck_insn = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
791          kVolatile : kNotVolatile);
792    } else {
793      null_ck_insn = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
794                                   field_info.IsVolatile() ? kVolatile : kNotVolatile);
795    }
796    MarkPossibleNullPointerExceptionAfter(opt_flags, null_ck_insn);
797    if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
798      MarkGCCard(rl_src.reg, rl_obj.reg);
799    }
800  } else {
801    QuickEntrypointEnum target =
802        is_long_or_double ? kQuickSet64Instance
803            : (is_object ? kQuickSetObjInstance : kQuickSet32Instance);
804    CallRuntimeHelperImmRegLocationRegLocation(target, field_info.FieldIndex(), rl_obj, rl_src,
805                                               true);
806  }
807}
808
809void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
810                             RegLocation rl_src) {
811  bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
812  bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
813      (opt_flags & MIR_IGNORE_NULL_CHECK));
814  QuickEntrypointEnum target = needs_range_check
815        ? (needs_null_check ? kQuickAputObjectWithNullAndBoundCheck
816                            : kQuickAputObjectWithBoundCheck)
817        : kQuickAputObject;
818  CallRuntimeHelperRegLocationRegLocationRegLocation(target, rl_array, rl_index, rl_src, true);
819}
820
821void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
822  RegLocation rl_method = LoadCurrMethod();
823  CheckRegLocation(rl_method);
824  RegStorage res_reg = AllocTempRef();
825  RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
826  if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
827                                                        *cu_->dex_file,
828                                                        type_idx)) {
829    // Call out to helper which resolves type and verifies access.
830    // Resolved type returned in kRet0.
831    CallRuntimeHelperImmReg(kQuickInitializeTypeAndVerifyAccess, type_idx, rl_method.reg, true);
832    RegLocation rl_result = GetReturn(kRefReg);
833    StoreValue(rl_dest, rl_result);
834  } else {
835    // We're don't need access checks, load type from dex cache
836    int32_t dex_cache_offset =
837        mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
838    LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
839    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
840    LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
841    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
842        type_idx) || SLOW_TYPE_PATH) {
843      // Slow path, at runtime test if type is null and if so initialize
844      FlushAllRegs();
845      LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
846      LIR* cont = NewLIR0(kPseudoTargetLabel);
847
848      // Object to generate the slow path for class resolution.
849      class SlowPath : public LIRSlowPath {
850       public:
851        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
852                 const RegLocation& rl_method, const RegLocation& rl_result) :
853                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
854                   rl_method_(rl_method), rl_result_(rl_result) {
855        }
856
857        void Compile() {
858          GenerateTargetLabel();
859
860          m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_, rl_method_.reg, true);
861          m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0, kRef));
862          m2l_->OpUnconditionalBranch(cont_);
863        }
864
865       private:
866        const int type_idx_;
867        const RegLocation rl_method_;
868        const RegLocation rl_result_;
869      };
870
871      // Add to list for future.
872      AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
873
874      StoreValue(rl_dest, rl_result);
875     } else {
876      // Fast path, we're done - just store result
877      StoreValue(rl_dest, rl_result);
878    }
879  }
880}
881
882void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
883  /* NOTE: Most strings should be available at compile time */
884  const int32_t offset_of_string =
885      mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).Int32Value();
886  if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
887      *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
888    // slow path, resolve string if not in dex cache
889    FlushAllRegs();
890    LockCallTemps();  // Using explicit registers
891
892    // If the Method* is already in a register, we can save a copy.
893    RegLocation rl_method = mir_graph_->GetMethodLoc();
894    RegStorage r_method;
895    if (rl_method.location == kLocPhysReg) {
896      // A temp would conflict with register use below.
897      DCHECK(!IsTemp(rl_method.reg));
898      r_method = rl_method.reg;
899    } else {
900      r_method = TargetReg(kArg2, kRef);
901      LoadCurrMethodDirect(r_method);
902    }
903    // Method to declaring class.
904    LoadRefDisp(r_method, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
905                TargetReg(kArg0, kRef), kNotVolatile);
906    // Declaring class to dex cache strings.
907    LoadRefDisp(TargetReg(kArg0, kRef), mirror::Class::DexCacheStringsOffset().Int32Value(),
908                TargetReg(kArg0, kRef), kNotVolatile);
909
910    // Might call out to helper, which will return resolved string in kRet0
911    LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile);
912    LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL);
913    LIR* cont = NewLIR0(kPseudoTargetLabel);
914
915    {
916      // Object to generate the slow path for string resolution.
917      class SlowPath : public LIRSlowPath {
918       public:
919        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
920          LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
921          r_method_(r_method), string_idx_(string_idx) {
922        }
923
924        void Compile() {
925          GenerateTargetLabel();
926          m2l_->CallRuntimeHelperRegImm(kQuickResolveString, r_method_, string_idx_, true);
927          m2l_->OpUnconditionalBranch(cont_);
928        }
929
930       private:
931         const RegStorage r_method_;
932         const int32_t string_idx_;
933      };
934
935      AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
936    }
937
938    GenBarrier();
939    StoreValue(rl_dest, GetReturn(kRefReg));
940  } else {
941    // Try to see if we can embed a direct pointer.
942    bool use_direct_ptr = false;
943    size_t direct_ptr = 0;
944    bool embed_string = false;
945    // TODO: Implement for X86.
946    if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
947      embed_string = cu_->compiler_driver->CanEmbedStringInCode(*cu_->dex_file, string_idx,
948                                                                &use_direct_ptr, &direct_ptr);
949    }
950    if (embed_string) {
951      RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
952      if (!use_direct_ptr) {
953        LoadString(string_idx, rl_result.reg);
954      } else {
955        LoadConstant(rl_result.reg, static_cast<int32_t>(direct_ptr));
956      }
957      StoreValue(rl_dest, rl_result);
958    } else {
959      RegLocation rl_method = LoadCurrMethod();
960      RegStorage res_reg = AllocTempRef();
961      RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
962
963      // Method to declaring class.
964      LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
965                  res_reg, kNotVolatile);
966      // Declaring class to dex cache strings.
967      LoadRefDisp(res_reg, mirror::Class::DexCacheStringsOffset().Int32Value(), res_reg,
968                  kNotVolatile);
969
970      LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
971      StoreValue(rl_dest, rl_result);
972    }
973  }
974}
975
976/*
977 * Let helper function take care of everything.  Will
978 * call Class::NewInstanceFromCode(type_idx, method);
979 */
980void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
981  FlushAllRegs();  /* Everything to home location */
982  // alloc will always check for resolution, do we also need to verify
983  // access because the verifier was unable to?
984  const DexFile* dex_file = cu_->dex_file;
985  CompilerDriver* driver = cu_->compiler_driver;
986  if (driver->CanAccessInstantiableTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
987    bool is_type_initialized;
988    bool use_direct_type_ptr;
989    uintptr_t direct_type_ptr;
990    bool is_finalizable;
991    if (kEmbedClassInCode &&
992        driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
993                                   &direct_type_ptr, &is_finalizable) &&
994                                   !is_finalizable) {
995      // The fast path.
996      if (!use_direct_type_ptr) {
997        LoadClassType(type_idx, kArg0);
998        if (!is_type_initialized) {
999          CallRuntimeHelperRegMethod(kQuickAllocObjectResolved, TargetReg(kArg0, kRef), true);
1000        } else {
1001          CallRuntimeHelperRegMethod(kQuickAllocObjectInitialized, TargetReg(kArg0, kRef), true);
1002        }
1003      } else {
1004        // Use the direct pointer.
1005        if (!is_type_initialized) {
1006          CallRuntimeHelperImmMethod(kQuickAllocObjectResolved, direct_type_ptr, true);
1007        } else {
1008          CallRuntimeHelperImmMethod(kQuickAllocObjectInitialized, direct_type_ptr, true);
1009        }
1010      }
1011    } else {
1012      // The slow path.
1013      CallRuntimeHelperImmMethod(kQuickAllocObject, type_idx, true);
1014    }
1015  } else {
1016    CallRuntimeHelperImmMethod(kQuickAllocObjectWithAccessCheck, type_idx, true);
1017  }
1018  StoreValue(rl_dest, GetReturn(kRefReg));
1019}
1020
1021void Mir2Lir::GenThrow(RegLocation rl_src) {
1022  FlushAllRegs();
1023  CallRuntimeHelperRegLocation(kQuickDeliverException, rl_src, true);
1024}
1025
1026// For final classes there are no sub-classes to check and so we can answer the instance-of
1027// question with simple comparisons.
1028void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
1029                                 RegLocation rl_src) {
1030  // X86 has its own implementation.
1031  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1032
1033  RegLocation object = LoadValue(rl_src, kRefReg);
1034  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1035  RegStorage result_reg = rl_result.reg;
1036  if (IsSameReg(result_reg, object.reg)) {
1037    result_reg = AllocTypedTemp(false, kCoreReg);
1038    DCHECK(!IsSameReg(result_reg, object.reg));
1039  }
1040  LoadConstant(result_reg, 0);     // assume false
1041  LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1042
1043  RegStorage check_class = AllocTypedTemp(false, kRefReg);
1044  RegStorage object_class = AllocTypedTemp(false, kRefReg);
1045
1046  LoadCurrMethodDirect(check_class);
1047  if (use_declaring_class) {
1048    LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1049                kNotVolatile);
1050    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1051                kNotVolatile);
1052  } else {
1053    LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1054                check_class, kNotVolatile);
1055    LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1056                kNotVolatile);
1057    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1058    LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1059  }
1060
1061  // FIXME: what should we be comparing here? compressed or decompressed references?
1062  if (cu_->instruction_set == kThumb2) {
1063    OpRegReg(kOpCmp, check_class, object_class);  // Same?
1064    LIR* it = OpIT(kCondEq, "");   // if-convert the test
1065    LoadConstant(result_reg, 1);     // .eq case - load true
1066    OpEndIT(it);
1067  } else {
1068    GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
1069  }
1070  LIR* target = NewLIR0(kPseudoTargetLabel);
1071  null_branchover->target = target;
1072  FreeTemp(object_class);
1073  FreeTemp(check_class);
1074  if (IsTemp(result_reg)) {
1075    OpRegCopy(rl_result.reg, result_reg);
1076    FreeTemp(result_reg);
1077  }
1078  StoreValue(rl_dest, rl_result);
1079}
1080
1081void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1082                                         bool type_known_abstract, bool use_declaring_class,
1083                                         bool can_assume_type_is_in_dex_cache,
1084                                         uint32_t type_idx, RegLocation rl_dest,
1085                                         RegLocation rl_src) {
1086  FlushAllRegs();
1087  // May generate a call - use explicit registers
1088  LockCallTemps();
1089  RegStorage method_reg = TargetReg(kArg1, kRef);
1090  LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
1091  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1092  RegStorage ref_reg = TargetReg(kArg0, kRef);  // kArg0 will hold the ref.
1093  RegStorage ret_reg = GetReturn(kRefReg).reg;
1094  if (needs_access_check) {
1095    // Check we have access to type_idx and if not throw IllegalAccessError,
1096    // returns Class* in kArg0
1097    CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1098    OpRegCopy(class_reg, ret_reg);  // Align usage with fast path
1099    LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1100  } else if (use_declaring_class) {
1101    LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1102    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1103                class_reg, kNotVolatile);
1104  } else {
1105    if (can_assume_type_is_in_dex_cache) {
1106      // Conditionally, as in the other case we will also load it.
1107      LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1108    }
1109
1110    // Load dex cache entry into class_reg (kArg2)
1111    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1112                class_reg, kNotVolatile);
1113    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1114    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1115    if (!can_assume_type_is_in_dex_cache) {
1116      LIR* slow_path_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1117      LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
1118
1119      // Should load value here.
1120      LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1121
1122      class InitTypeSlowPath : public Mir2Lir::LIRSlowPath {
1123       public:
1124        InitTypeSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont, uint32_t type_idx,
1125                         RegLocation rl_src)
1126            : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont), type_idx_(type_idx),
1127              rl_src_(rl_src) {
1128        }
1129
1130        void Compile() OVERRIDE {
1131          GenerateTargetLabel();
1132
1133          m2l_->CallRuntimeHelperImm(kQuickInitializeType, type_idx_, true);
1134          m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kRef),
1135                          m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1136          m2l_->OpUnconditionalBranch(cont_);
1137        }
1138
1139       private:
1140        uint32_t type_idx_;
1141        RegLocation rl_src_;
1142      };
1143
1144      AddSlowPath(new (arena_) InitTypeSlowPath(this, slow_path_branch, slow_path_target,
1145                                                type_idx, rl_src));
1146    }
1147  }
1148  /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1149  RegLocation rl_result = GetReturn(kCoreReg);
1150  if (!IsSameReg(rl_result.reg, ref_reg)) {
1151    // On MIPS and x86_64 rArg0 != rl_result, place false in result if branch is taken.
1152    LoadConstant(rl_result.reg, 0);
1153  }
1154  LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, NULL);
1155
1156  /* load object->klass_ */
1157  RegStorage ref_class_reg = TargetReg(kArg1, kRef);  // kArg1 will hold the Class* of ref.
1158  DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1159  LoadRefDisp(ref_reg, mirror::Object::ClassOffset().Int32Value(),
1160              ref_class_reg, kNotVolatile);
1161  /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1162  LIR* branchover = NULL;
1163  if (type_known_final) {
1164    // rl_result == ref == class.
1165    GenSelectConst32(ref_class_reg, class_reg, kCondEq, 1, 0, rl_result.reg,
1166                     kCoreReg);
1167  } else {
1168    if (cu_->instruction_set == kThumb2) {
1169      RegStorage r_tgt = LoadHelper(kQuickInstanceofNonTrivial);
1170      LIR* it = nullptr;
1171      if (!type_known_abstract) {
1172      /* Uses conditional nullification */
1173        OpRegReg(kOpCmp, ref_class_reg, class_reg);  // Same?
1174        it = OpIT(kCondEq, "EE");   // if-convert the test
1175        LoadConstant(rl_result.reg, 1);     // .eq case - load true
1176      }
1177      OpRegCopy(ref_reg, class_reg);    // .ne case - arg0 <= class
1178      OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1179      if (it != nullptr) {
1180        OpEndIT(it);
1181      }
1182      FreeTemp(r_tgt);
1183    } else {
1184      if (!type_known_abstract) {
1185        /* Uses branchovers */
1186        LoadConstant(rl_result.reg, 1);     // assume true
1187        branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1188      }
1189
1190      OpRegCopy(TargetReg(kArg0, kRef), class_reg);    // .ne case - arg0 <= class
1191      CallRuntimeHelper(kQuickInstanceofNonTrivial, false);
1192    }
1193  }
1194  // TODO: only clobber when type isn't final?
1195  ClobberCallerSave();
1196  /* branch targets here */
1197  LIR* target = NewLIR0(kPseudoTargetLabel);
1198  StoreValue(rl_dest, rl_result);
1199  branch1->target = target;
1200  if (branchover != nullptr) {
1201    branchover->target = target;
1202  }
1203}
1204
1205void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1206  bool type_known_final, type_known_abstract, use_declaring_class;
1207  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1208                                                                              *cu_->dex_file,
1209                                                                              type_idx,
1210                                                                              &type_known_final,
1211                                                                              &type_known_abstract,
1212                                                                              &use_declaring_class);
1213  bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1214      cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1215
1216  if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1217    GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1218  } else {
1219    GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1220                               use_declaring_class, can_assume_type_is_in_dex_cache,
1221                               type_idx, rl_dest, rl_src);
1222  }
1223}
1224
1225void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1226  bool type_known_final, type_known_abstract, use_declaring_class;
1227  bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1228                                                                              *cu_->dex_file,
1229                                                                              type_idx,
1230                                                                              &type_known_final,
1231                                                                              &type_known_abstract,
1232                                                                              &use_declaring_class);
1233  // Note: currently type_known_final is unused, as optimizing will only improve the performance
1234  // of the exception throw path.
1235  DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1236  if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1237    // Verifier type analysis proved this check cast would never cause an exception.
1238    return;
1239  }
1240  FlushAllRegs();
1241  // May generate a call - use explicit registers
1242  LockCallTemps();
1243  RegStorage method_reg = TargetReg(kArg1, kRef);
1244  LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
1245  RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1246  if (needs_access_check) {
1247    // Check we have access to type_idx and if not throw IllegalAccessError,
1248    // returns Class* in kRet0
1249    // InitializeTypeAndVerifyAccess(idx, method)
1250    CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1251    OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1252  } else if (use_declaring_class) {
1253    LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1254                class_reg, kNotVolatile);
1255  } else {
1256    // Load dex cache entry into class_reg (kArg2)
1257    LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1258                class_reg, kNotVolatile);
1259    int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1260    LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1261    if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1262      // Need to test presence of type in dex cache at runtime
1263      LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1264      LIR* cont = NewLIR0(kPseudoTargetLabel);
1265
1266      // Slow path to initialize the type.  Executed if the type is NULL.
1267      class SlowPath : public LIRSlowPath {
1268       public:
1269        SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1270                 const RegStorage class_reg) :
1271                   LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1272                   class_reg_(class_reg) {
1273        }
1274
1275        void Compile() {
1276          GenerateTargetLabel();
1277
1278          // Call out to helper, which will return resolved type in kArg0
1279          // InitializeTypeFromCode(idx, method)
1280          m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_,
1281                                        m2l_->TargetReg(kArg1, kRef), true);
1282          m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1283          m2l_->OpUnconditionalBranch(cont_);
1284        }
1285
1286       public:
1287        const int type_idx_;
1288        const RegStorage class_reg_;
1289      };
1290
1291      AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1292    }
1293  }
1294  // At this point, class_reg (kArg2) has class
1295  LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1296
1297  // Slow path for the case where the classes are not equal.  In this case we need
1298  // to call a helper function to do the check.
1299  class SlowPath : public LIRSlowPath {
1300   public:
1301    SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1302               LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1303    }
1304
1305    void Compile() {
1306      GenerateTargetLabel();
1307
1308      if (load_) {
1309        m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1310                          m2l_->TargetReg(kArg1, kRef), kNotVolatile);
1311      }
1312      m2l_->CallRuntimeHelperRegReg(kQuickCheckCast, m2l_->TargetReg(kArg2, kRef),
1313                                    m2l_->TargetReg(kArg1, kRef), true);
1314      m2l_->OpUnconditionalBranch(cont_);
1315    }
1316
1317   private:
1318    const bool load_;
1319  };
1320
1321  if (type_known_abstract) {
1322    // Easier case, run slow path if target is non-null (slow path will load from target)
1323    LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
1324    LIR* cont = NewLIR0(kPseudoTargetLabel);
1325    AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1326  } else {
1327    // Harder, more common case.  We need to generate a forward branch over the load
1328    // if the target is null.  If it's non-null we perform the load and branch to the
1329    // slow path if the classes are not equal.
1330
1331    /* Null is OK - continue */
1332    LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
1333    /* load object->klass_ */
1334    DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1335    LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1336                TargetReg(kArg1, kRef), kNotVolatile);
1337
1338    LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
1339    LIR* cont = NewLIR0(kPseudoTargetLabel);
1340
1341    // Add the slow path that will not perform load since this is already done.
1342    AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1343
1344    // Set the null check to branch to the continuation.
1345    branch1->target = cont;
1346  }
1347}
1348
1349void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1350                           RegLocation rl_src1, RegLocation rl_src2) {
1351  RegLocation rl_result;
1352  if (cu_->instruction_set == kThumb2) {
1353    /*
1354     * NOTE:  This is the one place in the code in which we might have
1355     * as many as six live temporary registers.  There are 5 in the normal
1356     * set for Arm.  Until we have spill capabilities, temporarily add
1357     * lr to the temp set.  It is safe to do this locally, but note that
1358     * lr is used explicitly elsewhere in the code generator and cannot
1359     * normally be used as a general temp register.
1360     */
1361    MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
1362    FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
1363  }
1364  rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1365  rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1366  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1367  // The longs may overlap - use intermediate temp if so
1368  if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1369    RegStorage t_reg = AllocTemp();
1370    OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1371    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1372    OpRegCopy(rl_result.reg.GetLow(), t_reg);
1373    FreeTemp(t_reg);
1374  } else {
1375    OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1376    OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1377  }
1378  /*
1379   * NOTE: If rl_dest refers to a frame variable in a large frame, the
1380   * following StoreValueWide might need to allocate a temp register.
1381   * To further work around the lack of a spill capability, explicitly
1382   * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1383   * Remove when spill is functional.
1384   */
1385  FreeRegLocTemps(rl_result, rl_src1);
1386  FreeRegLocTemps(rl_result, rl_src2);
1387  StoreValueWide(rl_dest, rl_result);
1388  if (cu_->instruction_set == kThumb2) {
1389    Clobber(TargetReg(kLr, kNotWide));
1390    UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
1391  }
1392}
1393
1394void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1395                             RegLocation rl_src1, RegLocation rl_shift) {
1396  QuickEntrypointEnum target;
1397  switch (opcode) {
1398    case Instruction::SHL_LONG:
1399    case Instruction::SHL_LONG_2ADDR:
1400      target = kQuickShlLong;
1401      break;
1402    case Instruction::SHR_LONG:
1403    case Instruction::SHR_LONG_2ADDR:
1404      target = kQuickShrLong;
1405      break;
1406    case Instruction::USHR_LONG:
1407    case Instruction::USHR_LONG_2ADDR:
1408      target = kQuickUshrLong;
1409      break;
1410    default:
1411      LOG(FATAL) << "Unexpected case";
1412      target = kQuickShlLong;
1413  }
1414  FlushAllRegs();   /* Send everything to home location */
1415  CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_shift, false);
1416  RegLocation rl_result = GetReturnWide(kCoreReg);
1417  StoreValueWide(rl_dest, rl_result);
1418}
1419
1420
1421void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1422                            RegLocation rl_src1, RegLocation rl_src2) {
1423  DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1424  OpKind op = kOpBkpt;
1425  bool is_div_rem = false;
1426  bool check_zero = false;
1427  bool unary = false;
1428  RegLocation rl_result;
1429  bool shift_op = false;
1430  switch (opcode) {
1431    case Instruction::NEG_INT:
1432      op = kOpNeg;
1433      unary = true;
1434      break;
1435    case Instruction::NOT_INT:
1436      op = kOpMvn;
1437      unary = true;
1438      break;
1439    case Instruction::ADD_INT:
1440    case Instruction::ADD_INT_2ADDR:
1441      op = kOpAdd;
1442      break;
1443    case Instruction::SUB_INT:
1444    case Instruction::SUB_INT_2ADDR:
1445      op = kOpSub;
1446      break;
1447    case Instruction::MUL_INT:
1448    case Instruction::MUL_INT_2ADDR:
1449      op = kOpMul;
1450      break;
1451    case Instruction::DIV_INT:
1452    case Instruction::DIV_INT_2ADDR:
1453      check_zero = true;
1454      op = kOpDiv;
1455      is_div_rem = true;
1456      break;
1457    /* NOTE: returns in kArg1 */
1458    case Instruction::REM_INT:
1459    case Instruction::REM_INT_2ADDR:
1460      check_zero = true;
1461      op = kOpRem;
1462      is_div_rem = true;
1463      break;
1464    case Instruction::AND_INT:
1465    case Instruction::AND_INT_2ADDR:
1466      op = kOpAnd;
1467      break;
1468    case Instruction::OR_INT:
1469    case Instruction::OR_INT_2ADDR:
1470      op = kOpOr;
1471      break;
1472    case Instruction::XOR_INT:
1473    case Instruction::XOR_INT_2ADDR:
1474      op = kOpXor;
1475      break;
1476    case Instruction::SHL_INT:
1477    case Instruction::SHL_INT_2ADDR:
1478      shift_op = true;
1479      op = kOpLsl;
1480      break;
1481    case Instruction::SHR_INT:
1482    case Instruction::SHR_INT_2ADDR:
1483      shift_op = true;
1484      op = kOpAsr;
1485      break;
1486    case Instruction::USHR_INT:
1487    case Instruction::USHR_INT_2ADDR:
1488      shift_op = true;
1489      op = kOpLsr;
1490      break;
1491    default:
1492      LOG(FATAL) << "Invalid word arith op: " << opcode;
1493  }
1494  if (!is_div_rem) {
1495    if (unary) {
1496      rl_src1 = LoadValue(rl_src1, kCoreReg);
1497      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1498      OpRegReg(op, rl_result.reg, rl_src1.reg);
1499    } else {
1500      if ((shift_op) && (cu_->instruction_set != kArm64)) {
1501        rl_src2 = LoadValue(rl_src2, kCoreReg);
1502        RegStorage t_reg = AllocTemp();
1503        OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1504        rl_src1 = LoadValue(rl_src1, kCoreReg);
1505        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1506        OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1507        FreeTemp(t_reg);
1508      } else {
1509        rl_src1 = LoadValue(rl_src1, kCoreReg);
1510        rl_src2 = LoadValue(rl_src2, kCoreReg);
1511        rl_result = EvalLoc(rl_dest, kCoreReg, true);
1512        OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1513      }
1514    }
1515    StoreValue(rl_dest, rl_result);
1516  } else {
1517    bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1518    if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1519      rl_src1 = LoadValue(rl_src1, kCoreReg);
1520      rl_src2 = LoadValue(rl_src2, kCoreReg);
1521      if (check_zero) {
1522        GenDivZeroCheck(rl_src2.reg);
1523      }
1524      rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1525      done = true;
1526    } else if (cu_->instruction_set == kThumb2) {
1527      if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1528        // Use ARM SDIV instruction for division.  For remainder we also need to
1529        // calculate using a MUL and subtract.
1530        rl_src1 = LoadValue(rl_src1, kCoreReg);
1531        rl_src2 = LoadValue(rl_src2, kCoreReg);
1532        if (check_zero) {
1533          GenDivZeroCheck(rl_src2.reg);
1534        }
1535        rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1536        done = true;
1537      }
1538    }
1539
1540    // If we haven't already generated the code use the callout function.
1541    if (!done) {
1542      FlushAllRegs();   /* Send everything to home location */
1543      LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
1544      RegStorage r_tgt = CallHelperSetup(kQuickIdivmod);
1545      LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
1546      if (check_zero) {
1547        GenDivZeroCheck(TargetReg(kArg1, kNotWide));
1548      }
1549      // NOTE: callout here is not a safepoint.
1550      CallHelper(r_tgt, kQuickIdivmod, false /* not a safepoint */);
1551      if (op == kOpDiv)
1552        rl_result = GetReturn(kCoreReg);
1553      else
1554        rl_result = GetReturnAlt();
1555    }
1556    StoreValue(rl_dest, rl_result);
1557  }
1558}
1559
1560/*
1561 * The following are the first-level codegen routines that analyze the format
1562 * of each bytecode then either dispatch special purpose codegen routines
1563 * or produce corresponding Thumb instructions directly.
1564 */
1565
1566// Returns true if no more than two bits are set in 'x'.
1567static bool IsPopCountLE2(unsigned int x) {
1568  x &= x - 1;
1569  return (x & (x - 1)) == 0;
1570}
1571
1572// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1573// and store the result in 'rl_dest'.
1574bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1575                               RegLocation rl_src, RegLocation rl_dest, int lit) {
1576  if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1577    return false;
1578  }
1579  // No divide instruction for Arm, so check for more special cases
1580  if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1581    return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1582  }
1583  int k = LowestSetBit(lit);
1584  if (k >= 30) {
1585    // Avoid special cases.
1586    return false;
1587  }
1588  rl_src = LoadValue(rl_src, kCoreReg);
1589  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1590  if (is_div) {
1591    RegStorage t_reg = AllocTemp();
1592    if (lit == 2) {
1593      // Division by 2 is by far the most common division by constant.
1594      OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1595      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1596      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1597    } else {
1598      OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1599      OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1600      OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1601      OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1602    }
1603  } else {
1604    RegStorage t_reg1 = AllocTemp();
1605    RegStorage t_reg2 = AllocTemp();
1606    if (lit == 2) {
1607      OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1608      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1609      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1610      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1611    } else {
1612      OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1613      OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1614      OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1615      OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1616      OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1617    }
1618  }
1619  StoreValue(rl_dest, rl_result);
1620  return true;
1621}
1622
1623// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1624// and store the result in 'rl_dest'.
1625bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1626  if (lit < 0) {
1627    return false;
1628  }
1629  if (lit == 0) {
1630    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1631    LoadConstant(rl_result.reg, 0);
1632    StoreValue(rl_dest, rl_result);
1633    return true;
1634  }
1635  if (lit == 1) {
1636    rl_src = LoadValue(rl_src, kCoreReg);
1637    RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1638    OpRegCopy(rl_result.reg, rl_src.reg);
1639    StoreValue(rl_dest, rl_result);
1640    return true;
1641  }
1642  // There is RegRegRegShift on Arm, so check for more special cases
1643  if (cu_->instruction_set == kThumb2) {
1644    return EasyMultiply(rl_src, rl_dest, lit);
1645  }
1646  // Can we simplify this multiplication?
1647  bool power_of_two = false;
1648  bool pop_count_le2 = false;
1649  bool power_of_two_minus_one = false;
1650  if (IsPowerOfTwo(lit)) {
1651    power_of_two = true;
1652  } else if (IsPopCountLE2(lit)) {
1653    pop_count_le2 = true;
1654  } else if (IsPowerOfTwo(lit + 1)) {
1655    power_of_two_minus_one = true;
1656  } else {
1657    return false;
1658  }
1659  rl_src = LoadValue(rl_src, kCoreReg);
1660  RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1661  if (power_of_two) {
1662    // Shift.
1663    OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1664  } else if (pop_count_le2) {
1665    // Shift and add and shift.
1666    int first_bit = LowestSetBit(lit);
1667    int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1668    GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1669  } else {
1670    // Reverse subtract: (src << (shift + 1)) - src.
1671    DCHECK(power_of_two_minus_one);
1672    // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1673    RegStorage t_reg = AllocTemp();
1674    OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1675    OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1676  }
1677  StoreValue(rl_dest, rl_result);
1678  return true;
1679}
1680
1681void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1682                               int lit) {
1683  RegLocation rl_result;
1684  OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1685  int shift_op = false;
1686  bool is_div = false;
1687
1688  switch (opcode) {
1689    case Instruction::RSUB_INT_LIT8:
1690    case Instruction::RSUB_INT: {
1691      rl_src = LoadValue(rl_src, kCoreReg);
1692      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1693      if (cu_->instruction_set == kThumb2) {
1694        OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1695      } else {
1696        OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1697        OpRegImm(kOpAdd, rl_result.reg, lit);
1698      }
1699      StoreValue(rl_dest, rl_result);
1700      return;
1701    }
1702
1703    case Instruction::SUB_INT:
1704    case Instruction::SUB_INT_2ADDR:
1705      lit = -lit;
1706      // Intended fallthrough
1707    case Instruction::ADD_INT:
1708    case Instruction::ADD_INT_2ADDR:
1709    case Instruction::ADD_INT_LIT8:
1710    case Instruction::ADD_INT_LIT16:
1711      op = kOpAdd;
1712      break;
1713    case Instruction::MUL_INT:
1714    case Instruction::MUL_INT_2ADDR:
1715    case Instruction::MUL_INT_LIT8:
1716    case Instruction::MUL_INT_LIT16: {
1717      if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1718        return;
1719      }
1720      op = kOpMul;
1721      break;
1722    }
1723    case Instruction::AND_INT:
1724    case Instruction::AND_INT_2ADDR:
1725    case Instruction::AND_INT_LIT8:
1726    case Instruction::AND_INT_LIT16:
1727      op = kOpAnd;
1728      break;
1729    case Instruction::OR_INT:
1730    case Instruction::OR_INT_2ADDR:
1731    case Instruction::OR_INT_LIT8:
1732    case Instruction::OR_INT_LIT16:
1733      op = kOpOr;
1734      break;
1735    case Instruction::XOR_INT:
1736    case Instruction::XOR_INT_2ADDR:
1737    case Instruction::XOR_INT_LIT8:
1738    case Instruction::XOR_INT_LIT16:
1739      op = kOpXor;
1740      break;
1741    case Instruction::SHL_INT_LIT8:
1742    case Instruction::SHL_INT:
1743    case Instruction::SHL_INT_2ADDR:
1744      lit &= 31;
1745      shift_op = true;
1746      op = kOpLsl;
1747      break;
1748    case Instruction::SHR_INT_LIT8:
1749    case Instruction::SHR_INT:
1750    case Instruction::SHR_INT_2ADDR:
1751      lit &= 31;
1752      shift_op = true;
1753      op = kOpAsr;
1754      break;
1755    case Instruction::USHR_INT_LIT8:
1756    case Instruction::USHR_INT:
1757    case Instruction::USHR_INT_2ADDR:
1758      lit &= 31;
1759      shift_op = true;
1760      op = kOpLsr;
1761      break;
1762
1763    case Instruction::DIV_INT:
1764    case Instruction::DIV_INT_2ADDR:
1765    case Instruction::DIV_INT_LIT8:
1766    case Instruction::DIV_INT_LIT16:
1767    case Instruction::REM_INT:
1768    case Instruction::REM_INT_2ADDR:
1769    case Instruction::REM_INT_LIT8:
1770    case Instruction::REM_INT_LIT16: {
1771      if (lit == 0) {
1772        GenDivZeroException();
1773        return;
1774      }
1775      if ((opcode == Instruction::DIV_INT) ||
1776          (opcode == Instruction::DIV_INT_2ADDR) ||
1777          (opcode == Instruction::DIV_INT_LIT8) ||
1778          (opcode == Instruction::DIV_INT_LIT16)) {
1779        is_div = true;
1780      } else {
1781        is_div = false;
1782      }
1783      if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1784        return;
1785      }
1786
1787      bool done = false;
1788      if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1789        rl_src = LoadValue(rl_src, kCoreReg);
1790        rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1791        done = true;
1792      } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1793        rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1794        done = true;
1795      } else if (cu_->instruction_set == kThumb2) {
1796        if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1797          // Use ARM SDIV instruction for division.  For remainder we also need to
1798          // calculate using a MUL and subtract.
1799          rl_src = LoadValue(rl_src, kCoreReg);
1800          rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1801          done = true;
1802        }
1803      }
1804
1805      if (!done) {
1806        FlushAllRegs();   /* Everything to home location. */
1807        LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
1808        Clobber(TargetReg(kArg0, kNotWide));
1809        CallRuntimeHelperRegImm(kQuickIdivmod, TargetReg(kArg0, kNotWide), lit, false);
1810        if (is_div)
1811          rl_result = GetReturn(kCoreReg);
1812        else
1813          rl_result = GetReturnAlt();
1814      }
1815      StoreValue(rl_dest, rl_result);
1816      return;
1817    }
1818    default:
1819      LOG(FATAL) << "Unexpected opcode " << opcode;
1820  }
1821  rl_src = LoadValue(rl_src, kCoreReg);
1822  rl_result = EvalLoc(rl_dest, kCoreReg, true);
1823  // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1824  if (shift_op && (lit == 0)) {
1825    OpRegCopy(rl_result.reg, rl_src.reg);
1826  } else {
1827    OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1828  }
1829  StoreValue(rl_dest, rl_result);
1830}
1831
1832void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
1833                             RegLocation rl_src1, RegLocation rl_src2) {
1834  RegLocation rl_result;
1835  OpKind first_op = kOpBkpt;
1836  OpKind second_op = kOpBkpt;
1837  bool call_out = false;
1838  bool check_zero = false;
1839  int ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1840  QuickEntrypointEnum target;
1841
1842  switch (opcode) {
1843    case Instruction::NOT_LONG:
1844      rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1845      rl_result = EvalLoc(rl_dest, kCoreReg, true);
1846      // Check for destructive overlap
1847      if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
1848        RegStorage t_reg = AllocTemp();
1849        OpRegCopy(t_reg, rl_src2.reg.GetHigh());
1850        OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1851        OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
1852        FreeTemp(t_reg);
1853      } else {
1854        OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1855        OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
1856      }
1857      StoreValueWide(rl_dest, rl_result);
1858      return;
1859    case Instruction::ADD_LONG:
1860    case Instruction::ADD_LONG_2ADDR:
1861      first_op = kOpAdd;
1862      second_op = kOpAdc;
1863      break;
1864    case Instruction::SUB_LONG:
1865    case Instruction::SUB_LONG_2ADDR:
1866      first_op = kOpSub;
1867      second_op = kOpSbc;
1868      break;
1869    case Instruction::MUL_LONG:
1870    case Instruction::MUL_LONG_2ADDR:
1871      call_out = true;
1872      ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1873      target = kQuickLmul;
1874      break;
1875    case Instruction::DIV_LONG:
1876    case Instruction::DIV_LONG_2ADDR:
1877      call_out = true;
1878      check_zero = true;
1879      ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1880      target = kQuickLdiv;
1881      break;
1882    case Instruction::REM_LONG:
1883    case Instruction::REM_LONG_2ADDR:
1884      call_out = true;
1885      check_zero = true;
1886      target = kQuickLmod;
1887      /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
1888      ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2, kNotWide).GetReg() :
1889          TargetReg(kRet0, kNotWide).GetReg();
1890      break;
1891    case Instruction::AND_LONG_2ADDR:
1892    case Instruction::AND_LONG:
1893      first_op = kOpAnd;
1894      second_op = kOpAnd;
1895      break;
1896    case Instruction::OR_LONG:
1897    case Instruction::OR_LONG_2ADDR:
1898      first_op = kOpOr;
1899      second_op = kOpOr;
1900      break;
1901    case Instruction::XOR_LONG:
1902    case Instruction::XOR_LONG_2ADDR:
1903      first_op = kOpXor;
1904      second_op = kOpXor;
1905      break;
1906    default:
1907      LOG(FATAL) << "Invalid long arith op";
1908  }
1909  if (!call_out) {
1910    GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
1911  } else {
1912    FlushAllRegs();   /* Send everything to home location */
1913    if (check_zero) {
1914      RegStorage r_tmp1 = TargetReg(kArg0, kWide);
1915      RegStorage r_tmp2 = TargetReg(kArg2, kWide);
1916      LoadValueDirectWideFixed(rl_src2, r_tmp2);
1917      RegStorage r_tgt = CallHelperSetup(target);
1918      GenDivZeroCheckWide(r_tmp2);
1919      LoadValueDirectWideFixed(rl_src1, r_tmp1);
1920      // NOTE: callout here is not a safepoint
1921      CallHelper(r_tgt, target, false /* not safepoint */);
1922    } else {
1923      CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_src2, false);
1924    }
1925    // Adjust return regs in to handle case of rem returning kArg2/kArg3
1926    if (ret_reg == TargetReg(kRet0, kNotWide).GetReg())
1927      rl_result = GetReturnWide(kCoreReg);
1928    else
1929      rl_result = GetReturnWideAlt();
1930    StoreValueWide(rl_dest, rl_result);
1931  }
1932}
1933
1934void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
1935  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
1936  LoadConstantNoClobber(rl_result.reg, value);
1937  StoreValue(rl_dest, rl_result);
1938  if (value == 0) {
1939    Workaround7250540(rl_dest, rl_result.reg);
1940  }
1941}
1942
1943void Mir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest,
1944                                RegLocation rl_src) {
1945  /*
1946   * Don't optimize the register usage since it calls out to support
1947   * functions
1948   */
1949
1950  FlushAllRegs();   /* Send everything to home location */
1951  CallRuntimeHelperRegLocation(trampoline, rl_src, false);
1952  if (rl_dest.wide) {
1953    RegLocation rl_result;
1954    rl_result = GetReturnWide(LocToRegClass(rl_dest));
1955    StoreValueWide(rl_dest, rl_result);
1956  } else {
1957    RegLocation rl_result;
1958    rl_result = GetReturn(LocToRegClass(rl_dest));
1959    StoreValue(rl_dest, rl_result);
1960  }
1961}
1962
1963class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
1964 public:
1965  SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
1966      : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
1967  }
1968
1969  void Compile() OVERRIDE {
1970    m2l_->ResetRegPool();
1971    m2l_->ResetDefTracking();
1972    GenerateTargetLabel(kPseudoSuspendTarget);
1973    m2l_->CallRuntimeHelper(kQuickTestSuspend, true);
1974    if (cont_ != nullptr) {
1975      m2l_->OpUnconditionalBranch(cont_);
1976    }
1977  }
1978};
1979
1980/* Check if we need to check for pending suspend request */
1981void Mir2Lir::GenSuspendTest(int opt_flags) {
1982  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
1983    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1984      return;
1985    }
1986    FlushAllRegs();
1987    LIR* branch = OpTestSuspend(NULL);
1988    LIR* cont = NewLIR0(kPseudoTargetLabel);
1989    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
1990  } else {
1991    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1992      return;
1993    }
1994    FlushAllRegs();     // TODO: needed?
1995    LIR* inst = CheckSuspendUsingLoad();
1996    MarkSafepointPC(inst);
1997  }
1998}
1999
2000/* Check if we need to check for pending suspend request */
2001void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
2002  if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
2003    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2004      OpUnconditionalBranch(target);
2005      return;
2006    }
2007    OpTestSuspend(target);
2008    FlushAllRegs();
2009    LIR* branch = OpUnconditionalBranch(nullptr);
2010    AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
2011  } else {
2012    // For the implicit suspend check, just perform the trigger
2013    // load and branch to the target.
2014    if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
2015      OpUnconditionalBranch(target);
2016      return;
2017    }
2018    FlushAllRegs();
2019    LIR* inst = CheckSuspendUsingLoad();
2020    MarkSafepointPC(inst);
2021    OpUnconditionalBranch(target);
2022  }
2023}
2024
2025/* Call out to helper assembly routine that will null check obj and then lock it. */
2026void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
2027  FlushAllRegs();
2028  CallRuntimeHelperRegLocation(kQuickLockObject, rl_src, true);
2029}
2030
2031/* Call out to helper assembly routine that will null check obj and then unlock it. */
2032void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2033  FlushAllRegs();
2034  CallRuntimeHelperRegLocation(kQuickUnlockObject, rl_src, true);
2035}
2036
2037/* Generic code for generating a wide constant into a VR. */
2038void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2039  RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2040  LoadConstantWide(rl_result.reg, value);
2041  StoreValueWide(rl_dest, rl_result);
2042}
2043
2044void Mir2Lir::GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2045  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2046  const uint16_t entries = table[1];
2047  // Chained cmp-and-branch.
2048  const int32_t* as_int32 = reinterpret_cast<const int32_t*>(&table[2]);
2049  int32_t current_key = as_int32[0];
2050  const int32_t* targets = &as_int32[1];
2051  rl_src = LoadValue(rl_src, kCoreReg);
2052  int i = 0;
2053  for (; i < entries; i++, current_key++) {
2054    if (!InexpensiveConstantInt(current_key, Instruction::Code::IF_EQ)) {
2055      // Switch to using a temp and add.
2056      break;
2057    }
2058    BasicBlock* case_block =
2059        mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2060    OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
2061  }
2062  if (i < entries) {
2063    // The rest do not seem to be inexpensive. Try to allocate a temp and use add.
2064    RegStorage key_temp = AllocTypedTemp(false, kCoreReg, false);
2065    if (key_temp.Valid()) {
2066      LoadConstantNoClobber(key_temp, current_key);
2067      for (; i < entries - 1; i++, current_key++) {
2068        BasicBlock* case_block =
2069            mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2070        OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
2071        OpRegImm(kOpAdd, key_temp, 1);  // Increment key.
2072      }
2073      BasicBlock* case_block =
2074          mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2075      OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
2076    } else {
2077      // No free temp, just finish the old loop.
2078      for (; i < entries; i++, current_key++) {
2079        BasicBlock* case_block =
2080            mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2081        OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
2082      }
2083    }
2084  }
2085}
2086
2087void Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2088  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2089  if (cu_->verbose) {
2090    DumpSparseSwitchTable(table);
2091  }
2092
2093  const uint16_t entries = table[1];
2094  if (entries <= kSmallSwitchThreshold) {
2095    GenSmallPackedSwitch(mir, table_offset, rl_src);
2096  } else {
2097    // Use the backend-specific implementation.
2098    GenLargePackedSwitch(mir, table_offset, rl_src);
2099  }
2100}
2101
2102void Mir2Lir::GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2103  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2104  const uint16_t entries = table[1];
2105  // Chained cmp-and-branch.
2106  const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
2107  const int32_t* targets = &keys[entries];
2108  rl_src = LoadValue(rl_src, kCoreReg);
2109  for (int i = 0; i < entries; i++) {
2110    int key = keys[i];
2111    BasicBlock* case_block =
2112        mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2113    OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block->id]);
2114  }
2115}
2116
2117void Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2118  const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2119  if (cu_->verbose) {
2120    DumpSparseSwitchTable(table);
2121  }
2122
2123  const uint16_t entries = table[1];
2124  if (entries <= kSmallSwitchThreshold) {
2125    GenSmallSparseSwitch(mir, table_offset, rl_src);
2126  } else {
2127    // Use the backend-specific implementation.
2128    GenLargeSparseSwitch(mir, table_offset, rl_src);
2129  }
2130}
2131
2132}  // namespace art
2133